水轮机课程设计

合集下载

水轮机课程设计蜗壳设计

水轮机课程设计蜗壳设计

水轮机课程设计 蜗壳设计一、课程目标知识目标:1. 学生能理解水轮机蜗壳的基本结构及其在水力发电中的作用;2. 学生能够掌握蜗壳设计的基本原理,包括流速分布、水流角度和压力的计算;3. 学生能够了解并描述影响蜗壳效率的主要因素。

技能目标:1. 学生能够运用所学知识,进行蜗壳进出口直径、形状和长度的初步计算;2. 学生通过实际案例分析和模拟实验,培养解决蜗壳设计过程中遇到问题的能力;3. 学生能够运用CAD软件或其他绘图工具,绘制出符合技术要求的蜗壳结构图。

情感态度价值观目标:1. 学生通过课程学习,培养对水利工程学科的热爱和对水轮机蜗壳设计的兴趣;2. 学生在学习过程中,树立节能减排和可持续发展的观念,认识到蜗壳设计在环境保护和资源合理利用方面的重要性;3. 学生能够通过团队协作完成设计任务,培养沟通协调能力和集体荣誉感。

课程性质:本课程为应用实践性课程,结合理论知识和实际操作,提高学生的工程实践能力。

学生特点:学生为高中年级,具有一定的物理基础和数学计算能力,对工程设计和实践操作具有好奇心。

教学要求:注重理论与实践相结合,鼓励学生主动参与,培养其解决问题的能力和创新思维。

通过分解课程目标为具体学习成果,使学生在课程结束时能够达到预定的教学效果。

二、教学内容1. 引言:水轮机蜗壳的作用与结构简介,使学生了解蜗壳在水轮机中的重要性。

相关教材章节:第一章 水轮机概述2. 蜗壳设计原理:a. 流体力学基础,包括流速分布、水流角度和压力的计算;b. 蜗壳设计的基本参数及其相互关系;c. 影响蜗壳效率的因素。

相关教材章节:第二章 水轮机蜗壳设计原理3. 蜗壳设计计算:a. 蜗壳进出口直径、形状和长度的计算方法;b. 实际案例分析,以加深学生对蜗壳设计的理解;c. 模拟实验,锻炼学生解决实际问题的能力。

相关教材章节:第三章 蜗壳设计计算4. 蜗壳设计实践:a. 运用CAD软件或其他绘图工具进行蜗壳结构图的绘制;b. 团队协作完成蜗壳设计任务,培养学生的沟通协调能力;c. 针对设计方案进行评价和优化。

水轮机课程设计

水轮机课程设计

水轮机课程设计(总20页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除目录第一章基本资料 (1)第二章机组台数与单机容量的选择 (2)第三章水轮机主要参数的选择与计算 (5)第四章水轮机运转特性曲线的绘制 (10)第五章蜗壳设计 (13)第六章尾水管设计 (17)第七章心得体会 (20)参考文献 (20)第一章基本资料基本设计资料黄河B水电站是紧接L水电站尾水的黄河上游的一个梯级水电站。

水库正常蓄水位2452 m,电站总装机容量4200 MW,额定水头 205 m。

经水能分析,该电站有关动能指标如表1所示:表1 动能指标第二章机组台数与单机容量的选择水电站的装机容量等于机组台数和单机容量的乘积。

根据已确定的装机容量,就可以拟定可能的机组台数方案,选择机组台数与单机容量时应遵循如下原则:机组台数与工程建设费用的关系在水电站的装机容量基本已经定下来的情况下,机组台数增多,单机容量减小。

通常小机组单位千瓦耗材多、造价高,相应的主阀、调速器、附属设备及电气设备的套数增加,投资亦增加,整体设备费用高。

另外,机组台数多,厂房所占的平面尺寸也会增大。

一般情况下,台数多对成本和投资不利。

因此,较少的机组台数有利于降低工程建设费用机组台数与设备制造、运输、安装以及枢纽安装布置的关系单机容量大,可能会在制造、安装和运输方面增加一定的难度。

然而,有些大型或特大型水电站,由于受枢纽平面尺寸的限制,总希望单机容量制造得大些。

机组台数对水电站运行效率的影响水轮机在额定出力或者接近额定出力时,运行效率较高。

机组台数不同,水电站平均效率也不同。

机组台数较少,平均效率越低。

机组台数多,可以灵活改变机组运行方式,调整机组负荷,避开低效率区运行,以是电站保持较高的平均效率。

但机组台数多到一定程度,再增加台数对水电站运行效率增加的效果就不显著。

当水电站在电力系统中担任基荷工作时,引用流量较固定,选择机组台数较少,可使水轮机在较长时间内以最大工况运行,使水电站保持较高的平均效率。

水轮机调节-课程设计-完整版【范本模板】

水轮机调节-课程设计-完整版【范本模板】

课程设计题目:《水轮机调节》水轮机调节保证计算以及调速设备选型学生姓名:学号:班级:专业:指导教师:年月题目《水轮机调节》水轮机调节保证计算以及调速设备选型学生姓名:学号:班级:所在院(系):指导教师:完成日期:水轮机调节课程设计目录1 基本数据 (4)1。

1 基本资料 (4)1。

2 确定计算标准 (4)1。

3 确定计算工况 (5)1.4 计算确定有关参数 (5)1。

5 初选导叶直线关闭时间 (12)1.6 判断水击类型 (12)1.7 进行直线关闭时间水击计算 (13)1.8 计算最大转速上升率 (16)1。

9按最大水头计算蜗壳内的最大压力上升值 (19)1.10 综合比较选定 (21)2 调节设备选型 (22)2。

1调速器的计算 (22)2。

2 调速器选择 (22)2。

3主配压阀的选择 (24)2。

4油压装置的选择 (25)参考文献 (28)1 基本数据1。

1 基本资料F 水电站以发电为主.电站建成后并入系统运行,担负系统峰荷,并有调相任务.水电站设计保证率为96%;水能开发方式为有压引水方式,采用左岸地下式厂房方式。

总装机容量:560MW 特征水位:校核洪水位:390。

43m设计洪水位:389。

90m正常蓄水位(正常运行最高水位):389.90m 死水位:388。

70m 水库调节特性:季调节水能规划参数:H max =78.9m , H min =55。

07m , H av =71.43m, H r =68m 压力钢管长度: 120m 水轮机型号:HL220-LJ —500水轮机额定参数:额定出力P=14500KW 额定转速min /4.136r n r = 飞逸转速min /28.236r n p = 吸出高度m H s 35.2-=设计流量s m Q p /60.2553=1。

2 确定计算标准在调整保证计算中,根据《水轮机自动调节》P220—221,压力升高和转速升高都不能超过允许值。

水轮机课程设计

水轮机课程设计

水轮机课程设计说明书姓名:学号:学院:水利水电学院班级:指导老师:目录一、水轮机选型及参数计算1.已知参数 (1)2.水轮机型号选择 (1)3.水轮机基本参数计算 (1)二、水轮机运转特性曲线的绘制1.等效率曲线的绘制 (3)2.等吸出高度线绘制 (4)3.出力限制线绘制 (5)三、蜗壳设计1.蜗壳型式及基本参数的选择 (6)2.进口断面计算 (6)3.圆断面计算 (7)4.椭圆形断面计算 (8)四、尾水管设计1.尾水管形式的选择 (9)2.尾水管高度的确定 (9)3.尾水管各部分尺寸的计算 (9)蜗壳平面图 (10)蜗壳单线图 (11)尾水管图 (12)一、水轮机选型及参数计算1.已知参数装机容量580.00MW ;装机台数4台;单机容量145MW ;max H =84.5m ; min H =68.00m ; r H =73.00m ; a H =71.2m水轮机安装高程∇580.00m 2.水轮机型号选择s n =H2000-20=732000-20=214.08(m·kw)可以选择HL220型水轮机 3.水轮机基本参数计算(1)计算转轮直径1D 。

水轮机额定出力: r P ==GGN η14795998.0145000=KW 取最优单位转速=110n 71.0r/min 与出力限制线交点的单位流量为设计工况点单位流量,则14.1r 11=Q (s /m 3),对应的模型效率%89=M η暂取效率修正值%3=∆η,则设计工况原型水轮机效率92.003.089.0=+=∆+=ηηηM ,水轮机转轮直径1D 为m 80.492.07314.181.914795981.95.15.111r1=⨯⨯⨯==ηr r H Q P D 取标准值1D =5m该方案水头高于40m,故应使用金属蜗壳,则使用水轮机型号为 HL220-LJ-500 (2)效率η的计算944.0546.0)91.01(1)-1(-155110max =--==D D M M ηη 024.092.0944.0=-=∆η914.0024.089.0=+=η(3)转速n 的计算)r/min (82.11952.7171n n 1a110=⨯==D H 转速计算值介于发电机同步转速115.4至125(r/min )之间,但与115.4更接近,故取水轮机的转速n 为115.4r/min (4)水轮机设计流量r Q 的计算/s m 5.24373514.132r 2111r =⨯⨯==H D Q Q r(5)几何吸出高度s H 的计算。

水轮机课程设计

水轮机课程设计

水轮机课程设计
1.引言
水轮机是一种重要的水力发电设备,广泛应用于水电站和水能利用系统中。

本课程设计旨在帮助学生深入了解水轮机的工作原理、性能特点以及设计与选型过程。

2.学习目标
通过本课程设计,学生将达到以下目标:
理解水轮机的基本原理和工作方式;
掌握水轮机的性能参数和性能曲线的分析方法;
学会进行水轮机的选型和设计计算;
熟悉水轮机的运行与维护管理。

3.课程内容安排
第一章:水轮机概述
水轮机的定义和分类
水轮机的主要构成部分和工作原理
第二章:水轮机性能分析
水轮机的性能参数介绍
水轮机性能曲线的绘制与分析方法
第三章:水轮机选型与设计
水轮机的选型原则与方法
水轮机的设计计算步骤和方法
第四章:水轮机的运行与维护
水轮机的运行管理和性能监测
水轮机的维护与故障处理
4.教学方法
本课程设计将采用以下教学方法:
理论讲授:通过课堂讲解介绍水轮机的基本原理、性能分析方法和选型设计过程。

实践操作:学生将进行水轮机的选型和设计计算,并使用专业软件进行性能曲线的绘制和分析。

小组讨论:鼓励学生参与小组讨论,分享经验和解决问题。

5.考核方式
课程设计报告:学生需完成水轮机的选型和设计计算,并撰写课程设计报告。

学习笔记:学生需撰写学习笔记,记录课堂内容和思考。

6.参考资料
《水力发电工程手册》
《水轮机与泵类》(第四版),朱光勇主编
《水轮机》(第三版),王文明编著
以上是水轮机课程设计的一个简要安排,具体的教学内容和安排可以根据实际情况进行调整和补充。

希望对您有所帮助!。

水轮机课程设计

水轮机课程设计

第一章 水轮机的选型设计1.1水轮机型号选定一、水轮机型式的选择根据原始资料,该水电站的水头范围为59.07-82.9m ,电站总装机容量56万千瓦,拟选2、3、4、5台机组,平均水头为75.43m ,最大水头为82.9m ,最小水头为59.07m 。

水轮机的设计水头估算为m H r 72=按我国水轮机的型谱推荐的设计水头与比转速的关系,水轮机的比转速s n :21620722000202000=-=-=H n s m.KW 根据原始资料,适合此水头范围的水轮机类型有斜流式和混流式。

又根据混流式水轮机的优点:(1)比转速范围广,适用水头范围广,可适用30~700m ;(2)结构简单,价格低;(3)装有尾水管,可减少转轮出口水流损失。

故选择混流式水轮机。

因此,选择s n 在216m.kw 左右的混流式水轮机为宜。

根据表本电站水头变化范围(H=59.07-82.9m)查《水电站机电设计手册—水力机械》1-4] 适合此水头范围的有HL220-46。

二、拟订机组台数并确定单机容量表1-1 机组台数比较表1.2 原型水轮机各方案主要参数的选择按电站建成后,在电力系统的作用和供电方式,初步拟定为2台,3台,4台,5台四种方案进行比较。

基本参数, 模型效率:89.0=M η,推荐使用最优单位流量:h m315.1,最优单位转速:m in 7011r n r =,最优单位流量:s l Q r 115011=。

一、2台机组(方案一)1、计算转轮直径装机容量22万千瓦,由《水轮机》325页可知:水轮机额定出力:kw N P G Gr 3.28571498.0280000===η 上式中: G η-----发电机效率,取0.98G N -----机组的单机容量(KW )由型谱可知,与出力限制线交点的单位流量为设计工况点单位流量,则Q 11r =1.15m3/s,对应的模型效率ηm =89%,暂取效率修正值 Δη=0.03,η=0.89+0.03=0.92。

水轮机课程设计实训报告

水轮机课程设计实训报告

一、引言水轮机作为水电站的核心设备,其性能直接关系到电站的发电效率和经济效益。

为了提高学生对水轮机理论知识的掌握程度,培养实际操作能力,我们开展了水轮机课程设计实训。

本次实训以某水电站为背景,通过选型设计、参数计算、结构分析等环节,使学生深入了解水轮机的设计原理和工程应用。

二、实训目的1. 使学生掌握水轮机选型设计的基本方法。

2. 提高学生对水轮机结构、性能和运行原理的认识。

3. 培养学生解决实际问题的能力。

4. 增强学生的团队合作意识和沟通能力。

三、实训内容1. 水电站基本资料分析根据题目要求,我们选取某梯级开发电站作为实训背景。

该电站主要任务是发电,同时发挥水产养殖等综合效益。

电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,并兼向周边地区供电。

电站水库库容较小,不担任下游防洪任务。

2. 水轮机选型设计(1)确定水轮机类型:根据电站的运行特点,选择混流式水轮机。

(2)确定水轮机主要参数:根据电站的水能指标,确定水轮机的设计水头、最大工作水头、加权平均水头等参数。

(3)水轮机选型:根据水轮机类型和主要参数,从市场上已有的水轮机产品中选择合适的水轮机型号。

3. 水轮机参数计算(1)水轮机效率计算:根据选定的水轮机型号和电站的水能指标,计算水轮机的效率。

(2)水轮机出力计算:根据水轮机效率和水能指标,计算水轮机的出力。

(3)水轮机转速计算:根据水轮机出力和电站的运行要求,计算水轮机的转速。

4. 水轮机结构分析(1)水轮机主要部件:分析水轮机的主要部件,如转轮、主轴、导水机构等。

(2)水轮机结构设计:根据水轮机主要部件和电站的运行特点,设计水轮机的结构。

(3)水轮机强度校核:对水轮机的主要部件进行强度校核,确保其在运行过程中安全可靠。

四、实训成果1. 完成了水轮机选型设计,确定了合适的水轮机型号。

2. 计算了水轮机的效率、出力和转速,为电站的运行提供了理论依据。

3. 设计了水轮机的结构,并对主要部件进行了强度校核。

水轮机课程设计纸

水轮机课程设计纸

水轮机课程设计纸一、教学目标本节课的教学目标是让学生了解和掌握水轮机的基本原理、结构和应用,提高学生对水利工程的认知水平。

具体来说,知识目标包括:1.了解水轮机的历史发展及其在水利工程中的应用。

2.掌握水轮机的工作原理、主要结构和部件功能。

3.理解水轮机的工作特性及其影响因素。

技能目标则要求学生能够:1.分析水轮机的工作过程,判断水轮机的工作状态。

2.学会使用相关工具和仪器,对水轮机进行简单的维护和检修。

情感态度价值观目标则主要包括:1.培养学生对水利工程的兴趣,提高学生对水轮机的认识。

2.培养学生珍惜水资源,关注环境保护的意识。

3.培养学生团结协作、勇于探索的精神风貌。

二、教学内容本节课的教学内容主要包括水轮机的基本原理、结构和应用。

具体安排如下:1.导言:介绍水轮机的历史发展及其在水利工程中的应用,激发学生的学习兴趣。

2.水轮机的工作原理:讲解水轮机的工作原理,让学生了解水轮机是如何将水能转化为机械能的。

3.水轮机的结构:介绍水轮机的主要结构和部件功能,如转轮、导叶、主轴等。

4.水轮机的工作特性:分析水轮机的工作特性及其影响因素,如水流速度、水头等。

5.水轮机的应用:讲解水轮机在水利工程中的应用,如水电站、灌溉等。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,如讲授法、讨论法、案例分析法等。

具体安排如下:1.讲授法:讲解水轮机的基本原理、结构和应用,使学生掌握基础知识。

2.讨论法:学生分组讨论水轮机的工作过程和应用场景,提高学生的思考能力。

3.案例分析法:分析实际案例,让学生了解水轮机在水利工程中的重要作用。

4.实验法:安排课后实验,让学生亲自动手操作,加深对水轮机结构和工作原理的理解。

四、教学资源为了支持教学内容和教学方法的实施,本节课将选用以下教学资源:1.教材:《水利工程导论》等有关水轮机的章节。

2.参考书:提供有关水轮机的历史发展、结构原理等方面的资料。

3.多媒体资料:制作课件、视频等,形象生动地展示水轮机的工作原理和应用场景。

水轮机原理与运行课程设计

水轮机原理与运行课程设计

水轮机原理与运行课程设计一、课程背景和目的水轮机是一种水力发电设备,具有广泛的应用领域。

随着我国经济的发展和政府对清洁能源的倡导,水力发电在我国已经成为一个非常重要的能源来源。

因此,深入学习水轮机原理和运行,具有重要的实践意义和科学价值。

本课程旨在通过讲授水轮机的原理和运行原理,让学生了解水轮机的工作过程和运行技术,为学生进入相关行业提供良好的基础知识和实践技能。

二、课程教学与实践内容2.1 基础知识1.水轮机基础原理介绍。

2.水轮机各部分的工作原理介绍。

3.水轮机的分类和特点。

2.2 系统分析1.水轮机系统结构。

2.水轮机系统参数测量技术。

3.水轮机系统运行调试技术。

4.模拟和仿真技术。

2.3 实验操作1.水轮机实验操作技能。

2.水轮机系统性能测试实验。

3.水轮机故障排除实验。

三、教学方法在本课程中,将为学生提供一系列的教学方法,以提高学生的学习效率,包括理论课程讲解、实验室实践、案例分析、问题求解、实践操作等。

四、考核方式学生将通过期末考试和实验报告来评估其课程学习和实践成果。

期末考试占总成绩的50%,实验报告占总成绩的50%。

五、课程时间本课程将分为两个学期。

第一学期主要介绍水轮机的基础知识和系统分析,第二学期将重点讲解实验操作和仿真实践。

六、教材教材主要为《水力发电工程》、《水轮机设计和运行》等相关教材。

七、实验器材1.水轮机实验台。

2.流量计、压力计等测量仪器。

3.计算机和仿真软件。

八、授课团队本课程的授课团队由水利工程、电气工程、机械工程等相关专业的优秀教师和行业专家组成,旨在为学生提供专业的教学服务和良好的学习环境。

水轮机课程设计

水轮机课程设计

水轮机课程设计1. 研究背景水轮机是一种使用水能转换成电能的设备,广泛应用于水利工程、能源工程和化工等领域。

本课程设计旨在通过学生对水轮机的学习和研究,掌握水轮机的工作原理、设计方法和实现技术,从而培养学生的工程实践能力和创新思维。

2. 课程目标本课程设计的主要目标是:1.了解水轮机的工作原理和分类;2.掌握水轮机的设计方法和计算原理;3.学习水轮机的运行控制和维护管理;4.进行水轮机的设计、制造和测试,并撰写课程设计报告。

3. 课程内容本课程设计包括以下内容:1.水轮机的概述和分类:–水轮机的定义和历史发展;–水轮机的分类和工作原理;–水轮机的应用领域和发展趋势。

2.水轮机的设计和计算:–水轮机的设计基本原理和要求;–水轮机的几何尺寸和流量参数计算;–水轮机的运动学和动力学计算;–水轮机的效率和性能参数计算。

3.水轮机的运行控制和维护管理:–水轮机的运行控制和调节;–水轮机的安全运行和故障排除;–水轮机的维护管理和检修。

4.水轮机的设计、制造和测试:–水轮机的设计方案和制造流程;–水轮机的装配和调试;–水轮机的性能测试和实验研究。

4. 课程方法与评价本课程设计采用“理论教学 + 实践操作 + 课程报告”的教学方法,其中:1.理论教学:通过课堂讲授、翻阅资料、观摩视频等方式,使学生了解水轮机的概念、工作原理和设计方法,掌握相关计算原理和技术要点。

2.实践操作:学生根据课程设计要求,将理论知识转化为实际操作,进行水轮机的制造、装配和测试等过程,锻炼学生的实际动手能力和协作精神。

3.课程报告:学生在课程结束后,撰写水轮机课程设计报告,在报告中详细说明设计过程、实践操作和结果分析等内容,评价学生的课程设计能力和创新意识。

课程评价采用综合评价方法,同时考虑理论知识、操作技能、报告撰写等方面的表现,以评分的形式进行最终评价。

5. 教学安排本课程设计的教学安排如下:课程内容授课方式课时数水轮机的概述和分类理论教学 2水轮机的设计和计算理论教学8水轮机的运行控制和维护理论教学 2水轮机的设计、制造和测试实践操作18本课程设计具体实施时间和地点可根据教学计划和实际情况进行调整。

水轮机及其辅助设备课程设计 (2)

水轮机及其辅助设备课程设计 (2)

水轮机及其辅助设备课程设计1. 课程背景水能利用是一项重要的可再生能源利用方式之一,而水轮机则是其中最早被应用的一种装置。

本课程旨在对水轮机及其辅助设备进行深入了解,包括其原理,分类,工作流程和主要构成部分,以及发电厂常用的辅助设备,如调速系统、水力发电站控制系统等,为学生奠定水力发电学科的基础。

2. 课程目标通过本课程的学习,学生应该掌握以下内容: - 水轮机的基本工作原理和分类 - 水轮机常见的布置形式和构成部分 - 常用的水力发电厂辅助设备及其作用 - 水力发电站的控制系统组成和原理 - 水轮机的效率计算方法及其应用3. 课程计划第一周•课程介绍•水轮机的概述:历史、作用、发展和应用现状第二周•水力资源和水轮机的性能参数:流量、水头和效率•水轮机分类及其专业术语:反推式、混流式、斜流式等第三周•具体的水轮机设计及其运行特点:容积、跌差、压力、尾水等•水轮机的主要构成部分:转子、导叶、固定叶片、轴、轴承等第四周•水力发电运行常用的辅助设备:调速系统、GOU运行模式、水力发电站控制系统•水力发电站的控制系统组成及其原理:水电站集控、远程监控和故障处理等第五周•水轮机效率的计算方法及其应用:绝热效率、机械效率、水利效率和总效率•水轮机的计算方法和参数的测定:静态水力试验、动态试验和模型试验第六周•课程总结和考试4. 考核方式•期末考试(70%):包括填空、判断、选择和简答题等•作业(20%):包括设计、计算题和文献阅读等•出勤率和课堂表现(10%)5. 参考资料•能源与资源高校工程实践教育系列教材水利水电工程系列:水轮机及辅助设备•中国水力发电技术标准:针对水轮机运行和维护的技术规范以上是本课程的详细内容和安排,希望能够对学生在未来的学术和职业道路上有所帮助。

水轮机课程设计(包括综合曲线)

水轮机课程设计(包括综合曲线)

水轮机课程设计一、课程设计的目的和任务目的:水轮机的课程设计是课程教学中一个必不可少的环节。

通过水轮机课本章节的相关理论知识的学习后,再通过课程设计的环节以达到巩固和加强理论知识的目的,进一步培养学生独立思考、严谨工作的能力;此外,通过课程设计更进一步掌握造型、设计、参数等程序内容,提高了学生查阅资料和动手实践的能力。

任务:通过所给的原始资料,进行水轮机选型设计,包括:1、选择机组台数,水轮机型号及装置方式2、确定转轮直径、同步转速3、运转综合特性曲线的计算和绘制4、计算水轮机最大吸出高度和安装高程二、水轮机的原始材资料电站形式:坝后式水电站。

总装机容量: 650 MW机组台数: 5台。

电站水头:Hmax= 93.3 m Hav=81.5 m Hr=70 m Hmin=62 m水电站最低尾水位:▽=29.4 m电网最大负荷: 2×105 MW电站在系统中的作用:调峰作用本电站交通便利三、水轮机的简介水轮机是一种将河流中蕴藏的水能转换成旋转机械能的原动机,当水流流过水轮机时,通过主轴带动发电机,将旋转机械能转换成电能。

与发电机连接成的整体称为水轮发电机组,它是水电站的主要设备部分。

水电站是借助水工建筑物和机电设备设备将水能转换成为电能的企业,在未来,水能资源的开发和利用将成为资源开发利用的主导能源,所以,水轮机的设计开发对我国水能资源的开发起到很大的推进作用。

水轮机大致分为两大类:反击式水轮机和冲击式水轮机。

反击式水轮机。

转轮利用水流的压力能和动能做工的水轮机称为反击式水轮机。

其特征是:压力水流充满水轮机的整个流道,水流流经转轮叶片时,受叶片的作用面改变压力、流速的大小和方向,同时水流在转轮叶片正反面产生压力差,对转轮产生反作用力,形成旋转力矩使转轮旋转。

主要包括混流式、轴流式、斜流式和贯流式四种类型水轮机。

冲击式水轮机。

转轮只利用水流动能作功的水轮机称为冲击式水轮机。

其特征是:有压水流先经过喷嘴形成高速自由射流,将压能转换成动能,并冲击转轮旋转。

水轮机课程设计报告

水轮机课程设计报告

课程设计任务书1. 课程设计的目的和要求课程设计是水轮机课程教学计划中的一个重要环节,是培养学生综合运用所学理论知识解决工程实际问题的一次系统的基本训练。

通过水轮机课本章节的相关理论知识的学习后,再通过课程设计的环节以达到巩固和加强理论知识的目的,进一步培养学生独立思考、严谨工作的能力,使学生学会查阅、收集、整理和分析相关文献资料;熟悉水轮机选型设计阶段的内容,针对给定任务能提出合理的设计方案并得出正确的计算结果。

2. 基本参数电站总装机容量:900 MW电站装机台数:5 台水轮机安装高程:580 mH:320 m最大工作水头maxH:250 m最小工作水头minH:290 m设计工作水头rH:301 m加权平均工作水头a目录第一章水轮机的选型设计21已知参数22 水轮机型号选择2第三章蜗壳设计51蜗壳形式,断面形状和包角的确定52座环尺寸的确定53蜗壳参数计算54进口断面量6第四章尾水管设计61尾水管高度62进口直锥段63肘管型式64水平长度6第一章 水轮机的选型设计1已知参数电站总装机容量:900 MW电站装机台数:5台水轮机安装高程:580 m最大工作水头max H :320 m s n最小工作水头min H :250 m设计工作水头r H :290 m加权平均工作水头a H :301 m2 水轮机型号选择水轮机的比转速为:查表满足4.97=s n 且满足m H m 320250≤≤的水轮机型号为HL903水轮机基本参数的计算(1)计算转轮直径1D水轮机的额定出力 取最优单位转速()m Q r 311270.0=,对应模型效率0.878M η=,取效率修正系数3%η∆=,则设计工况原型效率0.908m ηηη=+∆=故水轮机转轮直径为:取标准值1 4.5D m =(2)效率η的计算效率修正值max 00.950.9170.023r m ηηη∆=-=-=限制工况原型水轮机的效率为:(3)1D 的校核计算用0.911η=对原先计算的1D 进行校核故转轮直径以1D =3.5m 为宜(4)转速n 的计算介于n=214.3r/min 与n=250r/min 之间取水轮机的转速n=250r/min4水轮机设计流量r Q 的计算5几何吸出高度s H 的计算为使水轮机尽量不发生空化,取min H ,r H ,max H 三个水头分别计算水轮机允许的吸出高度,以其中最小值作为允许最大吸出高度。

水轮机课程设计指导书

水轮机课程设计指导书

水轮机课程设计指导书水轮机课程组2011.6目录一.水轮机型号选择二.水轮机主要参数选择三.绘制水轮机运转综合特性曲线四.蜗壳的水力计算五.尾水管尺寸的确定六.水轮机转轮参数的确定七.水轮机导水机构尺寸的确定八.水轮机主轴、轴承及主轴密封的选择九.水轮机结构说明十.绘制水轮机结构图十一.编制设计计算说明书参考资料水轮机课程设计主要是培养学生的设计能力,重点是使学生掌握水轮机的结构。

本次课程设计的内容主要包括计算水轮机的主要参数,选择零部件合理的结构和尺寸,通过设计巩固学生对水轮机总体结构的认识,为后续课程及将来从事专业工作奠定坚实的基础。

完成设计任务可按下列方法和步骤进行。

一、水轮机型号选择根据水轮机水头,特别是要考虑最大水头,选择水轮机型号。

要确保水轮机满足强度要求。

型号的选择主要依据水轮机型谱,可用常规方法,也可用计算机软件进行。

有条件时可选择各制造厂推荐的新型转轮,并要进行分析比较。

二、水轮机主要参数选择水轮机主要参数选择主要包括转轮直径D1,转速n和吸出高度HS的选择计算。

选择方法可采用常规设计方法,也可以采用计算机软件进行选择。

对不同参数方案要进行分析比较。

比较的主要方法是看其模型特性曲线图上工作区的效率高低,应选择工作区范围最宽,效率和平均效率较高的方案。

当然也要考虑经济性,要进行必要的分析论证,最后优选出最好的方案,并明确写出其最后参数结果。

直径D1原则上要选标准直径,且保证在设计水头下要发足额出功率,所用公式见教材或参考书。

转速的选择公式见教材和参考书,当没有加权平均水头时,可用设计水头,转速一般要取2个同步转速值进行比较,然后,选定一个。

吸出高度计算公式见教材或参考书,系数Kσ的选择要考虑转轮的结构和所用材质。

为计算方便和明显,可用列表法进行比较。

三、绘制运转综合特性曲线在方案选定后绘制其运转综合特性曲线,可用常规方法或计算机软件进行,绘图时必须注意设计水头发额定功率点的效率应与计算结果一致,否则说明绘制误差太大,甚至错误,此图要附在说明书内。

水轮机课程设计

水轮机课程设计
反击式水轮机可分为混流式、轴流式、斜流式和贯流式。在混流式水轮机中,水流径向进入导水机构,轴向流出转轮;在轴流式水轮机中,水流径向进入导叶,轴向进入和流出转轮;在斜流式水轮机中,水流径向进入导叶而以倾斜于主轴某一角度的方向流进转轮,或以倾斜于主轴的方向流进导叶和转轮;在贯流式水轮机中,水流沿轴向流进导叶和转轮。
贯流式水轮机的导叶和转轮间的水流基本上无变向流动,加上采用直锥形尾水管,排流不必在尾水管中转弯,所以效率高,过流能力大,比转数高,特别适用于水头为3~20米的低水头电站。这种水轮机装在潮汐电站内还可以实现双向发电。这种水轮机有多种结构,使用最多的是灯泡式水轮机。
2、课程设计的任务: 通过所给的原始资料,根据要求明确水轮机的基本工作参数(包括水头H、流量Q、转速n、效率 、出力P、吸出高度HS、转轮直径D、水轮机型号、机组台数、装置方式等), 整理并绘制成不同形式的曲线,即获得水轮机的特性曲线图。
二、水轮机选型设计的基本要求
三、水轮机的原始材资料
四、水轮机简介
反击式水轮机。 转轮利用水流的压力能和动能做工的水轮机称为反击式水轮机。其特征是:压力水流充满水轮机的整个流道,水流流经转轮叶片时,受叶片的作用面改变压力、流速的大小和方向,同时水流在转轮叶片正反面产生压力差,对转轮产生反作用力,形成旋转力矩使转轮旋转。主要包括混流式、轴流式、斜流式和贯流式四种类型水轮机。
轴流式水轮机适用于较低水头的电站。在相同水头下,其比转数较混流式水轮机为高。轴流定桨式水轮机的叶片固定在转轮体上,叶片安放角不能在运行中改变,效率曲线较陡,适用于负荷变化小或可以用调整机组运行台数来适应负荷变化的电站。
轴流转桨式水轮机是奥地利工程师卡普兰在1920年发明的,故又称卡普兰水轮机。其转轮叶片一般由装在转轮体内的油压接力器操作,可按水头和负荷变化作相应转动,以保持活动导叶转角和叶片转角间的最优配合,从而提高平均效率,这类水轮机的最高效率有的已超过94%。

水轮机调节第三版课程设计

水轮机调节第三版课程设计

水轮机调节第三版课程设计1. 选题背景水轮机是一种能把水能转换成机械能的机器,其调节一直是水力发电运行过程中的重要技术问题。

水轮机调节,通俗地讲就是控制水轮机转速、流量和输出功率,以维持发电机的频率和电压稳定。

因此,通过深入学习水轮机调节的方法和技巧,掌握调节的理论知识、技术手段及其应用,在水力发电行业中具有重要的意义。

本课程设计将以水轮机调节为主题,讲解水轮机调节系统所需的传感器、控制器以及调节算法,并设计一套完整的调节方案,以此让学生们深入了解水轮机调节方面的知识。

2. 基本内容2.1 水轮机调节系统的构成水轮机调节系统主要由以下几部分组成:•传感器:用于检测水轮机的转速、流量、压力等参数•控制器:通过采集传感器信号,控制水轮机的调节阀和导叶,实现对水轮机的调节控制•调节算法:通过对传感器采集的数据进行处理,并通过控制器输出控制信号,从而实现对水轮机的转速、流量和输出功率等参数的控制。

2.2 传感器的选用传感器在水轮机调节系统中起着至关重要的作用,合理选择传感器类型和规格是保证调节系统性能和稳定性的关键因素。

常见的传感器有浮子流量计、压力传感器、速度传感器等。

针对不同的应用场景,需要根据实际情况选择传感器。

2.3 控制器的选用控制器是水轮机调节系统中的核心部件,负责不同传感器的信号采集、信号处理以及控制指令的输出等。

常见的控制器有PLC(可编程逻辑控制器)、单片机等。

同样需要根据不同需求选择相应型号和规格的控制器。

2.4 调节算法的实现调节算法是水轮机调节系统的灵魂,主要包括PID算法、模糊控制算法、神经网络算法等。

设计及调优调节算法是保证控制系统良好性能的重要手段。

在本课程设计中,将选用PID算法作为调节算法。

2.5 课程设计方案本课程设计将分为以下几个步骤:1.学习水轮机调节系统的基本构成和原理;2.确定所需传感器、控制器及相关硬件,并进行系统组装调试;3.借助Simulink等软件进行调节算法的模拟和仿真,实现PID调节控制算法的编写、调试和优化;4.通过实际调节系统对模拟仿真得到的调节算法进行验证,并对调节算法进行进一步的优化;5.设计一套完整的水轮机调节方案,包括传感器、控制器、调节算法的选用和整合,以及实际调节系统的组装和调试。

水轮机自动调节课程设计

水轮机自动调节课程设计

水轮机自动调节课程设计1. 简介水轮机是一种常见的水力发电设备,在电力系统中扮演着重要的角色。

然而,在长期运行过程中,水轮机参数的变动会导致其性能发生变化。

为了保证水轮机的运行效率,人们需要对其进行自动调节。

本文将介绍一个水轮机自动调节课程设计方案。

2. 设计目标本课程设计的目标是让学生掌握水轮机自动调节的原理和方法,并利用所学知识设计一个简单的水轮机自动调节系统。

具体来说,设计目标包括:•理解水轮机自动调节系统的基本原理和组成结构•掌握水轮机性能参数的测量和分析方法•学习PID控制器的基本原理和调节方法•利用所学知识设计一个水轮机自动调节系统,并进行调试与测试3. 设计内容3.1 水轮机性能参数的测量在进行水轮机自动调节之前,需要先了解水轮机的性能参数,例如转速、流量、水头等。

学生将利用传感器和数据采集卡实现对这些参数的测量,并对测得的数据进行分析和处理。

3.2 PID控制器的调节PID控制器是水轮机自动调节系统的核心组成部分。

学生将学习PID控制器的基本原理和调节方法,包括调节参数的选择和调试等。

3.3 水轮机自动调节系统的设计在掌握了水轮机性能参数测量和PID控制器调节方法后,学生将根据设计要求设计一个水轮机自动调节系统,并进行系统搭建和调试。

3.4 系统测试与评估为了验证水轮机自动调节系统的性能,学生将进行系统测试和评估,并对测试结果进行分析和总结。

4. 教学方法本课程设计采用“理论+实践”的教学模式。

具体来说,将采用如下教学方法:•理论授课:介绍水轮机自动调节系统的基本原理和组成结构,讲解水轮机性能参数的测量和分析方法,讲解PID控制器的基本原理和调节方法。

•实验指导:通过模拟实验和实际实验等方式,对学生进行实验指导,帮助学生掌握水轮机自动调节系统的设计和调试方法。

•论文撰写:要求学生根据设计要求撰写相关的论文,包括设计思路、实验方案、实验结果和结论等。

•作业评定:要求学生提交实验报告,并对提交的报告进行评定,评定标准包括报告内容、技术实现、实验结果和分析总结等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章基本资料 (1)第二章机组台数与单机容量的选择 (2)第三章水轮机主要参数的选择与计算 (5)第四章水轮机运转特性曲线的绘制………………………………………………………………10第五章蜗壳设计……………………………………………………………………………………13第六章尾水管设计 (17)第七章心得体会 (20)参考文献………………………………………………………………………………………………20第一章基本资料基本设计资料黄河B水电站是紧接L水电站尾水的黄河上游的一个梯级水电站。

水库正常蓄水位2452 m,电站总装机容量4200 MW,额定水头205 m。

经水能分析,该电站有关动能指标如表1所示:表1 动能指标第二章机组台数与单机容量的选择水电站的装机容量等于机组台数和单机容量的乘积。

根据已确定的装机容量,就可以拟定可能的机组台数方案,选择机组台数与单机容量时应遵循如下原则:2.1机组台数与工程建设费用的关系在水电站的装机容量基本已经定下来的情况下,机组台数增多,单机容量减小。

通常小机组单位千瓦耗材多、造价高,相应的主阀、调速器、附属设备及电气设备的套数增加,投资亦增加,整体设备费用高。

另外,机组台数多,厂房所占的平面尺寸也会增大。

一般情况下,台数多对成本和投资不利。

因此,较少的机组台数有利于降低工程建设费用2.2机组台数与设备制造、运输、安装以及枢纽安装布置的关系单机容量大,可能会在制造、安装和运输方面增加一定的难度。

然而,有些大型或特大型水电站,由于受枢纽平面尺寸的限制,总希望单机容量制造得大些。

2.3机组台数对水电站运行效率的影响水轮机在额定出力或者接近额定出力时,运行效率较高。

机组台数不同,水电站平均效率也不同。

机组台数较少,平均效率越低。

机组台数多,可以灵活改变机组运行方式,调整机组负荷,避开低效率区运行,以是电站保持较高的平均效率。

但机组台数多到一定程度,再增加台数对水电站运行效率增加的效果就不显著。

当水电站在电力系统中担任基荷工作时,引用流量较固定,选择机组台数较少,可使水轮机在较长时间内以最大工况运行,使水电站保持较高的平均效率。

当水电站担任系统尖峰负荷并且程度调频任务时,由于负荷经常变动,而且幅度较大,为使每台机组都可以在高效率区工作,则需要更多的机组台数。

另外,机组类型不同,高效率范围大小也不同,台数对电厂平均效率的影响就不同。

对于高效率工作区较窄的,机组台数应适当多一些。

轴流转浆式水轮机,由于单机的效率曲线平缓且高效区宽,台数多少对电厂的平均效率影响不明显;而混流式、轴流定浆式水轮机其效率曲线较陡,当出力变化时,效率变化较剧烈,适当增加台数可明显改善电厂运行的平均效率。

2.4机组台数与水电站运行维护的关系机组台数多,单机容量小,水电站运行方式较灵活机动,机组发生事故停机产生的影响小,单机轮换检修易于安排,难度也小。

但台数多,机组开、停机操作频繁,操作运行次数随之增多,发生事故的几率也随之增高,对全厂检修很麻烦。

同时,管理人员多,维护耗材多,运行费用也相应提高。

故不能用过多的机组台数。

2.5机组台数与其他因素的关系2.5.1机组台数与电网的关系对于区域电网的单机:装机容量较小≯15%系统最大负荷(不为主导电站);装机容量较大≯10%系统容量(系统事故备用容量),因而,单机容量与台数选取不受限制。

2.5.2机组台数与保证出力的关系根据设计规范要求,机组单机容量应以水轮机单机运行时其出力在机组的稳定运行区域范围内确定为原则。

不同型式的水轮机的稳定运行负荷区域如表1。

表2不同型式的水轮机的稳定运行负荷区域2.5.3机组台数与电气主接线的关系对采用扩大单元的电气主接线方式,机组台数为偶数为利。

但由于大型机组主变压器受容量限制,采用单元接线方式,机组台数的奇、偶数就无所谓了。

上述各种因素互相影响,遵循上述原则,并且该水电站装机容量为20万kW,由于2.2万kW<20万kW<25万kW,该水电站为中型水电站,并担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。

综上所述,确定机组台数选择的原则:对大中型水电站,一般选择6—10台;保证在水头低于额定水头时,机组受阻容量尽量小;在可能的情况下尽量选用单机容量较大的水轮机,以降低设备造价。

第三章水轮机主要参数的选择与计算根据水头的变化:最小工作水头192.1m到最大工作水头220m。

同时: .7r/min 11920205200020-2000n s =-==H在水轮机系列型谱表查出合适的机型中选取HL120(7×600MW),HL 110(10×420MW )和HL160(7×600MW)三种类型水轮机。

现将这三种水轮机作为初选方案,分别求出其有关参数,并进行比较分析。

3.1计算水轮机基本参数方案一 HL160(7×600MW) 3.1.1计算转轮直径1D 水轮机额定功率 kW P P ggr 61855797.0600000===η 去最优单位转速.5r/min 67n 110= 与功率限制线交点的单位流量为额定工况的单位流量,则s Q /m 8.603r 11=对应的模型效率895.0=M η。

去效率修正值%3=∆η,则额定工况原型水轮机效率915.003.0895.0=+=∆+=ηηηM P 。

水轮机转轮直径1D 为m H Q P D r r r88.5915.020568.081.961855781.92/32/3111=⨯⨯⨯==η按我国规定的转轮直径系列,且转轮直径取小了不能保证在额定水头下发出额定功率,取大了,不经济且无必要。

根据单机功率和转轮直径,该水轮机属大型机组,故取1D =6m 。

3.1.2计算水轮机效率η 已知:m D M 46.01=;91.00=M η46.9066.40)1.901(1)1(1551100=--=--=P M M P D D ηη 36.001.9046.9000=-=-=∆M P ηηη额定工况原型水轮机的效率为31.9036.0095.80=+=∆+=ηηηM 3.1.3水轮机转速的计算与选择min /.21636.5210.5671w 110r D H n n =⨯==式中 1111M 110n n n ∆+=03.0020.0191.0946.01n n 0011M 11<=-=-=∆M P ηη 符合,不需修正 (1)检验水轮机实际工作范围的校核发电机同步转速的计算公式为 p3000n =n 为发电机同步转速,r/m in ;p 为发电机磁极对数。

磁极对数3000/163.2=18.38, 则磁极对数取18、20。

分别求出min r w max H H H H 、、、下对应的单位转速,如表3所示: 表3 各水头对应单位计算表检查两方案,在模型综合特性曲线图上,第一种方案包含高效率去,且原则上取相近偏大值。

所以确定取第一种方案。

(2)水轮机计算点出力的校核 计算r H 时的出力:r P H >⨯=⨯⨯⨯⨯==kw 106.5631.902058.6061.89Q 9.81D P 5.512.51r 1121ηﻩ 符合要求3.1.4计算水轮机额定流量s Hs /.5m 35020568.6032r 21r 11r =⨯⨯==H D Q Q3.1.5计算最大允许吸出高度s H在额定工况下,模型水轮机的空化系数65.00=M σ。

根据几个装有HL160转轮的电站调查,认为HL160转轮的电站空化系数P σ应大于0.1为好,故空蚀安全系数取K=1.6。

E =2241.5m .8m 13-20565.00.61-900.52241-10-900-10r s =⨯⨯==H K E H M σ3.1.6实际的水轮机额定水头 因不同的D 1、n 与水能预算Hr 有差异.1m 19731.908.6061.896185571.893/223/21121rr =⎪⎭⎫⎝⎛⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=ηQ D P H3.1.7计算水轮机实际额定流量r Qs /.7m 343.119768.6032r 21r 11r =⨯⨯==H D Q Q式中Hr 采用上述(五)中的计算结果。

3.1.8计算飞逸转速R n由HL 160模型水轮机飞逸特性曲线查得,在最大导叶开度下单位飞逸转速为,故水轮机的飞逸转速m in /r 117n 11=Rmin /r 3146220127n n 1max 11=⨯==D H RR 3.1.9计算轴向水推力t F根据表4,HL160的转轮轴向水推力系数6.20~0.20K t =,转轮直径较小、止漏环间隙较大时取大值。

本电站转轮直径较大,但水中有一定含沙量,止漏环间隙应适当大一些,故取03.20K t =。

水轮机转轮轴向水推力为表4 混流式水轮机的轴向水推力系数表N H D 72max 21tt 10487.21220640.6803.20981049810K F ⨯=⨯⨯⨯⨯==3.1.10同理,方案二和方案三的数据也可通过同样的方法和过程查资料计算得出,三种方案所得数据如表5所示:表5 三种方案数据表格3.1.11确定机组方案根据上面列举出来的三种方案数据分析,第三种方案出力比额定小,且实际额定水头比最高水头大,故首先排除。

第一二种方案中,第一种方案效率比第二种高,且第一种方案转速比第二种的高,则其发电机尺寸小,重量轻,一方面可以减少设备的造价,另一方面有利于减小厂房的平面尺寸,降低厂房的土建投资。

第一种方案的出力也比第二种大。

综上所述,最佳方案为第一种方案。

第四章水轮机运转特性曲线的绘制4.1等效率曲线的计算与绘制现取水电站4个水头,列表计算,计算结果如表6所示。

绘制的等效率线详见设计图纸。

表6 HL160型水轮机等效率曲线计算表4.2等吸出高度线的绘制(1)求出各水头下的11n 值,并在相应的模型综合特性曲线上查出11n 水平线与各等气蚀系数σ线的所有交点坐标,读出M η、11Q 、σ的值,并由此计算出η、P,填入表7中(2)利用公式H K EH M s σσ--=90010计算出相应于上述各σ的s H 值,填入表7中。

计算结果如表7所示,绘制的等吸出高度线详见设计图纸。

表7 HL160型水轮机等吸出高曲线计算表第五章 蜗壳设计5.1蜗壳型式选择由于本水电站水头高度范围为192.1—220m,所以采用金属蜗壳。

5.2主要参数蜗壳进口断面的计算金属蜗壳的进口断面型式一般都作成圆形,为钢板制作。

(蜗壳是沿座环圆周焊接在上下碟形边上,由于过流量的减小,蜗壳断面也随之减小,为使小断面能和碟形边相接,在某一包角后均采用椭圆断面)蜗壳进口断面平均速度,根据《水轮机原理与运行》公式(6-5)得9 s H v /m 25.19.1197.650r 0=⨯==α蜗壳的进口流量s Q Q /.2m 334.73433603503603oo r o oo =⨯==ϕ o ϕ为蜗壳包角,对于金属蜗壳一般取o o 360345—,式中取o 350蜗壳的进口断面面积 2017.63625.192.334m v Q F O O ===进口断面的半径mm 15.4336.617oo ===ππρF从轴中心线到蜗壳外缘的半径:m m 5.414928415.3249252o max =⨯+=+=ρa r Ra R ——蜗壳座环外半径,由《混凝土蜗壳座环尺寸系列》(《水力机械》P162)查取座环的外径、内径分别为:m D a 85.9=;m D b 2.8=;m R a 925.4=;m R b 1.4=;k=175mm ;r=500mm 。

相关文档
最新文档