第九章吸收

合集下载

化工原理第九章 吸收

化工原理第九章 吸收
20.6.19
p
* A
cA H

cA* HpA
H——溶解度系数 ,单位:kmol/m3·Pa或kmol/m3·atm。
H是温度的函数,H值随温度升高而减小。
易溶气体H值大,难溶气体H值小。
溶解度系数H与亨利系数E间的关系
pA*
cA H
,
pA*
ExA, xA
cA c
E
c H
设溶液的密度为 kg / m3,浓度为 c kmol / m3 ,则
20.6.19
气相: 液相:
yA
nA n
xA
nA n
yA yB yN 1 xA xB xN 1
质量分数与摩尔分数的关系:
xA
nA n
mw A
/ MA
mw A / M A mw B / MB mw N
/ MN
wA/M A
wA/M A wB/MB wN/M N
20.6.19
第二节 气液相平衡
一、气体的溶解度 二、亨利定律 三、气液相平衡与吸收过程 的关系
20.6.19
一、气体的溶解度
1、气体在液体中溶解度的概念
气体在液相中的溶解度 :气体在液体中的饱和浓度 cA*
表明一定条件下吸收过程可能达到的极限程度。
2、溶解度曲线
对于单组分物理吸收,由相律知
f c 2 322 3
2、质量比与摩尔比
质量比:混合物中某组分A的质量与惰性组分B
(不参加传质的组分)的质量之比。 wA mA mB
摩尔比:混合物中某组分的摩尔数与惰性组分摩 尔数之比。
气相:
YA
nA nB
液相: X A
nA nB
20.6.19

第9章 紫外吸收光谱

第9章 紫外吸收光谱
仪器分析 学习指导
第九章 紫外吸收光谱分析
▲溶液酸碱性对紫外光谱的影响
总结 规律
(a)苯酚的UV光谱图
(b)苯胺的UV光谱图
仪器分析 学习指导
第九章 紫外吸收光谱分析
结论:
溶液从中性变为碱性时,吸收峰发生红 移,表明该化合物为酸性物质; 如果化合物溶液从中性变为酸性时,吸 收峰发生蓝移,表明化合物为碱性物质。
第九章 紫外吸收光谱分析
共轭多烯的K带吸收位置λmax ,可利用伍 德沃德(Woodward)规则来进行推测。
该公式为: max= 母体二烯烃
取代基对共轭 双烯 λmax的影 响具有加和性
+ 环外双键 + 延伸双键 + 共轭体系上取代烷基
+ 共轭体系上取代的助色基
仪器分析 学习指导
第九章 紫外吸收光谱分析
σ→σ*
E、π→σ*
C、n→σ* D、
仪器分析 学习指导
第九章 紫外吸收光谱分析
3、指出下述各对化合物中,哪一个化合物 能吸收波长较长的光(只考虑π→π*跃迁)
(3) CH2=CH-CH2-CH=CHNH2及 CH3-CH=CH-CH=CHNH2
仪器分析 学习指导
第九章 紫外吸收光谱分析
4、已知某化合物在己烷中的λmax为327nm,
电子跃迁光谱,吸收光波长范围
紫外吸收光谱 200400 nm(近紫外区),主要

用于含共轭结构化合物分析。


电子跃迁光谱,吸收光波长范
收 可见吸收光谱 围400750 nm ,主要用于有色

物质的定量分析。

红外吸收光谱 分子振动光谱,吸收光波长范围
2.51000 m , 主要用于有机化合 物结构鉴定。

第九章紫外吸收光谱1.试简述产生吸收光谱的原因

第九章紫外吸收光谱1.试简述产生吸收光谱的原因

吸收光谱的原因.解:分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁.同原子一样,分子吸收能量具有量子化特征.记录分子对电磁辐射的吸收程度与波长的关系就可以得到吸收光谱.2.电子跃迁有哪几种类型这些类型的跃迁各处于什么补偿范围解:从化学键的性质考虑,与有机化合物分子的紫外-可见吸收光谱有关的电子为:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的ν电子.电子跃迁发生在电子基态分子轨道和反键轨道之间或基态原子的非键轨道和反键轨道之间.处于基态的电子吸收了一定的能量的光子之后,可分别发生σ→σ�6�5,σ →π�6�5,π→σ�6�5,n →σ�6�5,π →π�6�5,n→π�6�5等跃迁类型.π→π�6�5,n →π�6�5所需能量较小,吸收波长大多落在紫外和可见光区,是紫外-可见吸收光谱的主要跃迁类型.四种主要跃迁类型所需能量�6�2E大小顺序为:n →π�6�5<π→π�6�5≤n →σ�6�5<σ →σ�6�5. 一般σ →σ�6�5跃迁波长处于远紫外区,<200nm,π →π�6�5,n →s*跃迁位于远紫外到近紫外区,波长大致在150-250nm之间,n →π*跃迁波长近紫外区及可见光区,波长位于250nm-800nm之间. 3. 何谓助色团及生色团试举例说明.解:能够使化合物分子的吸收峰波长向长波长方向移动的杂原子基团称为助色团,例如CH 4 的吸收峰波长位于远紫外区,小于150nm但是当分子中引入-OH 后,甲醇的正己烷溶液吸收波长位移至177nm,-OH起到助色团的作用.当在饱和碳氢化合物中引入含有π键的不饱和基团时,会使这些化合物的最大吸收波长位移至紫外及可见光区,这种不饱和基团成为生色团.例如,CH 2 CH 2 的最大吸收波长位于171nm处,而乙烷则位于远紫外区.4.有机化合物的紫外吸收光谱中有哪几种类型的吸收带它们产生的原因是什么有什么特点解:首先有机化合物吸收光谱中,如果存在饱和基团,则有s →s*跃迁吸收带,这是由于饱和基团存在基态和激发态的s电子,这类跃迁的吸收带位于远紫外区.如果还存在杂原子基团,则有n →s*跃迁,这是由于电子由非键的n轨道向反键s轨道跃迁的结果,这类跃迁位于远紫外到近紫外区,而且跃迁峰强度比较低.如果存在不饱和C=C双键,则有p →p*,n →p*跃迁,这类跃迁位于近紫外区,而且强度较高.如果分子中存在两个以上的双键共轭体系,则会有强的K吸收带存在,吸收峰位置位于近紫外到可见光区.对于芳香族化合物,一般在185nm,204nm左右有两个强吸收带,分别成为E1, E2吸收带,如果存在生色团取代基与苯环共轭,则E2吸收带与生色团的K带合并,并且发生红移,而且会在230-270nm处出现较弱的精细吸收带(B带).这些都是芳香族化合物的特征吸收带. 5. 在有机化合物的鉴定及结构推测上,紫外吸收光谱所提供的信息具有什么特点解:紫外吸收光谱提供的信息基本上是关于分子中生色团和助色团的信息,而不能提供整个分子的信息,即紫外光谱可以提供一些官能团的重要信息,所以只凭紫外光谱数据尚不能完全确定物质的分子结构,还必须与其它方法配合起来. 6. 距离说明紫外吸收光谱在分析上有哪些应用.解:(1)紫外光谱可以用于有机化合物的定性分析,通过测定物质的最大吸收波长和吸光系数,或者将未知化合物的紫外吸收光谱与标准谱图对照,可以确定化合物的存在.C H C H C H C H trans- λmax=295nm εmax=27000 cis- λmax=280nm εmax=10500 (2)可以用来推断有机化合物的结构,例如确定1,2-二苯乙烯的顺反异构体.(3)进行化合物纯度的检查,例如可利用甲醇溶液吸收光谱中在256nm处是否存在苯的B吸收带来确定是否含有微量杂质苯.(4)进行有机化合物、配合物或部分无机化合物的定量测定,这是紫外吸收光谱的最重要的用途之一。

第九章吸收2

第九章吸收2

• ②.适用条件: • a 气液平衡线为直线 • b 操作线为直线
y=mx+b
2)解吸因数法 适用于气液平衡关系为 通过原点的直线。 Y*=mX
L Y Y2 V X X2
(9-108)
联立解得:Y*=m[(V/L)(Y-Y2)+X2]
Y*=m[(V/L)(Y-Y2)+X2]
N OG
9.4 9.4.1. 9.4.2. 9.4.3. 9.4.4.
吸收塔的计算
Hale Waihona Puke 物料衡算与操作线方程 吸收剂用量的确定 填料层高度的计算 吸收塔的操作型计算
吸收塔的计算内容 1、设计型计算: 塔高、塔径、吸收剂用量、 吸收剂浓度 等的计算 2、操作型计算: 核算塔设备是否合用,操作条件与吸收结 果的关系。 物料衡算 , 3、计算依据: 气液相平衡关系, 吸收速率方程
④在吸收操作时,因Y > Y*或X* > X,操作线 在平衡线的上方,
• ⑤解吸操作时,Y<Y*或X*<X,故解吸操作 线在平衡线的下方, • ⑥平衡线与操作线共同决定吸收推动力, 操作线离平衡线愈远,吸收的推动力愈大;
9.4.2 最小液气比与吸收剂用量
1、最小液气比 对一定的分离任务,当操作条件和吸收物 系一定、塔内某截面的吸收推动力为零时,达 到分离要求所需要的塔高将为无穷大,此时的 液气比即为最小液气比 :
吸收塔填料层高度的计算
1、填料层高度的计算方法: 传质单元数法
2、计算依据:
1)物料衡算 2)吸收速率方程 3)相平衡关系
• 3.塔高计算基本关系式 • 1)取微元体积的原因, • 2)对溶质A作物料衡算
• • • • • •
对微元填料层dZ作物料衡算: 在单位时间内: 气相溶质减少量 VdY =液相溶质增加的量 LdX =由气相转移到液相溶质A的量 dG, 即: dG =VdY= LdX dG=NAdS =NA(aAdZ) 微元填料层dZ所提供的气液传质面积

第9章 紫外吸收光谱分析

第9章 紫外吸收光谱分析
即: E = Ee + Ev + Er ΔΕe >ΔΕv >ΔΕr
讨论:
(1) 转动能级间的能量差Δ Ε r:0.005~0.050eV,跃迁 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; (2) 振动能级的能量差Δ Ε v约为:0.05~1eV,跃迁产 生的吸收光谱位于红外区,红外光谱或分子振动光谱; (3) 电子能级的能量差Δ Ε e较大1~20eV,电子跃迁产生 的吸收光谱在紫外—可见光区,紫外—可见光谱或分子的电 子光谱;
p → p*跃迁:红移; ;e
pp np
max(正己烷)
230 329
max(氯仿)
238 315
max(甲醇)
237 309
max(水)
243 305
溶剂的影响

1
1:乙醚


2:水

2
极性溶剂使精细结构 消失;
250 300
非极性 → 极性 n → p*跃迁:兰移; ;e p → p*跃迁:红移; ;e
(2)共轭烯烃中的 p → p*
p*
p*₃
p*
p p*
165nm 217nm p₂
(HOMO LVMO) p
p₁
p

max
共轭烯烃(不多于四个双键)p p*跃迁吸收峰位置可由伍德
沃德——菲泽 规则估算。 max= 基+nii
基-----是由非环或六环共轭二烯母体决定的基准值; 无环、非稠环二烯母体: max=217 nm
红移与蓝移
有机化合物的吸收谱带 常常因引入取代基或改变溶 剂使最大吸收波长λmax和吸 收强度发生变化:
λmax向长波方向移动称为 红移,向短波方向移动称为 蓝移 (或紫移)。吸收强度即 摩尔吸光系数ε增大或减小的 现象分别称为增色效应或减 色效应,如图所示。

第九章 双光子吸收.

第九章 双光子吸收.

第九章 双光子吸收9.1 双频双光子吸收在一般情况下,可假定两个入射光波的频率不同,为1ω和4ω。

这时双光子荧光的频率为410ωωω+= (9-1)考虑线性吸收可略情况(为什么?)。

因为双光子吸收很弱,约10-7的光能被吸收,而且荧光也较弱,所以只须考虑两个入射的光波。

这时,耦合波方程为)||2||(83421)3(41424)3(44444E E E E cn i dz dE χχω+= (9-2) )||2||(83124)3(14121)3(11111E E E E cn i dz dE χχω+= (9-3) 1.06μm若丹明6G KDP 晶体双光子荧光 倍频0.53μm或421)3(4144424)3(44444||43||83E E cn i E E cn i dz dE χωχω+= (9-4) 124)3(1411121)3(11111||43||83E E cn i E E cn i dz dE χωχω+= (9-5)用*4E 乘(9-4)两边,用*1E 乘(9-5)两边,得2421)3(414444)3(44444*4||||43||83E E cn i E cn i dz dE E χωχω+=(9-6)2124)3(141141)3(11111*1||||43||83E E cn i E cn i dz dE E χωχω+= (9-7)两边取共轭,得(根据上图及(9-1)式,1ω,4ω,11ωω+,44ωω+皆 远离介质的共振频率,)3(44χ和)3(11χ皆为实数)2421*)3(414444)3(4444*44||||43||83E E cn i E cn i dz dE E χωχω--=(9-8)2124*)3(141141)3(1111*11||||43||83E E cn i E cn i dz dE E χωχω--= (9-9)(9-6)+(9-8),(9-7)+(9-9)得2421")3(414424||||23||E E cn dz E d χω-= (9-10) 2124")3(141121||||23||E E cn dz E d χω-= (9-11)")3(41χ是)3(41χ的虚部,")3(14χ是)3(14χ的虚部。

第九章 紫外吸收光谱分析

第九章 紫外吸收光谱分析

3.在下列化合物中,哪些适宜作为紫外 光谱测定中的溶剂? 甲醇、乙醚、苯、碘乙烷、乙醇、 正丁醚、环己烷 4. 下列化合物中哪一个的max最长? CH4; CH3I; CH2I2
在下列化合物中同时含有*、 n*、 *跃迁的化合物是 三氯甲烷、丙酮、丁二烯、二甲苯
在下列化合物中,那一个化合物能吸 收波长较长的辐射( ) 苯、二甲苯、对氯代甲苯、萘
1, 3-丁二烯:max=210nm, =20000L· mol-1· cm-1
1, 5己二烯:两个不共轭的双键,1-己烯:一个双键。 1, 5-己二烯与1, 3-丁二烯比较:两者都有两个双键, 摩尔吸光系数相近;区别: 1, 3-丁二烯中两个双键共
轭,吸收波长红移,最大吸收波长= 210nm 。因此,
光谱分析方法的分类
classification of spectroscopic analysis 紫外可见法
分子光谱 原子光谱
原子吸收法
红外法
光谱分析法
spectrometry
原子发射法
核磁法
荧光法
光学分析法概要(P201)
依据:物质吸收、发射电磁辐射(电磁波;光) 光学分析法:利用物质与电磁辐射的相互作用来进行 分析的方法。
⑶ * 跃迁(NV跃迁)
吸收波长处于远紫外区的近紫外端或近 紫外区,max一般在104以上, 强吸收。有机化 合物中含有 电子的化合物均可发生该类跃 迁。如不饱和烃 * 跃迁 ( 乙烯 * 跃 迁的max=165nm, max=104;乙炔*跃迁的 max=173nm 。 乙 醛 * 跃 迁 的 max 为 190nm,max:104。( <200nm ;生色团)
某化合物分子式为,

第九章第二节 人体的消化与吸收(第2课时)七年级生物下册课件(苏教版 )

第九章第二节 人体的消化与吸收(第2课时)七年级生物下册课件(苏教版 )


,能促进
的乳化.
(2)消化食物和吸收营养物质的主要场所是

(3)淀粉开始消化的部位是[ ]

其最终被分解为

(4)蛋白质开始消化的部位是[ ]

其最终被分解为

(5)脂肪开始消化的部位是[ ] ,
其最终被分解为

参考答案:(1) 8 肝脏 胆汁 脂肪 (2)小肠 (3)1 口腔 葡萄糖 (4)3 胃 氨基酸 (5)4 小肠 甘油和脂肪酸
• 蛋白质 蛋白酶 初步消化形成多肽 肽酶 • ③脂肪的消化:
氨基酸
• 脂肪 胆汁 脂肪微粒 脂肪酶 甘油 + 脂肪酸
参考教材33页图片,小组合作,总结:
1、口腔中的物理性消化? 化学性消化? • 胃中的物理性消化? 化学性消化? • 小肠中的物理性消化? 化学性消化? • 2、蛋白质、脂肪、淀粉的最终消化产物分别是什么? • 3、消化的主要器官是?为什么?
• 2、食物中的哪些营养物质必须经过消化?不消化行吗?
食物中的蛋白质、淀粉、脂肪等大分子物质必须经过消化,转 变成小分子物质,才能被消化道吸收。
• 3、请按照消化方式进行分类。
消化分为物理性消化和化学性消化。
六大营养物质的消化
有机物 无机物
蛋白质 糖类 脂肪 维生素 水 无机盐
大分子物质
必须经过消化,由大分子物 质分解成小分子物质,才能 被消化道吸收。
消化道各段的吸收情况
小肠是吸收营养物质 的主要器官。 为什么?这与小肠的结 构有关。
小肠内除大部分的甘油、 脂肪酸被毛细淋巴管吸 收外,其余的各种营养 物质都被毛细血管直接 吸收进入血液。
观察小肠结构
• 目的:说明小肠结构特点。 • 器材:放大镜、培养皿、镊子、剪刀、鸭小肠等。 • 指导: 1、剪开一段鸭小肠,用水洗净。把小肠放入盛有清水的培养皿中,内表面向上。 2、由于水的浮力作用,小肠内表面绒毛彼此松散、伸展开来。用放大镜仔细观

第九章声波的吸收

第九章声波的吸收
I ( x) p( x)
I(1) 为声中心1m处的声强 声强
2 pa 1 2 I 0c0va 2 0c0 2
3 几何衰减:
声波在传播过程中,波阵面逐渐扩展引 起的声强衰减。 与介质无关,无能量损失 A j ( t kr ) 对球面声波 p e
r
TL 20lg r
声波的吸收
一般的扩展损失写为: TL n 10lg r 常用的几种n取值
I0 p0 10 20 lg lg x I声功率用级和分贝(dB)来量度。他们是:
p2 I L 10 log I 10 log c I 0
2 p p0 20 log p Lp c 0
参考值
1
声压级和声强级的关系修正
p2 I L 10 log 10 log c I I0
n=0 平面声波,无扩展损失
n=1 柱面波,表面声道和深海声道 n=1.5 计及海底吸收时浅海均匀声道适用 n=2 n=4 开阔水域适用 偶极子声源远场适用
声波的吸收
4 纯净介质产生吸收的原因
粘滞、热传导、弛豫效应
粘滞:由于粘滞力引起的声波损失 热传导吸收: 非理想介质,由于压缩 区和膨胀区的温度梯度,发生了热交换, 引起机械能转换为热能而产生的声能量 的衰减。 弛豫过程:外自由度能量和内自由度能 量过程
声波的吸收
弛豫吸收:在弛豫过程中声振动转换为热运动 的附加能量耗散 5 : 散射 声场中有障碍物存在时,会在障碍物中激起次 级声波,它与原来的传输形式和方向不同,从 而引起声波的衰减。
无损失能量
空气:灰尘 水汽 水中:泥沙、气泡、浮游生物等悬浮粒子及介 质的不均匀性。
声波的吸收

第八章 传质过程导论 第九章 气体吸收

第八章 传质过程导论 第九章 气体吸收

第八章传质过程导论第九章气体吸收1-1 吸收过程概述与气液平衡关系1-1 在25℃及总压为101.3kPa的条件下,氨水溶液的相平衡关系为p*=93.90x kPa。

试求(1) 100g水中溶解1g的氨时溶液上方氨气的平衡分压和溶解度系数H;(2) 相平衡常数m。

1-2 已知在20℃和101.3kPa下,测得氨在水中的溶解度数据为:溶液上方氨平衡分压为0.8kPa时,气体在液体中溶解度为1g (NH3)/1000g(H2O)。

试求在此温度和压力下,亨利系数E、相平衡常数m及溶解度系数H。

1-3 在总压为101.3kPa,温度为30℃的条件下,含有15%(体积%)SO2的混合空气与含有0.2%(体积%)SO2的水溶液接触,试判断SO2的传递方向。

已知操作条件下相平衡常数m=47.9。

1-2 传质机理1-4 组分A通过厚度为的气膜扩散到催化剂表面时,立即发生化学反应:,生成的B离开催化剂表面向气相扩散。

试推导稳态扩散条件下组分A、B的扩散通量及。

1-5 假定某一块地板上洒有一层厚度为1mm的水,水温为297K,欲将这层水在297K的静止空气中蒸干,试求所需时间为若干。

已知气相总压为101.3kPa,空气湿含量为0.002kg/(kg 干空气),297K时水的饱和蒸汽压为22.38 kPa。

假设水的蒸发扩散距离为5mm。

1-3 吸收速率1-6 采用填料塔用清水逆流吸收混于空气中的CO2。

已知25℃时CO2在水中的亨利系数为1.66×105kPa,现空气中CO2的体积分率为0.06。

操作条件为25℃、506.6kPa,吸收液中CO2的组成为。

试求塔底处吸收总推动力∆p、∆c、∆ X和∆ Y。

1-7 在101.3kPa及20℃的条件下,在填料塔中用清水逆流吸收混于空气中的甲醇蒸汽。

若在操作条件下平衡关系符合亨利定律,甲醇在水中的溶解度系数H=1.995kmol/(m3·kPa)。

塔内某截面处甲醇的气相分压为6kPa,液相组成为2.5 kmol/m3,液膜吸收系数k L=2.08×10-5m/s,气相总吸收系数K G=1.122×105 kmol/(m2·s·kPa)。

化工原理 第九章 气体吸收

化工原理 第九章  气体吸收

第一节概述一、什么是吸收?吸收是利用气体混合物中各组分在某种溶剂中溶解度的差异,而将气体混合物中组分加以分离的单元操作。

溶质: 气体混合物中能溶解的组分称为溶质,以A表示;惰性组分: 不溶或微溶组分称为惰性组分或载体,以B表示;溶剂: 吸收过程所用的溶剂称为吸收剂,以S表示;吸收液: 所得的溶液称为吸收液。

二、吸收在石油化工中的应用(1)回收有用组分(2)制取液态产品(3)净化气体(废气治理)三、吸收的工艺流程四、吸收分类按溶质和溶剂之间是否发生明显的化学反应吸收按溶于溶剂的组分数吸收按吸收过程是否发生明显的温度变化吸收五、吸收剂的选择1.溶解度大;2.选择性好;3.挥发度低;4.粘度低;5.无毒、无腐蚀;6.吸收剂应尽可能不易燃、不易发泡、价廉易得、稳定。

第二节吸收过程的相平衡关系一、气体在液体中的溶解度在一定的温度与压力下、使气体混合物与一定量的溶剂接触,气相中的溶质便向液相中的溶质转移,直至液相中溶质达到饱和为止,这时,我们称之为达到了相平衡状态。

达到了相平衡状态时气相中溶质的分压,成平衡分压;液相中溶质的浓度称为平衡浓度(或溶解度)。

大量实验表明,溶解度和气相中溶质的分压有关。

从图上可以看出:分压高,溶解度大温度高,溶解度小吸收操作应在低温高压下进行,脱吸应在高温、低压下进行二、亨利定律1.亨利定律在一定的温度下,当总压不很高(<500kpa)时,稀溶液上方溶质的平衡分压与该溶质在液相中的摩尔分率成正比,其表达式如下式中------溶质在气相中的平衡分压,KN/m2;------溶质在液相中的摩尔分率;E------亨利系数,。

式(9-1)称为亨利(Henry)定律。

亨利系数E值由实验测定,常见物系的E值可由有关手册查出。

当物系一定时,亨利系数随温度而变化。

一般说来,值随温度升高而增大,这说明气体的溶解度随温度升高而减小,易溶气体值小,难溶气体的值大。

2.用溶解度系数表示的亨利定律若将亨利定律表示成溶质在液相中的摩尔浓度与其在气相中的平衡分压之间的关系,则可写成如下形式(9-2)式中C──液相中溶质的摩尔浓度,kmol/m3H──溶解度系数,溶液中溶质的摩尔浓度和摩尔分率及溶液的总摩尔浓度之间的关系为(9-3)把上式代入式(9-2)可得将上式与式(9-1)比较,可得(9-4)溶液的总摩尔浓度可用1m3溶液为基准来计算,即(9-5)式中──溶液的密度(kg/m3)──溶液的摩尔质量。

9.1-固体中的光吸收详解

9.1-固体中的光吸收详解

例如锗, n≈4, 在弱吸收区的反射率也有 R=0.36=36%
() 2k() 2 ()
c
n()c
R
(n (n
1) 2 1)2
k2 k2
如果一种固体强烈地吸收某一光谱范围的光, 它 就能有效地_________在同一光谱范围内的光。
反射
§9-2 固体中的光吸收过程
对固体中各种可能的光吸收过程做一简要的说明 在图中画出了一个假想的半导体吸收光谱
和 k(ω), 随即可得 R(ω), 与实验测得的值比较
可以看到当吸收系数很大, 若 k>>n, 这时 R≈1, 即入射光几乎完全被反射。因此, 如果一种固体强 烈地吸收某一光谱范围的光, 它就能有效地反射在 同一光谱范围内的光
在没有吸收时 (k=0), 也会发生反射, 有
R
(n (n
1) 2 1)2
矩阵元 <c, k’|H’|v, k> 为如下布洛赫函数之间的积分
c, k ' | H ' | c, k
q A0 m
e* iqr p d r
c,k '
v,k
可仿照讨论电子-声子相互作用矩阵元的方法证明矩
阵元只有在 k’-k-q = Gn 时才不为零, 光子的 q 值很小, 可忽略
考虑 k’- k = 0 的竖直跃迁, 矩阵元可以简写成
利用复折射率与复介电常数之间的关系
可得
n() ik()2 1() i2()
2n(n()2)k(k())22 (1)()
可以用 ε1, ε2 描述固体的光学性质, 也可以用 n, k 描述固体的光学性质, 二者是等价的
实际上还要利用 Kramers-Krönig 关系, 由 ε2(ω) 计算出 ε1(ω)

第九章紫外吸收光谱1.试简述产生吸收光谱的原因

第九章紫外吸收光谱1.试简述产生吸收光谱的原因

1.试简述产生吸收光谱的原因.解:分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁.同原子一样,分子吸收能量具有量子化特征.记录分子对电磁辐射的吸收程度与波长的关系就可以得到吸收光谱.2.电子跃迁有哪几种类型?这些类型的跃迁各处于什么补偿范围?解:从化学键的性质考虑,与有机化合物分子的紫外-可见吸收光谱有关的电子为:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的ν电子.电子跃迁发生在电子基态分子轨道和反键轨道之间或基态原子的非键轨道和反键轨道之间.处于基态的电子吸收了一定的能量的光子之后,可分别发生σ→σ?6?5,σ →π?6?5,π →σ?6?5,n →σ?6?5,π →π?6?5,n→π?6?5等跃迁类型.π →π?6?5,n →π?6?5所需能量较小,吸收波长大多落在紫外和可见光区,是紫外-可见吸收光谱的主要跃迁类型.四种主要跃迁类型所需能量?6?2E大小顺序为:n →π?6?5<π →π?6?5≤n →σ?6?5<σ →σ?6?5. 一般σ →σ?6?5跃迁波长处于远紫外区,<200nm,π →π?6?5,n →s*跃迁位于远紫外到近紫外区,波长大致在150-250nm之间,n →π*跃迁波长近紫外区及可见光区,波长位于250nm-800nm之间.3. 何谓助色团及生色团?试举例说明.解:能够使化合物分子的吸收峰波长向长波长方向移动的杂原子基团称为助色团,例如CH 4 的吸收峰波长位于远紫外区,小于150nm但是当分子中引入-OH 后,甲醇的正己烷溶液吸收波长位移至177nm,-OH起到助色团的作用.当在饱和碳氢化合物中引入含有π键的不饱和基团时,会使这些化合物的最大吸收波长位移至紫外及可见光区,这种不饱和基团成为生色团.例如,CH 2 CH 2 的最大吸收波长位于171nm处,而乙烷则位于远紫外区. 4.有机化合物的紫外吸收光谱中有哪几种类型的吸收带?它们产生的原因是什么?有什么特点?解:首先有机化合物吸收光谱中,如果存在饱和基团,则有s →s*跃迁吸收带,这是由于饱和基团存在基态和激发态的s电子,这类跃迁的吸收带位于远紫外区.如果还存在杂原子基团,则有n →s*跃迁,这是由于电子由非键的n轨道向反键s轨道跃迁的结果,这类跃迁位于远紫外到近紫外区,而且跃迁峰强度比较低.如果存在不饱和C=C双键,则有p →p*,n →p*跃迁,这类跃迁位于近紫外区,而且强度较高.如果分子中存在两个以上的双键共轭体系,则会有强的K吸收带存在,吸收峰位置位于近紫外到可见光区.对于芳香族化合物,一般在185nm,204nm左右有两个强吸收带,分别成为E1, E2吸收带,如果存在生色团取代基与苯环共轭,则E2吸收带与生色团的K带合并,并且发生红移,而且会在230-270nm 处出现较弱的精细吸收带(B带).这些都是芳香族化合物的特征吸收带. 5. 在有机化合物的鉴定及结构推测上,紫外吸收光谱所提供的信息具有什么特点?解:紫外吸收光谱提供的信息基本上是关于分子中生色团和助色团的信息,而不能提供整个分子的信息,即紫外光谱可以提供一些官能团的重要信息,所以只凭紫外光谱数据尚不能完全确定物质的分子结构,还必须与其它方法配合起来. 6. 距离说明紫外吸收光谱在分析上有哪些应用.解:(1)紫外光谱可以用于有机化合物的定性分析,通过测定物质的最大吸收波长和吸光系数,或者将未知化合物的紫外吸收光谱与标准谱图对照,可以确定化合物的存在. C H C H C H C H trans- λmax=295nm εmax=27000 cis-λmax=280nmεmax=10500 (2)可以用来推断有机化合物的结构,例如确定1,2-二苯乙烯的顺反异构体.(3)进行化合物纯度的检查,例如可利用甲醇溶液吸收光谱中在256nm处是否存在苯的B吸收带来确定是否含有微量杂质苯.(4)进行有机化合物、配合物或部分无机化合物的定量测定,这是紫外吸收光谱的最重要的用途之一。

第九章紫外吸收光谱1. 试简述产生吸收光谱的原因

第九章紫外吸收光谱1. 试简述产生吸收光谱的原因

1.吸收光谱的原因.解:分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁.同原子一样,分子吸收能量具有量子化特征.记录分子对电磁辐射的吸收程度与波长的关系就可以得到吸收光谱.2.电子跃迁有哪几种类型?这些类型的跃迁各处于什么补偿范围?解:从化学键的性质考虑,与有机化合物分子的紫外-可见吸收光谱有关的电子为:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的ν电子.电子跃迁发生在电子基态分子轨道和反键轨道之间或基态原子的非键轨道和反键轨道之间.处于基态的电子吸收了一定的能量的光子之后,可分别发生σ→σ�6�5,σ →π�6�5,π →σ�6�5,n →σ�6�5,π →π�6�5,n→π�6�5等跃迁类型.π →π�6�5,n →π�6�5所需能量较小,吸收波长大多落在紫外和可见光区,是紫外-可见吸收光谱的主要跃迁类型.四种主要跃迁类型所需能量�6�2E大小顺序为:n →π�6�5<π →π�6�5≤n →σ�6�5<σ →σ�6�5. 一般σ →σ�6�5跃迁波长处于远紫外区,<200nm,π→π�6�5,n →s*跃迁位于远紫外到近紫外区,波长大致在150-250nm之间,n →π*跃迁波长近紫外区及可见光区,波长位于250nm-800nm之间.3. 何谓助色团及生色团?试举例说明.解:能够使化合物分子的吸收峰波长向长波长方向移动的杂原子基团称为助色团,例如CH 4 的吸收峰波长位于远紫外区,小于150nm但是当分子中引入-OH 后,甲醇的正己烷溶液吸收波长位移至177nm,-OH起到助色团的作用.当在饱和碳氢化合物中引入含有π键的不饱和基团时,会使这些化合物的最大吸收波长位移至紫外及可见光区,这种不饱和基团成为生色团.例如,CH 2 CH 2 的最大吸收波长位于171nm处,而乙烷则位于远紫外区. 4.有机化合物的紫外吸收光谱中有哪几种类型的吸收带?它们产生的原因是什么?有什么特点?解:首先有机化合物吸收光谱中,如果存在饱和基团,则有s →s*跃迁吸收带,这是由于饱和基团存在基态和激发态的s电子,这类跃迁的吸收带位于远紫外区.如果还存在杂原子基团,则有n →s*跃迁,这是由于电子由非键的n轨道向反键s轨道跃迁的结果,这类跃迁位于远紫外到近紫外区,而且跃迁峰强度比较低.如果存在不饱和C=C双键,则有p →p*,n →p*跃迁,这类跃迁位于近紫外区,而且强度较高.如果分子中存在两个以上的双键共轭体系,则会有强的K吸收带存在,吸收峰位置位于近紫外到可见光区.对于芳香族化合物,一般在185nm,204nm左右有两个强吸收带,分别成为E1, E2吸收带,如果存在生色团取代基与苯环共轭,则E2吸收带与生色团的K带合并,并且发生红移,而且会在230-270nm 处出现较弱的精细吸收带(B带).这些都是芳香族化合物的特征吸收带. 5. 在有机化合物的鉴定及结构推测上,紫外吸收光谱所提供的信息具有什么特点?解:紫外吸收光谱提供的信息基本上是关于分子中生色团和助色团的信息,而不能提供整个分子的信息,即紫外光谱可以提供一些官能团的重要信息,所以只凭紫外光谱数据尚不能完全确定物质的分子结构,还必须与其它方法配合起来. 6. 距离说明紫外吸收光谱在分析上有哪些应用.解:(1)紫外光谱可以用于有机化合物的定性分析,通过测定物质的最大吸收波长和吸光系数,或者将未知化合物的紫外吸收光谱与标准谱图对照,可以确定化合物的存在. C H C H C H C H trans- λmax=295nm εmax=27000 cis- λmax=280nmεmax=10500 (2)可以用来推断有机化合物的结构,例如确定1,2-二苯乙烯的顺反异构体.(3)进行化合物纯度的检查,例如可利用甲醇溶液吸收光谱中在256nm处是否存在苯的B吸收带来确定是否含有微量杂质苯.(4)进行有机化合物、配合物或部分无机化合物的定量测定,这是紫外吸收光谱的最重要的用途之一。

第九章 紫外吸收光谱分析

第九章 紫外吸收光谱分析

分子吸收光谱分为: 分子吸收光谱分为:● 远红外光谱 ● 红外光谱 紫外-可见光谱 ● 紫外 可见光谱
第二节
一、跃迁类型
有机化合物紫外吸收光谱
有机化合物的价电子: 电子、 电子和n 有机化合物的价电子:σ电子、π电子和n电子 形成单键的电子称为σ电子。 σ电子 —— 形成单键的电子称为σ电子。 形成双键的电子称为π π电子 ——形成双键的电子称为π电子。 形成双键的电子称为 电子。
2、溶剂从非极性→极性时,谱图的精细结构全部消失。 溶剂从非极性→极性时,谱图的精细结构全部消失。
溶剂选择原则: 溶剂选择原则:
(1)溶剂应能很好地溶解被测试样,溶剂对溶质应该是 溶剂应能很好地溶解被测试样, 惰性的。 惰性的。 即溶液应具有良好的化学和光化学稳定性。 即溶液应具有良好的化学和光化学稳定性。
例如: σ→σ* 跃迁范围在125 125例如:CH4 的 σ→σ* 跃迁范围在125-135nm 远紫外区 H H C H 在分子中引入的一些基团, 红移 —— 在分子中引入的一些基团,吸收峰向长波方向 移动的现象,称为红移或深色移动。 移动的现象,称为红移或深色移动。 红移或深色移动 助色团——含有孤对电子,使吸收峰向长波方向移动的杂 含有孤对电子, 助色团 含有孤对电子 原子官能团称助色团。 原子官能团称助色团。如—NH2、—OH、—OR、—Cl等 、 、 等 ·· I σ→σ* 跃迁范围在150 150CH3I的σ→σ* 跃迁范围在150-210nm →σ* 跃迁范围在259nm n→σ* 跃迁范围在259nm [1]
230230-270nm εMAX = 200
2、单取代苯

[1]
如果苯环上有助色团如Cl等 由于n→π* 如果苯环上有助色团如-OH 或 -Cl等,由于n→π* 共 带向长波长方向移动。 轭,使 E2 带向长波长方向移动。 化合物

第9章-紫外可见吸收光谱法

第9章-紫外可见吸收光谱法

第九章紫外可见吸收光谱法§9-1 概述利用紫外可见分光光度计测量物质对紫外可见光的吸收程度〔吸光度〕和紫外可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法,称为紫外可见吸收光谱法或紫外可见分光光度法〔ultraviolet and visible spectrophotometry,UV-VIS〕。

它具有如下特点:〔1〕灵敏度高适于微量组分的测定,一般可测定10-6g级的物质,其摩尔吸收系数可以到达104~105数量级。

(2) 准确度较高其相对误差一般在1%~5%之。

(3) 方法简便操作容易、分析速度快。

(4) 应用广泛不仅用于无机化合物的分析,更重要的是用于有机化合物的鉴定与结构分析〔鉴定有机化合物中的官能团〕。

可对同分异构体进展鉴别。

此外,还可用于配合物的组成和稳定常数的测定。

紫外可见吸收光谱法也有一定的局限性,有些有机化合物在紫外可见光区没有吸收谱带,有的仅有较简单而宽阔的吸收光谱,更有个别的紫外可见吸收光谱大体相似。

例如,甲苯和乙苯的紫外吸收光谱根本一样。

因此,单根据紫外可见吸收光谱不能完全决定这些物质的分子结构,只有与红外吸收光谱、核磁共振波谱和质谱等方法配合起来,得出的结论才会更可靠。

§9-2 紫外可见吸收光谱法的根本原理当一束紫外可见光〔波长围200~760nm〕通过一透明的物质时,具有某种能量的光子被吸收,而另一些能量的光子那么不被吸收,光子是否被物质所吸收既决定于物质的部结构,也决定于光子的能量。

当光子的能量等于电子能级的能量差时〔即ΔE电 = h f〕,那么此能量的光子被吸收,并使电子由基态跃迁到激发态。

物质对光的吸收特征,可用吸收曲线来描述。

以波长λ为横坐标,吸光度A为纵坐标作图,得到的A-λ曲线即为紫外可见吸收光谱〔或紫外可见吸收曲线〕。

它能更清楚地描述物质对光的吸收情况〔图9-1〕。

从图9-1中可以看出:物质在某一波长处对光的吸收最强,称为最大吸收峰,对应的波长称为最大吸收波长〔λmax〕;低于高吸收峰的峰称为次峰;吸收峰旁边的一个小的曲折称为肩峰;曲线中的低谷称为波谷其所对应的波长称为最小吸〕;在吸收曲线波长最短的一端,吸收强度相当大,但不成峰形的收波长〔λmin局部,称为末端吸收。

第九章 吸收

第九章 吸收

第九章吸收一、填空1.吸收操作的目的是 ,依据是。

2.脱吸操作是指 ,常用的脱吸方法是等,脱吸操作又称为的再生。

3.亨利定律是溶液的性质,而拉乌尔定律是 _溶液的性质,在 _的条件下,二者是一致的。

4.双膜理论的要点是(1)(2)(3)。

5.公式1/K g=1/k g+1/Hk l成立的前提条件是 .若用水吸收某混合气体中的溶质NH3,则传质阻力主要集中在膜,其传质过程属于控制。

6.在填料塔的设计中,有效填料层高度等于和乘积,若传质系数较大,则传质单元高度 ,说明设备性能 ,传质单元数仅与和分离要求有关,反映吸收过程的。

7.用纯溶剂吸收某溶质气体,要求回收率大90%,若要将其提高到95%,最小液气比应变为原来的。

若采用增大压强的措施,压强应提高到原来的。

8.最小液气比(L/V)min只对型有意义,实际操作时,若(L/V)﹤(L/V)min ,产生的结果是。

9.已知分子扩散时,通过某一考察面PQ 有三股物流:N A,J A,N。

等分子相互扩散时:J A N A N 0A组分单向扩散时:N N A J A0 (填﹤,﹦,﹥)10.气体吸收时,若可溶气体的浓度较高,则总体流动对传质的影响。

11.当温度升高时,溶质在气相中的分子扩散系数,在液相中的分子扩散系数。

12.A,B两组分等摩尔扩散代表的单元操作是,A在B中单向扩散的代表单元操作是。

13.相平衡常数m=1,气膜吸收系数k y=1×10-4Kmol/(m2.s),液膜吸收系数k x 的值为k y 的100倍,这一吸收过程为控制,该气体为溶气体,气相总吸收系数K Y= Kmol/(m2.s)。

14.对于极易溶的气体,气相一侧的界面浓度y I 接近于,而液相一侧的界面浓度x I 接近于。

15.含SO2为10%(体积)的气体混合物与浓度C= 0.02 Kmol/m3的SO2水溶液在一个大气压下接触,操作条件下两相的平衡关系为p*=1.62 C (大气压),则SO2将从相向转移,以气相组成表示的传质总推动力为大气压,以液相组成表示的传质总推动力为Kmol/m3 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章吸收本章学习要求1.掌握的内容相组成的表示方法及换算;气体在液体中的溶解度,亨利定律各种表达式及相互间的关系;相平衡的应用;分子扩散、菲克定律及其在等分子反向扩散和单向扩散的应用;对流传质概念;双膜理论要点;吸收塔的物料衡算、操作线方程及图示方法;最小液气比概念及吸收剂用量的确定;填料层高度的计算,传质单元高度与传质单元数的定义、物理意义、传质单元数的计算。

2.熟悉的内容各种形式的传质速率方程、传质系数和传质推动力的对应关系;各种传质系数间的关系;气膜控制与液膜控制;吸收剂的选择。

3.了解的内容分子扩散系数及影响因素。

第1节概述9.1.1.气体吸收过程和工业应用1.吸收吸收~利用混合气体中各组份在同一种液体(溶剂)中溶解度差异而实现组分分离的过程称为气体吸收。

2.吸收操作在化工生产中的应用(1)分离混合气体以获得一定的组分。

(2)除去有害组分以净化气体。

(3)制备某种气体的溶液。

(4)保护环境。

3.吸收与脱吸作为一种完整的分离方法,吸收过程应包括“吸收”和“脱吸”两个步骤。

“吸收”仅起到把溶质从混合气体中分出的作用,在塔底得到的是由溶剂和溶质组成的混合液,此液相混合物还需进行“脱吸”才能得到纯溶质并回收溶剂。

9.1.2 吸收过程的分类吸收过程可按多种方法分类1.按过程有无化学反应分类(1) 物理吸收~在吸收过程中,如果溶质与溶剂之间不发生明显的化学反应,可看做是气体中可溶组分单纯溶解于液相的物理过程,称为物理吸收。

用水吸收二氧化碳、用洗油吸收芳烃等过程都属于物理吸收。

(2) 化学吸收~如果溶质与溶剂发生显著的化学反应,则称为化学吸收。

用硫酸吸收氨、用碱液吸收二氧化碳等过程均为化学吸收。

2.按被吸收的组分数目分类(1) 单组分吸收~混合气体中只有一个组分进入液相,其余组分不溶解于溶剂中,称为单组分吸收。

例如合成氨原料气中含有N2、H2、CO、CO2等组分,而只有CO2一个组分在高压水中有较为明显的溶解度,这种吸收过程属于单组分吸收过程。

(2) 用洗油处理焦炉气时,气相中的苯、甲苯、二甲苯等几个组分都可明显的溶解与洗油中,这种吸收过程属于多组分吸收。

3.按吸收过程有无温度变化分类(1) 非等温吸收:气体溶解于液体时常伴随着热效应,若进行化学吸收,还会有反应热,从而引起液相温度升高,这样的吸收过程称为非等温吸收。

(2) 等温吸收:被吸收组分在气相中浓度很低而吸收剂的用量又很大时,热效应很小,几乎觉察不到液相温度的升高,则可视作等温吸收。

4.按溶质在气、液两相中浓度分类(1) 低浓度吸收:溶质在气、液两相中浓度均不太高的吸收过程,即为低浓度吸收过程。

(2) 高浓度吸收:若溶质在气、液两相浓度都必较高,则称为高浓度吸收。

5.膜基气体吸收随着膜分离技术应用领域的扩大,绝大多数气体的吸收和脱吸都可采用微孔膜来进行操作。

目前,在生物医学、生物化工及化工生产中利用膜基气体吸收和脱吸取得了良好的效果。

本章只讨论低浓度单组分等温物理吸收的原理与计算。

9.1.3 吸收剂的选择选择性能优良的吸收剂是吸收过程的关键,选择吸收剂时一般应考虑如下因素:1.溶剂应对被分离组分有较大的溶解度,以减少吸收剂用量,从而降低回收溶剂的能量消耗;2.吸收剂应有较高的选择性,即对于溶质A能选择性溶解,而对其余组分则基本不吸收或吸收很少;3.吸收后的溶剂应易于再生,以减少“脱吸”的设备费用和操作费用;4.溶剂的蒸气压要低,以减少吸收过程中溶剂的挥发损失;5.溶剂应有较低的粘度、较高的化学稳定性;6.溶剂应尽可能价廉易得、无毒、不易燃、腐蚀性小。

9.1.4 吸收操作的特点气体的吸收与液体的蒸馏同属分离均相混合物的气、液传质操作,所以对吸收过程的研究方法与蒸馏过程有许多共性之处,但二者又有重要的区别。

1.建立两相的方法不同:蒸馏操作:采用加热与冷凝等方法。

吸收操作:采用从外界引入液相(吸收剂)的方法。

2.操作条件和组分传递方式不同:蒸馏操作:液相部分气化与气相部分冷凝同时发生,每层塔板上的液体和蒸汽都接近饱和温度,在相界面处,轻、重组分进行着相反方向的传递。

吸收操作:液相温度低于其沸点,溶剂没有明显的气化现象。

只有溶质分子由气相进入液相的单方向传递。

第2节吸收过程的相平衡关系9.2.1气体在液体中的溶解度1.相平衡在一定的温度和压强下,使混合气体与一定量的吸收剂相接触,溶质便向液相转移,直至液相中溶质达到饱和浓度为止,这种状态称为相际动平衡,简称相平衡或平衡。

2.饱和分压平衡状态下气相中的溶质分压称为平衡分压或饱和分压。

3.饱和浓度(溶解度)液相中的溶质浓度称为平衡浓度或饱和浓度,也即气体在液体中的溶解度。

溶解度表明一定条件下吸收过程可能达到的极限程度,习惯上用单位质量(或体积)的液体中所含溶质的质量来表示。

4.溶解度曲线气液相平衡关系用二维坐标绘成的关系曲线称为溶解度曲线。

(1) 在同一溶剂(水)中,不同气体的溶解度有很大差异。

(2) 同一溶质在相同的温度下,随着气体分压的提高,在液相中的溶解度加大。

(3) 同一溶质在相同的气相分压下,溶解度随温度降低而加大。

由溶解度曲线所显示的共同规律可知:加压和降温可以提高气体的溶解度,对吸收操作有利;反之,升温和减压对脱吸操作有利。

9.2.2亨利定律1.亨利定律:描述互成平衡的气、液两相间组成的关系。

当总压不高时,在恒定温度下,稀溶液上方的气体溶质平衡分压与其在液相中摩尔分率成正比。

由于组成有多种表示方法,所以亨利定律有多种表达式。

2.亨利定律表达式(1) 以p 及x 表示的平衡关系当液相组成用物质的量的分数(摩尔分数)表示时,则稀溶液上方气体中溶质的分压与其在液相中物质的量的分数(摩尔分数)之间存在如下关系,即:p*=Ex (9-1)式中 p* — 溶质在气相中的平衡分压,kPa ;x — 溶质在液相中物质的量分数;E — 亨利系数,单位与压强单位一致。

其数值随物系特性及温度而变。

(2) 以p 及c 表示的平衡关系若用物质的量浓度c 表示溶质在液相中的组成,则亨利定律可写成如下形式,即:p*=H c(9-2)式中 c — 单位体积溶液中溶质的物质的量,3/m kmol ;H — 溶解度系数,)/(3kPa m kmol ⋅。

溶解度系数的数值随物系而变,同时也是温度的函数。

对一定的溶质和溶剂,H 值随温度升高而减小。

易溶气体有很大的H 值,难溶气体的H 值很小。

对于稀溶液,H 值可由下式近似估算,即:H =EMs ρ(9-3)式中 ρ — 溶液的密度,kg /m 3;Ms — 溶剂的摩尔质量。

(3) 以y 与x 表示平衡关系若溶质在气相与液相中的组成分别用物质的量的分数y 与x 表示,亨利定律又可写成如下形式: y*=mx (9-4)式中 y —与液相成平衡的气相中溶质物质的量的分数;m —相平衡常数,又称为分配系数,无因次。

式2-4可由式2-1两边除以系统的总压P 得到,即:x P E P P y ==* P E m =(4) 以X 及Y 表示平衡关系在吸收计算中,为方便起见,常采用物质的量之比Y 与X 分别表示气、液两相的组成。

物质的量之比定义为:X=液相中溶质的物质的量/液相中溶剂的物质的量=x x-1 (9-6)Y=气相中溶质的物质的量/气相中惰性组分物质的量=y y-1 (9-7)由上式二可得:)1(X X x += (9-6a ))1Y Y y += (9-7a )当溶液很稀时,式9-4又可近似表示为: Y*=mX (9-8)式2-8表明,当液相中溶质含量足够低时,平衡关系在X-Y 坐标图中也可近似的表示成一条通过原点的直线,其斜率为m 。

亨利定律的各种表达式既可由液相组成计算平衡的气相组成,也可反过来根据气相组成来计算平衡的液相组成,因此,前述的亨利定律各种表达式可分别改写如下。

x*=p/E (9-1a )c*=H/p (9-2a )x*=y/m (9-3a )X*=Y/m (9-4a )9.2.3相平衡关系在吸收操作中的应用相平衡关系在吸收操作中有下面几项应用。

1.选择吸收剂和确定适宜的操作条件性能优良的吸收剂和适宜的操作条件综合体现在相平衡常数m 值上。

溶剂对溶质的溶解度大,加压和降温均可使m 值降低,有利于吸收操作。

2.判断过程进行方向根据气、液两相的实际组成与相应条件下平衡组成的比较,可判断过程进行的方向。

若气相的实际组成Y 大于与液相呈平衡关系的组成Y*(=mX ),则为吸收过程;反之,若Y*>Y ,则为脱吸过程:Y=Y*,系统处于相际平衡状态。

3.计算过程推动力气相或液相的实际组成与相应条件下的平衡组成的差值表示传质的推动力。

对于吸收过程,传质的推动力为*Y Y -或X X -*。

4.确定过程进行的极限相平衡关系在吸收操作中的应用在Y -X 坐标图上表达更为清晰,如图2-5。

气相组成在平衡线上方(点A 1),进行吸收过程;气相组成在平衡线下方(点A 2),则为脱吸操作。

吸收过程的推动力为Y 1-Y*或X 1*-Xc ,脱吸的推动力为Y*-Y 或Xc -Xc*。

吸收液的最高组成为X 1*;尾气的最低组成为Y 2*第3节 传质机理与吸收速率9.3.1分子扩散与菲克定律1.分子扩散:在静止或滞流流体内部,若某一组分存在浓度差,则因分子无规则的热运动使该组分由浓度较高处传递至浓度较低处,这种现象称为分子扩散。

2. 分子扩散现象:图2-6 扩散现象如图2-6所示的容器中,用一块隔板将容器分为左右两室,两室分别盛有温度及压强相同的A 、B 两种气体。

当抽出中间的隔板后,分子A 借分子运动由高浓度的左室向低浓度的右室扩散,同理气体B 由高浓度的右室向低浓度的左室扩散,扩散过程进行到整个容器里A 、B 两组分浓度均匀为止。

3. 扩散通量:扩散进行的快慢用扩散通量来衡量,定义为:单位时间内通过垂直于扩散方向的单位截面积扩散的物质量,成为扩散通量。

4. 菲克定律:由两组分A 和B 组成的混合物,在恒定温度、总压条件下,若组分A 只沿z 方向扩散,浓度梯度为dz dc A,则任一点处组分A 的扩散通量与该处A 的浓度梯度成正比,此定律称为菲克定律,数学表达式为:dz dc D J A AB A -= (9-9)式中负号表示扩散方向与浓度梯度方向相反,扩散沿着浓度降低的方向进行。

9.3.2气相中的定态分子扩散1.等分子反方向扩散(1)等分子反方向扩散如图9-7所示,当连通管内任意截面上单位时间单位面积上向右传递A 分子数与向左传递的B 分子数相等时,这种情况称为等分子反方向扩散。

若以A 的传递方向(z )为正方向,则可写出下式,即:B A J J -= (9-10)][dz dc D dz dc D A BA A AB --=- 得到D AB =D BA (9-11)上式表明,由A 、B 两种气体所组成的混合物中,A 和B 的扩散系数相等。

相关文档
最新文档