线性代数-北京邮电大学出版社-戴赋祥

合集下载

1-1二阶与三阶行列式

1-1二阶与三阶行列式
0,
如果三元线性方程组
a 11
的系数行列式
D a 21 a 31
a 11 D a 21 a 31 a 11 D 2 a 21 a 31
a 12 a 22 a 32 b1 b2 b3
a 13 a 23 a 33 a 13 a 23 , a 33
b1 D 1 b2 b3 a 11 D 3 a 21 a 31
定义
设有 9 个数排成 a 11 a 21 a 12 a 22 a 32 3 行 3 列的数表 a 13 a 23 a 33 (5)

a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33
a 31
a 11 a 22 a 33 a 12 a 23 a 31 a 13 a 21 a 32
若记 系数行列式
D
a 11 a 21
a 12 a 22
,
a 11 x 1 a 12 x 2 b1 , a 21 x 1 a 22 x 2 b 2 .
D1
b1 b2
a 12 a 22
,
a 11 x 1 a 12 x 2 b1 , a 21 x 1 a 22 x 2 b 2 .
D2
a 11 a 21
b1 b2
.
则二元线性方程组的解为
b1 x1 D1 D b2 a 11 a 21 a 12 a 22 a 12 a 22 , x2 D2 D a 11 a 21 a 11 a 21 b1 b2 a 12 a 22 .
注意
分母都为原方程组的系数行列式.
二、三阶行列式
(4)
4)所确定的二阶 (5)
行列式,并记作

线性代数及应用PPT课件

线性代数及应用PPT课件

上列各式出现的运算皆可行的前提是:矩阵的维数满 足运算要求。
证明矩阵乘法结合律:(AB)C=A(BC)=ABC 证:设

证明DC=AG。 因为 元为:
A的 i 行乘以B的 l 列

, 则DC的第i,j
得到DC的第i,j元等于AG的第i,j元。
证明 (AB)T =BTAT
证:


剩下的要证明它们的第i, j元都对应相等。设
通大学出版社
第一章 矩阵
§1.1 矩阵概念 1.1.1 矩阵概念 定义1 m × n元,排成m行n列的矩形阵列:
称作为:维是m × n的矩阵。 一般用黑体大写字母 A,B,C等表示。
简记为:
确定一个矩阵的两要素:
1.元:a ij 的值; 2.维:m,n的值。
矩阵的例: 问题:A的元和维是什么?
广矩阵进行一系列行初等变换,使得
R1R2 ••• R s [A |b]= [R1R2 ••• R s A | R1R2 ••• R s b ]=[ I n | Rb ]
(R= R1R2 ••• R s)。事实上R=A-1
可见只要将增广矩阵中A对应的那一块通过行初等变换化成 单位阵,对应b的那一块变成Rb= A-1 b,即
1.1.2 一些特殊矩阵 对于矩阵
本课程仅限于实矩阵。
n阶方阵:m=n时的矩阵,
a11 a12 a1n
A
a21 a22 a2n
或 An n
an1 an2 ann
列矩阵(列向量):n=1,
行矩阵(行向量):m=1,
数或标量:m=n=1。 向量的元称为分量,分量的个数称为向量的维。
例:
分别是3维列向量和4维行向量。
学习参考书目

线性代数北京邮电大学出版社§2.4

线性代数北京邮电大学出版社§2.4
返回 上页 下页
结束
λx2 + 2x3 =1 λx1 + ) 3x3 =1 例2 问线性方程组 λx1 +(2λ −1 x2 + λx1 + λx2 +(λ +3)x3 = 2λ −1 中λ 取何值时, 方程组无解, 有唯一解 或有无穷多解. 解法2 解法 . 对增广矩阵作行初等变换
分析: 分析 对应齐次方程组基础解系含 4 – 2 = 2 个解向量,
备用题
−1 0 r r r r 2 x − x = 1 x1 −x3 = , 2 3 1 0 1 2 为对应齐次方程的解, 且线性无关
返回 上页 下页 结束
返回
上页
下页
结束
r2 ÷3 1 −2 5 12 5 7 10 0 1 −3 −3 − 3 0 0 0 0 0
1 0 1 −1 − 5 3 3 3 r +2r2 1 0 1 − 7 − 2 −10 3 3 3 0 0 0 0 0
ቤተ መጻሕፍቲ ባይዱ
R(A) = A(A) = 2 < 4
解: 对增广矩阵作初等行变换 1 −2 5 1 5 r −r 1 −2 5 1 5 2 −1 3 0 0 3 1 0 3 −7 −2 −10 A= 1 −5 12 3 15 r2 −2r 0 −3 7 2 10 1 r +r2 1 −2 5 1 5 3 0 3 −7 −2 −10 0 0 0 0 0
r r Ax = b的通解为
齐次方程通解 非齐次方程特解
作业: P97 11(2),(3);
12
返回 上页 下页 结束
1 0 1 r 2 r 1 r 0 设A为3×4 矩阵, 秩(A) = 2, x1 = , x2 = , x3 = 0 1 0 3 2 1 r r r r 是方程组 Ax = b (b ≠ 0)的三个特解, 则它的通解为 r r r r r r x = x1 +C1(x1 − x2) +C2(x1 − x3)

线性代数1-01 逆序数-行列式定义

线性代数1-01 逆序数-行列式定义

a11 b1 D2 = . a21 b2
⎧a11 x1 + a12 x2 = b1 , ⎨ ⎩a21 x1 + a22 x2 = b2 .
b1 D1 = b2
a12 , a22
⎧a11 x1 + a12 x2 = b1 , ⎨ ⎩a21 x1 + a22 x2 = b2 .
a11 b1 D2 = . a21 b2
暨南大学环境工程系
线性代数
曹 刚
教学目标及教学要求
线性代数是环境工程和环境科学专业学生的基 础课,也是一门重要的数学基础理论课。 提高学生的综合数学素质,为后继课程学习提 供必备的数学工具,为进一步获得现代科学技 术知识奠定必要的数学基础。 通过本课程的学习,掌握线性代数的基本概 念,基本原理和基本方法,培养概括问题的能 力,逻辑推理能力,抽象思维能力,并在此基 础上运用线性代数这一工具解决理论上和实际 中的问题。
则二元线性方程组的解为
b1 a12 D1 b2 a22 x1 = = , D a11 a12 a21 a22
a11 b1 D2 a21 b2 x2 = = . D a11 a12 a21 a22
注意
分母都为原方程组的系数行列式.
例1 求解二元线性方程组
⎧ 3 x1 − 2 x2 = 12, ⎨ ⎩ 2 x1 + x2 = 1.
排列的逆序数 对于n 个不同的元素,可以规定各元素之间 有一个标准次序。 一般情况, n 个不同的自然 数,规定由小到大为标准次序. 定义 在一个排列 (i1 i 2 L i t L i s L i n ) 中,若数 i t > i s 则称这两个数组成一个逆序.
例如 排列32514 中, 逆序

《线性代数》课程教学大纲

《线性代数》课程教学大纲

《线性代数》课程教学大纲Linear Algebra—、课程基本信息二、教学目标本课程以应用型人才的培养计划为LI标,以提高学生的数学素质、掌握线性代数的基本思想方法、基本讣算方法与培养学生的数学应用创新能力为教学LI标。

同时为学习后继课程和自我更新奠定必要的数学基础。

(一)知识LI标线性代数将使学生获得行列式、n维向量、矩阵、线性方程组、特征值和特征向量、二次型等相关的基本知识,同时接受基本运算技能的训练,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的数学基础。

(二)能力LI标线性代数培养学生抽象思维能力和逻辑推理的理性思维能力,综合运用所学知识分析问题和解决问题的能力以及较强的自主学习能力,进而培养学生的创新意识和能力。

(三)素质□标随着社会的发展,线性代数的内容更为丰富、方法更为综合、应用更为广泛。

线性代数不仅是一种工具,而且是一种思维模式;它不仅是一种知识, 而且是一种素养;它不仅是一种科学,而且是一种文化。

本课程将培养学生的思维能力、数学素养及数学文化,在应用型高素质人才培养中起到不可替代的作用。

培养学生科学思维的能力。

为今后学习各类后继课程和进一步扩大数学知识面奠定必要的数学基础。

三、基本要求本课程是理工等学科各专业的一门重要基础理论课程。

要求学生掌握行列式、n 维向量、矩阵、线性方程组、特征值和特征向量、二次型等基本知识和基本计算方法, 并能利用所学知识解决一些实际问题。

(-)了解克莱姆法则及应用;向量组线性相关、线性无关的有关性质及判别法; 初等矩阵的性质和矩阵等价的概念;线性方程组的基本概念;二次型秩的概念、二次型的标准型的概念及惯性定理。

(二)理解矩阵的等价、相似与合同,矩阵的初等变换和秩;向量的线性相关性, 极大无关组与向量组的秩;齐次线性方程组的基础解系,线性方程组的通解:矩阵的特征值与特征向量,矩阵的相似对角化;二次型与标准形。

(三)掌握矩阵与行列式的运算;向量组线性相关性的判定,向量组的极大无关组和秩的计算;线性方程组的解法;矩阵的特征值与特征向量的计算,矩阵的相似对角化的判定;化二次型为标准形的方法。

线性习题答案解析(1)线性代数答案解析北京邮电大学出版社戴斌祥主编

线性习题答案解析(1)线性代数答案解析北京邮电大学出版社戴斌祥主编

线性代数习题及答案习题一 (A 类)1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2.【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n1)…3·2·1)= 0+1+2 +…+(n1)=(1)2n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1).2. 求出j ,k 使9级排列24j157k98为偶排列。

解:由排列为9级排列,所以j,k 只能为3、6.由2排首位,逆序为0,4的逆序数为0,1的逆序数为3,7的逆序数为0,9的为0,8的为1.由0+0+3+0+1=4,为偶数.若j=3,k=6,则j 的逆序为1,5的逆序数为0,k 的为1,符合题意;若j=6,k=3,则j 的逆序为0,5的逆序数为1,k 的为4,不符合题意. 所以j=3、k=6.3. 写出4阶行列式中含有因子2234a a 的项。

解:D 4=1234()11223344(1)j j j j j j j j a a a a τ-由题意有:232,4.j j ==故1234141243243241j j j j j j ⎧==⎨⎩ D 4中含的2234a a 项为:(1243)(3241)1122344313223441(1)(1)a a a a a a a a ττ-+-即为:1122344313223441a a a a a a a a -+4. 在6阶行列式中,下列各项应带什么符号? (1)233142561465a a a a a a ;解:233142561465142331425665a a a a a a a a a a a a = 因为(431265)6τ=,(431265)6(1)(1)1τ-=-=所以该项带正号。

线性代数教学大纲(本科)

线性代数教学大纲(本科)

“线性代数”课程教学大纲课程编号:学时:72学时(含课外学时)学分:4 分适用对象:经济、计算机、环境、蒙文信息处理等专业先修课程:初等数学考核要求:闭卷使用教材及主要参考书:戴斌祥主编,《线性代数》,北京邮电大学出版社,2009年同济大学数学系主编,《线性代数》,高等教育出版社,2007年一、课程的性质和任务《线性代数》是我校本科各专业一门必修专业基础科,它内容较丰富,学时较多。

其任务是既要为各专业后续课程提供基本的数学工具,又要培养学生应用数学知识解决本专业实际问题的意识与能力。

二、教学目的与要求线性代数是讨论有限维空间线性理论的一门学科,它的理论和问题的处理方法是许多非线性问题处理方法的基础,且广泛地应用于各学科的领域中。

本课程以线性方程组解的讨论为核心内容介绍行列式、矩阵理论、向量的线性相关性、线性方程组、二次型的理论及其有关知识。

通过本课程的教学,使学生掌握线性代数的基本概念,了解其基本理论和方法从而使学生初步掌握线性代数的基本思想和方法,培养学生运用线性代数的方法分析和解决实际问题的能力。

三、学时分配章节课程内容学时1 n阶行列式142 矩阵163 n维向量与向量空间184 线性方程组125 矩阵的特征值与二次型12四、教学中应注意的问题《线性代数》是一门高度抽象数学课程,在教学过程中应以启发式讲授为主,要着力培养学生抽象思维能力,要使学生丢弃三维直观空间的习惯束缚,逐步建立n维空间的概念;还要着力培养学生的科学计算能力,使学生熟练掌握教材中所给出的各种解题的一般方法。

在教学中,应注意我校学生的实际,不过分追求学科的数学性、完整性,比如可适当弱化定理性质的抽象证明、弱化各种解题技巧、适当删减实用性较差的内容。

五、教学内容第一章:行列式1.基本内容1.1 全排列及逆序数1.2 n阶行列式的定义1.3 对换1.4 行列式的性质1.5 行列式按行(列)展开1.6 克拉默(Cramer)法则2.教学基本要求:⑴理解n阶行列式的定义,能运用定义计算具有特殊形状的n阶行列式;⑵理解并熟练掌握n阶行列式的基本性质,能熟练运用化三角形法计算纯数字行列式和简单的字母行列式;⑶理解并熟练掌握n阶行列式的一行一列展开公式,能熟练运用依一行(列)展开法计算纯数字行列式和稍复杂些的字母行列式;⑷掌握Gramer法则的条件、结论,能熟练运用它求解特殊的n元线性方程组。

工程数学线性代数第六版第一章

工程数学线性代数第六版第一章

法3: (i1 , i2 ,, in )
数 i 前面比 i 大的数的个数
n
n
数 in1 前面比 in1 大的数的个数
数 i 前面比 i 大的数的个数
2
2
例1: 求排列 3,2,5,1,4 的逆序数。
解:(法1) m1 3, m2 1, m3 0, m4 1, m5 0
(32514) 3 1 1 5
(法2) 前 后
(32514) 2 1 2 0 0 5
(法3) 后 前
(32514) 1 3 0 1 0 5
例2: 求排列 4,5,3,1,6,2 的逆序数。 9
考虑,在 1,2,3 的全排列中
有 3 个偶排列: 有 3 个奇排列:
123,231,312 132,213,321
“代数”这一个词在我国出现较晚,在清代时才传入中国, 当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数 学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至 今。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的 一门学科。
主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法) 则早在两千年前出现(见于我国古代数学名著《九章算术》)。
一般说来,在n个数码的全排列中,奇偶排列各占一半
定义3: 把一个排列中的任意两个数交换位置,其余数码 不动,叫做对该排列作一次对换,简称对换。
将相邻的两个数对换,称为相邻对换。
定理1: 对换改变排列的奇偶性。 证明思路: 先证相邻变换,再证一般对换。
定理2: n 2 时,n个数的所有排列中,奇偶排列各占 一半,各为 n! 个。 2
a a a 其任一项可写成: 1 j1 2 j2 3 j3

线性代数北京邮电大学出版社戴斌祥主编习题答案

线性代数北京邮电大学出版社戴斌祥主编习题答案

线性代数习题及答案(北京邮电大学出版社?戴斌祥主)编习题一 (A 类)1. 求下列各排列的逆序数.(3) n (n ?1)…321; (4) 13…(2n ?1)(2n )(2n ?2)…2. 【解】(1) τ (2) τ(3) τ(n (n ?1)…3·2·1)= 0+1+2 +…+(n ?1)=(1)2n n -; (4) τ(13…(2n ?1)(2n )(2n ?2)…2)=0+1+…+(n ?1)+(n ?1)+(n ?2)+…+1+0=n (n ?1). 2. 求出j ,k 使9级排列24j157k98为偶排列。

解:由排列为9级排列,所以j,k 只能为3、6.由2排首位,逆序为0,4的逆序数为0,1的逆序数为3,7的逆序数为0,9的为0,8的为1.由0+0+3+0+1=4,为偶数.若j=3,k=6,则j 的逆序为1,5的逆序数为0,k 的为1,符合题意;若j=6,k=3,则j 的逆序为0,5的逆序数为1,k 的为4,不符合题意. 所以j=3、k=6.3. 写出4阶行列式中含有因子2234a a 的项。

解:D 4=1234()11223344(1)j j j j j j j j a a a a τ-由题意有:232,4.j j ==故1234141243243241j j j j j j ⎧==⎨⎩ D 4中含的2234a a 项为:(1243)(3241)1122344313223441(1)(1)a a a a a a a a ττ-+-即为:1122344313223441a a a a a a a a -+4. 在6阶行列式中,下列各项应带什么符号? (1)233142561465a a a a a a ;解:233142561465142331425665a a a a a a a a a a a a = 因为(431265)6τ=,(431265)6(1)(1)1τ-=-=所以该项带正号。

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

= 10 ⋅ (−1)
1 1 1 −1 1 1 1 1 1 1
⋅1⋅ 2L 8 ⋅ 9 = 10!
11、
1 1 1 1 1 第2行 − 第1行 1 0 −2 0 0 第3行 − 第1行 = 1*(−2)3 = −8 −1 1 0 0 −2 0 第4行 − 第1行 1 −1 0 0 0 −2
12、该行列式中各行元素之和均为 10,所以吧第 2,3,4 列加到第 1 列,然后再把第 1 列 后三个元素化为零,再对第 1 列展开,即
1 0 0
18、 A = 1 2
0 = 1* 2*3 = 3!,
1 2 3
0 0 B =0
0 0 0
0 0
0 −1 −2 0 0 = (−1) 0 0 0 0
−3 0
5(5 −1) 2
(−1)(−2)(−3)(−4)(−5) = −5!
0 −4 0 −5 0 0
所以
* B
A = (−1)3*5 | A || B |= −3!5! 0
1 a2 可以看出, M 42 = (ab + bc + ca)M 44 ,即 1 b 2 1 c2
1 0 2 a a 0 2 1 a 2 0 b 0 第1,列 4 0 0 b 2 第2, 3行 5 23、 − 3 c 4 5 对换 5 c 4 3 对换 0 d 0 0 0 0 0 0 d 0
a3 1 a a2 b3 = (ab + bc + ca) 1 b b 2 ,得证. c3 1 c c2
所以n2n原式由公式得22n为阶范德蒙行列式nn原式n又1an所以原式31系数行列式njiij100110114220对换114220对换11145130110101112042204211111110114行1201111001111010113行112114行4120对换101110111121412053421001415d410110113210对换014321对换10145145110110011032102143110104行11101114行所以32系数行列式01111011101101011110112行对换011101110100110101001111101111101101014111001110410030010第5行第4行第4行第3行第3行第2行第2行第1行120110000101511121第1行第5行10074第1行第3行111010101000第1行第4行110第1行第2行01111112111410115110第5行第4行第4行第3行第3行第2行第2行第1行0111001101010100111按第1列展开17按第4列44展开14011510第5行第4行第4行第3行第3行第2行第2行第1行1010100001110111100按第1列展开1113按第1列展开01111101111214111150第5行第4行第4行第3行第3行第2行第2行第1行0101000011110101111按第1列0110展开101按第1列展开01111011111241105第5行第4行第4行第3行第3行第2行第2行第1行01010000110111111按第1列展开001101110115按第1列展开所以d4d4d4d4d433因为齐次线性方程组有非零解所以其系数行列式即2111aa1b第2行第1行第3行第1行第4行第1行110100所以34设直线方程由于直线过点所以2

线性代数_北京邮电大学出版社(戴斌祥_主编)习题答案(3、4、5)

线性代数_北京邮电大学出版社(戴斌祥_主编)习题答案(3、4、5)

习题 三(A 类)1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α.解:由3(α1-α)+2(α2+α)=5(α3+α) 整理得:α=16(3α1+2α2-5α3),即α=16(6,12,18,24) =(1,2,3,4)3.(1)× (2)× (3)√ (4)× (5)×4. 判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2) α1=(1,2), α2=(2,3), α3=(4,3);(3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关.5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设112123123()()0,k k k αααααα+++++=即123123233()()0.k k k k k k ααα+++++=由123,,ααα线性无关,有1232330,0,0.k k k k k k ++=⎧⎪+=⎨⎪=⎩ 所以1230,k k k ===即112123,,αααααα+++线性无关.6.问a 为何值时,向量组'''123(1,2,3),(3,1,2),(2,3,)a ααα==-=线性相关,并将3α用12,αα线性表示.解:1322137(5),32A a a=-=-当a =5时,312111.77ααα=+7. 作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵. 解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关,所以(1,0,0,0)可作为方阵的一个行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,0)线性无关,所以(1,0,0,1)可作为方阵的一个行向量.所以方阵可为1010110010001001⎛⎫⎪-⎪⎪⎪⎝⎭.8. 设12,,,s ααα的秩为r 且其中每个向量都可经12,,,r ααα线性表出.证明:12,,,r ααα为12,,,s ααα的一个极大线性无关组.【证明】若 12,,,r ααα (1)线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,sααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.9. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.10. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0).11. 求下列向量组的秩与一个极大线性无关组. (1) α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);(2) α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);(3) α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α5=(2,1,5,6). 解:(1)把向量组作为列向量组成矩阵Α,应用初等行变换将Α化为最简形矩阵B ,则1114110141141913951115409500000036701810000000A B ⎛⎫-⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪=→→→= ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪----⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎝⎭52 0 50 0 99 可知:R (Α)=R (B )=2,B 的第1,2列线性无关,由于Α的列向量组与B 的对应的列向量有相同的线性组合关系,故与B 对应的Α的第1,2列线性无关,即α1,α2是该向量组的一个极大无关组. (2)同理,61701714010810111201201312438⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 1 -1 55 2 -9 0 4 40 - 55 7 -9 -9 0 -8 40 1 -6 0 5 -15 -10 5 -15 22 0 40 1111010101⎛⎫ ⎪ ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭⎛⎫⎪⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭-10 0 0 0 2 -9 07 2 -9 0 0 0 0 -5 -11 -5 0 0 0450 0 0 -0 0 10 00 0 1 0110 0 0 10 0 0 240 0 10 0 0 0 0110 0 0 0B⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭10 0 0 0 可知R(Α)=R(B)=4,Α的4个列向量线性无关,即α1,α2,α3,α4是该向量组的极大无关组. (3)同理,A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 0 3 1 2 1 0 3 1 2 1 0 3 1 2 1 0 3 1 2-1 3 0 -1 10 3 3 0 30 1 1 0 10 1 1 0 12 1 7 2 50 1 1 0 10 0 0 -4 -40 0 0 1 14 2 14 0 60 2 2 -4 -20 0 0 0 00 ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭0 0 0, 可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组的一个极大无关组.12.求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示. (1) α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);(2) α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7). 解:(1)以向量组为列向量组成Α,应用初等行变换化为最简形式.11111100101A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3 -1 5 -1 0 11 - 5 -1 -1 5 -127 -2 3 2 -7 47 - 2 - 2223 -1 8 10 2 -7 40 0 0 00 0 0 01 3 -9 70 4 -14 8 0 0 0 00 0 0 0B ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭, 可知,α1,α2为向量组的一个极大无关组.设α3=x 1α1+x 2α2,即12121212523839x x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪+=-⎩解得,1237,22x x ==-设α4=x 3α1+x 4α2,即12121212133137x x x x x x x x -=-⎧⎪+=⎪⎨-=⎪⎪+=⎩解得,121,2x x ==所以31241237,2.22a a a a a a =-=+(2)同理, 1111111A B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=→→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 1 4 -3 1 1 4 -3 1 02 1 -21 -3 -2 -10 -2 2 -6 20 -1 3 -12 3 5 -50 - 1 -3 10 0 0 0 03 5 6 -70 -2 2 -6 20 0 0 0 0 可知, α1、α2可作为Α的一个极大线性无关组,令α3=x 1α1+x 2α2 可得:121213x x x x +=⎧⎨-=⎩即x 1=2,x 2=-1,令α4=x 3α1+x 4α2,可得:121242x x x x +=⎧⎨-=-⎩即x 1=1,x 2=3,令α5=x 5α1+x 6α2,可得:121231x x x x +=-⎧⎨-=-⎩即x 1=-2,x 2=-1,所以α3=2α1-α2α4=α1+3α2,α5=-2α1-α213. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.14. 设向量组α1,α2,…,αs 的秩为r 1,向量组β1,β2,…,βt 的秩为r 2,向量组α1,α2,…,αs ,β1,β2,…,βt 的秩为r 3,试证:max{r 1,r 2}≤r 3≤r 1+r 2. 证明:设αs1,…,1r S α为α1,α2,…,αs 的一个极大线性无关组, βt1,βt2,…,2r t β为β1, β2,…,βt 的一个极大线性无关组. μ1,…,3r μ为α1, α2,…,αs ,β1,β2,…,βt 的一个极大线性无关组,则αs1, …,1r S α和βt1,…,βtr2可分别由μ1,…,3r μ线性表示,所以,r 1≤r 3,r 2≤r 3即max{r 1,r 2}≤r 3,又μ1,…,3r μ可由αs1, …,αsr1,βt1,…,βtr2线性表示及线性无关性可知:r 3≤r 1+r 2.15. 已知向量组α1=(1,a ,a ,a )′,α2=(a ,1,a ,a )′,α3=(a ,a ,1,a )′,α4=(a ,a ,a ,1)′的秩为3,试确定a 的值.解:以向量组为列向量,组成矩阵A ,用行初等变换化为最简形式:1113110a a a a a a a a a a a a a a a a a a a a a a a a a a a a +⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-1 0 0 1- 0 0 1 -1 0 1- 00 0 1- 0 1-1 0 0 1-0 0 0 1- 由秩A=3.可知a ≠1,从而1+3a =0,即a =-13.16. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.17. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++x x x =0}是否构成向量空间?为什么?【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++= 所以11,V k V +∈∈αβα,故1V 是向量空间.18. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3. 【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.19. 求由向量12345(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1),(4,5,6,4)=====ααααα所生的向量空间的一组基及其维数. 【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα ∴124,,ααα是一组基,其维数是3维的.20. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.21. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε22. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.(B 类)1.A2.B3.C4.D5.a=2,b=46.a bc ≠07.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问: (1) α1能否由α2,α3线性表示?证明你的结论. (2) α4能否由α1,α2,α3线性表示?证明你的结论.解:(1)由向量组α1,α2,α3线性相关,知向量组α1, α2, α3的秩小于等于2,而α2, α3,α4线性无关,所以α2, α3线性无关,故α2, α3是α1, α2, α3的极大线性无关组,所以α1能由α2, α3线性表示.(2)不能.若α4可由α1,α2,α3线性表示,而α2,α3是α1,α2,α3的极大线性无关组,所以α4可由α2,α3线性表示.与α2,α3,α4线性无关矛盾.8.若α1,α2,…,αn,αn+1线性相关,但其中任意n个向量都线性无关,证明:必存在n+1个全不为零的数k1,k2,…,k n,k n+1,使k1α1+k2α2+…+k n+1αn+1=0.证明:因为α1,α2,…,αn,αn+1线性相关,所以存在不全为零的k1,k2,…,k n,k n+1使k1α1+k2α2+…+k n+1αn+1=0若k1=0,则k2α2+…+k n+1αn+1=0,由任意n个向量都性线无关,则k2=…=k n+1=0,矛盾.从k1≠0,同理可知k i≠0,i=2, …,n+1,所以存在n+1个全不为零的数k1,k2,…,k n,k n+1,使k1a1+k2a2+…+k n+1a n+1=0.9. 设A是n×m矩阵,B是m×n矩阵,其中n<m,E为n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.证明:由第2章知识知,秩A≤n,秩B≤n,可由第2章小结所给矩阵秩的性质,n=秩E≤min{秩A,秩B}≤n,所以秩B=n,所以B的列向量的秩为n,即线性无关.习题四(A类)1. 用消元法解下列方程组.(1)12341241234123442362242322312338;x x x x,x x x,x x x x,x x x x+-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩(2)1231231232222524246;x x x,x x x,x x x++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②-①×2得 x2-2x 3=0③-① 得 2x 3=4 得同解方程组233 24x ⎨⎪=⎩由⑥得 x 3=2, 由⑤得 x 2=2x 3=4,由④得 x 1=2-2x 3 -2x 2 = -10, 得 (x 1,x 2,x 3)T =(-10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2)1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4)123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A得同解方程组1323123232333723,23201,202,x x x x x x x x x x x x x ⎧=--=-⎪++=⎪⎧⇒⎨⎨=-=⎩⎪⎪=⎩得基础解系为T71122⎛⎫- ⎪⎝⎭. (2) 系数矩阵为32213142413211511151112302743181027413970414811510274() 2.00000000r r r r r r r r r r r ---------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A A∴ 其基础解系含有4()2R -=A 个解向量.1342123434342343344331225077222227400110x x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+-=-⎧⎢⎥⎢⎥⎢⎥-⎢⎥⇒==+⎨⎢⎥⎢⎥⎢⎥-+=⎢⎥⎩⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦基础解系为31272,.20110⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(3)213132232112271122723450010114356800202211122701011400007r r r r r r ---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥−−−→-⎢⎥⎢⎥⎣⎦A得同解方程组12345245552270,140,700.x x x x x x x x x x ++++=⎧⎪+-=⎨⎪=⇒=⎩取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得基础解系为(-2,0,1,0,0)T ,(-1,-1,0,1,0).(4) 方程的系数矩阵为2131322312221122211213200111247110033312221()2,0011100000r r r r r r R --+----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦--⎡⎤⎢⎥−−−→=-⎢⎥⎢⎥⎣⎦A A∴ 基础解系所含解向量为n -R (A )=5-2=3个取245x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为自由未知量 245010,,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得基础解系 324010,,.101001100--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 解下列非齐次线性方程组.(1) 123123121232122423442;x x x ,x x x ,x x ,x x x ++=⎧⎪-+=⎪⎨-=⎪⎪++=⎩ (2) 12341234123421422221;x x x x ,x x x x ,x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩(3) 123412341234212125;x x x x ,x x x x ,x x x x -++=⎧⎪-+-=-⎨⎪-++=⎩ (4) 12345123452345123457323222623543312x x x x x ,x x x x x ,x x x x ,x x x x x .++++=⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=⎩【解】(1) 方程组的增广矩阵为32213142414324121121112121240322()120303224142034211211121032203220000001200240000r r r r r r r r r r r r ------↔⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥−−−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦A b得同解方程组3123323231232,21223222,3212 1.x x x x x x x x x x x x =⎧++=⎧⎪+⎪⎪--=⇒==-⎨⎨-⎪⎪=⎩⎪=--=-⎩ (2) 方程组的增广矩阵为312122*********()42212000102111100020r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦A b得同解方程组123444421,00,20,x x x x x x x +-+=⎧⎪⇒=-=⎨⎪-=⎩即123421,0.x x x x +-=⎧⎨=⎩ 令130x x ==得非齐次线性方程组的特解x T =(0,1,0,0)T .又分别取2310,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 得其导出组的基础解系为TT1211;,,1,0,0,0,1,022⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ξξ∴ 方程组的解为121211022110.,001000x k k k k ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦R(3) 2131121111211112111000221211500004r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥---−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦()()R R ≠A A ∴ 方程组无解.(4) 方程组的增广矩阵为31413242351111171111173211320122623()01226230122623543311201226231111170122623,000000000000r r r r r r r r --+-⎡⎤⎡⎤⎢⎥⎢⎥-------⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎡⎤⎢⎥-----⎢⎥−−−→⎢⎥⎢⎥⎣⎦A b分别令345010,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得其导出组12345234502260x x x x x x x x x ++++=⎧⎨----=⎩的解为123123511622,,.010001100k k k k k k R ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦令3450x x x ===,得非齐次线性方程组的特解为:x T =(-16,23,0,0,0)T ,∴ 方程组的解为1231651123622001000010100x k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦其中123,,k k k 为任意常数.4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车间表中第一列消耗系数0.1,0.2,0.5表示第一车间生产1万元的产品需分别消耗第一,二,三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.解:根据表中数据列方程组有112321233130.10.20.4522,0.20.20.30,0.50.1255.6,x x x x x x x x x x x ---=⎧⎪---=⎨⎪--=⎩即 123123130.90.20.4522,0.20.80.30,0.50.8855.6,x x x x x x x x --=⎧⎪-+=⎨⎪-=-⎩解之 123100,70,120;x x x =⎧⎪=⎨⎪=⎩5.λ取何值时,方程组12312321231,,,x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ (1)有惟一解,(2)无解,(3)有无穷多解,并求解.【解】方程组的系数矩阵和增广矩阵为211111;,11111111λλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A B|A |=2(1)(2)λλ-+.(1) 当λ≠1且λ≠-2时,|A |≠0,R (A )=R (B )=3.∴ 方程组有惟一解212311(1),,.22(2)x x x λλλλλ--+===+++(2) 当λ=-2时,312121221111212121221111124112412121212,0333033303360003r r r r r r -↔+---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎢⎥⎢⎥→----⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦BR (A )≠R (B ),∴ 方程组无解. (3) 当λ=1时2131111111111111000011110000r r r r B --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦R (A )=R (B )<3,方程组有无穷解.得同解方程组123223 3.1,,x x x x x x x =--+⎧⎪=⎨⎪=⎩∴ 得通解为1212123111, ,.100010x x k k k k R x --⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦6. 齐次方程组0020x y z ,x y z ,x y z λλ++=⎧⎪+-=⎨⎪-+=⎩当λ取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为1111211λλ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A|A |=(4)(1)λλ-+当|A |=0即λ=4或λ=-1时,方程组有非零解.(i) 当λ=4时,21213123234215134111411411414110155211211093141141031031031000r r r r r r r r r r ↔--⋅-⋅--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A得同解方程组112322331340.13031x x x x x k k R x x x ⎡⎤-⎢⎥⎡⎤+-=⎢⎥⎡⎤⎢⎥⇒=∈⎢⎥⎢⎥⎢⎥-+=⎣⎦⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(ii) 当λ=-1时,2121312111111111111111000211211013r r r r r r ↔+------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A得131232323332,03,30x x x x x x x x x x x=-⎧--=⎧⎪⇒=-⎨⎨+=⎩⎪=⎩ ∴ (123,,x x x )T =k ·(-2,-3,1)T .k ∈R7. 当a ,b 取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.(1) 123412341234123423123132236x x x x x x x x x x x x a x x x bx ++-=⎧⎪+++=⎪⎨---=⎪⎪+-+=-⎩ (2) 123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨----=⎪⎪+++=-⎩【解】方程组的增广矩阵为(1)213132414237212311123111123101140()31120710132316017281231112311011400114000327300327300628000r r r r r r r r r r a a b b a a b b -------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥------⎢⎥⎢⎥----+-⎣⎦⎣⎦--⎡⎤⎢⎥----⎢⎥−−→⎢⎥------⎢⎥---+⎣⎦A b .5222a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦(i) 当b ≠-52时,方程组有惟一解12344(1)326(1),,352352318(1)2(1),.35252a a a a x x b b a a a x x b b +-+=-=-++-++=-+=-++(ii) 当b =-52,a ≠-1时,方程组无解.(iii) 当b =-52,a =-1时,方程组有无穷解. 得同解方程组123423434231403274x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=-⎩(*) 其导出组123423434230403270x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=⎩的解为1412423434442,21313.9,91.x x x x x x k k x x x x x x =⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥=⎪⎢⎥⎢⎥=∈⎨⎢⎥⎢⎥=--⎪⎢⎥⎢⎥⎪=⎣⎦⎣⎦⎩R 非齐次线性方程组(*)的特解为取x 4=1, 12345335.32331x x x x ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦∴ 原方程组的解为5323513.3923131x k k ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+∈⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦R(2)32414231111001221()01(3)23211111100122100101012311111001221.0010100010r r r r r r a b a a b a a b a +-+⎡⎤⎢⎥⎢⎥=−−−→⎢⎥---⎢⎥-⎣⎦⎡⎤⎢⎥⎢⎥−−−→⎢⎥-+⎢⎥----⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥-⎣⎦A b (i) 当a -1≠0时,R (A )=R (A )=4,方程组有惟一解.12342123.1110b a a x a b x a x b x a -+⎡⎤⎢⎥-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥+⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦(ii) 当a -1=0时,b ≠-1时,方程组R (A )=2<R (A )=3, ∴ 此时方程组无解.(iii) 当a =1,b = -1时,方程组有无穷解. 得同解方程组12342340,22 1.x x x x x x x +++=⎧⎨++=⎩ 取13423433441,221,,,x x x x x x x x x x =+-⎧⎪=--+⎪⎨=⎪⎪=⎩∴ 得方程组的解为12121234111221.,100010x x k k k k x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦R8. 设112224336⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,求一秩为2的3阶方阵B 使AB =0. 【解】设B =(b 1 b 2 b 3),其中b i (i =1,2,3)为列向量,由123123()(1,2,3)i i =⇒=⇒==⇒AB A b b b Ab b b b 00为Ax =0的解.求123112224336x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=0的解.由 213123112112224000336000r r r r --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A得同解方程组12322332,,,x x x x x x x =--⎧⎪=⎨⎪=⎩∴ 其解为121212312.,1001x x k k k k R x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦取123120;;,100010--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦b b b则120100010--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B9.已知123,,ηηη是三元非齐次线性方程组Ax =b 的解,且R (A )=1及122313111,,,011001⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=+=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηηηηη求方程组Ax =b 的通解.【解】Ax =b 为三元非齐次线性方程组R (A )=1⇒Ax =0的基础解系中含有3-R (A )=3-1=2个解向量.131223121323110()(),01100110()(),110101-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ηηηηηηηηηηηη由123,,ηηη为Ax=b 的解1312,⇒--ηηηη为Ax=0的解,且1312(),()--ηηηη线性无关1312,⇒--ηηηη为Ax =0的基础解系. 又[]11223131()()()211112111,011022200112ηηηηηηη=+-+++⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦∴ 方程组Ax=b 的解为11132121212()()1002.,0101012k k k k k k =+-+-⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++∈-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦x ηηηηηR10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.(1) 1223==;1001,-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ(2) 123121232==,=021352132,.⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ξξξ【解】(1) 1223==1001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ设齐次线性方程组为Ax =0由12,ξξ为Ax =0的基础解系,可知11121222133223231001x x k k k k x x k x x k -+-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦x令 k 1=x 2 , k 2=x 3⇒Ax =0即为x 1+2x 2-3x 3=0.(2) A (123ξξξ)=0⇒A 的行向量为方程组为12345121232()0021352132x x x x x ⎡⎤⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥---⎣⎦的解.即124512345123452302325302220x x x x x x x x x x x x x x -+-=⎧⎪-++-=⎨⎪-++-=⎩的解为 31212120311203123253012111212200111r r r r ------⎡⎤⎡⎤⎢⎥⎢⎥−−−→----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦得基础解系为1η=(-5 -1 1 1 0)T 2η=(-1 -1 1 0 1)TA =5111011101--⎡⎤⎢⎥--⎣⎦方程为1234123550,0.x x x x x x x x --++=⎧⎨--++=⎩11. 证明:线性方程组121232343454515x x a x x a x x a x x ax x a -=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩有解的充要条件是510i i a ==∑.【解】2152123451234151234125110000110000110000111000111000011000011000011010011100001100001100001100101r r r r a a a a a a a a a a a a a a a a a a ++-⎡⎤⎢⎥-⎢⎥⎢⎥=-−−−→⎢⎥-⎢⎥⎢⎥-⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−−→⎢⎥-⎢⎥⎢⎥-+⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−→⎢⎥-⎢⎥⎢⎥-++⎣⎦A 1234511100001100001100001100001i i a a a a a =-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦∑方程组有解的充要条件,即R (A )=4=R (A )510i i a =⇔=∑得证.12. 设*η是非齐次线性方程组Ax=b 的一个解,12n r ,,,-ξξξ是对应的齐次线性方程组的一个基础解系.证明(1)1*n r ,,-,ξξη线性无关;(2)1++***n r ,,-,ξξηηη线性无关.【 证明】(1) 1*n r ,,-,ξξη线性无关⇔ 110*n r n r k k k --+++=ξξη成立,当且仅当k i =0(i =1,2,…,n -r ),k =01111()00*n r n r *n r n r k k k k k k ηη----+++=⇒+++=A ξξA A ξA ξ∵12n r ,,,-ξξξ为Ax =0的基础解系0(1,2,,)i i n r ξ⇒==-A*0k ⇒=A η由于*0b =≠A η00.k b k ⇒⋅=⇒=.由于12n r ,,,-ξξξ为线性无关 112200(1,2,,)n r n r i k k k k i n r --+⋅++⋅=⇔==-ξξξ∴121*n ,,,-,ξξξη线性无关.(2) 证1++***n r ,,-,ξξηηη线性无关.***11()()0n r n r k k k --⇔+++++=ξξηηη成立当且仅当k i =0(i =1,2,…,n -r ),且k =0***11()()0n r n r k k k --+++++=ξξηηη即*111()0n r n r n r k k k k k ---++++++=ξξη由(1)可知,11*n ,,-,ξξη线性无关.即有k i =0(i =1,2,…,n -r ),且100n r k k k k -++=⇒=∴1++***n r ,,-,ξξηηη线性无关.(B 类)1.B2. C3. D4. C5. t=-36. R(A)=2;2;27. 设η1,η2,…,ηs 是非齐次线性方程组Ax=b 的一组解向量,如果c 1η1+c 2η2+…+c s ηs 也是该方程组的一个解向量,则c 1+c 2+…+c s = .解:因为η1, η2,…, ηs 是Ax=b 的一组解向量,则A η1=b, A η2=b,…, A ηs =b,又C 1η1+ C 2η2+…+ C s ηs 也是Ax=b 的一解向量,所以A(C 1η1+…+ C s ηs )=b ,即C 1A η1+ CA η2+…+ C s A ηs =b,即C 1b+ C 2b+…+ C s b=b,(C1+…+C s )b=b,所以C 1+…+ C s =1.8. 设向量组1α=(1,0,2,3),2α=(1,1,3,5),3α=(1,-1,a +2,1),4α=(1,2,4,a +8),β=(1,1,b +3,5)问:(1) a ,b 为何值时,β不能由1α,2α,3α,4α线性表出?(2) a ,b 为何值时,β可由1α,2α,3α, 4α惟一地线性表出?并写出该表出式. (3) a ,b 为何值时,β可由1α,2α,3α,4α线性表出,且该表出不惟一?并写出该表出式. 【解】11223344x x x x =+++βαααα (*)314132422321111101121()232433518511111111110112101121012100100225200010r r r r r r r r a b a a b a b a a ----⎡⎤⎢⎥-⎢⎥==−−−→⎢⎥++⎢⎥+⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥++⎢⎥⎢⎥-++⎣⎦⎣⎦A A b(1) β不能由1α,2α,3α,4α线性表出⇔方程组(*)无解,即a +1=0,且b ≠0.即a =-1,且b ≠0.(2) β可由1α,2α,3α,4α惟一地线性表出⇔方程组(*)有惟一解,即a +1≠0,即a ≠-1. (*) 等价于方程组12342343443231123121(1)(1)01011111210111121111x x x x x x x a x b a x bb a b x x x x a a a b b bx a a a ba b b a a a βααα+++=⎧⎪-+=⎪⎨+=⎪⎪+=⎩++⇒===+=+=+++⎛⎫=---=-+ ⎪+++⎝⎭++∴=-+++++ (3) β可由1α,2α,3α,4α线性表出,且表出不惟一⇔方程组(*)有无数解,即有 a +1=0,b =0⇒a =-1,b =0.方程组(*)12112342122343142212121x k k x x x x x k k x x x x k x k =-⎧⎪+++==-+⎧⎪⇔⇒⎨⎨-+==⎩⎪⎪=⎩1234,,,k k k k 为常数.∴2111221324(2)(21)k k k k k k =-+-+++βαααα9. 设有下列线性方程组(Ⅰ)和(Ⅱ)(Ⅰ)1241234123264133x x x x x x x x x x +-=-⎧⎪---=⎨⎪--=⎩ (Ⅱ) 123423434521121x mx x x nx x x x x t +--=-⎧⎪--=-⎨⎪-=-⎩(1) 求方程组(Ⅰ)的通解;(2) 当方程组(Ⅱ)中的参数m,n,t 为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换11026110261102641111051725001253110304162101014100120101400125------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组142434020x x x x ⎪-=⎨⎪-=⎩ (*) 得方程组(*)的基础解系11121⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ξ令40x =,得方程组(Ⅰ)的特解 2450-⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦η于是方程组(Ⅰ)的通解为k =+ηξx ,k 为任意常数。

《线性代数》课程教学大纲

《线性代数》课程教学大纲

《线性代数》课程教学大纲课程名称:线性代数课程代码:课程性质: 必修总学分:2 总学时: 32* 其中理论教学学时:32*适用专业和对象:理(非数学类专业)、工、经、管各专业**使用教材:注:(1)大部分高校开设本课程的教学学时数约为32—48学时,为兼顾少学时高校开展教学工作,本大纲以最低学时数32学时(约2学分)进行教学安排,有多余学时的学校或专业可对需要加强的内容适当拓展教学学时。

(2)对线性代数课程而言,理工类与经管类专业的教学基本要求几乎一致,所以这里所列教学内容及要求对这两类专业均适合。

一、课程简介《线性代数》是高等学校理(非数学类专业)、工、经、管各专业的一门公共基础课,其研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。

该课程具有理论上的抽象性、逻辑推理的严密性和工程应用的广泛性。

主要内容是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法,使学生具有熟练的矩阵运算能力并能用矩阵方法解决一些实际问题。

通过本课程的学习,使学生理解和掌握行列式、矩阵的基本概念、主要性质和基本运算,理解向量空间的概念、向量的线性关系、线性变换、了解欧氏空间的线性结构,掌握线性方程组的求解方法和理论,掌握二次型的标准化和正定性判定。

线性代数的数学思想和数学方法深刻地体现辩证唯物主义的世界观和方法论,线性代数的发展历史也充分展示数学家们开拓创新、追求真理的科学精神,展现古今中外数学家们忠诚爱国、献身事业的高尚情怀。

思想政治教育元素融入线性代数的教学实践之中,可以培养学生用哲学思辨立场、观点和方法分析解决问题,能够提高学生的创新能力和应用意识,培养学生的爱国主义情怀、爱岗敬业精神和开拓创新精神,帮助学生在人生道路上形成良好的人格,树立正确的世界观、人生观、价值观。

线性代数理论不仅渗透到了数学的许多分支中,而且在物理、化学、生物、航天、经济、工程等领域中都有着广泛的应用。

同时,线性代数课程注重培养学生逻辑思维和抽象思维能力、空间直观和想象能力,提高学生分析问题解决问题的能力。

线性代数--北京邮电大学出版社(戴斌祥--主编)习题答案(1、2、3、4、5)

线性代数--北京邮电大学出版社(戴斌祥--主编)习题答案(1、2、3、4、5)

线性代数习题及答案(北京邮电大学出版社 戴斌祥主编)习题一(A 类)1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321; (3) n (n 1)...321; (4) 13 (2)1)(2n )(2n2)…2.【解】(1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n1)…3·2·1)= 0+1+2 +…+(n1)=(1)2n n -; (4) τ(13…(2n 1)(2n )(2n2)…2)=0+1+…+(n1)+(n1)+(n2)+…+1+0=n (n1).2. 求出j ,k 使9级排列24j157k98为偶排列。

解:由排列为9级排列,所以j,k 只能为3、6.由2排首位,逆序为0,4的逆序数为0,1的逆序数为3,7的逆序数为0,9的为0,8的为1.由0+0+3+0+1=4,为偶数.若j=3,k=6,则j 的逆序为1,5的逆序数为0,k 的为1,符合题意;若j=6,k=3,则j 的逆序为0,5的逆序数为1,k 的为4,不符合题意. 所以j=3、k=6.3. 写出4阶行列式中含有因子2234a a 的项。

解:D 4=1234()11223344(1)j j j j j j j j a a a a τ-由题意有:232,4.j j == 故1234141243243241j j j j j j ⎧==⎨⎩D 4中含的2234a a 项为:(1243)(3241)1122344313223441(1)(1)a a a a a a a a ττ-+-即为:1122344313223441a a a a a a a a -+4. 在6阶行列式中,下列各项应带什么符号?(1)233142561465a a a a a a ; 解:233142561465142331425665a a a a a a a a a a a a = 因为(431265)6τ=,(431265)6(1)(1)1τ-=-= 所以该项带正号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数北京邮电大学出版社戴赋祥习题 三 (A 类)1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α.解:由3(α1-α)+2(α2+α)=5(α3+α) 整理得:α=16(3α1+2α2-5α3),即α=16(6,12,18,24) =(1,2,3,4)3.(1)× (2)× (3)√ (4)× (5)×4. 判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2) α1=(1,2), α2=(2,3), α3=(4,3);(3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关.5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设112123123()()0,k k k αααααα+++++=即123123233()()0.k k k k k k ααα+++++=由123,,ααα线性无关,有1232330,0,0.k k k k k k ++=⎧⎪+=⎨⎪=⎩所以1230,k k k ===即112123,,αααααα+++线性无关.6.问a 为何值时,向量组'''123(1,2,3),(3,1,2),(2,3,)a ααα==-=线性相关,并将3α用12,αα线性表示.解:1322137(5),32A a a=-=-当a =5时,312111.77ααα=+7. 作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵. 解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关,所以(1,0,0,0)可作为方阵的一个行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,0)线性无关,所以(1,0,0,1)可作为方阵的一个行向量.所以方阵可为1010110010001001⎛⎫⎪-⎪⎪⎪⎝⎭.8. 设12,,,s ααα的秩为r 且其中每个向量都可经12,,,r ααα线性表出.证明:12,,,r ααα为12,,,s ααα的一个极大线性无关组.【证明】若 12,,,r ααα (1) 线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,s ααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组. 9. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.10. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0).11. 求下列向量组的秩与一个极大线性无关组. (1) α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);(2) α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);(3) α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α5=(2,1,5,6). 解:(1)把向量组作为列向量组成矩阵Α,应用初等行变换将Α化为最简形矩阵B ,则1114110141141913951115409500000036701810000000A B ⎛⎫-⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪=→→→= ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪----⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎝⎭52 0 50 0 99 可知:R (Α)=R (B )=2,B 的第1,2列线性无关,由于Α的列向量组与B 的对应的列向量有相同的线性组合关系,故与B 对应的Α的第1,2列线性无关,即α1,α2是该向量组的一个极大无关组. (2)同理,61701714010810111201201312438⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 1 -1 55 2 -9 0 4 40 - 55 7 -9 -9 0 -8 40 1 -6 0 5 -15 -10 5 -15 22 0 40 1111010101⎛⎫ ⎪ ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭⎛⎫⎪⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭-10 0 0 0 2 -9 07 2 -9 0 0 0 0 -5 -11 -5 0 0 0450 0 0 -0 0 10 00 0 1 0110 0 0 10 0 0 240 0 10 0 0 0 0110 0 0 0B⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭10 0 0 0 可知R(Α)=R(B)=4,Α的4个列向量线性无关,即α1,α2,α3,α4是该向量组的极大无关组. (3)同理,A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 0 3 1 2 1 0 3 1 2 1 0 3 1 2 1 0 3 1 2-1 3 0 -1 10 3 3 0 30 1 1 0 10 1 1 0 12 1 7 2 50 1 1 0 10 0 0 -4 -40 0 0 1 14 2 14 0 60 2 2 -4 -20 0 0 0 00 ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭0 0 0, 可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组的一个极大无关组.12.求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示. (1) α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);(2) α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7). 解:(1)以向量组为列向量组成Α,应用初等行变换化为最简形式.11111100101A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3 -1 5 -1 0 11 - 5 -1 -1 5 -127 -2 3 2 -7 47 - 2 - 2223 -1 8 10 2 -7 40 0 0 00 0 0 01 3 -9 70 4 -14 8 0 0 0 00 0 0 0B ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭,可知,α1,α2为向量组的一个极大无关组.设α3=x 1α1+x 2α2,即12121212523839x x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪+=-⎩解得,1237,22x x ==-设α4=x 3α1+x 4α2,即12121212133137x x x x x x x x -=-⎧⎪+=⎪⎨-=⎪⎪+=⎩解得,121,2x x ==所以31241237,2.22a a a a a a =-=+(2)同理, 1111111A B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=→→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 1 4 -3 1 1 4 -3 1 02 1 -21 -3 -2 -10 -2 2 -6 20 -1 3 -12 3 5 -50 - 1 -3 10 0 0 0 03 5 6 -70 -2 2 -6 20 0 0 0 0 可知, α1、α2可作为Α的一个极大线性无关组,令α3=x 1α1+x 2α 2可得:121213x x x x +=⎧⎨-=⎩即x 1=2,x 2=-1,令α4=x 3α1+x 4α2,可得:121242x x x x +=⎧⎨-=-⎩即x 1=1,x 2=3,令α5=x 5α1+x 6α2,可得:121231x x x x +=-⎧⎨-=-⎩即x 1=-2,x 2=-1,所以α3=2α1-α2α4=α1+3α2,α5=-2α1-α213. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑ αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r = β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.14. 设向量组α1,α2,…,αs 的秩为r 1,向量组β1,β2,…,βt 的秩为r 2,向量组α1,α2,…,αs ,β1,β2,…,βt 的秩为r 3,试证:max{r 1,r 2}≤r 3≤r 1+r 2. 证明:设αs1,…,1r S α为α1,α2,…,αs 的一个极大线性无关组, βt1,βt2,…,2r t β为β1,β2,…,βt 的一个极大线性无关组. μ1,…,3r μ为α1, α2,…,αs ,β1,β2,…,βt 的一个极大线性无关组,则αs1,…,1r S α和βt1,…,βtr2可分别由μ1,…,3r μ线性表示,所以,r 1≤r 3,r 2≤r 3即max{r 1,r 2}≤r 3,又μ1,…,3r μ可由αs1,…,αsr1,βt1,…,βtr2线性表示及线性无关性可知:r 3≤r 1+r 2.15. 已知向量组α1=(1,a ,a ,a )′,α2=(a ,1,a ,a )′,α3=(a ,a ,1,a )′,α4=(a ,a ,a ,1)′的秩为3,试确定a 的值.解:以向量组为列向量,组成矩阵A ,用行初等变换化为最简形式:1113110a a a a a a a a a a a a a a a a a a a a a a a a a a a a +⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-1 0 0 1- 0 0 1 -1 0 1- 00 0 1- 0 1-1 0 0 1-0 0 0 1- 由秩A=3.可知a ≠1,从而1+3a =0,即a =-13.16. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.17. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++ x x x =0}是否构成向量空间?为什么?【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++= αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++= 所以11,V k V +∈∈αβα,故1V 是向量空间.18. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3. 【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.19. 求由向量12345(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1),(4,5,6,4)=====ααααα所生的向量空间的一组基及其维数.【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的.20. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.21. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε22. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.(B 类)1.A2.B3.C4.D5.a=2,b=46.a bc ≠07.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问: (1) α1能否由α2,α3线性表示?证明你的结论. (2) α4能否由α1,α2,α3线性表示?证明你的结论.解:(1)由向量组α1,α2,α3线性相关,知向量组α1, α2, α3的秩小于等于2,而α2, α3, α4线性无关,所以α2, α3线性无关,故α2, α3是α1, α2, α3的极大线性无关组,所以α1能由α2, α3线性表示.(2)不能.若α4可由α1,α2,α3线性表示,而α2,α3是α1,α2,α3的极大线性无关组,所以α4可由α2,α3线性表示.与α2,α3,α4线性无关矛盾.8.若α1,α2,…,αn,αn+1线性相关,但其中任意n个向量都线性无关,证明:必存在n+1个全不为零的数k1,k2,…,k n,k n+1,使k1α1+k2α2+…+k n+1αn+1=0.证明:因为α1,α2,…,αn,αn+1线性相关,所以存在不全为零的k1,k2,…,k n,k n+1使k1α1+k2α2+…+k n+1αn+1=0若k1=0,则k2α2+…+k n+1αn+1=0,由任意n个向量都性线无关,则k2=…=k n+1=0,矛盾.从k1≠0,同理可知k i≠0,i=2, …,n+1,所以存在n+1个全不为零的数k1,k2,…,k n,k n+1,使k1a1+k2a2+…+k n+1a n+1=0.9. 设A是n×m矩阵,B是m×n矩阵,其中n<m,E为n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.证明:由第2章知识知,秩A≤n,秩B≤n,可由第2章小结所给矩阵秩的性质,n=秩E≤min{秩A,秩B}≤n,所以秩B=n,所以B的列向量的秩为n,即线性无关.习题四(A类)1. 用消元法解下列方程组.(1)12341241234123442362242322312338;x x x x,x x x,x x x x,x x x x+-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩(2)1231231232222524246;x x x,x x x,x x x++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②-①×2得 x2-2x 3=0③-① 得 2x 3=4 得同解方程组233 24x ⎨⎪=⎩由⑥得 x 3=2, 由⑤得 x 2=2x 3=4,由④得 x 1=2-2x 3 -2x 2 = -10, 得 (x 1,x 2,x 3)T =(-10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2)1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4)123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A得同解方程组1323123232333723,23201,202,x x x x x x x x x x x x x ⎧=--=-⎪++=⎪⎧⇒⎨⎨=-=⎩⎪⎪=⎩得基础解系为T71122⎛⎫- ⎪⎝⎭. (2) 系数矩阵为32213142413211511151112302743181027413970414811510274() 2.000000r r r r r r r r r r r ---------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A A∴ 其基础解系含有4()2R -=A 个解向量.1342123434342343344331225077222227400110x x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+-=-⎧⎢⎥⎢⎥⎢⎥-⎢⎥⇒==+⎨⎢⎥⎢⎥⎢⎥-+=⎢⎥⎩⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦基础解系为31272,.20110⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(3)213132232112271122723450010114356800202211122701011400007r r r r r r ---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥−−−→-⎢⎥⎢⎥⎣⎦A得同解方程组12345245552270,140,700.x x x x x x x x x x ++++=⎧⎪+-=⎨⎪=⇒=⎩取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得基础解系为(-2,0,1,0,0)T ,(-1,-1,0,1,0).(4) 方程的系数矩阵为2131322312221122211213200111247110033312221()2,0011100000r r r r r r R --+----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦--⎡⎤⎢⎥−−−→=-⎢⎥⎢⎥⎣⎦A A∴ 基础解系所含解向量为n -R (A )=5-2=3个取245x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为自由未知量 245010,,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得基础解系 324010,,.101001100--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 解下列非齐次线性方程组.(1) 123123121232122423442;x x x ,x x x ,x x ,x x x ++=⎧⎪-+=⎪⎨-=⎪⎪++=⎩ (2) 12341234123421422221;x x x x ,x x x x ,x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩(3) 123412341234212125;x x x x ,x x x x ,x x x x -++=⎧⎪-+-=-⎨⎪-++=⎩ (4) 12345123452345123457323222623543312x x x x x ,x x x x x ,x x x x ,x x x x x .++++=⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=⎩【解】(1) 方程组的增广矩阵为32213142414324121121112121240322()12030322414203421121112103220322000000120024000r r r r r r r r r r r r ------↔⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥−−−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦A b得同解方程组3123323231232,21223222,3212 1.x x x x x x x x x x x x =⎧++=⎧⎪+⎪⎪--=⇒==-⎨⎨-⎪⎪=⎩⎪=--=-⎩ (2) 方程组的增广矩阵为312122*********()42212000102111100020r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦A b得同解方程组123444421,00,20,x x x x x x x +-+=⎧⎪⇒=-=⎨⎪-=⎩即123421,0.x x x x +-=⎧⎨=⎩ 令130x x ==得非齐次线性方程组的特解x T =(0,1,0,0)T .又分别取2310,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 得其导出组的基础解系为TT1211;,,1,0,0,0,1,022⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ξξ∴ 方程组的解为121211022110.,001000x k k k k ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦R(3) 2131121111211112111000221211500004r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥---−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦()()R R ≠A A ∴ 方程组无解.(4) 方程组的增广矩阵为31413242351111171111173211320122623()01226230122623543311201226231111170122623,000000000r r r r r r r r --+-⎡⎤⎡⎤⎢⎥⎢⎥-------⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎡⎤⎢⎥-----⎢⎥−−−→⎢⎥⎢⎥⎣⎦A b分别令345010,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得其导出组12345234502260x x x x x x x x x ++++=⎧⎨----=⎩的解为123123511622,,.010001100k k k k k k R ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦令3450x x x ===,得非齐次线性方程组的特解为:x T =(-16,23,0,0,0)T ,∴ 方程组的解为1231651123622001000010100x k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦其中123,,k k k 为任意常数.4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车间三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.解:根据表中数据列方程组有112321233130.10.20.4522,0.20.20.30,0.50.1255.6,x x x x x x x x x x x ---=⎧⎪---=⎨⎪--=⎩即 123123130.90.20.4522,0.20.80.30,0.50.8855.6,x x x x x x x x --=⎧⎪-+=⎨⎪-=-⎩解之 123100,70,120;x x x =⎧⎪=⎨⎪=⎩5. λ取何值时,方程组12312321231,,,x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ (1)有惟一解,(2)无解,(3)有无穷多解,并求解.【解】方程组的系数矩阵和增广矩阵为211111;,11111111λλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A B |A |=2(1)(2)λλ-+.(1) 当λ≠1且λ≠-2时,|A |≠0,R (A )=R (B )=3.∴ 方程组有惟一解212311(1),,.22(2)x x x λλλλλ--+===+++(2) 当λ=-2时,312121221111212121221111124112412121212,0333033303360003r r r r r r -↔+---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎢⎥⎢⎥→----⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦BR (A )≠R (B ),∴ 方程组无解.(3) 当λ=1时2131111111111111000011110000r r r r B --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦R (A )=R (B )<3,方程组有无穷解.得同解方程组123223 3.1,,x x x x x x x =--+⎧⎪=⎨⎪=⎩∴ 得通解为1212123111, ,.100010x x k k k k R x --⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦6. 齐次方程组0020x y z ,x y z ,x y z λλ++=⎧⎪+-=⎨⎪-+=⎩当λ取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为1111211λλ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A |A |=(4)(1)λλ-+当|A |=0即λ=4或λ=-1时,方程组有非零解.(i) 当λ=4时,21213123234215134111411411414110155211211093141141031031031000r r r r r r r r r r ↔--⋅-⋅--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A得同解方程组112322331340.13031x x x x x k k R x x x ⎡⎤-⎢⎥⎡⎤+-=⎢⎥⎡⎤⎢⎥⇒=∈⎢⎥⎢⎥⎢⎥-+=⎣⎦⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(ii) 当λ=-1时,2121312111111111111111000211211013r r r r r r ↔+------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A得131232323332,03,30x x x x x x x x x x x=-⎧--=⎧⎪⇒=-⎨⎨+=⎩⎪=⎩ ∴ (123,,x x x )T =k ·(-2,-3,1)T .k ∈R7. 当a ,b 取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.(1) 123412341234123423123132236x x x x x x x x x x x x a x x x bx ++-=⎧⎪+++=⎪⎨---=⎪⎪+-+=-⎩ (2) 123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨----=⎪⎪+++=-⎩【解】方程组的增广矩阵为(1)213132414237212311123111123101140()311207101323160172812311123110114001140003273003273006280r r r r r r r r r r a a b b a a b b -------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥------⎢⎥⎢⎥----+-⎣⎦⎣⎦--⎡⎤⎢⎥----⎢⎥−−→⎢⎥------⎢⎥---+⎣⎦A b .5222a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦(i) 当b ≠-52时,方程组有惟一解12344(1)326(1),,352352318(1)2(1),.35252a a a a x x b b a a a x x b b +-+=-=-++-++=-+=-++(ii) 当b =-52,a ≠-1时,方程组无解.(iii) 当b =-52,a =-1时,方程组有无穷解. 得同解方程组123423434231403274x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=-⎩(*) 其导出组123423434230403270x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=⎩的解为1412423434442,21313.9,91.x x x x x x k k x x x x x x =⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥=⎪⎢⎥⎢⎥=∈⎨⎢⎥⎢⎥=--⎪⎢⎥⎢⎥⎪=⎣⎦⎣⎦⎩R 非齐次线性方程组(*)的特解为取x 4=1, 12345335.32331x x x x ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦∴ 原方程组的解为5323513.3923131x k k ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+∈⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦R(2)32414231111001221()01(3)23211111100122100101012311111001221.001010010r r r r r r a b a a b a a b a +-+⎡⎤⎢⎥⎢⎥=−−−→⎢⎥---⎢⎥-⎣⎦⎡⎤⎢⎥⎢⎥−−−→⎢⎥-+⎢⎥----⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥-⎣⎦A b(i) 当a -1≠0时,R (A )=R (A )=4,方程组有惟一解.12342123.1110b a a x a b x a x b x a -+⎡⎤⎢⎥-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥+⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦(ii) 当a -1=0时,b ≠-1时,方程组R (A )=2<R (A )=3, ∴ 此时方程组无解.(iii) 当a =1,b = -1时,方程组有无穷解. 得同解方程组12342340,22 1.x x x x x x x +++=⎧⎨++=⎩ 取13423433441,221,,,x x x x x x x x x x =+-⎧⎪=--+⎪⎨=⎪⎪=⎩∴ 得方程组的解为12121234111221.,100010x x k k k k x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦R8. 设112224336⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,求一秩为2的3阶方阵B 使AB =0. 【解】设B =(b 1 b 2 b 3),其中b i (i =1,2,3)为列向量,由123123()(1,2,3)i i =⇒=⇒==⇒AB A b b b Ab b b b 00为Ax =0的解.求123112224336x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=0的解.由 213123112112224000336000r r r r --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A得同解方程组12322332,,,x x x x x x x =--⎧⎪=⎨⎪=⎩∴ 其解为121212312.,1001x x k k k k R x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦取123120;;,100010--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦b b b则120100010--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B9.已知123,,ηηη是三元非齐次线性方程组Ax =b 的解,且R (A )=1及122313111,,,011001⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=+=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηηηηη求方程组Ax =b 的通解.【解】Ax =b 为三元非齐次线性方程组R (A )=1⇒Ax =0的基础解系中含有3-R (A )=3-1=2个解向量.131223121323110()(),01100110()(),110101-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ηηηηηηηηηηηη由123,,ηηη为Ax=b 的解1312,⇒--ηηηη为Ax=0的解,且1312(),()--ηηηη线性无关1312,⇒--ηηηη为Ax =0的基础解系. 又[]11223131()()()211112111,011022200112ηηηηηηη=+-+++⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦∴ 方程组Ax=b 的解为11132121212()()1002.,0101012k k k k k k =+-+-⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++∈-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦x ηηηηηR10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.(1) 1223==;1001,-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ(2) 123121232==,=021352132,.⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ξξξ【解】(1) 1223==1001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ设齐次线性方程组为Ax =0由12,ξξ为Ax =0的基础解系,可知11121222133223231001x x k k k k x x k x x k -+-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦x令 k 1=x 2 , k 2=x 3⇒Ax =0即为x 1+2x 2-3x 3=0.(2) A (123ξξξ)=0⇒A 的行向量为方程组为12345121232()0021352132x x x x x ⎡⎤⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥---⎣⎦的解.即124512345123452302325302220x x x x x x x x x x x x x x -+-=⎧⎪-++-=⎨⎪-++-=⎩的解为 31212120311203123253012111212200111r r r r ------⎡⎤⎡⎤⎢⎥⎢⎥−−−→----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦得基础解系为1η=(-5 -1 1 1 0)T 2η=(-1 -1 1 0 1)TA =5111011101--⎡⎤⎢⎥--⎣⎦方程为1234123550,0.x x x x x x x x --++=⎧⎨--++=⎩11. 证明:线性方程组121232343454515x x a x x a x x a x x ax x a -=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩有解的充要条件是510i i a ==∑.【解】2152123451234151234125110000110000110000111000111000011000011000011010011100001100001100001100101r r r r a a a a a a a a a a a a a a a a a a ++-⎡⎤⎢⎥-⎢⎥⎢⎥=-−−−→⎢⎥-⎢⎥⎢⎥-⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−−→⎢⎥-⎢⎥⎢⎥-+⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−→⎢⎥-⎢⎥⎢⎥-++⎣⎦A 12345111000011000011000011001i i a a a a a =-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦∑ 方程组有解的充要条件,即R (A )=4=R (A )510i i a =⇔=∑得证.12. 设*η是非齐次线性方程组Ax=b 的一个解,12n r ,,,-ξξξ 是对应的齐次线性方程组的一个基础解系.证明(1)1*n r ,,-,ξξ η线性无关; (2)1++***n r ,,-,ξξ ηηη线性无关. 【 证明】(1) 1*n r ,,-,ξξ η线性无关⇔110*n r n r k k k --+++=ξξ η成立,当且仅当k i =0(i =1,2,…,n -r ),k =01111()00*n r n r *n r n r k k k k k k ηη----+++=⇒+++=A ξξA A ξA ξ∵12n r ,,,-ξξξ 为Ax =0的基础解系0(1,2,,)i i n r ξ⇒==-A*0k ⇒=A η由于*0b =≠A η00.k b k ⇒⋅=⇒=.由于12n r ,,,-ξξξ 为线性无关112200(1,2,,)n r n r i k k k k i n r --+⋅++⋅=⇔==-ξξξ∴121*n ,,,-,ξξξ η线性无关. (2) 证1++***n r ,,-,ξξ ηηη线性无关.***11()()0n r n r k k k --⇔+++++=ξξ ηηη成立当且仅当k i =0(i =1,2,…,n -r ),且k =0***11()()0n r n r k k k --+++++=ξξ ηηη即*111()0n r n r n r k k k k k ---++++++=ξξ η由(1)可知,11*n ,,-,ξξ η线性无关. 即有k i =0(i =1,2,…,n -r ),且100n r k k k k -++=⇒=∴1++***n r ,,-,ξξ ηηη线性无关.(B 类)1.B2. C3. D4. C5. t=-36. R(A)=2;2;27. 设η1,η2,…,ηs 是非齐次线性方程组Ax=b 的一组解向量,如果c 1η1+c 2η2+…+c s ηs 也是该方程组的一个解向量,则c 1+c 2+…+c s = .解:因为η1, η2,…, ηs 是Ax=b 的一组解向量,则A η1=b, A η2=b,…, A ηs =b,又C 1η1+ C 2η2+…+ C s ηs 也是Ax=b 的一解向量,所以A(C 1η1+…+ C s ηs )=b ,即C 1A η1+ CA η2+…+ C s A ηs =b,即C 1b+ C 2b+…+ C s b=b,(C1+…+C s )b=b,所以C 1+…+ C s =1.8. 设向量组1α=(1,0,2,3),2α=(1,1,3,5),3α=(1,-1,a +2,1),4α=(1,2,4,a +8),β=(1,1,b +3,5)问:(1) a ,b 为何值时,β不能由1α,2α,3α,4α线性表出?(2) a ,b 为何值时,β可由1α,2α,3α, 4α惟一地线性表出?并写出该表出式. (3) a ,b 为何值时,β可由1α,2α,3α,4α线性表出,且该表出不惟一?并写出该表出式. 【解】11223344x x x x =+++βαααα (*)314132422321111101121()232433518511111111110112101121012100100225200010r r r r r r r r a b a a b a b a a ----⎡⎤⎢⎥-⎢⎥==−−−→⎢⎥++⎢⎥+⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥++⎢⎥⎢⎥-++⎣⎦⎣⎦A A b(1) β不能由1α,2α,3α,4α线性表出⇔方程组(*)无解,即a +1=0,且b ≠0.即a =-1,且b ≠0.(2) β可由1α,2α,3α,4α惟一地线性表出⇔方程组(*)有惟一解,即a +1≠0,即a ≠-1. (*) 等价于方程组12342343443231123121(1)(1)01011111210111121111x x x x x x x a x b a x b b a b x x x x a a a b b b x a a a b a b ba a a βααα+++=⎧⎪-+=⎪⎨+=⎪⎪+=⎩++⇒===+=+=+++⎛⎫=---=-+ ⎪+++⎝⎭++∴=-+++++(3) β可由1α,2α,3α,4α线性表出,且表出不惟一⇔方程组(*)有无数解,即有 a +1=0,b =0⇒a =-1,b =0.方程组(*)12112342122343142212121x k k x x x x x k k x x x x k x k =-⎧⎪+++==-+⎧⎪⇔⇒⎨⎨-+==⎩⎪⎪=⎩1234,,,k k k k 为常数.∴2111221324(2)(21)k k k k k k =-+-+++βαααα9. 设有下列线性方程组(Ⅰ)和(Ⅱ)(Ⅰ)1241234123264133x x x x x x x x x x +-=-⎧⎪---=⎨⎪--=⎩ (Ⅱ) 123423434521121x mx x x nx x x x x t +--=-⎧⎪--=-⎨⎪-=-⎩(1) 求方程组(Ⅰ)的通解;(2) 当方程组(Ⅱ)中的参数m,n,t 为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换11026110261102641111051725001253110304162101014100120101400125 ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组142434020x x x x ⎪-=⎨⎪-=⎩ (*) 得方程组(*)的基础解系11121⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ξ令40x =,得方程组(Ⅰ)的特解 2450-⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦η于是方程组(Ⅰ)的通解为k =+ηξx ,k 为任意常数。

相关文档
最新文档