西电数字信号处理上机实验报告
西安电子科技大学数字信号处理上机作业
![西安电子科技大学数字信号处理上机作业](https://img.taocdn.com/s3/m/c0d89164b84ae45c3b358cdf.png)
数字信号处理MATLAB上机作业M 2.21.题目The square wave and the sawtooth wave are two periodic sequences as sketched in figure ing the function stem. The input data specified by the user are: desired length L of the sequence, peak value A, and the period N. For the square wave sequence an additional user-specified parameter is the duty cycle, which is the percent of the period for which the signal is positive. Using this program generate the first 100 samples of each of the above sequences with a sampling rate of 20 kHz ,a peak value of 7, a period of 13 ,and a duty cycle of 60% for the square wave.2.程序% 用户定义各项参数参数A = input('The peak value =');L = input('Length of sequence =');N = input('The period of sequence =');FT = input('The desired sampling frequency =');DC = input('The square wave duty cycle = ');% 产生所需要的信号t = 0:L-1;T = 1/FT;x = A*sawtooth(2*pi*t/N);y = A*square(2*pi*(t/N),DC);% Plotsubplot(2,1,1)stem(t,x);ylabel('幅度');xlabel('n');subplot(2,1,2)stem(t,y);ylabel('幅度');xlabel('n');3.结果4.结果分析M 2.41.题目(a)Write a matlab program to generate a sinusoidal sequence x[n]= Acos(ω0 n+Ф) and plot thesequence using the stem function. The input data specified by the user are the desired length L, amplitude A, the angular frequency ω0 , and the phase Фwhere 0<ω0 <pi and 0<=Ф<=2pi. Using this program generate the sinusoidal sequences shown in figure 2.15. (b)Generate sinusoidal sequences with the angular frequencies given in Problem 2.22.Determine the period of each sequence from the plot and verify the result theoretically. 2.程序%用户定义的参数L = input('Desired length = ');A = input('Amplitude = ');omega = input('Angular frequency = ');phi = input('Phase = ');%信号产生n = 0:L-1;x = A*cos(omega*n + phi);stem(n,x);xlabel('n');ylabel('幅度');title(['\omega_{o} = ',num2str(omega)]);3.结果(a)ω0=0ω0=0.1πω0=0.8πω0=1.2π(b)ω0=0.14πω0=0.24πω0=0.34πω0=0.68πω0=0.75π4.结果分析M 2.51.题目Generate the sequences of problem 2.21(b) to 2.21(e) using matlab.2.程序(b)n = 0 : 99;x=sin(0.6*pi*n+0.6*pi);stem(n,x);xlabel('n');ylabel('幅度');(c)n = 0 : 99;x=2*cos(1.1*pi*n-0.5*pi)+2*sin(0.7*pi*n);stem(n,x);xlabel('n');ylabel('幅度');(d)n = 0 : 99;x=3*sin(1.3*pi*n-4*cos(0.3*pi*n+0.45*pi));stem(n,x);xlabel('n');ylabel('幅度');(e)n = 0 : 99;x=5*sin(1.2*pi*n+0.65*pi)+4*sin(0.8*pi*n)-cos(0.8*pi*n);stem(n,x);xlabel('n');ylabel('幅度');(f)n = 0 : 99;x=mod(n,6);stem(n,x);xlabel('n');ylabel('幅度');3.结果(b)(c)(d)(e)(f)4.结果分析M 2.61.题目Write a matlab program to plot a continuous-time sinusoidal signal and its sampled version and verify figure 2.19. You need to use the hold function to keep both plots.2.程序%用户定义的参数fo = input('Frequency of sinusoid in Hz = ');FT = input('Samplig frequency in Hz = ');%产生信号t = 0:0.001:1;g1 = cos(2*pi*fo*t);plot(t,g1,'-')xlabel('时间t');ylabel('幅度')holdn = 0:1:FT;gs = cos(2*pi*fo*n/FT);plot(n/FT,gs,'o');hold off3.结果4.结果分析M 3.11.题目Using program 3_1 determine and plot the real and imaginary parts and the magnitude and phase spectra of the following DTFT for various values of r and θ:G(e jω)=1, 0<r<1.1−2r(cosθ)e−jω+r2e−2jω2.程序%program 3_1%discrete-time fourier transform computatition%k=input('Number of frequency points = ');num=input('Numerator coefficients= ');den=input('Denominator coefficients= ');%computer the frequency responsew=0:pi/k:pi;h=freqz(num,den,w);%plot the frequency responsesubplot(221)plot(w/pi,real(h));gridtitle('real part')xlabel('\omega/\pi');ylabel('Amplitude') subplot(222)plot(w/pi,imag(h));gridtitle('imaginary part')xlabel('\omega/\pi');ylabel('Amplitude') subplot(223)plot(w/pi,abs(h));gridtitle('magnitude spectrum')xlabel('\omega/\pi');ylabel('magnitude') subplot(224)plot(w/pi,angle(h));gridtitle('phase spectrum')xlabel('\omega/\pi');ylabel('phase,radians')3.结果(a)r=0.8 θ=π/6(b)r=0.6 θ=π/34.结果分析M 3.41.题目Using matlab verify the following general properties of the DTFT as listed in Table 3.2:(a) Linearity, (b) time-shifting, (c) frequency-shifting, (d) differentiation-in-frequency, (e) convolution, (f) modulation, and (g) Parseval’s relation. Since all data in matlab have to be finite-length vectors, the sequences to be used to verify the properties are thus restricted to be of finite length.2.程序%先定义两个信号N = input('The length of the sequence = ');k = 0:N-1;%g为正弦信号g = 2*sin(2*pi*k/(N/2));%h为余弦信号h = 3*cos(2*pi*k/(N/2));[G,w] = freqz(g,1);[H,w] = freqz(h,1);%*************************************************************************%% 线性性质alpha = 0.5;beta = 0.25;y = alpha*g+beta*h;[Y,w] = freqz(y,1);figure(1);subplot(211),plot(w/pi,abs(Y));xlabel('\omega/\pi');ylabel('|Y(e^j^\omega)|');title('线性叠加后的频率特性');grid;% 画出Y 的频率特性subplot(212),plot(w/pi,alpha*abs(G)+beta*abs(H));xlabel('\omega/\pi');ylabel('\alpha|G(e^j^\omega)|+\beta|H(e^j^\omega)|');title('线性叠加前的频率特性');grid;% 画出alpha*G+beta*H 的频率特性%*************************************************************************% % 时移性质n0 = 10;%时移10个的单位y2 = [zeros([1,n0]) g];[Y2,w] = freqz(y2,1);G0 = exp(-j*w*n0).*G;figure(2);subplot(211),plot(w/pi,abs(G0));xlabel('\omega/\pi');ylabel('|G0(e^j^\omega)|');title('G0的频率特性');grid;% 画出G0的频率特性subplot(212),plot(w/pi,abs(Y2));xlabel('\omega/\pi');ylabel('|Y2(e^j^\omega)|');title('Y2的频率特性');grid;% 画出Y2 的频率特性%*************************************************************************% % 频移特性w0 = pi/2; % 频移pi/2r=256; %the value of w0 in terms of number of samplesk = 0:N-1;y3 = g.*exp(j*w0*k);[Y3,w] = freqz(y3,1);% 对采样的512个点分别进行减少pi/2,从而生成G(exp(w-w0))k = 0:511;w = -w0+pi*k/512;G1 = freqz(g,1,w);figure(3);subplot(211),plot(w/pi,abs(Y3));xlabel('\omega/\pi');ylabel('|Y3(e^j^\omega)|');title('Y3的频率特性');grid;% 画出Y3的频率特性subplot(212),plot(w/pi,abs(G1));xlabel('\omega/\pi');ylabel('|G1(e^j^\omega)|');title('G1的频率特性');grid;% 画出G1 的频率特性%*************************************************************************% % 频域微分k = 0:N-1;y4 = k.*g;[Y4,w] = freqz(y4,1);%在频域进行微分y0 = ((-1).^k).*g;G2 = [G(2:512)' sum(y0)]';delG = (G2-G)*512/pi;figure(4);subplot(211),plot(w/pi,abs(Y4));xlabel('\omega/\pi');ylabel('|Y4(e^j^\omega)|');title('Y4的频率特性');grid;% 画出Y4的频率特性subplot(212),plot(w/pi,abs(delG));xlabel('\omega/\pi');ylabel('|delG(e^j^\omega)|');title('delG的频率特性');grid;% 画出delG的频率特性%*************************************************************************% % 相乘性质y5 = conv(g,h);%时域卷积[Y5,w] = freqz(y5,1);figure(5);subplot(211),plot(w/pi,abs(Y5));xlabel('\omega/\pi');ylabel('|Y5(e^j^\omega)|');title('Y5的频率特性');grid;% 画出Y5的频率特性subplot(212),plot(w/pi,abs(G.*H));%频域乘积xlabel('\omega/\pi');ylabel('|G.*H(e^j^\omega)|');title('G.*H的频率特性');grid;% 画出G.*H的频率特性%*************************************************************************% % 帕斯瓦尔定理y6 = g.*h;%对于freqz函数,在0到2pi直接取样[Y6,w] = freqz(y6,1,512,'whole');[G0,w] = freqz(g,1,512,'whole');[H0,w] = freqz(h,1,512,'whole');% Evaluate the sample value at w = pi/2% and verify with Y6 at pi/2H1 = [fliplr(H0(1:129)') fliplr(H0(130:512)')]';val = 1/(512)*sum(G0.*H1);% Compare val with Y6(129) i.e sample at pi/2 % Can extend this to other points similarly% Parsevals theoremval1 = sum(g.*conj(h));val2 = sum(G0.*conj(H0))/512;% Comapre val1 with val23.结果(a)(b)(c)(d)(e)4.结果分析M 3.81.题目Using matlab compute the N-point DFTs of the length-N sequences of Problem 3.12 for N=3, 5, 7, and 10. Compare your results with that obtained by evaluating the DTFTs computed in Problem 3.12 at ω= 2pik/N, k=0, 1,……N-1.2.程序%用户定义N的长度N = input('The value of N = ');k = -N:N;y1 = ones([1,2*N+1]);w = 0:2*pi/255:2*pi;Y1 = freqz(y1, 1, w);%对y1做傅里叶变换Y1dft = fft(y1);k = 0:1:2*N;plot(w/pi,abs(Y1),k*2/(2*N+1),abs(Y1dft),'o');grid;xlabel('归一化频率');ylabel('幅度');(a)clf;N = input('The value of N = ');k = -N:N;y1 = ones([1,2*N+1]);w = 0:2*pi/255:2*pi;Y1 = freqz(y1, 1, w);Y1dft = fft(y1);k = 0:1:2*N;plot(w/pi,abs(Y1),k*2/(2*N+1),abs(Y1dft),'o');xlabel('Normalized frequency');ylabel('Amplitude');(b)%用户定义N的长度N = input('The value of N = ');k = -N:N;y1 = ones([1,2*N+1]);y2 = y1 - abs(k)/N;w = 0:2*pi/255:2*pi;Y2 = freqz(y2, 1, w);%对y1做傅里叶变换Y2dft = fft(y2);k = 0:1:2*N;plot(w/pi,abs(Y2),k*2/(2*N+1),abs(Y2dft),'o');grid;xlabel('归一化频率');ylabel('幅度');(c)%用户定义N的长度N = input('The value of N = ');k = -N:N;y3 =cos(pi*k/(2*N));w = 0:2*pi/255:2*pi;Y3 = freqz(y3, 1, w);%对y1做傅里叶变换Y3dft = fft(y3);k = 0:1:2*N;plot(w/pi,abs(Y3),k*2/(2*N+1),abs(Y3dft),'o');grid;xlabel('归一化频率');ylabel('幅度');3.结果(a)N=3N=5 N=7N=10 (b)N=3N=5 N=7N=10 (c)N=3N=5 N=7N=104.结果分析M 3.191.题目Using Program 3_10 determine the z-transform as a ratio of two polynomials in z-1 from each of the partial-fraction expansions listed below:(a)X1(z)=−2+104+z−1−82+z−1,|z|>0.5,(b)X2(z)=3.5−21−0.5z−1−3+z−11−0.25z−2,|z|>0.5,(c)X3(z)=5(3+2z−1)2−43+2z−1+31+0.81z−2,|z|>0.9,(d)X4(z)=4+105+2z−1+z−16+5z−1+z−2,|z|>0.5.2.程序% Program 3_10% Partical-Fraction Expansion to rational z-Transform %r = input('Type in the residues = ');p = input('Type in the poles = ');k = input('Type in the constants = ');[num, den] = residuez(r,p,k);disp('Numberator polynominal coefficients');disp(num) disp('Denominator polynomial coefficients'); disp(den)4.结果分析M 4.61.题目Plot the magnitude and phase responses of the causal IIR digital transfer functionH(z)=0.0534(1+z−1)(1−1.0166z−1+z−2) (1−0.683z−1)(1−1.4461z−1+0.7957z−2).What type of filter does this transfer function represent? Determine the difference equation representation of the above transfer function.2.程序b=[0.0534 -0.00088644 -0.00088644 0.0534];a=[1 -2.1291 1.7833863 -0.5434631];figure(1)freqz(b,a);figure(2)[H,w]=freqz(b,a);plot(w/pi,abs(H)),grid;xlabel('Normalized Frequency (\times\pi rad/sample)'),ylabel('Magnitude');幅度化成真值之后:4.结果分析H(z)=0.0534−0.00088644z−1−0.00088644z−2+0.0534z−31−2.1291z−1+1.7833863z−2−0.5434631z−3M 4.71.题目Plot the magnitude and phase responses of the causal IIR digital transfer functionH(z)=(1−z−1)4(1−1.499z−1+0.8482z−2)(1−1.5548z−1+0.6493z−2).2.程序b=[1 -4 6 -4 1];a=[1 -3.0538 3.8227 -2.2837 0.5472]; figure(1)freqz(b,a);figure(2)[H,w]=freqz(b,a);plot(w/pi,abs(H)),grid;xlabel('Normalized Frequency (\times\pi rad/sample)'), ylabel('Magnitude');3.结果4.结果分析。
西安电子科技大学数字信号处理上机报告
![西安电子科技大学数字信号处理上机报告](https://img.taocdn.com/s3/m/056c3b4dcf84b9d528ea7a7e.png)
数字信号处理上机实验报告班级:020915**:***学号:********实验一:信号、系统及系统响应1、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
2、实验原理与方法(1) 时域采样。
(2) LTI系统的输入输出关系。
3、实验内容及步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。
(2) 编制实验用主程序及相应子程序。
①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR系统。
a. h a(n)=R10(n);b. h b(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB语言中的卷积函数conv。
conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。
调用格式如下:y=conv (x, h)4、实验结果记录①分析采样序列的特性。
a. 取采样频率fs=1 kHz,,即T=1 ms。
b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^jω)|曲线。
程序代码如下:A=444.128;a=50*sqrt(2)*pi;m=50*sqrt(2)*pi;fs1=1000; %此时,取采样频率fs=1kHz,之后,改变采样频率分别为200Hz,300Hz fs2=300;fs3=200;T1=1/fs1;T2=1/fs2;T3=1/fs3;N=100;n=[0:N-1];x1=A*exp(-a*n*T1).*sin(m*n*T1);x2=A*exp(-a*n*T2).*sin(m*n*T2);x3=A*exp(-a*n*T3).*sin(m*n*T3);w=linspace(-pi,pi,10000); %设置w的范围X1=x1*exp(-j*n'*w); %对x1(n)做DTFT变换X2=x2*exp(-j*n'*w); %对x2(n)做DTFT变换X3=x3*exp(-j*n'*w); %对x3(n)做DTFT变换figure(1)subplot(1,3,1)plot(w/pi,abs(X1)); %绘制x1(n)的幅度谱xlabel('\omega/π');ylabel('|H(e^j^\omega)|')title('采样频率为1000Hz时的幅度谱');subplot(1,3,2)plot(w/pi,abs(X2)); %绘制x2(n)的幅度谱xlabel('\omega/π');ylabel('|H(e^j^\omega)|')title('采样频率为300Hz时的幅度谱');subplot(1,3,3)plot(w/pi,abs(X3)); %绘制x3(n)的幅度谱xlabel('\omega/π');ylabel('|H(e^j^\omega)|')title('采样频率为200Hz时的幅度谱');②时域离散信号、系统和系统响应分析。
数字信号处理上机实验
![数字信号处理上机实验](https://img.taocdn.com/s3/m/06694178ae1ffc4ffe4733687e21af45b307fe34.png)
图1.2 p=8,q=4时的时域序列和幅频特性 图1.3 p=8,q=8时的时域序列和幅频特性
图1.4 p=13,q=8时的时域序列和幅频特性
图1.5 p=14,q=8时的时域序列和幅频特性 由以上图形可知,1)当固定信号x a(n)中参数p=8,改变q的值使其增大时,信号的时域序列值增大,且均在n=P=8时取得最大 值并且对称;幅频序列值也增大。2)当固定q=8,改变p使其增大时,信号的时域序列值右移且在n=p时大,幅频序列值减 小。3)当p=8时会发生明显的泄漏现象,混叠也随之出现。 (2)、观察衰减正弦序列x b(n)的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现位置是否正确,注意频谱的形状,绘出幅 频特性曲线,改变f,使f分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现位置,有无混叠和泄漏现象? 说明产生现象的原因。 N=16; n=0:1:15; a=0.1; f=0.0625; x=exp(-a*n).*sin(2*pi*f*n); subplot(3,1,1); stem(n,x,'fill'); x1=fft(x,N); subplot(3,1,2); stem(n,x1,'fill'); subplot(3,1,3); stem(n,abs(x1),'.');
数字信号处理上机实验
实验1 抽样定理的实验体会 实验内容:把下述三个连续时间信号()x t 转换成离散时间信号()s x nT ,在计算机上绘出()s x nT 的图形。1/s s f T =为抽样频 率。自行依次选取不同的抽样频率,如 00000.5,,2,5s f f f f f =等。 (1) 工频信号:10()sin(2)x t A f t π=,220A =,050f Hz = Dt=0.00005;t=-0.005:Dt:0.05; A=220; fo=50; xa=A*sin(2*pi*fo*t); Ts=0.04;n=-25:1:25; x=A*sin(2*pi*fo*n*Ts); stem(n,x,'fill'); grid on ;
西电电院数字信号处理上机实验报告六
![西电电院数字信号处理上机实验报告六](https://img.taocdn.com/s3/m/e836f0237fd5360cba1adbef.png)
实验六、FIR数字滤波器设计及其网络结构班级: 学号: 姓名: 成绩:1实验目得(1)熟悉线性相位FIR数字滤波器得时域特点、频域特点与零极点分布;(2)掌握线性相位FIR数字滤波器得窗函数设计法与频率采样设计法;(3)了解IIR数字滤波器与FIR数字滤波器得优缺点及其适用场合。
2 实验内容(1)设计计算机程序,根据滤波器得主要技术指标设计线性相位FIR数字低通、高通、带通与带阻滤波器;(2)绘制滤波器得幅频特性与相频特性曲线,验证滤波器得设计结果就是否达到设计指标要求;(3)画出线性相位FIR数字滤波器得网络结构信号流图。
3实验步骤(1)设计相应得四种滤波器得MATLAB程序;(2)画出幅频相频特性曲线;(3)画出信号流图。
4 程序设计%% FIR低通f=[0、2,0、35];m=[1,0];Rp=1;Rs=40;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat1,dat2];[M,f0,m0,w]=remezord(f,m,rip);M=M+2;hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR高通f=[0、7,0、9];m=[0,1];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat2,dat1];[M,f0,m0,w]=remezord(f,m,rip);hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR带通f=[0、2,0、35,0、65,0、8];m=[0,1,0];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat2,dat1,dat2];[M,f0,m0,w]=remezord(f,m,rip);M=M+3hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR带阻f=[0、2,0、35,0、65,0、8];m=[1,0,1];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat1,dat2,dat1];[M,f0,m0,w]=remezord(f,m,rip);hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') 5实验结果及分析(1)FIR低通滤波器自动得到得M值不满足要求,故我们将M加上2 在w=0、2π时,H=-0、5dB;w=0、35π时,H=-41dB。
西安电子科技大学数字信号处理上机报告
![西安电子科技大学数字信号处理上机报告](https://img.taocdn.com/s3/m/a85744ae7f1922791688e8c1.png)
数字信号处理大作业院系:电子工程学院学号:02115043姓名:邱道森实验一:信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理采样是连续信号数字处理的第一个关键环节。
对连续信号()a x t 进行理想采样的过程可用(1.1)式表示:()()()ˆa a xt x t p t =⋅ 其中()t xa ˆ为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()()n p t t nT δ∞=-∞=-∑()t xa ˆ的傅里叶变换()j a X Ω为 ()()s 1ˆj j j a a m X ΩX ΩkΩT ∞=-∞=-∑进行傅里叶变换,()()()j ˆj e d Ωt a a n X Ωx t t nT t δ∞∞--∞=-∞⎡⎤=-⎢⎥⎣⎦∑⎰ ()()j e d Ωtan x t t nT t δ∞∞--∞=-∞=-∑⎰()j e ΩnTan x nT ∞-=-∞=∑式中的()a x nT 就是采样后得到的序列()x n , 即()()a x n x nT =()x n 的傅里叶变换为()()j j e enn X x n ωω∞-=-∞=∑比较可知()()j ˆj e aΩTX ΩX ωω==为了在数字计算机上观察分析各种序列的频域特性,通常对()j e X ω在[]0,2π上进行M 点采样来观察分析。
对长度为N 的有限长序列()x n ,有()()1j j 0eekk N nn X x n ωω--==∑其中2π,0,1,,1k k k M Mω==⋅⋅⋅-一个时域离散线性时不变系统的输入/输出关系为()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑上述卷积运算也可以转到频域实现()()()j j j e e e Y X H ωωω= (1.9)三、实验内容及步骤(1) 认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。
2017年西电电院数字信号处理上机实验报告五
![2017年西电电院数字信号处理上机实验报告五](https://img.taocdn.com/s3/m/d9815460aef8941ea66e0525.png)
实验五、IIR数字滤波器设计及其网络结构班级:学号:姓名:成绩:1实验目的(1)熟悉数字滤波的基本概念、数字滤波器的主要技术指标及其物理意义;(2)掌握巴特沃斯和切比雪夫模拟低通滤波器的设计方法和IIR数字低通滤波器的脉冲响应不变设计法、双线性变换法设计方法。
(3)了解模拟和数字滤波器的频率变换、IIR数字滤波器的直接(优化)设计方法;2 实验内容(1)设计计算机程序,根据滤波器的主要技术指标设计IIR数字巴特沃斯和切比雪夫低通、高通、带通和带阻滤波器;(2)绘制滤波器的幅频特性和相频特性曲线,验证滤波器的设计结果是否达到设计指标要求;(3)画出数字滤波器的直接型、级联型、并联型网络结构信号流图。
3实验步骤(1)设计相应的八种滤波器的MATLAB程序;(2)画出幅频相频特性曲线;(3)画出信号流图。
4程序设计%% 巴特沃斯低通wp=0.2;ws=0.35;rp=1;rs=10;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H))subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 巴特沃斯高通wp=0.8;ws=0.6;rp=1;rs=10;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc,'high');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 巴特沃斯带通wpl=0.4;wpu=0.6;wsl=0.2;wsu=0.8wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|') subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 巴特沃斯带阻wpl=0.2;wpu=0.8;wsl=0.4;wsu=0.6wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc,'stop');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 切比雪夫低通wp=0.2;ws=0.5;rp=1;rs=40;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫高通wp=0.7;ws=0.5;rp=1;rs=40;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo,'high');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫带通wpl=0.4;wpu=0.6;wsl=0.2;wsu=0.8wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫带阻wpl=0.2;wpu=0.8;wsl=0.4;wsu=0.6wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo,'stop');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')5实验结果及分析(1)巴特沃斯低通W=0.5πi时,H=-0.75dB,w=0.35π时,H=-10dB,满足要求。
数字信号处理上机实验 作业结果与说明 实验三、四、五
![数字信号处理上机实验 作业结果与说明 实验三、四、五](https://img.taocdn.com/s3/m/c04b6a37192e45361066f587.png)
上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。
2、观察对实际正弦组合信号的滤波作用。
二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。
要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。
抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。
(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。
frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。
数字信号处理上机实验
![数字信号处理上机实验](https://img.taocdn.com/s3/m/997137875ef7ba0d4b733b4e.png)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数字信号处理实验报告(西电)
![数字信号处理实验报告(西电)](https://img.taocdn.com/s3/m/0d73808026fff705cc170aa7.png)
数字信号处理实验报告班级:****姓名:郭**学号:*****联系方式:*****西安电子科技大学电子工程学院绪论数字信号处理起源于十八世纪的数学,随着信息科学和计算机技术的迅速发展,数字信号处理的理论与应用得到迅速发展,形成一门极其重要的学科。
当今数字信号处理的理论和方法已经得到长足的发展,成为数字化时代的重要支撑,其在各个学科和技术领域中的应用具有悠久的历史,已经渗透到我们生活和工作的各个方面。
数字信号处理相对于模拟信号处理具有许多优点,比如灵活性好,数字信号处理系统的性能取决于系统参数,这些参数很容易修改,并且数字系统可以分时复用,用一套数字系统可以分是处理多路信号;高精度和高稳定性,数字系统的运算字符有足够高的精度,同时数字系统不会随使用环境的变化而变化,尤其使用了超大规模集成的DSP 芯片,简化了设备,更提高了系统稳定性和可靠性;便于开发和升级,由于软件可以方便传送,复制和升级,系统的性能可以得到不断地改善;功能强,数字信号处理不仅能够完成一维信号的处理,还可以试下安多维信号的处理;便于大规模集成,数字部件具有高度的规范性,对电路参数要求不严格,容易大规模集成和生产。
数字信号处理用途广泛,对其进行一系列学习与研究也是非常必要的。
本次通过对几个典型的数字信号实例分析来进一步学习和验证数字信号理论基础。
实验一主要是产生常见的信号序列和对数字信号进行简单处理,如三点滑动平均算法、调幅广播(AM )调制高频正弦信号和线性卷积。
实验二则是通过编程算法来了解DFT 的运算原理以及了解快速傅里叶变换FFT 的方法。
实验三是应用IRR 和FIR 滤波器对实际音频信号进行处理。
实验一●实验目的加深对序列基本知识的掌握理解●实验原理与方法1.几种常见的典型序列:0()1,00,0(){()()(),()sin()j n n n n u n x n Aex n a u n a x n A n σωωϕ+≥<====+单位阶跃序列:复指数序列:实指数序列:为实数 正弦序列:2.序列运算的应用:数字信号处理中经常需要将被加性噪声污染的信号中移除噪声,假定信号 s(n)被噪声d(n)所污染,得到了一个含噪声的信号()()()x n s n d n =+。
数字信号处理实验三报告 数字信号处理上机实验报告.doc
![数字信号处理实验三报告 数字信号处理上机实验报告.doc](https://img.taocdn.com/s3/m/74fb46cc647d27284a735153.png)
数字信号处理实验三报告数字信号处理上机实验报告实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
二、实验内容(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。
(b) 求出系统的单位冲响应,画出其波形。
实验程序:A=[1,-0.9];B=[0.05,0.05]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n)x2n=ones(1,8); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,".");title("(a) 系统对 R_8(n)的响应y_1(n)");xlabel("n");ylabel("y_1(n)");y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n) n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,".");title("(b) 系统对 u(n)的响应y_2(n)");xlabel("n");ylabel("y_2(n)");hn=impz(B,A,58); %求系统单位脉冲响应 h(n)n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,".");title("(c) 系统单位脉冲响应h(n)");xlabel("n");ylabel("h(n)");运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,波形。
《数字信号处理》上机实习报告 (5)
![《数字信号处理》上机实习报告 (5)](https://img.taocdn.com/s3/m/cfa7812776c66137ee061979.png)
计算机编程与数字信号处理实习报告一、实习目的熟悉Matlab编程,并熟悉常用的信号处理手段,加深信号分析的课程知识。
二、实习内容(一)从老师所给的源程序中文件中,选择合适的一个源程序,仔细学习程序的相关语句和做法,最后做详细标注。
以达到认识了解,从而熟练应用Matlab的目的,对今后的相关知识和学习做铺垫。
具体标注有M文件。
见文件Gibbs.m(二)、能够利用Matlab熟悉地画图,内容包括:X、Y坐标轴上的label,每幅图上的title,绘画多条曲线时的legend,对图形进行适当的标注等。
(1)在一副图上画出多幅小图;(2)画出一组二维图形;(3)画出一组三维图形;(4)画出复数的实部与虚部。
(5)完成对一个源程序进行详细注释。
(三)、计算普通褶积与循环褶积,分别使用时间域与频率域两种方法进行正、反演计算,指出循环褶积计算时所存在的边界效应现象;编写一个做相关分析的源程序。
(四)、设计一个病态(矩阵)系统,分析其病态程度;找出对应的解决方法(提示:添加白噪因子)。
(五)、设计一个一维滤波处理程序(1、分别做低通、高通、带通、带阻等理想滤波器进行处理;2、窗函数)。
(六)、设计一个二维滤波处理程序(分别做低通、高通等处理)。
(七)、验证时间域的循环褶积对应的是频率域的乘积;线性褶积则不然。
(八)、请用通俗、易懂的语言说明数字信号处理中的一种性质、一条定理或一个算例(顺便利用Matlab对其进行实现)。
三、实习要求(1)对每个问题进行编程计算,给出详细的注释;(2)分析相关原理及编程思路;(3)绘图显示每个问题的计算结果;(4)编写总的实习报告(在本次实习最后一天的中午之前必须提交该报告)。
四、实习日记1. 6月21日,对matlab语言认识程度不深,只会一些最基本的用法,一天的时间都在研究matlab的编程,初步掌握了matlab编程过程。
2. 6月22日,目标完成实习内容的第二题。
由于都是matlab的基础题目,完成起来相对简单,上午的时间就完成了所有小题。
数字信号处理上机实验
![数字信号处理上机实验](https://img.taocdn.com/s3/m/942dd6f6941ea76e58fa04e7.png)
数字信号处理上机实验一声音信号的频谱分析班级___________________ 学号_____________________ 姓名____________________一、实验目的1、了解声音信号的基本特征2、掌握如何用Matlab处理声音信号3、掌握FFT变换及其应用二、实验原理与方法根据脉动球表面波动方程可知,声压与该球的尺寸和振动的频率的乘积成正比,即声压一定时,球的尺寸越大,振动的频率越小。
可以将此脉动球看作人的声带,人说话的声压变化在0.1~0.6pa的很小范围内,可以看作恒定,所以声带越大,声音频率就越小,反之,声带越小,声音频率就越大。
女子的声带为11~15mm,男子的声带为17~21mm,由此可见,女声频率高,男声频率低,因此听起来女声尖利而男声低沉。
人类歌唱声音频率最大范围的基频:下限可达65.4 Hz,上限可达1046.5 Hz,不包括泛音。
出色的女高音的泛音最高的可达2700hz。
童声:童高音:261.6Hz~880Hz,童低音:196Hz~698.5Hz;女声:女高音:220Hz~1046.5Hz,女低音:174.6Hz~784Hz;男声:男高音:110Hz~523.3Hz,男低音:24.5Hz~349.2Hz。
FFT方法是处理声音信号的基本方法,详细原理参见参考书三、实验内容1、应用Windows录音机录入一段声音文件;2、应用Matlab分析该声音文件的信息,包括采样频率、数据位数,数据格式等;3、应用Matlab画出该声音文件的时域曲线;(如果是双声道数据,只处理左声道数据)4、应用FFT分析该声音文件的频谱信息,并画出频域曲线;5、以100Hz为间隔,在0-1100Hz的基频范围内统计声音能量分布情况,并画出柱形图。
四、思考题1、同一个人不同的声音文件是否具有相同的频谱信号?2、试分析男女声的频谱区别。
3、能否从频谱信号中将自己的声音与其他人的声音区分开来?五、实验报告要求1、简述实验目的及原理2、按实验要求编写Matlab文件,并附上程序及程序运行结果;3、结合所学知识总结实验中的主要结论;4、简要回答思考题。
数字信号处理上机实验报告
![数字信号处理上机实验报告](https://img.taocdn.com/s3/m/d50f36f1cc7931b764ce1553.png)
数字信号处理上机实验报告实验一熟悉MATLAB环境一、实验目的1、熟悉 MATLAB的主要操作命令。
2、学会简单的矩阵输入和数据读写。
3、掌握简单的绘图命令。
4、用 MATLAB编程并学会创建函数。
5、观察离散系统的频率响应。
二、实验容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。
在熟悉 MATLAB基本命令的基础上,完成以下实验。
上机实验容:1、数组的加减乘除和乘方运算,输入A1234,B3456,求C A B ,D A B,E A. B,F A./ B,G A.^ B ,并用stem语句画出A、 B、C、 D、 E、F、 G。
程序:>> A=[1 2 3 4];B=[3 4 5 6];C=A+B; D=A-B; E=A.*B; F=A./B; G=A.^B;subplot(2,4,1);stem(A,'.'); subplot(2,4,2);stem(B,'.');subplot(2,4,3);stem(C,'.'); subplot(2,4,4);stem(D,'.');subplot(2,4,5);stem(E,'.'); subplot(2,4,6);stem(F,'.');subplot(2,4,7);stem(G,'.')2、用MATLAB实现下列序列。
a)x(n)0.8n0n15b) x(n)e(0. 2 3 j ) n0n 15c)x(n)3cos(0.125 n0.2 ) 2sin(0.25 n 0.1 ) 0 n 15程序:A)clear;clc;n=[0:15];x1=0.8.^n;subplot(3,1,1),stem(x1)title('x1=0.8^n')xlabel('n'); ylabel('x1');B)clear;clc;n=[0:15];x2=exp((0.2+3j)*n);subplot(3,1,1),stem(x2)title('x2=exp((0.2+3j)*n)')xlabel('n'); ylabel('x2');C)clear;clc;n=[0:15];x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi); subplot(3,1,1),stem(x3)title('x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi)') xlabel('n'); ylabel('x3');3、绘出下列时间常数的图形,对x 轴,y轴以及图形上方均须加上适当的标注:a)x(t )sin( 2 t )0t10sb)x(t )cos(100t )sin(t )0 t 4s>>m=0:0.01:10;n=0:0.01:4;x1t=sin(2*pi*m);x2t=cos(100*pi*n).*sin(pi*n);subplot(2,1,1);plot(m,x1t);subplot(2,1,2);plot(n,x2t);4、给定一因果系统 H(z)=(1+ 2z- 1z-2)/( 1- 0.67z 1z 2),求出并绘制H(z)的幅频响应与相频响应。
西电数字信号处理上机实验报告
![西电数字信号处理上机实验报告](https://img.taocdn.com/s3/m/da5c039bcc7931b765ce15aa.png)
数字信号处理上机实验报告14020710021 张吉凯第一次上机实验一:设给定模拟信号()1000t a x t e -=,t 的单位是ms 。
(1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。
(2) 用两个不同的采样频率对给定的()a x t 进行采样。
○1()()15000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱。
○2()()11000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱。
比较两种采样率下的信号频谱,并解释。
(1)MATLAB 程序:N=10; Fs=5; Ts=1/Fs;n=[-N:Ts:N];xn=exp(-abs(n)); w=-4*pi:0.01:4*pi;X=xn*exp(-j*(n'*w));subplot(211)plot(n,xn);title('x_a(t)时域波形');xlabel('t/ms');ylabel('x_a(t)');axis([-10, 10, 0, 1]);subplot(212);plot(w/pi,abs(X));title('x_a(t)频谱图');xlabel('\omega/\pi');ylabel('X_a(e^(j\omega))'); ind = find(X >=0.03*max(X))*0.01;eband = (max(ind) -min(ind));fprintf('等效带宽为%fKHZ\n',eband);运行结果:等效带宽为12.110000KHZ(2)MATLAB程序:N=10;omega=-3*pi:0.01:3*pi;%Fs=5000Fs=5;Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(2,2,1);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]); title('时域波形(f_s=5000)');xlabel('n');ylabel('x_1(n)');subplot(2,2,2);plot(omega/pi,abs(X));title('频谱图(f_s=5000)');xlabel('\omega/\pi');ylabel('X_1(f)');grid on;%Fs=1000Fs=1;Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(2,2,3);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]); title('时域波形(f_s=1000)');xlabel('n');ylabel('x_2(n)');grid on; subplot(2,2,4); plot(omega/pi,abs(X)); title('频谱图(f_s=1000)'); xlabel('\omega/\pi'); ylabel('X_2(f)'); grid on;运行结果:实验二:给定一指数型衰减信号()()0cos 2at x t e f t π-=,采样率1s f T=,T 为采样周期。
2017年西电电院数字信号处理上机实验报告六
![2017年西电电院数字信号处理上机实验报告六](https://img.taocdn.com/s3/m/79a6c485b14e852458fb57c3.png)
实验六、FIR数字滤波器设计及其网络结构班级:学号:姓名:成绩:1实验目的(1)熟悉线性相位FIR数字滤波器的时域特点、频域特点和零极点分布;(2)掌握线性相位FIR数字滤波器的窗函数设计法和频率采样设计法;(3)了解IIR数字滤波器和FIR数字滤波器的优缺点及其适用场合。
2 实验内容(1)设计计算机程序.根据滤波器的主要技术指标设计线性相位FIR数字低通、高通、带通和带阻滤波器;(2)绘制滤波器的幅频特性和相频特性曲线.验证滤波器的设计结果是否达到设计指标要求;(3)画出线性相位FIR数字滤波器的网络结构信号流图。
3实验步骤(1)设计相应的四种滤波器的MATLAB程序;(2)画出幅频相频特性曲线;(3)画出信号流图。
4 程序设计%% FIR低通f=[0.2,0.35];m=[1,0];Rp=1;Rs=40;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat1,dat2];[M,f0,m0,w]=remezord(f,m,rip);M=M+2;hn=remez(M,f0,m0,w);w=0:0.001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% FIR高通f=[0.7,0.9];m=[0,1];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat2,dat1];[M,f0,m0,w]=remezord(f,m,rip);hn=remez(M,f0,m0,w);w=0:0.001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% FIR带通f=[0.2,0.35,0.65,0.8];m=[0,1,0];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat2,dat1,dat2];[M,f0,m0,w]=remezord(f,m,rip);M=M+3hn=remez(M,f0,m0,w);w=0:0.001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% FIR带阻f=[0.2,0.35,0.65,0.8];m=[1,0,1];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat1,dat2,dat1];[M,f0,m0,w]=remezord(f,m,rip);hn=remez(M,f0,m0,w);w=0:0.001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') 5实验结果及分析(1)FIR低通滤波器自动得到的M值不满足要求.故我们将M加上2 在w=0.2π时.H=-0.5dB;w=0.35π时.H=-41dB。
数字信号处理2实验报告一西交大殷
![数字信号处理2实验报告一西交大殷](https://img.taocdn.com/s3/m/c13a6d71a26925c52cc5bf97.png)
数字信号处理II实验报告实验题目:维纳滤波器的计算机实现姓名:学号:班级:专业:一、实验目的1.利用计算机编程实现加性噪声信号的维纳滤波。
2.将计算机模拟实验结果与理论分析结果相比较,分析影响维纳滤波效果的各种因素,从而加深对维纳滤波的理解。
3.利用维纳一步纯预测方法实现对信号生成模型的参数估计。
二、实验原理维纳滤波是一种从噪声背景中提取信号的最佳线性滤波方法,假定一个随机信号x(n)具有以下形式:(n)s(n)v(n)x =+ 1-1其中,s(n)为有用信号,v(n)为噪声干扰,将其输入一个单位脉冲响应为h(n)的线性系统,其输出为(n)(m)x(n m)y h ∞-∞=-∑ 1-2 我们希望x(n)通过这个系统后得到的y(n)尽可能接近于s(n),因此,称y(n)为信号s(n)的估值。
按照最小均方误差准则,h(n)应满足下面的正则方程:(k)(m)(k m)xs xx h φφ∞-∞=-∑ 1-3 这就是著名的维纳-霍夫方程,其中是 (m)xx φ是x(n)的自相关函数,()xs m φ是 x(n)和s(n)是的互相关函数。
在要求 h(n)满足因果性的条件下,求解维纳-霍夫方程是一个典型的难题。
虽然目前有几种求解 h(n)的解析方法,但它们在计算机上实现起来非常困难。
因此,本实验中,利用近似方法,即最佳 FIR 维纳滤波方法,在计算机上实现随机信号的维纳滤波。
设 h(n)为一因果序列,其长度为 N ,则(n)(m)x(n m)y h ∞-∞=-∑ 1-4 同样利用最小均方误差准则,h(n)满足下面方程:xx xs R h r = 1-5 其中 [](0),h(1),,h(N 1)T h h =-(0)(1)(N 1)(0)xx xx xx xx xx N R φφφφ-+⎛⎫⎪= ⎪ ⎪-⎝⎭[](0)(N 1)T xs xs xs r φφ=- 当xx R 为满秩矩阵时,1xx xs h R r -= 1-6 由此可见,利用有限长的 h(n)实现维纳滤波器,只要已知xx R 和xs r ,就可以按上式解得满足因果性的 h 。
西电数字信号处理上机实验报告
![西电数字信号处理上机实验报告](https://img.taocdn.com/s3/m/8aa769c33c1ec5da51e27047.png)
数字信号处理上机实验报告14020710021 张吉凯第一次上机实验一:设给定模拟信号()1000t a x t e -=,t 的单位是ms 。
(1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。
(2) 用两个不同的采样频率对给定的()a x t 进行采样。
○1()()15000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱。
○2()()11000s a f x t x n =以样本秒采样得到。
()()11j x n X e ω画出及其频谱。
比较两种采样率下的信号频谱,并解释。
(1)MATLAB 程序:N=10; Fs=5; T s=1/Fs;n=[-N:T s:N];xn=exp(-abs(n)); w=-4*pi:0.01:4*pi; X=xn*exp(-j*(n'*w)); subplot(211) plot(n,xn);title('x_a(t)时域波形');xlabel('t/ms');ylabel('x_a(t)'); axis([-10, 10, 0, 1]); subplot(212);plot(w/pi,abs(X)); title('x_a(t)频谱图');xlabel('\omega/\pi');ylabel('X_a(e^(j\omega))');ind = find(X >=0.03*max(X))*0.01; eband = (max(ind) -min(ind)); fprintf('等效带宽为%fKHZ\n',eband); 运行结果:等效带宽为12.110000KHZ(2)MATLAB程序:N=10;omega=-3*pi:0.01:3*pi;%Fs=5000Fs=5;T s=1/Fs;n=-N:T s:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(2,2,1);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]); title('时域波形(f_s=5000)');xlabel('n');ylabel('x_1(n)');subplot(2,2,2);plot(omega/pi,abs(X));title('频谱图(f_s=5000)');xlabel('\omega/\pi');ylabel('X_1(f)');grid on;%Fs=1000Fs=1;T s=1/Fs;n=-N:T s:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(2,2,3);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]); title('时域波形(f_s=1000)');xlabel('n');ylabel('x_2(n)');grid on;subplot(2,2,4);plot(omega/pi,abs(X));title('频谱图(f_s=1000)');xlabel('\omega/\pi');ylabel('X_2(f)');grid on;运行结果:实验二:给定一指数型衰减信号()()0cos 2at x t e f t π-=,采样率1s f T=,T 为采样周期。
西电数字信号处理上机实验
![西电数字信号处理上机实验](https://img.taocdn.com/s3/m/e2bb720b581b6bd97f19ea51.png)
实验一1-1、a=[-2 0 1 -1 3];b=[1 2 0 -1];c=conv(a,b);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n');ylabel('幅度');title('离散卷积’);1-2、N=41;a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];k=0:1:N-1;y=filter(a,b,x);stem(k,y)xlabel('n');ylabel('幅度'); title('差分方程');1-3、k=256;num=[0.8 -0.44 0.36 0.02];den=[1 0.7 -0.45 -0.6];w=0:pi/k:pi;h=freqz(num,den,w);subplot(2,2,1);plot(w/pi,real(h));gridtitle('实部');xlabel('\omega/\pi');ylabel('幅度'); subplot(2,2,2);plot(w/pi,imag(h));gridtitle('虚部');xlabel('\omega/\pi');ylabel('Amplitude'); subplot(2,2,3);plot(w/pi,abs(h));gridtitle('幅度谱');xlabel('\omega/\pi');ylabel('幅值'); subplot(2,2,4);plot(w/pi,angle(h));gridtitle('相位谱');xlabel('\omega/\pi');ylabel('弧度');实验二2-1、N=16;n=0:1:15;p=8;q=4;a=0.1;f=0.0625;xa=exp(-((n-p).^2)./q);figure(1)stem(n, xa,'.');title('xa(n)序列')xlabel('n')ylabel('xa(n)')grid on[H, w] = freqz(xa, 1, [], 'whole', 1); Hamplitude = abs(H);Hphase = angle(H);Hphase = unwrap(Hphase);figure(2)subplot(2, 1, 1)plot(w, Hamplitude)title('幅频响应')xlabel('w/(2*pi)')ylabel('|H(exp(jw))|') grid onsubplot(2, 1, 2)plot(w, Hphase)title('相频响应')xlabel('w/(2*pi)')ylabel('fai(H(exp(jw)))') grid on2-2、n=0:1:15;a=0.1;f1=0.0625;f2=0.04375;f3=0.05625;xb1=exp(-a*n).*sin(2*pi*f1*n);figuresubplot(3,2,1)stem(n, xb1,'.');title('f=0.0625的时域特性')xlabel('n')ylabel('xb1(n)')grid on[H, w] = freqz(xb1, 1, [], 'whole', 1); Hamplitude = abs(H);subplot(3,2,2)plot(w, Hamplitude)title('f=0.0625的幅频响应')xlabel('w/(2*pi)')ylabel('|H(exp(jw))|')grid onxb2=exp(-a*n).*sin(2*pi*f2*n);subplot(3,2,3)stem(n, xb2,'.');title('f=0.04375的时域特性')xlabel('n')ylabel('xb2(n)')grid on[H, w] = freqz(xb2, 1, [], 'whole', 1); Hamplitude = abs(H);subplot(3,2,4)plot(w, Hamplitude)title('f=0.04375的幅频响应')xlabel('w/(2*pi)')ylabel('|H(exp(jw))|')grid onxb3=exp(-a*n).*sin(2*pi*f3*n);subplot(3,2,5)stem(n, xb3,'.');title('f=0.05625的时域特性')xlabel('n')ylabel('xb3(n)')grid on[H, w] = freqz(xb3, 1, [], 'whole', 1); Hamplitude = abs(H);subplot(3,2,6)plot(w, Hamplitude)title('f=0.05625的幅频响应')xlabel('w/(2*pi)')ylabel('|H(exp(jw))|')grid on2-3、n1=0:1:3;xc1=n1+1;n2=4:7;xc2=8-n2;xc=[xc1,xc2];n =[n1,n2];figurestem(n,xc);xlabel('n'); ylabel('xc');title('三角序列');n1=0:1:3;xd1=4-n1;n2=4:7;xd2=n2-3;xd=[xd1,xd2];n =[n1,n2];figurestem(n,xd);xlabel('n'); ylabel('xd');title('反三角序列');N = 16;[H1,w1] = freqz(xc,1, 256, 'whole', 1); Hamplitude1 = abs(H1);figureplot(2*w1, Hamplitude1)title('xc幅频响应')xlabel('w/pi')ylabel('|H(exp(jw))|')grid on[H2,w2] = freqz(xd,1, 256, 'whole', 1); Hamplitude2 = abs(H2);figureplot(2*w2, Hamplitude2)title('xd幅频响应')xlabel('w/pi')ylabel('|H(exp(jw))|')grid on[H3, w3] = freqz(xc, 1, N, 'whole', 1); Hamplitude3 = abs(H3);figuresubplot(2, 1, 1)h3 = stem(2*w3, Hamplitude3, '*');title('xc幅频响应进行N点FFT’);xlabel('n')ylabel('|H(exp(jw))|')grid on[H4, w4] = freqz(xd, 1, N, 'whole', 1); Hamplitude4 = abs(H4);subplot(2, 1, 2)h4 = stem(2*w4, Hamplitude4, '*');title('xd幅频响应进行N点FFT');xlabel('n')ylabel('|H(exp(jw))|')grid on2-4、N = 128;f1 = 1/16;n = 0:N-1;xn = sin(2*pi*0.125.*n)+ cos(2*pi*(0.125+f1).*n); figurestem(n,xn);figuresubplot(2,1,1),plot(n,abs(fft(xn)));title('f =1/16 幅频响应');f2 = 1/64;xn = sin(2*pi*0.125.*n)+ cos(2*pi*(0.125+f2).*n); subplot(2,1,2),plot(n,abs(fft(xn)));title('f =1/64 幅频响应');2-5、N=16;n=0:1:15;p=8;q=2;a=0.1;f=0.0625;xa=exp(-((n-p).^2)./q);xb=exp(-a*n).*sin(2*pi*f*n);%线性卷积x=conv(xa,xb);XDft= fft(x, 32);XDftR = abs(XDft);XDftPhase = angle(XDft);XDftPhase = unwrap(XDftPhase);figure(1);stem(x,'.');title('x(n)序列');xlabel('n')ylabel('x(n)')grid onfigure(2)subplot(2, 1, 1)stem(XDftR, '.');title('X(k)的幅度’);xlabel('k')ylabel('|X(k)|')grid onsubplot(2, 1, 2)stem(XDftPhase, '.');title('X(k)的相角')xlabel('k')ylabel('fai((X(k)))')grid on%圆周卷积XDft161 = fft(xa, N);XDft16R1 = abs(XDft161);XDft16Phase1 = angle(XDft161);XDft16Phase1 = unwrap(XDft16Phase1); XDft162 = fft(xb, N);XDft16R2 = abs(XDft162);XDft16Phase2 = angle(XDft162);XDft16Phase2 = unwrap(XDft16Phase2); XDft16=XDft161.*XDft162;XDft16R=XDft16R1.*XDft16R2;XDft16Phase=XDft16Phase2 +XDft16Phase1 ; x = ifft(XDft16, N);figure(3)stem(x,'.')title('x(n)序列')xlabel('n')ylabel('x(n)')grid onfigure(4)subplot(2, 1, 1)t= 0 : 1 : N - 1;stem(t, XDft16R, '.');title('X(k)的幅度')xlabel('k')ylabel('|X(k)|')grid onsubplot(2, 1, 2)stem(t,XDft16Phase, '.');title('X(k)的相角')xlabel('k')ylabel('fai((X(k)))')grid on2-6、xe=rand(1,512);n1=0:1:3;xc1=n1+1;n2=4:7;xc2=8-n2;xc=[xc1,xc2];%重叠相加法yn=zeros(1,519);for j=0:7xj=xe(64*j+1:64*(j+1));xak=fft(xj,71);xck=fft(xc,71);yn1=ifft(xak.*xck);temp=zeros(1,519);temp(64*j+1:64*j+71)=yn1; yn=yn+temp;end;n=0:518;figure(1)subplot(2,1,1);plot(n,yn);xlabel('n');ylabel('y(n)');title('xc(n)与xe(n)的线性卷积的时域波形-重叠相加法'); subplot(2,1,2);plot(n,abs(fft(yn)));xlabel('k');ylabel('Y(k)');axis([0,600,0,300]);title('xc(n)Óëxe(n)的线性卷积的幅频特性-重叠相加法'); %重叠保留法k=1:7;xe1=k-k;xe_1=[xe1,xe];yn_1=zeros(1,519);for j=0:7xj_1=xe_1(64*j+1:64*j+71);xak_1=fft(xj_1);xck_1=fft(xc,71);yn1_1=ifft(xak_1.*xck_1);temp_1=zeros(1,519);temp_1(64*j+1:64*j+64)=yn1_1(8:71);yn_1=yn_1+temp_1;end;n=0:518;figure(2)subplot(2,1,1);plot(n,yn_1);xlabel('n');ylabel('y(n)');title(' xc(n)的线性卷积的时域波形-重叠保留法'); subplot(2,1,2);plot(n,abs(fft(yn_1)));xlabel('k');ylabel('Y(k)');axis([0,600,0,300]);title('xc(n)Óëxe(n)的线性卷积的幅频特性-重叠保留法');实验三3-1、Wp=0.3;Ws=0.2;Rp=0.8;Rs=20;[N,Wpo]=cheb1ord(Wp,Ws,Rp,Rs);[Bz,Az]=cheby1(N,Rp,Wpo,'high');w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);H=20*log10(abs(H));plot(w/pi,H),grid onxlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB') title('Chebyshev高通滤波器');3-2、Wp=0.2;Ws=0.3;Rp=1;Rs=25;[N,Wc]=buttord(Wp,Ws,Rp,Rs);[Bs,As]=butter(N,Wc,'s');[Bz,Az]=impinvar(Bs,As);w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);H=20*log10(abs(H));subplot(211);plot(w/pi,H),grid onxlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB') title('脉冲响应不变法')[N,Wc]=buttord(Wp,Ws,Rp,Rs);[Bz,Az]=butter(N,Wc);w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);H=20*log10(abs(H));subplot(212);plot(w/pi,H),grid onxlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB') title('双线性变换法')3-3、Wp=1.2/8;Ws=2/8;Rp=0.5;Rs=40;[N,Wpo]=cheb1ord(Wp,Ws,Rp,Rs);[Bz,Az]=cheby1(N,Rp,Wpo);w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);H=20*log10(abs(H));subplot(311);plot(w/pi,H),grid onxlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB') title('切比雪夫')[N,Wc]=buttord(Wp,Ws,Rp,Rs);[Bz,Az]=butter(N,Wc);w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);H=20*log10(abs(H));subplot(312);plot(w/pi,H),grid onxlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB') title('巴特沃斯')[N,Wpo]=ellipord(Wp,Ws,Rp,Rs);[Bz,Az]=ellip(N,Rp,Rs,Wpo);w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);H=20*log10(abs(H));subplot(313);plot(w/pi,H),grid ontitle('椭圆')xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB')3-4、Wp1=2/15;Wpu=0.2;Ws1=0.1;Wsu=0.4;Rp=3;Rs=20;Wp=[Wp1,Wpu];Ws=[Ws1,Wsu];[N,Wc]=buttord(Wp,Ws,Rp,Rs);[Bz,Az]=butter(N,Wc);w=0:0.1:pi;[H,w1]=freqz(Bz,Az,w);H=20*log10(abs(H));plot(w/pi,H),grid onxlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB') title('双线性变换法Butterworth型数字带通滤波器')。
西电DSP上机实验报告
![西电DSP上机实验报告](https://img.taocdn.com/s3/m/de584212783e0912a2162aed.png)
DSP实验报告及大作业学院:电子信息工程班级:学号:姓名:实验一 VISUAL DSP++的使用入门一、实验目的1、熟悉VISUAL DSP++的开发环境。
针对ADSP-21065L SHARC DSP,利用几个用C、C++和汇编语言写成的简单例子来描述VISUAL DSP+十编程环境和调试器(debugger)的主要特征和功能。
2、对于运行在其它类型SHARC处理器的程序只需对其链接描述文件(.LDF)做一些小的变化,用于ADSP-21065L硬件仿真。
二、实验内容实验一:启动Visual DSP++,建立一个用C源代码的工程(Project),同时用调试器来评估用C语言所编写代码的性能;实验二:创立一个新的工程,修改源码来调用一个汇编(asm)程序,重新编译工程,用调试器来评估用汇编语言所写程序的性能;实验三:利用调试器的绘图(plot)功能来图形显示一个卷积算法中的多个数据的波形;实验四:利用调试器的性能统计功能(Statistical profile来检查练习三中卷积算法的效率。
利用所收集到的性能统计数据就能看出算法中最耗时的地方。
三、实验步骤及结果练习一:1、进入 Visual DSP++,显示Visual DSP++的集成开发和调试环境窗口。
选择菜单中的Session\New Session\SHARK\ADSP-21065L SHARK processing Simulator.此过程为将要编译运行的程序建立了一个Session.2、选择菜单File 中Open 打开Project\E:\float\unit_1\dot_product_c \dotprodc.dpj。
(注:练习中将float压缩包解压与E盘)3、在菜单 Project中选择 Build Project来对工程进行编译。
在本例子中,编译器会检测到一个未定义的错误,显示为:“.\dotprod_main.c”,line 115:error #20:identifier“itn”is undefined itn i;双击该行文字,光标会自动定位出错行,再该行中将“itn”改为“int”,重新编译后没有错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理上机实验报告
实验一信号、系统及系统响应
(1)时域离散信号、系统及系统响应分析
h b(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3);
单位脉冲序列:x b(n)=δ(n)
h b(n)的时域和频域特性:
信号x b(n)通过系统h b(n)的响应y(n)的时域和频域特性
结论:得到的响应的频谱与h b(n)是相同的,由于输入是单位冲激序列,根据卷积的定义,输出序列为系统函数。
程序:
clc;clear all;
dt = 0.001,tf = 3; t = -tf:dt:tf;
x = x_a(t);
n = 0:length(x)-1;
w = linspace(-3*pi,3*pi,10000);
X = x*exp(-j*n'*w); %对x序列进行DTFT变换
subplot 211
stem(n,x,'.');
subplot 212
plot(w/pi,abs(X));
%gtext('DTFT频域谱');
function [x_b] = x_b;
x_b = [zeros(1,30),1,zeros(1,30)]; function [y] = y
y = conv(x_b,h_b)
(2)分析采样序列的特性
模拟信号x a(t)=Ae-at sin(Ω0t)u(t),
参数取如下值:A = 1; a = 1; omiga = 2*pi
程序:
clc;clear all;
dt = 0.005; tf=3; t=-tf:dt:tf;
xa = x_a(t);
subplot 311
plot(t,xa);
Wmax = 2*pi; K = 500; k = 0:1:K; W = k*Wmax/K;
Xa = xa*exp(-j*t'*W)*dt; Xa = abs(real(Xa));
subplot 312
plot(W,Xa);
Wmax2 = 2*pi; K2 = 30; k2 = 0:1:K2; W2 = k2*Wmax2/K2; Xa2 = xa*exp(-j*t'*W2)*dt; Xa2 = abs(real(Xa2));
subplot 313
plot(W2,Xa2);
gtext('高采样率的频谱');
gtext('发生混叠的频谱');
function [x_a] = x_a(t)
A = 1; a = 1; omiga = 2*pi;
x_a = A*exp(-a*t).*sin(omiga*t);
(3)验证卷积定理
这里给出一个输入任意位置的两个序列,计算并画出卷积后序列的图像。
程序说明:调用函数,给入要卷积的两个序列,并给出第一个非0坐标的位置。
程序:
clc; clear all;
xf = 2; % x序列第一个非0值坐标的位置
yf = -1;
x = [1,1,1,1]; y = [1,1,1];
nx = xf:length(x)-1+xf
ny = yf:length(y)-1+yf
z = conv(x,y)
nz = min(nx)+min(ny) : max(nx)+max(ny); %卷积后坐标位置
subplot 221, stem(nx,x,'.');
subplot 222, stem(ny,y,'.');
subplot 223, stem(nz,z,'.');
实验二、用FFT做频谱分析
给出符合流程图的计算FFT的程序:
进行16点的FFT,如果序列的长度不足16,自动补0到16点。
clc;clear all;
N = 16
x = x_1;
n = length(x);
if (N>n)
x = [x,zeros(1,N-n)]; % 长度小于N,自动补0到长度N
n =N;
end
subplot 211
nx = 0:n-1;
stem(nx,x,'.');
DFT_x = abs(fft(x,16)) % 16点DFT
ny = 0:15;
subplot 212
stem(ny,DFT_x,'.');
(1)对x_1至x_6逐个进行谱分析:
(2) 令x(n)=x4(n)+x5(n),用FFT计算8 点和16 点离散傅里叶变换
(2)令x(n)=x4(n)+jx5(n),重复(2)。