分类加法计数原理和分步乘法计数原理教案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1分类加法计数原理和分步乘法计数原理

教学目标:

知识与技能:①理解分类加法计数原理与分步乘法计数原理;

②会利用两个原理分析和解决一些简单的应用问题;

过程与方法:培养学生的归纳概括能力;

情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式

教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)

教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解

授课类型:新授课

课时安排:2课时

教具:多媒体、实物投影仪

第一课时

引入课题

先看下面的问题:

①从我们班上推选出两名同学担任班长,有多少种不同的选法

②把我们的同学排成一排,共有多少种不同的排法

要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.

在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.

1 分类加法计数原理

(1)提出问题

问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码

问题 1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法

探究:你能说说以上两个问题的特征吗

(2)发现新知

分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有

种不同的方法.

(3)知识应用

例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:

A大学 B大学

生物学数学

化学会计学

医学信息技术学

物理学法学

工程学

如果这名同学只能选一个专业,那么他共有多少种选择呢分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有

5+4=9(种).

变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种

探究:如果完成一件事有三类不同方案,在第1类方案中有

m种

1

不同的方法,在第2类方案中有

m种不同的方法,在第3类方案中有

2

m种不同的方法,那么完成这件事共有多少种不同的方法3

如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢

一般归纳:

完成一件事情,有n类办法,在第1类办法中有

m种不同的方法,

1

在第2类办法中有

m种不同的方法……在第n类办法中有n m种不同

2

的方法.那么完成这件事共有

种不同的方法.

理解分类加法计数原理:

分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.

例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条

解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,

第一类, m1 = 1×2 = 2 条

第二类, m2 = 1×2 = 2 条

第三类, m3 = 1×2 = 2 条

所以, 根据加法原理, 从顶点A到顶点C1最近路线共有 N = 2 + 2 + 2 = 6 条

练习

1.填空:

( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_ ;

( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.

第二课时

2 分步乘法计数原理

(1)提出问题

问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以A,2A,…,1B,2B,…的方式给教室里的座位编号,总共能编出多少个1

不同的号码

用列举法可以列出所有可能的号码:

我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.

探究:你能说说这个问题的特征吗

(2)发现新知

分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有

种不同的方法.

(3)知识应用

例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法

分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.

解:第 1 步,从 30 名男生中选出1人,有30种不同选择;

第 2 步,从24 名女生中选出1人,有 24 种不同选择.

根据分步乘法计数原理,共有

30×24 =720

种不同的选法.

探究:如果完成一件事需要三个步骤,做第1步有

m种不同的方

1

法,做第2步有

m种不同的方法,做第3步有3m种不同的方法,那

2

么完成这件事共有多少种不同的方法

如果完成一件事情需要n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢

一般归纳:

完成一件事情,需要分成n个步骤,做第1步有

m种不同的方法,

1

做第2步有

m种不同的方法……做第n步有n m种不同的方法.那么完2

成这件事共有

种不同的方法.

理解分步乘法计数原理:

分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.

3.理解分类加法计数原理与分步乘法计数原理异同点

①相同点:都是完成一件事的不同方法种数的问题

②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.

相关文档
最新文档