用空间向量求直线与平面所成的角
专题6 向量法求空间角与距离(课件)高考数学二轮复习(新高考地区专用)
=|cos 〈u,n〉|=
·
=
·
.
例1 [2023·河北沧州模拟]如图,在三棱锥P - ABC中,AB是△ABC外
接圆的直径,△PAC是边长为2的等边三角形,E,F分别是PC,PB的
中点,PB=AB,BC=4.
(1)求证:平面PAC⊥平面ABC;
(2)求直线AB与平面AEF所成角的正弦值.
A.直线BC1与DA1所成的角为90°
B.直线BC1与CA1所成的角为90°
C.直线BC1与平面BB1D1D所成的角为45°
D.直线BC1与平面ABCD所成的角为45°
答案:ABD
)
2.[2022·新高考Ⅰ卷 ]如 图,直三棱柱ABC - A1B1C1 的体积为4 ,
△A1BC的面积为2 2.
(1)求A到平面A1BC的距离;
=2.
(1)证明:BD⊥EA.
(2)求平面EDCF与平面EAB夹角的余弦值.
题型三 (空间距离)点到平面的距离
已知平面α的法向量为n,A是平面α内的定点,P是平面α外一点.过
点P作平面α的垂线l,交平面α于点Q,则n是直线l的方向向量,且点P
到平面α的距离就是AP到直线l上的投影向量QP的长度.因此PQ=
(1)证明:A1C⊥AB1;
(2)若三棱锥B1 -
2 2
A1AC的体积为 ,求二面角A1
3
- B1C - A的大小.
题后师说
用法向量求二面角的关键是正确写出点的坐标和法向量,再利用两
个平面的夹角公式求解.
巩固训练2
[2023·河南安阳模拟]在多面体EF - ABCD中,平面EDCF⊥平面
ABCD,EDCF是面积为 3的矩形,CD∥AB,AD=DC=CB=1,AB
用空间向量研究距离、夹角问题(第二课时) 高中数学新教材人教A版
)
A1
A
E
C
B
A
在直角三角形中,易求得 BD1
6
,
2
5
,设向量BD1 与AF1
2
BD1 ⋅AF1
30
10
=
AF1 =
的夹角为θ,则直线BD1与AF1 ,所成
角的余弦值为|cos θ | ,则 cos θ
=
BD1 AF1
=
课堂检测
1.在直三棱柱 ABC-A1B1C1中,∠BCA=90°D1, F1分别是A1B1,A1C1
则
,
·=0
+ =0
⇒
,
x
+
z
=
0
根据这个不定方程组,可以求得
若取z=1,则x=−1,y=−1,所以n=(−1,−1,1)是
平面的一个法向量.
一个法向量n=(x0,y0,z0).
若取z=−2,则x=2,y=2,所以n=(2,2,−2)是平
面的另一个法向量.
n
α
a
b
求得的n=(x0,y0,z0)是法向量中的一个,不是所有的法
Q
P
B
R
C1
B1 y
A1
x
分析:因为平面
PQR与平面A1B1C1
的夹角可以转化为平
面 PQR与平面
A1B1C1的法向量的
夹角,所以只需要求
出这两个平面的法向
量的夹角即可.
例题精讲 ——例
如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,∠ACB=90°,P为
z
C
P
BC的中点,点Q,R分别在棱AA1,BB1上,A1Q=2AQ,BR=2RB1,求平面PQR
利用空间向量求空间角考点与题型归纳
利用空间向量求空间角考点与题型归纳一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角αl β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α l β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1).又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1, ∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8.考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H . 由AB =5,AC =6,得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B D ′A C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B CP D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧ -1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎪⎨⎪⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎪⎨⎪⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B CP D 为钝角, 所以二面角B CP D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC A 1B 1C 1中,AA 1=2,二面角B AA 1C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F OE A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1),则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F OE A 为锐角, 所以二面角F OE A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz .当三棱锥M ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M P A C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ),令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B OB 1C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3, OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B OB 1C 是锐二面角, ∴二面角B OB 1C 的余弦值为2121. 2.如图,在四棱锥P ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC .(1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1, ∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cos n ,CB ―→=-4-24×12=-32, ∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。
“向量法解决直线与平面所成角问题”的教学与思考
案例剖析ANLI POUXI“向量法解决直线与平面所成角问题#,/学与思考◎李琳(广州市第七十五中学,广东广州510000)立体几何模块是高中阶段学习的重点,学生在《数学必修2》的学习上,结合空间向量又在选修2-1中补充学习,这不是简单的重复学习,而是的视角对的位置关系与度量问题进行学习,而且为解决立体几何中某些用综合法解题时技巧性较大、随机性较强的问题提供了一些,从而进一步提升学生的空间想象能力和几观能力•教师在教学过程中如何做到既注重基础知识的教学,又能拓展学生的思维进培养学生能力的目的?笔者以“向量法解决直线与平面所成角问题”的教学为例展开论述.一、教学设计(一)课前导入有的放矢由于本节课不是概念课,也不是新授课,师生已经对教材(人教A版选修2-1)《立体几何中的向量方法》进行了学习,对空间向量这个工具的使用有了一定的认识,所以笔者设计了以下三道小题给学生课前完成:1•已知空间向量a=(1,1,0),b=(#,- 1,1),若〈a,"〉=■",贝》#=().A.0或4B.0C.4D.12.已知2(3,-1,4),3(2,1,3),若子=#壶,则0点的坐标是()•A.(3-#,2#-1,4-入)B.(入,#-1,2入)C.(入,2#,2-A)D.(3#,2-#,#,)3•如图1所示,在棱长为4的正方体中,点0在上,且C+=宁C++,则直线02与平面A3CD所成角的余弦值为_______•图1习题1的设计是检测学生向量夹角公式的掌握情况,结果绝大部分学生错选成了A,究其原因是学生忽视了向量的范围,在计程中对方程平方会扩大变量的范围•如果学生在求解过程中列岀了式子:*?,注意到向量夹角为锐角时其数量积为正数,就/2/#+2可得岀#〉1,可以选岀正确答案C;习题2的设计是为后面例题1的变式做铺垫的,检测的知识点是向量共线的应用,答题效果比较好.习题3的设计是借助一个正方体求直线与平面所的余弦值,这有两个设计:其一是用向量法和综合法都很容易入手,学生可以自由选择方法,其二是题目求的是与平面所成角的余弦值,若学生用量法解题的话这里是个点,不少学生对向量法求岀的值到底是正弦值还是余弦值还有些混淆•因此,本节课的 课前导入就是通过习题帮助学生查缺补漏,并围绕本节课的教学重点进行归纳小结,让学生知识点、考点,学习程中做中有数.(二)课中题型精选典型数学教学离不开解题教学,解题教学的首要工作就是精选•高中的数学学习更多的是培养学生的思维品质,达到提升学生学习能力的目的,因此,教师选取的例题需有基础性、典型性和示范性的特征•笔者选取了如作为课堂例题:例1如图2所示,在三棱锥0-M3C中,0A丄平面ABC,AC丄3C,D为0C的中点,0A=AC=4,3C=2.N为AD 的中点,求0N与平面AD3所成角的正弦值•12用向量法求直线与平面所成角本身难度不大,学生的难点主要集中在建立空间直角坐标系和找空间点的坐标这两项•笔者选取的这道例题无论是建系还是找点的坐标学生都容""解答方也有型的功能•设计是强化用向量法求与平面所的“三步曲”:化为向量问题---进行向量运算----回到图形问题•第一步是向学生渗透化归与转化的思想,第二步考查学生的能力和综合能力,强化学生对知识的理解和掌握•为了拓展学生的思维,例题讲完后笔者设计了一道探究题:你还有哪些方法得岀N点的坐标?由于学生最容易想到直接求N点坐标,所以容易想到的方法有:用中点坐标公式求的;先找N点在底面投影再求N点坐标的;这时笔者提示学生:根据A,N,D三点共线及课前演练的第二小题,数学学习与研究2019.20案例剖析ANLI POUXI你有什么启发吗?有些学生马上领悟到可用向量共线设二入直接求岀n 点坐标进而求0N 的坐标形式;又有 学生提岀可由=+ #0?直接表示岀0N 的坐标.接下来笔者向学生提问:这些方法中各有何优缺点?我们在日后的学习和解题过程中如何快速选取更优的方法?经过学生 的思考和探讨,学生明白了:1.当且仅当点N 为中点时方可用中点坐标公式得岀N 点坐标;2.当点N 在#9'平面上的影位置 特殊(如在坐标轴上等)时可以用投影法求点N 的坐标;3.建立坐标系的方式与求点N 坐标的难度有关,比如,以2为原点比以C 为原点更好求点N 的坐标;4.无论点N 在 ( )2M 上 置,都用向量 求其坐标,且计算难度与N 点位置没有 关系.经过这样一番思考与,笔马上 学生解 1的变式 ?习:变式 在上述例题中,线段2M 上是否存在一点T ,使 得直线0T 与平面2M3所成角的正弦值为李?若存在,请6求岀T 点坐标,若不存在请说明理由.练习 如图3所示,在四棱锥P-ABCD 中,底面ABCD是平行四边形,4BCM = 135。
专题5:向量法做立体几何的线面角问题(解析版)
专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。
《用向量法求直线与平面所成的角》教案
《用向量法求直线与平面所成的角》教案一、教学目标1. 让学生掌握向量法求直线与平面所成的角的基本概念和原理。
2. 培养学生运用向量法解决直线与平面所成角的能力。
3. 提高学生对空间几何向量知识的运用和解决问题的能力。
二、教学内容1. 直线与平面所成的角的定义。
2. 向量法求直线与平面所成的角的原理。
3. 向量法求直线与平面所成的角的步骤。
4. 实例分析:求直线与平面所成的角。
三、教学重点与难点1. 教学重点:直线与平面所成的角的定义,向量法求直线与平面所成的角的原理和步骤。
2. 教学难点:向量法求直线与平面所成的角的步骤和实例分析。
四、教学方法1. 采用讲解法,讲解直线与平面所成的角的定义、向量法求直线与平面所成的角的原理和步骤。
2. 采用案例分析法,分析实例,让学生更好地理解向量法求直线与平面所成的角的应用。
3. 采用互动教学法,引导学生提问、讨论,提高学生对知识点的理解和运用能力。
五、教学准备1. 教学课件:制作相关的教学课件,包括直线与平面所成的角的定义、向量法求直线与平面所成的角的原理和步骤等内容。
2. 实例:准备一些直线与平面所成的角的实例,用于讲解和分析。
3. 教学工具:准备黑板、粉笔等教学工具,以便进行板书和讲解。
六、教学过程1. 导入:通过复习前期学习的直线与平面基础知识,引导学生进入本节课的主题——用向量法求直线与平面所成的角。
2. 讲解直线与平面所成的角的定义,解释其意义。
3. 讲解向量法求直线与平面所成的角的原理,阐述其适用范围和优势。
4. 讲解向量法求直线与平面所成的角的步骤,通过板书和课件演示每个步骤的操作。
5. 分析实例,引导学生运用向量法求直线与平面所成的角,解答过程中注意引导学生思考和讨论。
七、课堂练习1. 布置一些直线与平面所成的角的练习题,让学生运用向量法求解。
2. 引导学生独立思考和解决问题,及时给予指导和解答疑问。
3. 强调练习过程中需要注意的问题和方法,提醒学生巩固知识点。
用空间向量求直线与直线、直线与平面所成的角
用空间向量求直线与直线、直线与平面所成的角作者:赵春祥来源:《理科考试研究·高中》2012年第03期在立体几何中,关于角的计算均可归结为求两个向量的夹角问题.对于空间向量a、b,有cos〈a,b〉=a·b|a||b|.利用这一结论,我们可以较方便地处理立体几何中的角的问题.一、异面直线所成的角例1如图1,在棱长为a的正方体ABCD-A1B1C1D1中,求异面直线BA1与AC所成角的大小.分析利用cos〈BA1,AC〉=BA1·AC|BA1||AC|,求出向量BA1与AC的夹角〈BA1,AC〉,再根据异面直线所成的角的范围确定异面直线BA1与AC所成角.解因为BA1=BA+BB1,AC=AB+BC,所以BA1·AC=(BA+BB1)·(AB+BC)=BA·AB+BA·BC+BB1·AB+BB1·BC.因为AB⊥BC,BB1⊥AB,BB1⊥BC,所以BA·BC=0,BB1·AB=0,BB1·BC=0,BA·AB=-a2,所以BA·AC=-a2.又cos〈BA1,AC〉=BA1·AC|BA1||AC|=-a22a×2a=-12,所以〈BA1,AC〉=120°.所以异面直线BA1与AC所成的角为60°.例2如图2,ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且AE⊥PD,E为垂足,PA⊥平面ABCD,PD与平面ABCD成30°角.求异面直线AE与CD所成角的余弦值.解以A为原点,AB、AD、AP所在直线为坐标轴,建立空间直角坐标系,则C(a,a,0)、D(0,2a,0),CD=(-a,a,0).由PA⊥平面ABCD,知∠PDA是PD与平面ABCD所成角,所以∠PDA=30°.在Rt△ADE中,因为AD=2a,所以AE=12AD=a.过E作EF⊥AD于F,在Rt△AEF中,因为AE=a,∠EAF=60°,所以AF=12a,EF=32a,所以E(0,12a,32a).于是AE=(0,12a,32a).设AE与CD的交角为θ,则cosθ=AE·CD|AE||CD|=0×(-a)+a2×a+32a×002+(a2)2+(32)2×(-a)2+a2+02=24.即异面直线AE与CD所成角的余弦值是24.评析求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须把所求向量用空间的一组基向量来表示(例1),或用坐标表示(例2).另外,应注意〈a,b〉的范围是[0,π],而异面直线a与b的夹角范围是(0,π2],两种夹角不一定相等,以防出错.(见例1)二、直线与平面所成的角例2已知四面体O—ABC的各棱长都是1,E,F分别为AB,OC的中点,(1)求OE与BF所成角的余弦值;(2)求BF与面ABC所成角的正弦值.分析取OA,OB,OC为基向量,来表示出OE,BF,再根据向量的夹角公式求解.解(1)记OA=a,OB=b,OC=c,则a·b=b·c=c·a=12.OE=12(a+b),BF=12c-b.OE·BF=12(a+b)·(12c-b)=12(12a·c+12b·c-a·b-|b|2)=12(14+14-12-1)=-12,所以cos〈OE,BF〉=OE·BF|OE||BF|=-1232×32=-23.从而OE与BF所成角的余弦值为23.(2)作OO′⊥平面ABC于O′,设OO′与BF所成角为θ(0因为OO′=13(a+b+c),所以|OO′|2=19(a+b+c)2=19(|a|2+|b|2+|c|2+2a·b+2a·c+2b·c)=19(3+3)=23,所以|OO′|=63.而cos〈OO′,BF〉=13(a+b+c)·(12c-b)63×32=23(12a·c+12b·c+12|c|2-a·b-|b|2-b·c)=23(14+14+12-1[]2-1-12)=-23,所以cosθ=23,从而sinφ=sin(π2-θ)=cosθ=23.即BF与平面ABC所成角的正弦值是23.评析直线l与平面α的夹角φ,是直线l的方向向量l与平面α的法向量n的夹角θ的余角,故有sinφ=cosθ=|l·n||l||n|.。
用空间向量求直线与平面所成的角
(5) 根据题意,转化为几何结论.
在立体几何中涉及的角有异面直线所成的 角、直线与平面所成的角、二面角等。用几何 法求这些角,需要经过“找(作)”、“证”、 “算” 等步骤,过程较为繁琐,若归结为求两 个向量的夹角问题,可将问题简单化。本节课, 我们主要探讨“直线与平面所成的角”也即 “线面角” 的求法。
角的正弦值。
z
解:以点A为坐标原点建立空间直角坐标系A—xyz A(0,0,0),B1(1,0, 1),C(1, 1,0),C1 (1, 1, 1), 则B1C1 (0,1,0), AB1 (1,0,1),AC (1,1,0)
A1 B1
D1 C1
设平面AB1C的法向量为n (x,y,z)
A
Dy
一条直线 l 与一个平面 相交但不垂直,这条直线
叫做这个平面的斜线,斜线与平面的交点 A 叫做斜足,
过斜线上斜足以外的一点向平面引垂线 PO ,过垂足和斜
足的直线 AO 叫做斜线在这个平面上的射影。平面的一条
斜线和它在这个平面内的射别地,若 l ,则
l 与 所成的角是直角,若 l //或 l ,则 l 与 所
成的角是零角。
A
O
斜线与平面所成角的范围:
0,
2
Pn
A
O n
思考: 设平面 的法向量为 n 则
n, AP 与 的关系?
n
- n, AP
2
结论:sin cos n, AP
n
n, AP -
人教B版高中数学选择性必修第一册精品课件 第一章 空间向量与立体几何 1.2.3 直线与平面的夹角
B.60° C.45°
C)
D.30°
解析 设AC和平面α所成的角为θ,
则cos 60°=cos θcos 45°,故cos θ=
1 2 3 4 5
2
√,所以θ=45°.
2
3.[2023甘肃永昌高二阶段检测]在长方体ABCD-A1B1C1D1中,AB=BC=2,
AA1=1,则直线BC1与平面BB1D1D所成角的正弦值为( D )
21
规律方法
1.利用定义法求直线与平面所成的角,首先要作出斜线和这条
斜线在平面内的射影所成的角,然后通过解三角形求出直线与平面所成的
角的大小.其基本步骤可归纳为“一作,二证,三计算”.
2.找射影的两种方法
3.本例中找出点E在平面BCD中的射影是解决问题的核心,对于几何体中缺
少棱长等数据信息,可根据几何体的特征进行假设,这样处理不影响结论.
√6
A.
3
1 2 3 4 5
√10
B.
2
√15
C.
5
√10
D.
5
解析 以D点为坐标原点,以DA,DC,DD1所在的直线为x轴、y轴、z轴,建立
空间直角坐标系,
则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1),
∴1 =(-2,0,1), =(-2,2,0),易知 为平面 BB1D1D 的一个法向量,
θ=|cos
|CB|2 + |BA|2 + |AS| 2 = √3,
√3
φ|= 3 ,
√3
所成的角的正弦值为 3 .
∴cos<1 , >=
1 ·
|1 || |
∴直线 BC1 与平面
3.2 向量法解决角度问题
解 由(1)知OC⊥AB,OA1⊥AB. 又平面ABC⊥平面AA1B1B,交线为AB, 所以OC⊥平面AA1B1B, 故OA,OA1,OC两两垂直,以O为坐标原点, 建立如图所示的空间直角坐标系Oxyz.
设 AB=2,则 A(1,0,0),A1(0, 3,0),C(0,0, 3),B(-1,0,0), 则B→C=(1,0, 3),B→B1=A→A1=(-1, 3,0), A→1C=(0,- 3, 3).
证明 取AB的中点O,连接OC,OA1,A1B. 因为CA=CB,所以OC⊥AB. 由于AB=AA1,∠BAA1=60°, 故△AA1B为等边三角形,所以OA1⊥AB. 因为OC∩OA1=O,所以AB⊥平面OA1C. 又A1C⊂平面OA1C,故AB⊥A1C.
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正 弦值.
3,1,-
3· 7×
3,-1,- 7
3|=17.
∴异面直线 A1B 与 AO1 所成角的余弦值为17.
反思感悟 求异面直线夹角的方法 (1)传统法:作出与异面直线所成角相等的平面角,进而构造三角形求解. (2)向量法:在两异面直线 a 与 b 上分别取点 A,B 和 C,D,则A→B与C→D可分
30 C. 30
15 D. 15
解析 建立如图所示的空间直角坐标系,设正方体的棱长为2,
则B1(2,2,2),M(1,1,0),D1(0,0,2),N(1,0,0), ∴B→1M=(-1,-1,-2),
D→1N=(1,0,-2),
∴cos〈B→1M,D→1N〉=
-1+4 1+1+4×
= 1+4
30 10 .
所以 O(0,0,0),B1( 3,0,2),C1(0,1,2),
利用空间向量求角和距离典型例题精讲
9.8用空间向量求角和距离一、明确复习目标1.了解空间向量的概念;会建立坐标系,并用坐标来表示向量; 2.理解空间向量的坐标运算;会用向量工具求空间的角和距离.二.建构知识网络1.求角:(1)直线和直线所成的角:求二直线上的向量的夹角或补角; (2)直线和平面所成的角: ①找出射影,求线线角;②求出平面的法向量n ,直线的方向向量a ,设线面角为θ,则|cos ,|||||||n asin n a n a θ⋅=<>=⋅.(3)二面角:①求平面角,或求分别在两个面内与棱垂直的两个向量的夹角(或补角); ②求两个法向量的夹角(或补角). 2.求距离(1)点M 到面的距离||cos d MN θ=(如图)就是斜线段MN 在法向量n 方向上的正投影. 由||||cos ||n NM n NM n d θ⋅=⋅⋅=⋅ 得距离公式:||||n NM d n ⋅=(2)线面距离、面面距离都是求一点到平面的距离;(3)异面直线的距离:求出与二直线都垂直的法向量n 和连接两异面直线上两点的向量NM ,再代上面距离公式.三、双基题目练练手1.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ( ) ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.3 B.2 C.1D.02. 直三棱柱A 1B 1C 1—ABC ,∠BCA =90°,D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( )A .1030B . 21C .1530 D .10153.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k = ___ 4. 已知A (3,2,1)、B (1,0,4),则线段AB 的中点坐标和长度分别是 , .◆答案提示: 1. C ; 2. A ; 3. 57;4.(2,1,25),d AB =17四、以典例题做一做【例1】 (2005江西)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4π.解:以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z轴,建立空间直角坐标系,设AE =x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0)(1)11(1,0,1)(1,,1)DA D E x ⋅=⋅-因为110,.DA D E =⊥所以 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD , 设平面ACD 1的法向量为,n n 则不与y 轴垂直,可设(,1,)n a c =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD n AC n也即200a a c -+=⎧⎨-+=⎩,得2a a c=⎧⎨=⎩,从而)2,1,2(=n , ∴点E 到平面AD 1C 的距离:.313212||||1=-+=⋅=n n E D h (3)1(1,2,0),(0,2,1),CE x DC =-=-1(0,0,1),DD = 设平面D 1EC 的法向量(,1,)n a c =,由10,20(2)0.0,n D C c a x n CE ⎧⋅=-=⎧⎪⇒⎨⎨+-=⋅=⎩⎪⎩ ).2,1,2(x n -= 依题意11||2cos 42||||n DD n DD π⋅==⋅222.2(2)5x ⇒=-+∴321+=x (不合,舍去),322-=x . ∴AE =32-时,二面角D 1—EC —D 的大小为4π【例2】(2005全国)已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且P A =AD =DC =21AB =1,M 是PB 的中点。
《用向量法求直线与平面所成的角》教案
《用向量法求直线与平面所成的角》教案第一章:向量基本概念回顾1.1 向量的定义1.2 向量的几何表示1.3 向量的运算1.4 向量的长度与方向第二章:向量投影的概念与计算2.1 向量投影的定义2.2 正投影与斜投影2.3 投影的计算方法2.4 投影在坐标系中的应用第三章:直线与平面所成角的定义与性质3.1 直线与平面所成角的定义3.2 直线与平面所成角的性质3.3 直线与平面所成角的计算方法3.4 直线与平面所成角的应用第四章:向量法求直线与平面所成的角4.1 向量法的基本思路4.2 向量法求直线与平面所成的角的步骤4.3 向量法在实际问题中的应用4.4 向量法求直线与平面所成的角的局限性第五章:练习题及解答5.1 选择题5.2 填空题5.3 解答题5.4 思考题第六章:向量法在空间几何中的应用6.1 向量法在求解空间直线与直线间的角中的应用6.2 向量法在求解空间直线与平面间的角中的应用6.3 向量法在求解空间平面与平面间的角中的应用6.4 向量法在空间几何其他问题中的应用第七章:空间向量与解析几何的综合应用7.1 解析几何的基本概念回顾7.2 空间向量与解析几何的关联7.3 向量法在解析几何问题中的应用7.4 解析几何在向量法中的应用第八章:数值计算方法在向量法中的应用8.1 数值计算方法的基本概念8.2 数值计算方法在向量法中的应用8.3 常见数值计算方法的比较与选择8.4 数值计算方法在实际问题中的应用第九章:案例分析与实践9.1 用向量法求直线与平面所成的角的实际案例分析9.2 向量法在建筑设计中的应用9.3 向量法在导航中的应用9.4 向量法在其他领域中的应用第十章:总结与拓展10.1 本课程的主要内容和收获10.2 向量法在未来的发展趋势10.3 向量法在相关领域的拓展10.4 课程实践与思考重点和难点解析一、向量基本概念回顾难点解析:向量的概念理解,向量的几何表示与坐标表示的转换。
空间向量求线面角公式
空间向量求线面角公式空间向量是三维空间中的一种表示方式,它可以用来描述点、直线、平面等几何对象。
线面角是两条直线或直线与平面之间的夹角,它是空间几何中的重要概念。
本文将介绍如何利用空间向量来求解线面角的公式。
在三维空间中,我们可以用向量来表示直线或平面。
设直线L的方向向量为a,平面P的法向量为n。
对于直线L上的一点P和平面P 上的一点Q,连接向量PQ即可得到一条从直线L到平面P的向量。
设这个向量为d。
根据向量的定义,我们知道向量d与直线L垂直。
而向量d与平面P的夹角则可以通过向量点乘来求解。
向量的点乘公式为:a·b = |a| |b| cosθ,其中a和b分别为向量a和向量b的模,θ为a 和b之间的夹角。
将向量d与直线L的方向向量a进行点乘,得到:d·a = |d| |a| cosα其中α为向量d与直线L的夹角。
由于向量d与平面P垂直,所以d·n = 0。
将这个条件带入上式,得到:0 = |d| |a| cosα解得:cosα = 0α = π/2这说明线面角的大小为90度,即直线和平面垂直。
当直线与平面不垂直时,我们需要使用法线向量来求解线面角的大小。
设直线L上的一点P和平面P上的一点Q,连接向量PQ即可得到一条从直线L到平面P的向量。
设这个向量为d。
由于向量d在平面P上,所以它可以表示为平面P的法向量n与某个向量b的线性组合。
即:d = λn + b其中λ为标量。
将这个表达式代入向量点乘公式,得到:(λn + b)·a = |λn + b| |a| cosα化简得:λn·a + b·a = |λn + b| |a| cosα我们知道,向量n垂直于平面P,所以n·a = 0。
将这个条件带入上式,得到:b·a = |λn + b| |a| cosα由于向量b在平面P上,所以b·n = 0。
将这个条件带入上式,得到:b·a = |b| |a| cosα将向量b的模用向量d和法向量n表示,即|b| = |d - λn|,代入上式,得到:(d - λn)·a = |d - λn| |a| cosα展开并化简上式,得到:d·a - λn·a = |d - λn| |a| cosαd·a = |d - λn| |a| cosα我们知道,向量d在平面P上,所以d·n = 0。
向量法求空间角(含解析)
高中数学 ︵ 向量法求空间角︶培优篇考点1:异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v||u||v|.考点2:直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向高中数学 ︵ 向量法求空间角︶培优篇量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|= u ·n |u ||n |=|u·n||u||n|.考点3:平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.【常用结论总结】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|. 2.二面角的范围是[0,π],两个平面夹角的范围是0,2.【例1】 直三棱柱ABC -A 1B 1C 1如图所示,AB =4,BC=3,AC =5,D 为棱AB 的中点,三棱柱的各顶点在同一球面上,且球的表面积为61π,则异面直线A 1D 和B 1C 所成的角的余弦值为( )高中数学 ︵ 向量法求空间角︶培优篇A .5B .25C .5D .25【例2】 如图,四棱锥P −ABCD 中,底面ABCD 为正方形,△PAD 是正三角形,AB =2,平面PAD ⊥平面ABCD ,则PC 与BD 所成角的余弦值为( )A .14B .4C .13D 【例3】 如图四棱锥P -ABCD 中,底面ABCD 为正方形,各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A 6B C .13D .12学霸笔记用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是(0,],即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.高中数学 ︵ 向量法求空间角︶培优篇【对点训练1】 如图,在三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为()AB .13C .4D 【对点训练2】 “曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA ⊥面ABCD ,AA 1=4,底面扇环所对的圆心角为π2,AD 的长度是BC 长度的2倍,CD =1,则异面直线A 1D 1与BC 1所成角的正弦值为()A .3B .13C .3D .4【对点训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC=AB=2,BC =2√2,Q 为A 1B 1的中点,E 为AQ 的中点,F 为BC 1的中点,则异面直线BE 与AF所成角的余弦值为( )A. BC .D高中数学 ︵ 向量法求空间角︶培优篇【例4】 在正方体ABCD −A B C D 中,如图E 、F 分别是BB 1、CD 的中点. (1)求证:平面AD F ⊥平面ADE ; (2)求直线EF 与AD F 所成角的正弦值.【例5】 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,P A ⊥平面ABCD ,P A=AD=2AB=8,点M 在棱PD 上,且PA =PM ⋅PD ,AM ⊥MC.(1)求证:CD ⊥平面P AD ;(2)求BM 与平面ACM 所成角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 学霸笔记利用空间向量求线面角的解题步骤【对点训练4】 如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、CD 的中点. (1)求证:D 1 F ∥平面A 1EC1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练5】 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,∠ABC =60°,AB =2,AA 1=2√3,E 为线段DD 1上一点.(1)求证:AC ⊥B 1D ;(2)若平面AB 1E 与平面ABCD 的夹角的余弦值为25,求直线BE与平面AB 1E 所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇【例6】 在如图所示的空间几何体中,△ACD 与△ACB 均是等边三角形,直线ED ⊥平面ACD ,直线EB ⊥平面ABC ,DE ⊥BE . (1)求证:平面ABC ⊥平面ADC ;(2)求平面ACE 与平面BCE 夹角的余弦值.【例7】 如图,三棱锥A −BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60∘,E 为BC 的中点. (1)证明:BC ⊥DA ;(2)点F满足EF⃗=DA ⃗,求二面角D −AB −F 的正弦值.高中数学 ︵ 向量法求空间角︶培优篇学霸笔记利用空间向量求平面与平面夹角的解题步骤【对点训练6】 直三棱柱ABC −A B C 中,AA =AB =AC =2,AA ⊥AB,AC ⊥AB ,D 为A B 的中点,E 为AA 的中点,F 为CD 的中点. (1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CCD所成角的正弦值; (3)求平面A CD 与平面CC D 夹角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练7】 如图,在棱长为2的正方体ABCD −A B C D 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A EC ;(2)求直线AC 与平面A EC 所成角的正弦值. (3)求二面角A −A C −E 的正弦值.【对点训练8】 如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点. (1)证明:OE ∥平面PAC ;(2)若∠ABO=∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值.。
用空间向量法研究线线角和线面角
(4)判断直线和平面所成的角 θ 和〈l,n〉的关系,求出角 θ.
当堂检测:
如图所示,直三棱柱 ABC-A1B1C1,∠BCA=90°,点 F1
是 A1C1 的中点,BC=CA=2,CC1=1.
(1)求异面直线 AF1 与 CB1 所成角的余弦值;
(2)求直线 AF1 与平面 BCC1B1 所成的角.
= ,
2 2 2
π
所以 θ= ,
4
π
所以直线 AF1 与平面 BCC1B1 所成的角为 .
4
课堂小结:
作业布置:
练习册 分层精炼33
高考链接:
(2022全国甲卷)18. 在四棱锥 P-ABCD中,PD⊥ 底
面ABCD,CD//AB,AD=DC=CB=1,AB=2,DP= .
(1)证明:BD ⊥ PA ;
n BP 3 y 3z 0
则 cos n, DP
n DP
n DP
3, 3 , DP 0,0, 3 ,
5
,
5
所以 PD 与平面 PAB 所成角的正弦值为
5
.
5
,则 l1 与 l2 所成的角
6
为( A )
π
A.
6
5π
B.
6
π 5π
C. 或
6 6
D.以上均不对
解析 l1 与
故选 A.
π
l2 所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为0, ,
2
学以致用
正方体ABCD-A1B1C1D1中,E、F分别是
A1D1、A1C1的中点,求异面直线AE与CF所成角
用空间向量方法求角和距离
用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题.1求空间角问题分别在直线n m ,b a ,所成的角或0a b a b ⊥⇔= , (2)求线面角特殊情形:当a = 一般情形:在直线图所示),再求cos 则sin cos βθ=(3)求二面角方法1:转化为分别是在二面角的两个半平面内且与棱都垂直的两条直线上的两个向量的夹角(注意:要特别关注两个向量的方向).方法2:先求出二面角一个面内一点到另一个面的距离及到棱的距离,然后通过解直角三角形求角.方法3:(法向量法)构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方向,如图所示)2)若二面角βα--l 是“锐角型”如图乙所示,那么其大小φ等于两法向量21n n 、的夹角即 1212cos cos .||||n n n n φθ⋅==⋅2.求空间距离问题(1)求点面距离 其中n 是平面α在法一、找平面β使面β法二:如图,d 是异面直线a 与 b 的距离,n是直线a 与b 的一个法向量 A 、 B 分别是 直线a , b 上的点,显然:||cos ,d AB θ=又||cos ,AB n θ= ||AB n d ∴= 图甲例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点.(Ⅰ)求异面直线1DE FC 与所成角的余弦值; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离例2.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。
平面平面ABCD B B A A ⊥''(Ⅰ)若A A '=1,求直线AB 到面'DAC 的距离.(II ) 试问:当A A '的长度为多少时,二面角 A C A D -'-的大小为? 60(Ⅰ)求证:直线1B P 不可能与平面11ACC A 垂直;(II )当11BC B P ⊥时,求二面角11C B P C --的大小的余弦值.例4.如图,1BE AB ⊥;(Ⅱ)求二面角B (Ⅲ)求异面直线例5.(山东卷)如图,已知平面A 1B 1C 1平行于三棱锥V-ABC 的底面ABC ,等边∆ AB 1C 所在的平面与底面ABC 垂直,且∠ACB =90°,设AC =2a ,BC=a .(1)求证直线B 1C 1是异面直线AB 1与A 1C 1的公垂线; (2)求点A 到平面VBC 的距离; (3)求二面角A-VB-C 的大小例6.如图,在底面是菱形的四棱锥P —ABCD 中,60,ABC ∠=︒,PA AC a ==,PB PD ==点E 在PD上,且PE:ED= 2: 1. (Ⅰ)证明 PA⊥平面ABCD;(Ⅱ)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小:(Ⅲ)在棱PC 上是否存在一点F, 使BF∥平面AEC?证明你的结论.练习:1.在正四面体S ABC -中,棱长为a ,E,F分别为SA 和BC 的中点,求异面直线BE 和SF 所成角的余弦值.2.在边长为1的菱形ABCD 中,60ABC ︒∠=,将菱形沿对角线AC 折起,使折起后BD =1,求二面角B ACD --的余弦值.3.在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面,且PD AD a ==,问平面PBA 与平面PBC 能否垂直?试说明理由.(不垂直)4.在直三棱柱12AC AA ==. (1) 求1O(2) 求BCPA=2,(Ⅰ)求直线PA 与平面DEF 所成角的大小; (Ⅱ)求点P 到平面DEF 的距离。
利用空间向量法求直线与平面所成的角的方法:(1)分别求
【思路点拨】 (1)利用勾股定理证明AB⊥AC;
(2)构造过AB1的平面,并证明其平行于平面A1C1C. (3)证明直线AA1,AC,AB两两垂直,从而以点A为坐 标原点建立空间直角坐标系,求出平面A1C1C的法向量,用 向量法求解.
菜单
新课标 ·理科数学(广东专用)
【规范解答】 (1)因为AB=AC,BC= 2AB, 所以AB2+AC2=BC2,所以AB⊥AC, 又因为四边形A1ABB1是正方形,所以AB⊥AA1, 又因为AA1∩AC=A,所以AB⊥平面AA1C. 易知AB∥A1B1, 所以A1B1⊥平面AA1C. (2)取BC的中点D,连接 AD,B1D,C1D. 因为B1C1綊12BC, 所以B1C1DB是平行四边形,
解得λ=12. 即M为BE的中点.
菜单
新课标 ·理科数学(广东专用)
利用空间向量法求二面角的方法: (1)分别求出二面角的两个面所在平面的法向量,然后 通过两个平面的法向量的夹角得到二面角的大小,但要注意 结合实际图形判断所求角是锐角还是钝角. (2)分别在二面角的两个平面内找到与棱垂直且以垂足 出发的两个向量,则这两个向量的夹角的大小就是二面角的 大小.以上两种方法各有利弊,要善于结合题目的特点选择 适当的方法解题.
菜单
新课标 ·理科数学(广东专用)
即
22ax-
22az=0
,取n=(
3,
2,
3).
2ax- 3ay=0
显然,EP⊥平面SAD,所以 P→E 为平面SAD的一个法向
量,
所以m=(0,1,0)为平面SAD的一个法向量.
所以cos〈n,m〉= 2
22=12,
π 所以二面角C—SA—D的大小为 3 .
(1)证明C→D·S→A=0; (2)求两个平面的法向量,利用法向量的夹角求解.
利用空间向量求直线与平面所成角
OS n
2
z 建系,设点 A1 C1 D1
A(0,0,0) B1(1,0,1)
C(1,1,0)
C1(1,1,1)
B1 A
求直线的方向向量
D
B1C1 (0,1,0) AC (1,1,0) AB1 (1,0,1)
设平面的法向量为 n ( x, y, z)
x y 0 AC n 0 x z 0 AB1 n 0
练习:如图,直角梯形OABC中,OA∥BC,∠AOC=90°,SO⊥平面 OABC,OS=OC=BC=1,OA=2. 求OS与平面SAB所成角α的正弦值. z
解:以O为坐标原点建立空间直角坐标系,如图所示 则O(0,0,0) A(2,0,0) B(1,1,0) S(0,0,1)
SA =(2,0,-1)
n
sin cos
A
A
2
cos( ) cos 2
n
a
a
P
P
n
sin cos
A
A
所以 sin cos
a, n
ቤተ መጻሕፍቲ ባይዱ
例:如图:已知正方体ABCD-A1B1C1D1的棱长为1, 求直线B1C1与平面AB1C所成的角的正弦值. 解:以点A为坐标原点建立如图所示空间直 角坐标系
注意是线面角 令x 1, 得 n (1,1,1) 的正弦值
找或求平面的法向量
B C
sin 设直线B1C1与平面AB1C所成的角 为 BC n 1 3 sin cos B1C1 , n 1 1 3 1 1 1 1 B1C1 n
高考数学复习:利用向量求空间角和距离
(2)方法一:不存在,证明如下:当面B′OA⊥面AOC时,三
棱锥B′ -AOC的体积最大,因为面B′OA∩面AOC=AO,
B′O⊥AO,所以B′O⊥面AOC,所以OC⊥OB′,又因为
OC⊥OA,所以OC⊥平面AOB′,在直角三角形CPO中,
CO=1,COP ,sinCPO 所以6 POCC=, ,所以 6
令x1=1,得n1=(1,-1,0).
设平面PBC的一个法向量为n2=(x2,y2,z2),
由n2·PC=0,n2· B=C 0得
y2x2
z2 0,
0,?
令y2=1得n2=(0,1,1), 设二面角C -PB -D的大小为θ,则cos θ= 所以θ=60°.
| n1 n2 | 1 , | n1 || n2 | 2
D. 4 15
【解析】选A.以D为原点,DA为x轴,DC为y轴,DD1为z 轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为2,则N(1,2,2), D(0,0,0),C(0,2,0),M(2,2,1),则 C=M(2,0,1), DN=(1,2,2),设异面直线所成角为θ, 则cos θ= | CM DN | 4所以 4异5面,直线CM与
( 2,0,0) ( 2,0, 2),
所以
cos〈A1F,D1E〉
|
A1F A1F |
D1E | D1E
|
2
2 2 1
解得 1 ( 1 舍去).
3
3
答案: 1
3
3 2, 5 10
【规律方法】利用向量求线线角的解题策略 (1)向量法求异面直线所成的角的方法有两种 ①基向量法:利用线性运算; ②坐标法:利用坐标运算.
D. 10 10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C1
D
A 设平面AB1C的法向量为n ( x,y,z ) B 则n AB1 0, n AC 0 x z 0 所以 ,取x = 1, x x y 0 0 1 0 3 得y = z = -1,故n = (1, -1, -1), cos n, B1C1 3 1 3 3 所以B1C1与面AB1C所成的角的正弦值为 。 3
y
C
向量法求线面角的一般步骤
(1) 恰当的构建空间直角坐标系; (2) 正确求得所对应点的坐标,直线的方向 向量的坐标及平面的法向量的坐标;
(3)求直线的方向向量与平面的法向量的夹 角的余弦值; (4)取步骤(3)中两向量夹角的余弦值的绝 对值,其对应于线面角的正弦值;
(5) 根据题意,转化为几何结论.
O
2
P
n
思考:
设平面 的法向量为 n 则
n
A
O
n, AP 与 的关系?
n
2
- n, AP
结论:
sin cos n, AP
n
n, AP -
2
例:正方体 ABCD A B C D
角的正弦值。1ຫໍສະໝຸດ 1 1 1在立体几何中涉及的角有异面直线所成的 角、直线与平面所成的角、二面角等。用几何 法求这些角,需要经过“找(作)”、“证”、 “算” 等步骤,过程较为繁琐,若归结为求两 个向量的夹角问题,可将问题简单化。本节课, 我们主要探讨“直线与平面所成的角”也即 “线面角” 的求法。
的棱长为1. 求直线 B1C1 与平面 AB1C 所成
z
A1 B1
D1
解:以点A为坐标原点建立空间直角坐标系A—xyz , ,, 0) C1 (111) A(0, 0,, 0) B1 (1 , ,, , 0,, 1) C (11 则B1C1 (0, 1 ,, 0) AB1 (101) , ,, AC (110) , ,