表面活性剂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面活性剂的定义:表面活性剂是指某些有机化合物,它们不仅溶于水或其他有机溶剂,同时又能在相界面上定向并改变界面的性质。
表面活性剂一般是低分子量分散剂。
表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间的界面张力。
表面活性剂的原理表面活性剂的应用取决于它们在界面上以及溶液中的各种性质。
表面和界面现象两相接触的部分为面接触,三相接触的部分是一条线,四相或四相以上的多相接触则是点接触。
占主导地位的是液相与其他面之间的接触例如:液--气液--液--气液--液--固--气液--固--固
表面活性剂的特点;双亲媒性结构化学结构上看同时具有亲油性的碳氢键的亲水性的官能团。
溶解度至少溶于液相的某一相。
界面吸附平衡时,表面活性剂溶质在界面上的浓度大于溶液内部的浓度。
界面定向排列界面上的分子能定性排成单分子膜覆盖于界面上(在界面上排成电子层)形成胶束当浓度达到一定时,分子会聚集而形成胶束。
这种浓度的极限值称为临界胶束浓度(简称CMC)
表面活性剂的分类
按分子机构带电的特征首先分为阴离子型阳离子型非离子型和两性表面活性剂。
阴离子型亲水基带负电。
这类最重要的是直链烷基苯磺酸。
阳离子型在水中能解离出带正电的亲水性原子团。
非离子型在水中无带电的集团。
两性表面活性剂在水中同时具有可溶于水的正电荷负电性基团
表面活性剂的缺点
根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷:
·水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。
·易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。
如果泡沫在研磨进程出现,则导致生产能力的下降。
·干扰涂层间的粘接。
经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿
来源
阴离子表面活性剂
1、肥皂类
系高级脂肪酸的盐,通式: (RCOOˉ)n M。
脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。
根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。
它们均有良好的乳化性能和分散油的能力。
但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析。
碱金属皂:O/W
碱土金属皂:W/O
有机胺皂:三乙醇胺皂
2、硫酸化物RO-SO3-M
主要是硫酸化油和高级脂肪醇硫酸酯类。
脂肪烃链R在12~18个碳之间。
硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。
高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠)
乳化性很强,且较稳定,较耐酸和钙、镁盐。
在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶剂起作用的部分是阳离子,因此称为阳性皂。
其分子结构主要部分是一个五价氮原子,所以也称为季阳离子表面活性剂
该类表面活性铵化合物。
其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。
常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。
两性离子表面活性剂
这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。
1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料
2、氨基酸型和甜菜碱型:
氨基酸型:R-NH+2-CH2CH2COO-
甜菜碱型:R-N+(CH3)2-COO—。
在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力
非离子表面活性剂
1.脂肪酸甘油酯:单硬脂酸甘油酯;
HLB为3~4,主要用作W/O型乳剂辅助乳化剂。
2.多元醇
蔗糖酯:HLB(5~13)O/W乳化剂、分散剂
脂肪酸山梨坦(Span):W/O乳化剂
聚山梨酯(Tween):O/W乳化剂
3.聚氧乙烯型:Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯)
4.聚氧乙烯-聚氧丙烯共聚物:Poloxamer
能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂
表面活性剂对降低表面张力的作用
表面活性剂与表面活性现象:
湿展剂和乳化剂除本身作用之外,还可降低水的表面张力,有表面活性作用,因而也称为表面活性剂。
请观察下列现象:一烧杯装满清水,水面上撒一层粉末,再加一滴肥皂水,漂在水面上的粉末立即向边缘移动,这种现象称为表面活性现象。
这是因为肥皂(高级脂肪酸钠盐),具有两亲性(R-COONa),即分子中有亲水的极性基(-COONa)和亲酯的非极性基(R-),当肥皂加入水中后,非极性基插入油酯中,无油就插入气界中,极性基立即插入水界中,因此在水面上形成定向排列的分子层,呈胶囊状存在,而把浮在水面上的粉末推向杯壁。
表面活性剂具备的条件:(1)分子具有两亲性,(2)亲水力与拒水力平衡。
二者缺一不可。
请看下列两种物质:
(1)醋酸钠(CH3COONa),分子中有两亲性,但亲水力大于拒水力。
(2)硬酯酸钠(C18H35COONa),分子中有两亲性,但拒水力大于亲水力。
以上两种物质分子中虽有两亲性,但都不是表面活性,因为亲酯力与亲水力不平衡,CH3COONa极性基把分子拉入水中,C18H35COONa的亲酯基把分子拉入油中,两者均不能在油水界面上呈定向排列,没有表面活性作用
表面活性剂对降低表面张力的作用
表面张力(surface tension):表面张力是液体内部的向心收缩力。
向心力可使液体的液滴缩小到最少的程度,向心力越大,液体形成的液滴就越少,喷雾就越不均匀。
表面张力的来源:处在液体内部分子从各方面受到相邻分子的吸引力而互成平衡,作用某分子的合力为零.所以液体内部均可任意移动。
而液体表面的某分子的吸引力是指向液体内部,并与液面垂直,指向液体内部的即为表面张力
液体的表面张力越大,喷出的液滴就越大,分散度就越小,喷雾就越不均匀,要提高分散度,就必须降低表面张力,而降低表面张力唯一的途径就是加入表面活性剂
表面活性剂应用原理
农药加工业上的应用原理
在农药加工中,由于加入表面活性剂形成了农药中常见的物态:
(1)乳浊液:两相不相溶的液体,其中一相以极小的液珠均匀地分散到另一相液体中,形成不透明或半透明的乳浊液,这种作用称为乳化作用。
乳油加入不中后常呈这种物态。
乳浊液的状态有两种:
①油包水型(W/O):水为分散相,油为为连续相,即水分散到油中,用药量大,在作物上喷药易产生药害。
②水油包型(O/W):油为分散相,水为连续相,即油分散到水中,农药制剂中常采用的物态。
悬浮液:以固体微粒稳定地悬浮在液体中,不沉淀、不漂浮,这种物态称为悬浮液。
因固体原药多为有机物,不易被水湿润,只有加入表面活性,降低水的表面张力,增加水和固体表面的湿润性,才可形成稳定的悬浮液。
液态农药喷于受药表面上,可以形成以下三种现象
∠θ>90O ∠θ=90O ∠θ<90O
液体在固体表面的接触角用θ表示。
∠θ>90O :液体在受药表面上不湿润,不展布;
∠θ=90O:液体在受药表面上只湿润,不展布;
∠θ<90O:液体在受药表面上即湿润又展布。
∠θ=0O:液体与固体互溶。
活性表面剂的发展概况
表面活性剂是一类重要的化工原料,素有“工业味精”之称,它在石油工业、环境保护、食品加工业等许多领域中占有特殊的地位。
化学合成的表面活性剂,在生产和使用过程中常常会带来严重的环境污染问题,而生物表面活性剂是由微生物所产生,是一类具有表面活性的天然添加剂,它除了具有与化学合成表面活性剂相同的作用外,还以其安全、无毒、能生物降解等优点受到人们的青睐
生物表面活性剂的来源和分类
生物表面活性剂多数由细菌、酵母菌、真菌等微生物产生。
微生物发酵法生产生物表面活性剂的生产菌种大致可分为三类:一类是严格以烷烃作为碳源的微生物,如棒状杆菌;一类是以水溶性底物为碳源的微生物,如杆菌;另一类可以烷烃和水溶性底物两者作为碳源,如假单孢菌。
微生物产生的生物表面活性剂种类很多,依据它们的化学组成和微生物来源可分为糖脂、脂肽和脂蛋白、脂肪酸和磷脂、聚合物和全胞表面本身等五大类。
生物表面活性剂结构特点
生物表面活性剂的分子结构中既有极性基团又有非极性基团,是一类中性两极分子。
亲水集团可以是离子或非离子形式的单糖、二糖、多糖、羧基、氨基或肽链;疏水基团则由饱和脂肪酸、不饱和脂肪酸或带羟基的脂肪酸组成。
对于像蛋白质-多糖复合物等一些分子量较大的生物表面活性剂分子,其亲水和疏水部分可以由不同的分子组成
生物表面活性剂的应用
工农业生产的发展所带来的环境污染日趋严重,人们越来越关心生活环境的质量问题。
就土壤污染来说,土壤微生物降解烷烃化合物是烷烃污染物从土壤中消失的基本原理。
研究表明:加入微生物或表面活性剂,能够增强憎水性化合物的亲水性和生物可利用性,使进入环境的污染物不断地降解,该技术称为生物修复。
糖脂类生物表面活性剂不仅可以提高烷烃的去除率,而且可加速烷烃的矿化程度。
另外,生物表面活性剂同样也可用于修复受重金属等其他化学物质污染的土壤
在食品加工业上的应用随着人们的健康意识不断提高,对食品的要求也越来越高,一日三餐既要营养丰富又要安全可靠,生物表面活性剂作为天然添加剂已在食品加工业广泛使用。
如蔗糖酯、卵磷脂、山梨聚糖等都是目前食品工业常用的乳化剂,蔗糖酯加入食品中可以改善食品的加工性能、提高食品抗氧化防霉作用和香味质量,另外,它还对水果的保鲜取得良好效果。
在石油开采业上的应用
这是生物表面活性剂应用的一个重要领域。
开采石油时,往油层中注入某些微生物,同时注入一些微生物生长所必须的营养物质,以地下石油为唯一碳源,这些微生物在生长的同时,能产生生物表面活性剂。
这些生物表面活性剂可降低原油与水两相界面的张力,从而可提高油田的开采量。
由于石油工业对生物表面活性剂的纯度和专一性要求不高,所以可直接使用含完整微生物细胞的生物表面活性剂发酵液,此技术就是微生物强化采油技术。
在其他方面的应用
农业方面,生物表面活性剂除可用于土壤改良外,还可用作肥料、植物保护以及杀虫剂等,在医疗卫生方面,生物表面活性剂可用于治疗某些疾病,用发酵法生产的磷脂蛋白对人体细胞中的免疫缺陷蛋白病毒具有抑制作用。
此外,生物表面活性剂还能用于杀菌剂、杀虫剂效果的监测,以及发酵工业细胞数量随时监控等方面。
最有应用前景的是清除污染的油罐、重油的运移和提高原油开采率。
研究现状
目前,生物表面活性剂大多数品种处于实验研究阶段,还没有进行大规模的生产,只有少数产品走向市场,这主要是由于它的生产成本较高,据估计生物表面活性剂是化学表面活性剂成本的3-10倍。
因此,如何选育高产菌株、改进发酵工艺、提高其附加值是进一步研究开发生物表面活性剂的应用潜力,降低其生产成本主要目标。
总之,生物表面活性剂是最近发展起来的一类新型表面活性剂,目前除了在石油工业和环保等一些特殊领域受到重视外,相信随着生物技术和相关技术的快速发展,生物表面活性剂会很快投入大规模的生产,服务于更多的领域,应用前景将会更加广阔
如何提高工厂的经济效益
(1)依靠科技进步,采用先进技术,用现代科学技术武装企业,提高企业职工的科学文化水平和劳动技能,使企业的经济增长方式由粗放型向集约型转变。
(2)采用现代管理方法,提高企业经营管理水平,提高劳动生产率,以最少的消耗,生产出最多的适应市场需求的产品。
依靠科技进步,采用现代管理方法提高企业经济效益是价值规律的客观要求。
如何选址
考虑工厂定位,我们面对的是一个计划中的工厂和一个现实的环境,要解决的问题是把工厂建于何处。
化工厂定位,一般遵循以下基本原则:
(1)有原料、燃料供应和产品销售的良好的流通条件;
(2)有贮运、公用工程和生活设施等方面良好的协作环境;
(3)靠近水量充足、水质优良的水源,
(4)有便利的交通条件,
(5)有良好的工程地质和水文气象条件。
工厂应避免定位在下列地区:
(1)发震断层地区和基本烈度9度以上的地震区;
(2)厚度较大的Ⅲ级自重湿陷性黄土地区;
(3)易遭受洪水、泥石流、滑坡等危害的山区;
(4)有开采价值的矿藏地区;
(5)对机场、电台等使用有影响的地区;
(6)国家规定的历史文物、生物保护和风景游览地区;
(7)城镇等人口密集的地区。
工厂定位时除了谨遵以上禁忌外,考虑得更多的是经济问题。
固然,高风速、地震、雨
雪量、雷电频发率等不安全因素,在工厂定位时会给予适度考虑,但这些往往会淹没在经济考虑之中。
比如,世界上多数大型石油化工企业都建立在原料产地附近,就是出于原料流通经济上的考虑。
对于这方面的内容,不再赘述。