整体式转向梯形机构优化设计-2014

合集下载

转向梯形驱动机构的运动分析及优化设计

转向梯形驱动机构的运动分析及优化设计

V ol 121 N o 18公 路 交 通 科 技2004年8月JOURNA L OF HIGHWAY AND TRANSPORT ATION RESEARCH AND DEVE LOPMENT文章编号:1002Ο0268(2004)08Ο0124Ο05收稿日期:2003Ο07Ο03作者简介:李玉民(1969-),男,河南南阳人,东南大学博士研究生,主要研究方向为载运工具运用工程1转向梯形驱动机构的运动分析及优化设计李玉民1,李旭宏1,过学迅2(11东南大学交通学院,江苏 南京 210096;21武汉理工大学,湖北 武汉 430070)摘要:转向梯形驱动机构的空间布置对汽车的操纵稳定性影响很大。

本文以常见的非独立悬架结构为例,建立空间几何模型进行运动分析,提出同时满足“与前悬架运动协调”和“左右转向力均匀”两方面要求的转向梯形驱动机构优化设计方法。

实践应用表明该方法可行。

关键词:汽车转向;空间连杆机构;运动分析;优化设计中图分类号:U46312 文献标识码:AK inematics Analysis and Optimal De sign of Driving Mechanismsof Ackerman Steering LinkageLI Yu Οmin 1,LI Xu Οhong 1,G UO Xue Οxun2(11T ransportation C ollege ,S outheast University ,Jiangsu Nanjing 210096,China ;21Wuhan University of T echnology ,Hubei Wuhan 430070,China )Abstract :The spatial position of driving mechanisms of Ackerman steering linkage quite in fluences the stability of vehicle maneuvering characteristics 1T aking non Οindependent suspension as an example ,this paper establishes spatial geometric analysis m odel ,then puts forward an optimal design method which meets the coordinated m otion of steering driving linkage and front suspension ,at the same time meets the uniformity of left Οand Οright steering force 1Application shows that the method is feasible 1K ey words :Autom otive steering ;S patial linkage mechanisms ;K inematics analysis ;Optimal design 如图1示,汽车转向传动机构包括转向梯形和转向梯形驱动机构,其中转向梯形驱动机构是指由转向摇臂OA 、直拉杆AB 和转向节臂BC 等组成的驱动转向梯形完成转向任务的连杆机构。

整体式转向梯形机构优化

整体式转向梯形机构优化

摘 要:运用一种精度较高、计算较简单的平面分析方法去优化某小型货车的转向梯形机构,该方法对内、外侧转向
轮转角差的评价更贴合实际情况。并区分实际梯形转角差与 Ackerman 转角差的大小,利用 MATLAB 优化工具箱对该小型 货车的转向系统进行了优化。通过优化,转向梯形机构得到了改进,并证明了优化方法的可行性。
向轮转角作比较,充分考虑内、外侧车轮的转角差,
在图 2 中,O 点为瞬时转动中心,θ 1 与 θ 2 分
并结合本次车型的实际情况建立目标函数如下:
别为汽车转向时的外侧转向轮转角与内侧转向 轮转角,k 为轴距。对于 b 的值,在国内目前流行 的汽车设计书籍中,转向梯形机构的优化设计中 常采用近似的平面分析方法,这种方法让 b 取值
参考文献
[1]中国汽车技术研究中心译.产品质量先期策划和控制计划[M]. [2]余志生.主编.汽车理论[M].北京:机械工业出版社. [3]张洪欣.主编.汽车设计[M].机械工业出版社. [4]西北工业大学机械原理及机械零件教研室编著.机械设 计[M].高等教育出版社.
不考虑车轮的外倾角。 而应用平面分析方法 2,b 值为: b = 2 × K × c o s(2 τ )× tanβ + b 1
(2)
2 转向优化原理及方法分析
从图 2 中可以推导出内、外转向轮转角满足
汽车的转向参数设置得不好,轻则影响轮胎 的使用寿命,降低其行驶平顺性,重则可能由于 侧滑导致侧翻等安全事故。因此需要对汽车的转 向参数进行优化,以所有转向轮均能实现纯滚动 为原则,即所有车轮均绕同一瞬时旋转中心滚
b = 2 × r × tanβ + b 1
(1)
与左侧转向轮向左转动,梯形臂 L1 通过拉动转向

转向梯形机构设计报告

转向梯形机构设计报告

采用齿轮齿条式转向器的转向梯形机构优化设计报告指导老师:***学生:黄志宇学号:********专业班级:车辆工程04班重庆大学方程式赛车创新实践班二〇一七年二月赛车转向系统是关系到赛车性能的主要系统,它是用来改变或恢复汽车行驶方向的系统的总称,通常,车手通过转向系统使转向轮偏转一定角度实现行驶方向改变。

赛车转向系统一股由方向盘、快拆、转向轴、转向柱、万向节、转向器、转向拉杆、梯形臂等部分组成。

其中,方向盘用于输入转向角度,快拆用于快速分离方向盘与转向柱,转向柱、转向轴、万向节共同将方向盘输入角度传递到转向器,转向器通过内部传动副机构将旋转运动转化为转向拉杆的直线运动,转向拉杆与梯形臂作用于转向节,实现车轮转向。

图1展示了转向系梯形结构,图2展示了赛车转向系统构成。

图1转向梯形机构图2赛车转向系统构成由于大赛组委会规则里面明确规定不允许使用线控或者电动转向,考虑到在赛车转向系统布置空间有限,且有严格的成本限制,以及轻量化的赛车设计目标,将赛车转向器范围限定机械式转向器。

目前,国内外的大多数方程式赛车采用齿轮齿条式转向器和断开式转向梯形结构。

●齿轮齿条式转向器齿轮齿条式转向器的传动副为齿轮齿条,其中,齿轮多与转向柱做成一体,齿条多与转向横拉杆直接连接,连接点即为断开点位置。

根据输出位置不同,分为两端输出式和中间输出式。

其主要优点是:结构简单,体积小,易于设计制作;转向器可选材料多样,壳体可选用招合金,质量轻;传动效率较高;容易实现调隙,当齿轮齿条或者齿条与壳体之间产生间隙时,可以通过安装在齿条背部的挤压力可调的弹簧来消除间隙;转向角度大,制造成本低。

其主要缺点是:传动副釆用齿轮齿条,正效率非常髙的同时,逆效率非常高,可以到达当汽车在颠簸路面上行驶时,路感反馈强烈,来自路面的反冲力很容易传递到方向盘;转向力矩大,驾驶员操纵费力,对方向盘的反冲容易造成驾驶员精神紧张,过度疲劳。

●断开式转向梯形结构根据转向器和梯形的布置位置的不同,断开式转向梯形又分为四类,分别为:转向器前置梯形前置,转向器后置梯形后置,转向器前置梯形后置,转向节后置梯形前置。

汽车整体式转向梯形机构仿真计算与优化

汽车整体式转向梯形机构仿真计算与优化

汽车整体式转向梯形机构仿真计算与优化首先,需要进行操纵性能仿真计算。

操纵性能是指车辆在转向过程中的稳定性、准确性和操纵力的大小。

通过建立车辆动力学模型,可以模拟车辆在不同转向输入下的行驶状态,并计算车辆的操纵性能参数,如转向响应时间、转向幅度和操纵力矩等。

通过对不同转向梯形机构参数的变化进行仿真计算,可以评估梯形机构对操纵性能的影响,并进行优化设计。

其次,还需要进行力学性能仿真计算。

力学性能是指转向机构在不同工况下的强度、刚度和耐久性等。

通过建立转向机构的有限元模型,可以分析转向机构在不同工况下的应力、应变和位移等力学参数,评估转向机构的设计是否满足强度和刚度要求,并进行优化调整。

同时,还可以通过应用疲劳分析方法,预测转向机构在长期使用过程中的损伤、疲劳寿命和可靠性等问题,以提高整体转向机构的耐久性。

最后,需要进行优化设计。

在进行仿真计算的基础上,可以通过参数优化和结构优化方法,对转向机构的参数和结构进行调整和改进。

例如,通过对齿条、滚珠丝杠、主动齿轮和从动齿轮等关键部件的几何参数进行优化,可以减小滚动摩擦和间隙,提高转向机构的机械效率和动力传递精度。

同时,还可以通过改变转向机构的布局和材料选择,减少转向机构的质量,并提高其刚度和强度,从而提升整体转向机构的性能。

综上所述,汽车整体式转向梯形机构的仿真计算与优化是确保汽车操纵性和稳定性的重要环节,能够通过操纵性能仿真计算、力学性能仿真计算和优化设计方法,对转向机构的性能进行评估和改进,提高汽车整体转向梯形机构的性能和可靠性。

转向梯形分析

转向梯形分析

第六节转向梯形转向梯形有整体式和断开式两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系。

无论采用哪一种方案,必须正确选择转向梯形参数,做到汽车转弯时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。

同时,为达到总体布置要求的最小转弯直径值,转向轮应有足够大的转角。

一、转向梯形结构方案分析1、整体式转向梯形整体式转向梯形是由转向横拉杆l,转向梯形臂2和汽车前轴3组成,如图7-30所示。

其中梯形臂呈收缩状向后延伸。

这种方案的优点是结构简单,调整前束容易,制造成本低;主要缺点是一侧转向轮上、下跳动时,会影响图7—30 整体式转向梯形1—转向横拉杆 2—转向梯形臂 3—前轴另一侧转向轮。

当汽车前悬架采用非独立悬架时,应当采用整体式转向梯形。

整体式转向梯形的横拉杆可位于前轴后或前轴前(称为前置梯形)。

对于发动机位置低或前轮驱动汽车,常采用前置梯形。

前置梯形的梯形臂必须向前外侧方向延伸,因而会与车轮或制动底板发生干涉,所以在布置上有困难。

为了保护横拉杆免遭路面不平物的损伤,横拉杆的位置应尽可能布置得高些,至少不低于前轴高度。

2、断开式转向梯形转向梯形的横拉杆做成断开的,称之为断开式转向梯形。

断开式转向梯形方案之一如图7-31所示。

断开式转向梯形的主要优点是它与前轮采用独立悬架相配合,能够保证一侧车轮上、下跳动时,不会影响另一侧车轮;与整体式转向梯形比较,由于杆系、球头增多,所以结构复杂,制造成本高,并且调整前束比较困难。

图7—31 断开式转向梯形横拉杆上断开点的位置与独立悬架形式有关。

采用双横臂独立悬架,常用图解法(基于三心定理)确定断开点的位置。

其求法如下(图7-32b):1)延长B K B 与A K A ,交于立柱AB 的瞬心P 点,由P 点作直线PS 。

S 点为转向节臂球销中心在悬架杆件(双横臂)所在平面上的投影。

当悬架摇臂的轴线斜置时,应以垂直于摇臂轴的平面作为当量平面进行投影和运动分析。

基于 MATLAB 的整体式转向梯形优化设计

基于 MATLAB 的整体式转向梯形优化设计

基于 MATLAB 的整体式转向梯形优化设计喻超;王保华【摘要】以整体式转向梯形机构的平面模型为基础,建立了以实际外轮转角与理想转角偏差均方根为最小的目标函数。

首先根据图解法对整体式转向梯形机构进行了初步分析,然后基于 MATLAB 优化工具箱,对整体式转向梯形机构进行优化设计,与图解分析结果进行对比,验证了优化结果的正确性。

最后基于MATLAB/GUI 设计了可视化的交互界面,简化了整体式转向梯形的优化计算。

%Based on the plane model of integral steering trapezoidal mechanism, an optimum math model of objective functions which is minimum error of root mean square between practical and ideal outer corner angle was established. Firstly, according to the graphic method, the integral steering mechanism was analyzed, and based on the MATLAB optimization design of the integral steering trapezoid mechanism was carried out to verify the correctness of the optimization results. Finally, the interactive interface was designed based on MATLAB/GUI, which simplifies the optimization calculation.【期刊名称】《汽车实用技术》【年(卷),期】2016(000)008【总页数】4页(P141-143,147)【关键词】整体式转向梯形;优化设计;MATLAB/GUI【作者】喻超;王保华【作者单位】湖北汽车工业学院,湖北十堰 442002;湖北汽车工业学院,湖北十堰 442002【正文语种】中文【中图分类】U463.4510.16638/ki.1671-7988.2016.08.046CLC NO.: U463.45 Document Code: A Article ID: 1671-7988(2016)08-141-04为了减小行驶阻力和轮胎磨损,理想的转向传动机构应使车辆在转弯过程中各车轮处于纯滚动而无侧滑的状态,即在设计转向梯形时,希望汽车内外轮转角完全符合Ackerman转向原理[1],但是由于转向梯形机构自身的限制,其实际转角与Ackerman理想转角之间存在一定的偏差。

整体式转向梯形优化设计

整体式转向梯形优化设计

整体式转向梯形优化设计前言汽车工业发展的关键是汽车设计的更新和提高。

近几年来,随着用户对产品需求的日益多样化,汽车产品开发竞争也越来越激烈,特别是随着以计算机为代表的信息技术的出现。

汽车设计方法有了新的飞跃,设计过程彻底改变,并进入一个新的阶段——计算机辅助设计阶段,计算机辅助设计可以明显提高设计效率,降低设计成本,使得设计周期大大缩短。

目前,世界上发达国家的不少汽车公司已经大量采用计算机技术对汽车进行辅助设计,设计质量和设计效益有了很大的提高,加快了产品更新换代,提高了产品的竞争力,并正朝着智能型计算机辅助设计发展。

而我国汽车设计长期处于传统的低效的手工设计阶段,尽管近今年来我国汽车工业发展迅速,前后引进了许多国家的先进技术和产品,形成了批量生产汽车的能力。

但是在汽车设计方面,尤其是在汽车的优化设计方面还与国外存在着相当大的差距。

利用计算机进行最优化设计,是在六十年代才发展起来的一门新技术。

国内在近几年才开始从事这方面的研究与应用。

值得注意的是,虽然在汽车设计中采用最优化技术的历史时间很短,但其进展的速度确实十分惊人的。

无论在机构综合,通用机械零部件设计方面,还是在各种专业机械和工艺装备的设计方面都由于采用了最优化技术而取得了显著成果。

发展速度如此迅猛的原因,一方面是由于生产实践中有大批最优化的问题等待人们去解决,另一方面是由于计算机日益广泛的使用,为采用最优化技术提供了一个得力的计算工具。

运用计算机进行汽车最优化设计,对整个汽车设计学科产生了十分深刻的影响,使许多过去无法解决的关键性问题,获得了重大突破,可以说它正在引起机械设计领域里的一场革命。

优化设计作为一种新兴的技术,尽管目前还不很成熟和完善,但正在日益广泛的受到人们的重视。

转向梯形机构是汽车转向传动机构中很关键的一部分,在汽车转向系统中为了减少轮胎磨损,减小转向力,保证汽车转向时的内、外转向轮尽可能作纯滚动,这一要求由转向梯形机构的几何性能来实现。

汽车整体式转向梯形机构优化设计

汽车整体式转向梯形机构优化设计

汽车整体式转向梯形机构优化设计
汽车整体式转向梯形机构优化设计
刘旋,李腾飞,郑帅广
【摘要】以MATLAB软件为优化工具,通过对汽车整体式转向梯形进行合理设计,尽可能地保证汽车在转向过程中全部车轮均绕同一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。

【期刊名称】汽车实用技术
【年(卷),期】2014(000)003
【总页数】3
【关键词】整体式转向梯形;MATLAB;优化设计
CLC NO.:U462.2Document Code:AArticle ID:1671-7988(2014)03-28-03
引言
整体式转向梯形是由转向横拉杆、两个转向梯形臂和汽车前轴组成。

其主要缺点是一侧转向轮向上下跳动时,会影响到另一侧转向轮的运动。

这种方案的优点是结构简单,调整前束容易,制造成本低,因此广泛应用于各类商用车上。

转向梯形的设计是转向系统设计的关键,选择合理的参数对转向梯形的设计就显得尤为重要。

本论文从整体式转向梯形机构入手,通过对其进行运动分析,运用MATLAB软件为优化工具,对转向梯形进行合理设计,尽可能地保证在转向过程中各车轮的轴线理论上应始终交于一点(即瞬时转向中心),使各车轮在转向过程中始终处于纯滚动状态,从而提高轮胎使用寿命,保证汽车操纵的轻便性和稳定性[1-2]。

1、转向梯形机构数学模型的建立
汽车转向行驶时,受弹性轮胎侧偏角的影响,所有车轮不是绕位于后轴延长线。

整体式转向梯形机构的优化设计

整体式转向梯形机构的优化设计

整体式转向梯形机构的优化设计随着机械设备的不断发展,对于机构的优化设计也变得越来越重要。

其中,整体式转向梯形机构是一种常见的机构类型,它在工业领域中具有重要的应用价值。

本文将探讨整体式转向梯形机构的优化设计。

整体式转向梯形机构是一种通过摆动约束框架来实现转向功能的机构。

目前,其主要应用领域为车辆转向系统。

通常情况下,该机构由主动轮、从动轮、转向架以及梯形连杆等部件组成。

其中,主动轮和从动轮通过梯形连杆相互连接,转向架则通过约束框架连接至主动轮和从动轮上,以实现车轮的转向功能。

整体式转向梯形机构的优化设计主要从以下几个方面展开:首先,对于梯形连杆的设计要求。

梯形连杆是整个机构的核心部件,其尺寸和形状对机构的性能起着至关重要的作用。

因此,在进行设计时,应根据机构的具体使用环境和转向要求,合理确定梯形连杆的尺寸和形状,以保证机构的工作稳定性和可靠性。

其次,对于转向架的设计要求。

转向架主要起到连接主动轮和从动轮的作用。

在优化设计中,应考虑到转向架的稳定性、刚度以及连接方式等因素,以确保转向架的性能达到要求。

再次,对于摆动约束框架的设计要求。

摆动约束框架用于约束转向架的转向运动,使车轮能够良好的适应路面的起伏和承受各种路况下的压力。

因此,在设计时,应考虑到摆动约束框架所承受的载荷和力矩的大小,以提高机构的适应性和稳定性。

最后,对于轮胎的选择要求。

整体式转向梯形机构的性能也受到轮胎的影响,因此,在进行优化设计时,应选择具有优良性能的轮胎,以提高车辆的使用寿命和行驶安全性。

综上所述,整体式转向梯形机构的优化设计应从多个方面展开,在具体应用中,根据不同情况灵活调整优化方案。

相信通过更加精细的优化,整体式转向梯形机构将能更好地满足工业生产和社会发展的需求,为推动机械设备的高质量发展做出更大的贡献。

数据分析是对大量数据进行分析和解释的过程,以发现潜在的模式、预测趋势或寻找关联性。

在现代社会,数据分析已经成为各个领域的重要部分。

汽车整体式转向梯形的优化设计

汽车整体式转向梯形的优化设计
(3) 应用本文的设计方法得出的实际转角曲线和该车实 际转角曲线分别与理论曲线比较,由于本文采用在平面内对
(下转第 42 页)
39
Equipment Manufactring Technology No.12,2010
凑,工件装夹方便。 线性滑轨必须根据机台使用状况,如受振动和冲击力的
程度、要求的行走精度及机台限制而确定其安装方式。
以图 1 所示的两轴汽车为例,阿克曼理论转向特性,是以 汽车前轮定位角都等于零、行走系统为刚性、汽车行驶过程中 无侧向力为假设条件的。
θ0 θi
作实际转向特性曲线的具体做法(见图 2)。 首先,按初选原则选出转向梯形臂长 m,再初选一个梯形
K
B
E
A
F
L
θi θ0
°
K
图 1 阿克曼理论转向特性
y1
图 2 传统作图法
优化设计问题,是一个小型的约束非线性规划问题,可用复合
形法来求解。
5 优化实例
本文应用 VB 软件编制程序对某农用运输车整体式转向 梯形进行优化设计,农用运输车部分参数如下:K = 1 230 mm, L = 2 450 mm,m = 160 mm,γ = 70°。应用上述方法进行求解, 得到转向梯形的最优结构参数:m = 135.3mm,γ = 72.6°。实 际转角和期望转角随自变角的变化曲线如图 3 为该车实际转 角与期望转角随自变角的变化曲线。
Abstract: Introduce the working character and requirement traditional testing method and our new pneumatic testing method of automobile fuel pump reverse-valve and overflow-valve. Design the mechanical structure and driving devices for the pneumatic testing bench. Key words: fuel pump; reverse-valve ; overflow –valve; pneumatic test

汽车整体式转向梯形机构仿真计算与优化

汽车整体式转向梯形机构仿真计算与优化

汽车整体式转向梯形机构仿真计算与优化
1汽车整体式转向梯形机构
汽车整体式转向梯形机构是汽车转向系统的重要组成部分,将驱动轴连接到车轮,形成一个梯形的整体机构,具有尺寸小、重量轻、安装容易、结构稳定等优点。

汽车整体式转向梯形机构可以显著改善汽车的行驶及操纵性能,从而提高汽车的安全性能。

2相关仿真计算
为了计算汽车整体式转向梯形机构的性能,使用计算机辅助工程软件进行仿真计算,获取梯形机构在不同载荷下的结构变形、动态参数和响应频谱,综合参数判断汽车整体式转向梯形机构的安全性和可靠性。

进一步用实验计算模型,模拟汽车实际行驶中的结构响应,更好地分析转向系统整体性能。

3优化设计
计算机仿真计算结果可以及时反馈至优化设计,使汽车整体式转向梯形机构得到不断改进。

基于多目标优化,可以改变机构的参数,同时充分考虑机构的性能指标和视觉外观,得到更合理的设计。

4结论
汽车整体式转向梯形机构是汽车转向系统的重要组成部分,可以大大改善汽车的行驶及操纵性能,提高汽车的安全性能。

针对汽车整
体式转向梯形机构,可以通过计算机仿真计算获取参数,从而进行多目标优化设计,得到更合理优化的结果。

整体式转向梯形机构的优化设计

整体式转向梯形机构的优化设计
,

愚 架 侧 倾和
,
,
前轮 定 位 等 主
建 立 了汽 车 整 体 式转 向 梯 形 机 构 的 优 化 数 学 模 型

从 四 个 方 面 对梯 形
机 构 进 行 优 化 设计
通 过时这 些 结 果 的 分析 对比
,
得 出 了具 有实 用 价 值 的 结

关健 词
. 脚润 卜
-
悬 架侧倾
前轮定位
E ` x 一 “一
`
’ “` x
,

“一 `
,


c
`
“`
,
“’

,
`
,
,
“,
” ,
,
( x c ,

“一 `
,


”`
,

, ,
“一 “ ’ 夕。
,
通(x


,
:
)

(二
:

)
{ 左右梯 形臂 旋转 坐标 { 左右梯 形臂 与横拉 杆联 接的球 头 销中 1 1 车轮 中 旋转 中心 坐标 点
的 中。
占,
:

气Байду номын сангаас
代弃共华占 干 (
山 十
毛g 八 七
K t g (a
,

:

。: 一
)〕 叻
a :
:
一t-g
)
+

-
(占
.
1
+



-
,
协一

基于MATLAB优化工具箱的整体式转向梯形优化设计

基于MATLAB优化工具箱的整体式转向梯形优化设计

基于MATLAB优化工具箱的整体式转向梯形优化设计
王计广;邢号彬;常秀岩;詹卫炜
【期刊名称】《汽车零部件》
【年(卷),期】2011(000)010
【摘要】针对整体式转向梯形,对其空间结构和前轮定位参数进行合理的简化.对初步选定的转向梯形参数,以外转向轮转角相对误差建立目标函数模型,利用MATLAB 优化工具箱对目标函数模型进行优化.同时,MATLAB优化工具箱通过改变变量参数,即可实现不同参数的整体式转向梯形的优化设计.
【总页数】3页(P60-62)
【作者】王计广;邢号彬;常秀岩;詹卫炜
【作者单位】武汉理工大学汽车工程学院,湖北武汉430070;武汉理工大学汽车工程学院,湖北武汉430070;武汉理工大学汽车工程学院,湖北武汉430070;武汉理工大学汽车工程学院,湖北武汉430070
【正文语种】中文
【相关文献】
1.基于 MATLAB 的整体式转向梯形优化设计 [J], 喻超;王保华
2.整体式转向梯形机构优化设计MATLAB程序 [J], 黄鹤辉;陈晨
3.基于MATLAB优化工具箱的农用运输车转向梯形优化设计 [J], 李军
4.基于Matlab的整体式转向梯形机构优化设计 [J], 王卓周;傅小青;赵航;石能芳;
5.基于MATLAB的整体式转向梯形机构的优化设计 [J], 赵振全;曹智;汪兆兴;韩国强;屠强
因版权原因,仅展示原文概要,查看原文内容请购买。

轻型货车整体式转向梯形的优化设计

轻型货车整体式转向梯形的优化设计

轻型货车整体式转向梯形的优化设计
刘宝杰
【期刊名称】《公路与汽运》
【年(卷),期】2014(000)003
【摘要】汽车技术的进步提高了汽车爱好者对汽车平顺性和舒适性的期待,这就对转向系特别是转向梯形的设计提出了更高的要求。

文中采用计算机 C 语言,用解析法求出数学模型,对轻型货车整体式转向梯形进行优化设计,结果证明该方法不仅可提高运算速度及精度,而且可增大求全局最优解的可能性。

【总页数】3页(P29-31)
【作者】刘宝杰
【作者单位】湖南信息职业技术学院,湖南长沙 410020
【正文语种】中文
【中图分类】U469.14
【相关文献】
1.基于 MATLAB 的整体式转向梯形优化设计
2.基于Matlab的整体式转向梯形机构优化设计
3.基于遗传算法的整体式前置转向梯形优化设计
4.基于遗传算法的整体式前置转向梯形优化设计
5.基于MATLAB的整体式转向梯形机构的优化设计
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整体式转向梯形机构优化设计
SGA3550型自卸式非公路用汽车采用整体式转向梯形机构(如图1所示) ,由转向横拉杆、转向梯形臂和汽车前轴组成。

图中,为K主销中心距,L为轴距,为转向梯形底角, W为转向臂长,为内侧车轮转角,为外侧车轮转角(以下符号意义相同) 。

这种方案的优点是结构简单,调整容易,制造成本低;主要缺点是一侧转向轮上、下跳动时,会影响另一侧转向轮。

车辆转向时,内侧车轮被迫沿着比外侧车轮小的弧线行进,因此,转向梯形应使汽车在转向时两前轮产生不同的转向角,并沿着各自的弧线滚动,同时前后四个车轮又绕着同一圆心滚动 ,从而消除轮胎的滑动。

若忽略车轮的侧偏角,车辆转向时内外轮理想转角应保持以下关系:
若忽略车轮的侧偏角,车辆转向时内外轮理想转角应保持以下关系:
cot-cot=K/L (1)
若自变角为,则因变角的期望值为
=arccot(cot-K/L) (2)
现有转向梯形机构仅能近似满足上式关系。

利用余弦定理可推得转向梯形的实际因变角如下:
图2
(3)
(4)
(5)
(6)
由(4)(5)(6)式得出
(7)
(8)
由(3)(7)(8)式得出:
实际因变角
要求:
(1) 列出转向机构的优化数学模型
(2) 已知轮距2900mm;轴距L= 3800 mm;主销中心距K= 2
100 mm;
用Matlab中lsqcurvefit(……)函数或lsqnonlin(……)函数进行优化,求取设计变量梯形底角的值(要求底角范围在60-90度之间),转向梯形臂长度的值(要求在250-450mm之间)以满足设计需求。

该优化问题可以看作是将理想的内外转向轮曲线同待优化的内外转向轮角度关系进行拟合,MATLAB优化工具箱中提供了几种可供选择的优化函数:
(1) [x,resnorm]=lsqcurvefit(fun,x0,xdata,ydata,lb,ub),该函数是进行非线性曲线的二次拟合。

其中F(x)为待优化的函数,数学模型为:
(2) [x,resnorm]=lsqnonlin(……),该函数求解非线性最小二乘问题,包括非线性数据拟合问题。

其数学模型为:。

相关文档
最新文档