《一元二次方程的应用》课件

合集下载

北师大版九年级上册2.6应用一元二次方程(1)课件(共22张PPT)

北师大版九年级上册2.6应用一元二次方程(1)课件(共22张PPT)
x +(21−x) =15 , 解:设乔治得到x元,则少的一笔钱为(20−x)元.
2 S△ABC= ×AC⋅BC= ×26×8=24,2
面积的一半,由题意得: 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.
解得x =9,x =12. 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
2
2
EF AB BF AB BE 300 2x
三、典例分析
(3)求相遇时补给船航行了多少海里?
解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21−x)cm,依题意有
解: AB BC, AB / / DF , 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
北 如图,某海军基地位于A处,其正南方向200海里处有一个重要目标B,在B的正东方向200海里处有一重要目标C.
四、随堂练习
3.如图,在Rt△ABC中,∠C=90∘,AC=8cm,BC=6cm.点P,Q同时从A,B 两点出发,分别沿AC,BC向终点C移动,它们的速度都是1cm/s,且当其 中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
即: 1×(8−x)×(6−x)= 1 ×24,
2
2
x2−14x+24=0,
(x−2)(x−12)=0,
x1=12(舍去),x2=2. 答:点P,Q出发2秒后可使△PCQ的面积为Rt△ABC面积的一半.
二、探究新知

应用一元二次方程(二)教学课件

应用一元二次方程(二)教学课件
2.列方程解决实际问题的关键是什么? 找等量关系
3.列方程解决实际问题的一般步骤有哪些? (1)设未知数(2)列代数式(3)列出方程 (4)解方程并检验(5)写出答案
4.解法再探究:解法1:设每个台灯涨价x元, (40+x-30)(600-10x)=10 000
解法2:设每个台灯现在售价为x元,
x 30 600 10x 40 10000
(1)你对“售价每上涨1元,其销售量就减少10个”是怎样理 解的?
每上涨2元,其销售量就减少
量就减少
个;
个;每上涨3元,其销售
(2)如果设每个台灯上涨x元,其销售量就减少 ________个; 涨价后的售价为____________元;
涨价后每月的销售量____________个.(含x的代数式)
(二)抓住“三量”:已知量 等量关系 未知量,列方 程解决下列问题:
方法二:如果设每个这种台灯现在售价为x元,则每个台
灯的利润为
元;每个台灯涨价
元;
涨价后平均每月的销售量为
_____个;
可列方程为:
.
分析
另解
解答
四、检测:
1、某商品进价为每件40元,售价为每件50元,每个 月可卖出210件;如果每件商品的售价每上涨1元, 则每个月少卖10件。设每件商品的售价上涨x元, 每件商品的售价定为多少元时,每个月的利润恰 为2200元?
思考:(1)你对“单价每降价2元,商场平均每天多售出4件” 是怎样理解的?这句话涉及了哪些数量或变量之间的关系?
(2)如果没有“扩大销售,减少库存”这个限制条件,假如 你是商场销售部的总经理,应当按哪种降价销售呢?说说 你的理由.
五、课堂小结与反思:
1.到目前为止,都学习了哪些类型的方程或方程组? 一元一次方程,二元一次方程,二元一次方程组, 分式方程,一元二次方程

冀教版九年级数学上册《一元二次方程的应用》PPT教学课件(第1课时)

冀教版九年级数学上册《一元二次方程的应用》PPT教学课件(第1课时)
24.4 一元二次方程的应用
第1课时
学习目标
1 经历用一元二次方程解决实际问题的过程,进一步认识
方程模型的重要性.(难点).
2 掌握面积法建立一元二次方程的数学模型,能运用一元二
次方程解决与面积有关的实际问题.(重、难点)
新课导入
复习交流
(1)列方程解应用题有哪些步骤?
①审题; ②设出未知数;
③列方程;④解方程;
与整个封面长宽比例相同的矩形.如果要使四周的彩色边衬所占面
积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如
何设计四周边衬的宽度?(精确到0.1cm)
分析:这本书的长宽之比 9 : 7 正中央的矩形长宽之
比 9 : 7 ,上下边衬与左右边衬之比 9 : 7 .
设中央长方形的长和宽分别为9a和7a.由此得到上下边衬
得(40-2x)(26-x)= 144×6 ,
整理,得x2-46x+88 = 0,解得x1 = 44, x2 = 2.
因为甬路的宽必须小于
40
2
m,即小于20 m,
我们利用“图形经过移动,它的面积
所以x = 44 不符合题意,舍去,所以x = 2.
大小不会改变”的性质,把纵、横两
答:甬路的宽为2 m.
解:设正方形的边长为 cm,
根据题意,得
(26+2x)(18.5×2+1+2x)=1260.
整理,得x2+32x-68=0.
解这个方程,得1 = 2, 2 = −34(不合题意,舍去).
答:正方形的边长是2 cm.
例3 如图,某小区在一个长为40 m,宽为26 m 的长方形场地ABCD 上
修建三条同样宽的甬路,其中两条与AB 平行,另一条与AD 平行,其余

一元二次方程的应用PPT课件

一元二次方程的应用PPT课件

2、教学目标
知识目标: 能用一元二次方程解决简单的几何 型应用问题。
能力目标: 进一步提高数学建模的能力,培养学 生动手操作、观察归纳能力,培养学 生问题意识能力。
情感目标: 帮助学生体验数学学习活动中的成功 与快乐,使他们认识到数学来源于生 活,在生活中学习数学,学好数学更 好地为生活服务。
3、重难点分析:

又AC=AC (

所以△ABC≌△CDA (

所以: AB=CD,AD=B 平(行四边形的)性质定理:平行四边形 的两组对边分别相等。
❖(1)定义、命题、公理、定理的概 念。
❖(2)命题的真假。
❖(3)命题的形式与命题的题设和结 论。
(4) 说明一个命题是假命题,只需举 一反例

(假)
3、圆的切线垂直于圆的半径。 (假)
4、等腰三角形的底角必是锐角。 (真)
5、正数与负数的和仍是负数。
(假)
6、一个数的平方必是正数。
(假)
7、一个三角形的两个角、一边和另一三角形的两个
角、一边分别相等的三角形全等。
(假)
阅读理解
阅读教材P93第二段及以后的内 容并回答下列内容: ❖ 1、公理与定理有什么区别? ❖ 2、公理与定理有什么相同的? 有什么作用? 3、你能说出一个学过的定理吗?
小考卷2
一、把下面的命题改写成“如果……那 么……”的形式。 1、两直线平行,同旁内角互补。 2、同圆的半径相等。 3、有两个角相等的两个三角形相似。 4、等角的补角相等。 5、圆是轴对称图形,又是中心对称图形。
小考卷3
判断下列命题的真假:
细心!
1、相等的两角是对顶角。 (假)
2、若XY=0,则X=0。

一元二次方程ppt课件

一元二次方程ppt课件
一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。

根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看

一元二次方程的应用-ppt课件

一元二次方程的应用-ppt课件

例1
如图,某小区计划在一块长为 20 m,宽为 12 m

型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余

破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平


题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每

双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数


n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结


解决循环问题,首先确定是单循环还是双循环,即确定

单 每两个元素之间算一次还是算两次,再代入公式列方程求解


2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m

读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题

例 1 某种病毒传播非常快,如果一个人被传染,经过

型 两轮传染后就会有 64 个人被传染.


清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10

《一元二次方程的应用》课件 (同课异构)2022年精品课件

《一元二次方程的应用》课件 (同课异构)2022年精品课件
解:设平均每次下调的百分率为x,由题意,得 5(1-x)2,
解得 x1=20%,x2=1.8 〔舍去〕 ∴平均每次下调的百分率为20%.
〔2〕小华准备到李伟处购置5吨该蔬菜,因数量多, 李伟决定再给予两种优惠方案以供选择:方案一,打 九折销售;方案二,不打折,每吨优惠现金200元.试 问小华选择哪种方案更优惠?请说明理由.
120 120 3. x x2
两边同乘x(x+2),整理,得,
x2+2x-80=0.
解这个方程,得,
x1=-10,x2=8. 经检验x1=-10,x2=8都是原方程的根,但x1=-10不
符合题意,所以取x=8.
答:原来这组学生是8人.
方法点拨
解分式方程应用题时,所得根不仅要检验根是 否为增根,还要考虑它是否符合题意.
讲授新课
一 平均变化率问题与一元二次方程
探究归纳
填空:
1. 前年生产1吨甲种药品的本钱是5000元,随着生产
技术的进步,去年生产1吨甲种药品的本钱是4650 元,
那么下降率是7% .如果保持这个下降率,那么现
在生产1吨甲种药品的本钱是
元.
下降率= 下降前的量-下降后的量 下降前的量
2. 前年生产1吨甲种药品的本钱是5000元,随着生产 技术的进步,设下降率是x,那么去年生产1吨甲种药品 的本钱是5000(1-x) 元,如果保持这个下降率,那么 现在生产1吨甲种药品的本钱5是000(1-x)2 元.
解:设正方体的棱长为x㎝,那么x 3 27, 这就是要求一个数,使它的立方等于27. 因为 33 2 7 , 所以 x=3. 正方体的棱长为3㎝.
想一想 (1)什么数的立方等于-8? -2 (2)如果问题中正方体的体积为5cm3,正方体的边长又

《应用一元二次方程》一元二次方程演示课件 PPT

《应用一元二次方程》一元二次方程演示课件 PPT

思考:这个问题设什么为x?有几种设法?
思考:(1)若设年平均增 (1)某公司今年的销售收入是a万元,如果每年的增长率都是x,那么一年后的销售收入将达到____ _ _万元(用代数式表示)
892(1+x)2=2083
长率为x,你能用x的代 1254(1+y)2=3089
上网计算 思考:(1)若设年平均增长率为x,你能用x的代数式表示2002年的台数吗?
1月1日 12月31日 12月31日 12月31日 12月31日
问题1:截止2000年12月31日,我国的上网计算机 总台数为892万台;截止2002年12月31日,我国的 上网计算机总台数为2083万台;
(1)求2000年12月31日至2002年12月31日我国计 算机上网总台数的年平均增长率(精确到0.1%)
解 2第、二关章键之一处元:二分次析方题程解意,方找出程等量并关系检,列验出方根程。的准确性及是否符合实际意义并作答。
练一练:
某单位为节省经费,在两个月内将开支从 每月1600元降到900元,求这个单位平均每 月降低的百分率是多少?
练一练:
某校坚持对学生进行近视眼的防治,近视学生 人数逐年减少.据统计,今年的近视学生人数是 前年人数的75℅,那么这两年平均每年近视学 生人数降低的百分率是多少(精确到1℅)?
(2) 上网计算机总台数2001年12月31日至2003年12月31日与2000 年12月31日至2002年12月31日相比,哪段时间年平均增长率较大?
2001年12月31日总台数为1254万台, 2003年12月31日总台数为3089万台
(2)解:设2001年12月31日至2003年12月31日上网计 算机总台数的年平均增长率为y,由题意得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解这个方程, 得 x1 4, x2 24(不合题意, 舍去).
答 : 小路的宽为4m.
练一练
1.一块长和宽分别为60厘米和40厘米的长方形铁皮,
要在它的四角截去四个相等的小正方形,折成一个无
盖的长方体水槽,使它的底面积为800平方厘米.求截去 正方形的边长.
x
60-2x 40-2x
800cm2
回顾复习
一般地,对于一元二次方程
当b 2 4ac 0时, 它的根是 :
b b 2 4ac 2 x . b 4ac 0 . 2a
ax2+bx+c=0(a≠0)


上面这个式子称为一元二次方程的求根公式 . 用求根公式解一元二次方程的方法称为公式法 注意:用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
为18厘米和12厘米的长方形相片周围镶上一圈等
2 宽的彩纸.经试验,彩纸面积为相片面积的3时较
美观,求镶上彩纸条的宽. (精确到0.1厘米)
解 : 设彩纸条的宽为xcm ,根据题意, 得 2 (18 2x)(12 2x) 18 12 18 12. 3 2 整理得 x 15x 36 0.
12m 16m xm
解 : 设扇形的半径为xm, 根据题意得 16 12 2 x . 2 即x 2 96. 解这个方程, 得 96 x1 x2 5.5.其中x 5.5不合题意, 舍去. 答 : 扇形的半径约为5.5m.
பைடு நூலகம்计方案
你还有其它的设计方案吗?
16m 12m
小结

拓展
本节课通过对矩形花园的设计,你复习了哪些旧 知识呢? 列方程解应用题步骤: 一审; 二设; 三列; 四解; 五验。

12m
我的设计方案如图所示.其中花园四周小路的宽都相等. 通过解方程,我得到小路的宽为2m或12m.
你认为小明的结果对吗?为什么? 你能将小明解答的过程重现吗? 16m
设计方案
解 : 设小路的宽为xm, 根据题意得 16 12 16 2 x 12 2 x . 2 2 即x 14 x 24 0. 解这个方程, 得
解:设截去的小正方形边长 为xcm, 根据题意, 得
(60 2 x)(40 2 x) 800.
解这个方程, 得:
x1 10; x2 40(不合题意, 舍去).
答:截去的小正方形的边长为10cm.
x
60-2x 40-2x
800cm2
2.学生会准备举办摄影展览, 在每张长和宽分别
解 : 设彩纸条的宽为xcm ,根据题意, 得 2 (18 2x)(12 2x) 18 12 18 12. 3 2 整理得 x 15x 36 0. 解这个方程, 得 15 3 41 x1 2.1; 2 15 3 41 < 0(不合题意, 舍去). x2 2 答: 彩纸条宽度约为2.1 cm.
一元二次方程的应用
回顾复习
我们通过配成完全平方式的方法,得到了一元二次方 程的根,这种解一元二次方程的方法称为配方法
用配方法解一元二次方程的步骤: 1.化1:把二次项系数化为1(方程两边都除以二次项系 数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
回顾复习
当一元二次方程的一边是0,而另一边易于分解成两 个一次因式的乘积时,我们就可以用分解因式的方法 求解.这种用分解因式解一元二次方程的方法你为分 解因式法.
思考与设计
在一块长16m,宽12m的矩形土地上,要建造一个花园, 并使花园所占面积为矩形土地面积的一半.
16m
你能给出设计方案吗?
设计方案
我的设计方案如图所示.其中花园是两条互相垂直的 小路,且它的宽都相等. 你能通过解方程,帮我 16m 得到小路的宽x是?m吗? 解 : 设小路的宽为xm, 根据题意得
16 12 16 x 12 x . 2 即x 2 28x 96 0.
12m xm xm
老师提示:在检验时,方程 x1 2, x2 12(不合题意, 舍去). 的根一定要符合问题的实 际意义.否则,舍去.
答 : 小路的宽为2m.
12m
设计方案
我的设计方案如图所示.其中花园每个角上的扇形都相 同.你能通过解方程,帮我得到扇形的半径x是?m吗? 你能通过解方程,帮我得 到扇形的半径x是?m吗?
相关文档
最新文档