实变函数与泛函分析ppt

合集下载

实变函数与泛函分析

实变函数与泛函分析

开 G n , 集 E 使 G n 且 m ( G 得 n E ) 1 n
令O
n 1
Gn
,则 O为 G型集, EO 且
m ( O E ) m ( G n E ) 1 n ,n 1 ,2 ,3 , L
故m(OE)0
例: 设E为[0,1]中的有理数全体, 试各写出一个与E只相差一 零测度集的G 型集或 F 型集。
可测集可由 G 型集去掉一零集, 或 F 型集添上一零集得到。
(2).若E可测,则存在 F 型集H, 使 H E 且 m (EH )0
(1).若E可测,则存在G 型集 O, 使 E O 且 m (O E )0
(2).若E可测,则存在 F 型集H, 使 H E 且 m (EH )0
证明:若(1)已证明,由Ec可测可知
(2)若 E可测 , 0 则 ,闭F 集 , 使F 得 E且 m(EF)
(1)若 E可测 , 则 0,开G 集 , (2)若 E可测 , 0 则 ,闭F 集 , 使E 得 G且 m(GE) 使F 得 E且 m(EF)
证明:若(1)已证明,由Ec可测可知
0 , 开 G , 集 E c 使 G 且 m ( G 得 E c )
令 O n 1 G n , 则 O 为 G 型 集 , E O 且
m ( O E ) m ( G n E ) 1 n ,n 1 ,2 ,3 ,
故m(OE)0 从 而 E O (O E ) 为 可 测 集
例:设E为[0,1]中的有理数全体, 试各写出一个与E只相差一小
测度集的开集和闭集。E{r1,r2,r3,}
取F=G c,则F为闭集 FE
且 m (EF )m (E F c)
m (E (c)c F c)m (F cE c)m (G E c)

实变函数与泛函分析电子版15~36页

实变函数与泛函分析电子版15~36页

第 16页定义1 设,A B 为两个非空集合,如果有某一法则ϕ,使每个x A ∈有唯一确定的y B ∈和它对应,则称ϕ为A到B内的映射,记为:A B ϕ→.当映射ϕ使y和x对应时,y 称为x 在映射ϕ下的像,记作(x)y ϕ=,也可表示为:xy ϕ.对于任一固定的y,称适合关系(x)y ϕ=的x 的全体是元素y 在ϕ之下的原像,集合A称为映射ϕ的定义域,记为()βϕ,设C是A的子集,C中所有元素的像的全体,记为(c)ϕ,称它是C在ϕ之下的像,(A)ϕ称为映射ϕ的值域,记为()ϕℜ。

定义2 设A和B是两非空集合,若存在从集合A到B上的一一映射ϕ ,即满足:⑴ 单设:对任意x,y A ∈,若(x)(y)ϕϕ=,则x=y ;⑵ 满射:对任意y B ∈,存在x A ∈,使得(x)y ϕ=.则称A和B对等,记为A B ,规定φφ。

例 1我们可给出有限集合的一个不依赖于元素个数概念的定义,集合A称为有限集合,如果A=φ或者A 和正整数的某截段{1,2,......n}对等。

例 2 { 正奇数全体 }{ 正偶数全体 },事实上,只要令(x)x 1ϕ=+ 即可。

例 3{ 正整数全体}{ 正偶数全体},这只需令(x)2x ϕ=,第17页X 是整数。

例4 区间(0,1)和全体实数R 对等,只需对每个(0,1)x ∈,令(x)t a n (x )2πϕπ=-。

例5 设A与B是两个同心圆周(图1.4),显然A~B。

事实上,对A上每一点x 与同心圆的圆心的连线与B相交且交与一点,值得注意的是,若将此圆的两周展开为线段时,则这两条线段的长度并不相同。

这告诉我们,一个较长的线段并不例4表明,无限长的“线段”也不比有限比另一个较短线段含有“更多的点”。

长的线段有“更多的点”。

例 3和例4说明一个无限集可以和它的一个真子集对等(可以证明,这一性质正是无限极的特征,常用来作为无限极的定义)。

这一性质对于有限集来说显然不能成立,由此可以看到有限集和无限极之间的诧异。

(53页幻灯片)泛函分析PPT课件

(53页幻灯片)泛函分析PPT课件

泛函分析的产生
十九世纪后数学发展进入了一个崭新阶段
对欧几里得第五公设的研究,引出了非欧几何 对于代数方程求解的研究,建立并发展了群论 对数学分析的研究又建立了集合论
二十世纪初出现了把分析学一般化的趋势
瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作 希尔伯特空间的提出
分析学中许多新理论的形成,揭示出分析、几何、代数的许多概念和方 法常常存在相似的地方
泛函分析导 引
泛函分析概览
形成于20世纪30年代的数学分支 从变分问题,积分方程和理论物理的研究中发 展而来 综合运用了函数论,几何学,代数学的观点
➢ 可看成是无限维向量空间的解析几何及数学分 析
研究内容
无限维向量空间上的函数,算子和极限理论 研究拓扑线性空间到拓扑线性空间之间满足各 种拓扑和代数条件的映射
设 f (x) 是定义在[a, b]上的有界函数
并任在意[a取, bξ]上i 任∈意[x取i-1一,xi]组(i分=1点,2,a…=x,n0<),x1…作<和xn式-1<xn=b,
n
S f (i )xi
i1
若其极限存在则称Riemann可积
nHale Waihona Puke b(R) a f (x)dx lxim0 i1 f
在数学上,把无限维空间到无限维空间的变换叫做算 子
研究无限维线性空间上的泛函数和算子理论,就产生 了一门新的分析数学,叫做泛函分析。
泛函分析的特点
把古典分析的基本概念和方法
一般化 几何化
从有限维到无穷维
泛函分析对于研究现代物理学是一个有力的工具
从质点力学过渡到连续介质力学,就要由有穷自由度系 统 过渡到无穷自由度系统 现代物理学中的量子场理论就属于无穷自由度系统

实变函数论第三版PPT课件

实变函数论第三版PPT课件
N 1 n N n 1

n
24
单调减集列极限分析
lim A (lim inf
n n n
An )
lim A (lim sup A )
n n n n
{x : N , n N , 有x An } An
N 1 n N
{x : N , n N , 使x An } An
limA
n
n
A
22
单调增集列极限
若集列 {An }满足An An1 (n N ),则称{An }为单调增加 ; 若集列 {An }满足An An1 (n N ),则称{An }为单调减少 ;
定理 9 :单调集列是收敛的
1)若{ An }单调增加, 则 lim An An ;
1.集合的几种表示法
我们在诸如《数学分析》等前期课程中已接触 过集合这个概念,所谓集合,指的是具有某种 特定性质的对象的全体,通常用大写英文字母 A,B,X,Y…等表示;集合中的每个对象称 为该集合的元素。一般说来,我们总用小写字 母a,b,x,y…表示集合中的元素。
3
集合及其运算
对于集合 A ,某一对象 x 如果是 A 的元素,则称 x 属于A,记作 x A ;如果x不是A的元素,则称x 不属于A,记
{x : N , n N , 有x An } An
N 1 n N
26



1 1 1 设A2n1 [ 1 , 4 ], A [ , 1 2n n n n n ], n N , 则
A [0,4) n lim
n
limA
n
n
(0,1]
x A或x A

实变函数与泛函分析基础ppt课件

实变函数与泛函分析基础ppt课件

证明:不妨设f单调增,对任意a∈R
令Ia inf{ x | f (x) a}
由f单调增知下面的集合为可测集
E { [ f a]
E [ I a ,) 当I a {x| f ( x)a} E ( I a ,) 当I a {x| f ( x)a}
a
1
/ I a x1 x2
10
⒊可测函数的等价描述
定理1:设f(x)是可测集E上的广义实函数,则 f(x)在E上可测
16
⑵可测函数类关于四则运算封闭
即:若f(x),g(x)是E上的可测函数,
则f(x)+g(x) , f(x) -g(x) , f(x)g(x) , f(x)/g(x)
仍为E上的可测函数。
a-g(x) r f(x)
证明:先证: a
R, E[
f
ga]
E[ f
可测,
a g ]
猜想:E[ f ag] rQ(E[ f r] E[agr] )。
可测集E上的连续函数f(x)定为可测函数
证明:任取x∈E[f>a], 则f(x)>a,由连续性假设知,
对 f (x) a, x 0, 使得f (O(x,x ) E) O( f (x), ) (a,)
即O( x,x ) E E[ f a]
令G O xE[ f a] ( x,x )
1 , n

E[ f
为可测集。
]
12
注:重要方法:将集合分解为某些集合
的并、交、差等,从而利用已知条件。
如:用分解法证明:
f , g均为E上可测函数,则E[ f g]为E上可测集。
事实上,E[
f
g]
(
rQ
E[

实变函数论泛函分析课件

实变函数论泛函分析课件

02 实变函数的定义与性质
实变函数的定义
01
02
03
定义域
实变函数的定义域是实数 集的一个子集,可以是有 限或无限的。
值域
实变函数的值域是实数集 的一个子集,可以是有限 或无限的。
函数表达式
实变函数可以表示为从定 义域到值域的映射关系, 通常用符号 f(x) 表示。
实变函数的性质
单调性
如果对于任意 x1<x2,都有 f(x1)≤f(x2),则称 f(x) 在其定义
微积分的应用
介绍微积分在各个领域的应用,如物理学、工程学、经济学等。
微积分的进一步发展
介绍微积分的进一步发展,如变分法、最优控制等。
04 泛函分析的基本概念
泛函的定义与性质
定义
泛函是将函数空间的每一个元素作为自变量,其值是实数或 复数的函数。
性质
泛函是定义在函数空间上的,它具有连续性、可加性、线性 等性质。
么该空间是自完备的。
共鸣定理
在赋范线性空间中,如果存在 一个与所有单位球相交的集合,
那么该空间是自完备的。
开映射定理
如果X和Y是赋范线性空间,T 是X到Y的开映射,那么T是满
射。
闭图像定理
如果X和Y是赋范线性空间,T 是X到Y的连续线性映射,那
么T的像集是闭的。
05 泛函分析的应用领域
微分方程的求解
分析中的某些问题。
应用领域
实变函数论和泛函分析 在许多应用领域都有交 叉,如 质
线性性质
对于任意实数k和函数f,g,有 $k(f+g)=(kf)+(kg)$, $(kf)+(kg)=(k+k)(f)$。
连续性质
如果f_n(x)是函数空间中的收敛序列, 那么$f_n(x)$的极限函数也是连续的。

实变函数与泛函分析-实变与泛函_ch3

实变函数与泛函分析-实变与泛函_ch3

3.1 距离空间的定义及例子 University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
3.3 距离空间的完备性和稠密性
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China

实变函数与泛函分析基础第七章ppt课件

实变函数与泛函分析基础第七章ppt课件

k1
k1 k1
再令左端的 n→∞,即得
kn 1xkyk2
xk2 yk2
k1 k1
由此可得
xkyk2 xk 22 xkyk yk 2
k1
k1
k1
k1
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
(x,y)m axx(t)y(t) atb
与例3同理可证 ρ(x, y) 是 C[a, b] 上的度量.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
例6 l2.
记 l2 x x k x k 2 .设 x x k l2 ,y y k l2 ,
因此 (S, ρ) 是距离空间。
例3 有界函数空间 B(A).
设 A 是个给定的集合,B(A)表示 A 上有 界实值(或复值)函数全体,对 B(A) 中的任意 两点 x, y, 定义
(x,y)supx(t)y(t)
tA
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
k 1
定义
1
d(x,
y)
yk
xk
22
k1
则 d 是 l2 上的距离。距离条件10 是容易得 出的,现检验条件 20
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
对任何正整数 n,
x n x 1 , x 2 , x n 和 y n y 1 , y 2 , , y n

实变函数与泛函分析全册精品完整课件

实变函数与泛函分析全册精品完整课件

University of science & Technology of China
五大论:
集合论-着重介绍 Cantor 关于集合的势论的知识.
测度论-讲解 Lebesgue 测度的思想与方法.
积分论-讲解 L 积分的定义、性质、极限定理和 L 可积函数空间,积分与微分的关系.
空间论-主要讲述无穷维赋范空间和内积空间,以 及与共轭空间有关的知识. 算子论-主要讲述三大基本定理(共鸣定理、开映 射定理、闭图像定理),共轭算子以及算子谱理
论.
University of science & Technology of China
教学目的
使学生掌握 L 测度与 L 积分的基本理论、基本思想 与方法,为今后进一步使用现代分析普遍应用的这 一基本工具打下基础。
使学生掌握有关空间和算子的基本理论和思想方法 . 认识和理解现代数学中公理化、抽象与具体、理 论和应用密切联系的特点并加以应用.
前言
课程的重要性 课程讲授的主要内容 教学目的 难易程度 考核方式
University of science & Technology of China
《实变函数与泛函分析》的重要性 在20世纪初期产生并发展起来的学科,是整 个分析数学中最年轻的学科之一 从“经典理论”向“现代理论”转折的关口 是联系各门课程的纽带
通过与其他学科的联系,加强学生对于数学思想方 法的内在联系和一致性的认识,从整体上提高学生 的数学素养
University of science & Technology of China
课程难度与考核方式
内容抽象,难度较大 平时表现分+考试分数, 比例 认真学习则无须担心考核

泛函分析 PPT课件

泛函分析 PPT课件
• 研究的空间的目的,在于把由实际问题归纳出来 的某些集合抽象为具有某种属性的空间,从而利 用数学上已有的结论去分析他们的性质。
• 如:关于点的收敛性就与自控控制系统的输入输 出稳定性、控制算法的收敛性等密切相关。
• 下面我们介绍的这个结论,不仅在数学上,在其 它的学科也能看到广泛的应用。
定理证明:随便给定一点x 0,压缩算子T 逐次作用,得到了一个 Cauchy列,由空间X的完备性,极限点x *存在且唯一,不动点就
得到了.(Tx*, x*) (Txn ,Tx*) (Txn , x*) 0。
该定理(Banach压缩映射原理)就是某一类映射的不动点存在
性和唯一性的问题,不动点可以通过迭代序列求出。实际应用
中T未必是,但T n0是压缩时,命题仍然成立。 注:1.该原理是求解代数方程、微分方程、积分方程、以及数值
同胚变化下是保持不变的 • 练习:证明从离散空间X到任意距离空间Y
的映射T是连续映射。
证明稠密性具有传递性,即若A在B中稠密,B在C中稠密,则A 在C中稠密。
不可分空间的例子:有界数列空间在最大值定义的距离下 是不可分的。
注: Cauchy序列一定是有界序列,如果有收敛的子列,那么 Cauchy序列必是收敛的
• 若空间X本身是紧(列紧)集,则称X是紧(列紧) 空间。
• 例:实直线R是完备的距离空间,但不是紧的, 也不是列紧的;R中任意有界闭集M按R的距离是 紧空间,有界开集N是列紧的。
• 在欧式空间中,有界性和列紧性是一致的。
距离空间的紧性
• 直接从定义判定一个集合的紧性比较困难。 • 称距离空间X的子集A是全有界的,对任意
常用的几个公式
• 赫尔德不等式:p,q>1,1/p+1/q=1,则

实变函数与泛函分析课件

实变函数与泛函分析课件
间的定义
巴拿赫空间的性质
巴拿赫空间与连续线性映射
连续线性映射
连续线性映射的定义
连续线性映射的性质
线性算子的谱理论
03 空间上的算子与变换
有界线性算子
有界线性算子的定义:在某空 间上有界且线性
重要性质:有界线性算子可以 扩展为全空间上的有界线性算

谱定理:有界线性算子的谱分 解定理
空间上的算子与变换部分的习题与解答
01
02
总结词:空间上的算子 与变换部分主要涉及线 性算子、有界算子、 紧 算子等不同类型的算子 的定义、性质和计算方 法,以及空间上的变换 和约化定理的应用。
详细描述
03
04
05
1. 线性算子的定义和性 2. 有界算子和紧算子的 质,包括线性算子的有 定义和性质,以及在各 界性、紧性、谱性质等, 种空间中的存在性和构 以及在各种空间(例如, 造方法。 Hilbert空间、Banach 空间等)中的应用。
映射与变换
序关系
介绍映射的概念及基本性质,如一一映射、 满射、单射等。
讨论集合中的序关系,如偏序、全序、反 对称序等,以及相关的概念如最大元、最 小元、上界、下界等。
实数函数
01
函数的定义
介绍函数的概念及基本性质,如定 义域、值域、单调性等。
函数的极限
介绍函数极限的定义、性质及其计 算方法。
03
02
03
线性空间
01
数乘性质
02
中间元素性质
03
正交性
内积空间与Hilbert空间
内积空间的定义
1
内积空间的定义
2
正交性
3
内积空间与Hilbert空间

实变函数与泛函分析

实变函数与泛函分析

实变函数的定义
实变函数是定义在实 数集上的函数,其值
域也是实数集。
实变函数具有连续性、 可微性、可积性等性
质。
实变函数的定义域可 以是有限区间、无限 区间或者整个实数轴。
实变函数的值域可以 是有限区间、无限区 间或者整个实数轴。
实变函数的性质
实变函数是一类特殊的数学函数,具 有连续性、可微性和可积性等性质。
实变函数的连续性
实变函数的连续性与极限存 在性有关
实变函数在定义域内是连续 的
实变函数的连续性是函数的 一种基本性质
实变函数的连续性与可微性 密切相关
03 实变函数的应用
实变函数在数学物理方程中的应用
实变函数在求解偏微分方程中的应用 在解决波动方程、热传导方程等数学物理方程中的作用 实变函数在数值分析中的重要地位 实变函数在解决物理问题中的应用实例
求解中。
添加标题
05 泛函分析的应用
泛函分析在微分方程中的应用
微分方程的求解:通过泛函分析中的变分法,求解微分方程的近似解。 稳定性分析:利用泛函分析中的算子谱理论,研究微分方程解的稳定性。 近似方法:利用泛函分析中的逼近理论,构造微分方程的近似解。 数值计算:通过泛函分析中的数值分析方法,对微分方程进行数值模拟和计算。
添加标题
随机积分与微分 方程:在概率论 中,随机积分与 微分方程是非常 重要的研究方向, 而泛函分析中的 积分和微分理论 为此提供了重要
的数学基础。
添加标题
泛函分析在量子力学中的应用
描述了量子力学中的波函数和 概率幅
提供了量子力学中算子的表示 和分类方法
揭示了量子力学中的一些重要 定理和原理,如不确定性原理 和量子纠缠
研究对象:实变函数研究的是具体的、有限的、离散的数学对象,而泛函分析则研究 的是抽象的、无限的、连续的数学对象。

实变函数与泛函分析基础课件4-2

实变函数与泛函分析基础课件4-2
n →∞ (| f n − f |) ≥σ

→ f n (x) 在E上依测度m收敛与f:记为: f n ( x ) 上依测度m收敛与f
m
f ( x).
或者记为: f n ( x ) ⇒
f ( x).
注1. 依测度收敛是数列的收敛. 即: 依测度收敛是数列的收敛.
∀σ > 0和ε > 0, ∃N (ε ,σ ),当n ≥ N (ε ,σ )时,有 (| f n − f |≥ σ ) < ε . m
k =1 N =1 n = N



1 [| f n − f | ≥ ] k
).
2)
f n → f a.e.于E ⇔ m( E[ f n → f ] ) = 0 ⇔ m( ∪ ∩ ∪ E[| f n − f |≥ 1 ] ) = 0
k =1 N =1 n = N
k



⇔ m ( ∩ ∪ E [| f n − f | ≥ 1 ] ) = 0
是否成立,如果成立,应该具备怎样的条件?先看下例。
回顾:{f 回顾:{fn}点点收敛,但 fn不近一致收敛于f。 不近一致收敛于f
∃δ > 0, ∀ 可测子集 Eδ ⊂ E , m ( Eδ) δ , < ∃ε > 0, ∀N > 0, ∃n ≥ N , ∃x ∈ Eδ) , 使 | f n ( x ) − f ( x ) |≥ ε (
∀δ > 0, ∃可测子集 Eδ ⊂ E , m ( Eδ) δ , < ∀ε > 0, ∃N ε δ > 0, ∀n ≥ N εδ , ∀x ∈ E − Eδ , 有 | f n ( x ) − f ( x ) |< ε

实变函数论与泛函分析(上,下)第二版

实变函数论与泛函分析(上,下)第二版

基础知识1.1度量空间一、基本概念 1.距离定义:设R 是一个非空集合,若对R 中任意一对元素x ,y 都有给定的一个实数d (x ,y ) 与它们对应,而且d 适合如下条件: (1) d(x ,y)≥0且d (x ,y )=0 x=y(2) 三角不等式d (x ,z )≤d (x ,y )+d (y ,z )则称d (x ,y )是元素x ,y 之间的距离,并称R 按d (x ,y )成为度量空间或距离空间,记(R ,d )R 中的元素称为点。

由性质(1)(2)令z=x ,可推出距离还有对称性 即(3) d (x ,y )=d (y ,x )(4) 另外还有与(2)等价的不等式|d (x ,y )-d (y ,z )|≤d (x ,z )例1:平面任意两点)p 1(X 1,y 1) p 2(x 2,y 2)(不是距离)例2:[a ,b]上黎曼绝对可积的函数的集合R ,对其中任意两点f ,g 按距离 d (f ,g )=⎰-ba|x g x f |)()(dx 可证:R 按照d 成为一个度量空间(黎曼可积可改为连续函数)另外 R 上还可以有另外一个度量空间:d (f ,g )=],[x max b a ∈|f (x ),g (x )|记该度量空间为c[a ,b]2.极限定义1.1.2:设R 是一个度量空间X n (n=1,2,…) 及x ∈R ,加入n →∞ 时, 数列d (X n ,X )→0 则称{ X n }按距离d 收敛于x 记为∞→n lim X n =X或X n →X 此时称{X n }是R 中的收敛点列,x 称为点列{ X n }的极限 定义1.1.3:(基本点列)设{ X n }是度量空间(R ,d )中的一个点列。

若 { X n }满足N ∃>∀,0ε 当m ,n>N 时 有d (x x n m ,)<ε 则称{ X n }为R 中的基本点列(也称为柯西列)可以证明收敛点列一定是基本列 证明:若x x0n→(n →∞)即N ∃>∀,0ε 当m ,n>N 时 有d ( x x 0n ,)<2ε d (x x m 0,)<2ε d (xx mn,)≤d (xx 0n,)+d (x x m,)<ε∴{X n }是基本列但反之,不成立 例如 R=(0,+∞)X n =n1∈R (n=1,2^…){ X n }是基本列但{ X n }不是收敛列,因为R 中没有x , d (X n ,X )→0 (n →∞)又如3,3.1,3.14,3.141……是有理数集Q 中的基本列但不是Q 中的收敛列定义1.1.4 (完备性)若度量空间R 中的基本列都是收敛列则称R 是完备的度量空间,设A 是R 中的子集,若A 按R 的度量成为一个完备的度量空间,则称A 是R 的一个完备子集。

泛函分析 课件第一章

泛函分析 课件第一章
n n i 1
i 1
Ai x | 0 x 1
Ai x | 0 x 2
1 1 A x | x (2)设 i , i 1, 2,.... i i

1 1 Ai x | x , n n i 1
4、逆映射 设 为A到B上的一一映射.作B到A的映射如下:如果 : x | y 令 : y | x , 确实使唯一的
x 与 y 相对应,即 是映射,
11 1 : B A
则称
是 的逆映射 ,也记为
注:逆映射是反函数概念的推广。例如,任何一个严格单调的函数都可
d c 11 : x b ( x a) c a
故(a,b)与(c,d)对等。
定理 1 对任何集合A、B、C均有
(1) (3) A B B

(2) A
A

A
(4) A B, B C A C

定理 2 设{An}和{Bn}是两列分别彼此互不相交的集列,
An
Bn , n 1,2,... , 则
集合表示方法:
列举法:将其元素一一列举出来。
特征描述法:将元素所具有的特征义命题的形式描述出来。
p Q {x | x q , p Z , q Z , q 0}
定理1:对任何集合A、B、C,均有
(1)A A
(2)A B,B A,则A = B
(3)A B,B C,则A C 其中(2)是经常用于证明两个集合相等。
§2 集合的运算
1、和集或并集 A B x | x A 或 x B

A x | 存在某个 使x A
2、交集

实变函数与泛函分析全套课件

实变函数与泛函分析全套课件
序言
Lebesgue积分思想简介
微积分基本定理
若f(x)在[a,b]上连续,则
d ((R) x f (t)dt) f (x)
dx
a
导数(切线斜率)
定积分(面积)
若F `(x) 在[a,b]上连续,则
x
(R)a F '(t)dt F (x) F (a)
xi-1 xi
微积分发展的三个阶段
创立(17世纪):Newton(力学)Leibniz(几何) (无穷小)
0
n
分划T,有 ixi 1 i 1
注:D(x)的下方图形 可看成由[0,1]中每个 有理点长出的单位线
段组成。
(3)Riemann积分的局限性
a.微积分基本定理 定理:若f(x)在 [a,b]上可微且f `(x)在[a,b]上
Riemann 连续,则 x f ' (t)dt f (x) f (a) a
• 1881年Volterra作出一可微函数,导函数有界但不Riemann可积;
注:推荐大家看看龚升写的 《话说微积分》, 《简明微积分》, 数学历史的启示(《数学教学》,2001.1), 微积分严格化后(《高等数学研究》,2002,1-3)
b.积分与极限交换次序(一般要求一致收敛)
例:设{rn}为[0,1]中全体有理数(因为其为可数集,故可把它排成序 列),作[0,1]上的函数列
第一章 集合, 点集, 第五章 微分与不定积分, 第六章 L^p空间
4.集合论中的一些例子
(1) Achilles追龟
甲的速度为1,乙的速度为1/2
0(甲)
½(乙)
ቤተ መጻሕፍቲ ባይዱ3/4
7/8 15/16 1
1 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克服Rieman积分的缺陷的新思路:
yi yi-1
Ei {x : yi 1 f ( x) yi }
yi 的“长度”
max{ yi yi 1}
( L)
[ a ,b ]
f ( x)dx lim i m Ei
0
3.学习《实变函数与泛函》的方法 (三)
由于《实变函数与泛函》高度抽象、理 论性强,对于每一个尚未证明的结论都应持谨 慎态度,不能简单类比后就盲目承认和否定, 必须严格论证或举出反例,否则就有可能出现 例1、例2类似的错误。
9
3.学习实变函数与泛函的方法(二)
尽管凭直观想象可能会出现例 1、例2那样 “似是而非,似非而是”的结论,但不能因噎 废食,在每一个定理、引理、推论的证明之前 都应尽量想象其合理的直观意义。直观解释虽 然不能代替严格的论证,却会给我们的证明带 来开阔思路的启迪,直观想象永远是数学各分 支发现联系、揭示规律、猜测命题的重要依据 和行之有效的手段之一。
2.《实变函数与泛函》的特点 (二)
例题少、定理、定义、引理、推论多, 理论性强:
理论性强是由于实变函数与泛函分析的内容 结构所决定的,因它只做一件事:恰当的改造积 分定义使得更多的函数可积。这就使得实变函数 与泛函分析的绝大部分篇幅都是在作理论上的准 备,很少有应用、例题的原因。但从另一个角度 讲,实变函数论的习题几乎全是证明题,而定理、 引理、推论的证明本身就是一些典型的,带证明 示范性的例子。 8
1.实变函数的内容(一)
顾名思义: 《实变函数论》即讨论以实数为变量的函数 中学学的函数概念都是以实数为变量的函数 大学的数学分析,常微分方程也是研究的以实数 为变量的函数 《实变函数论》还有哪些内容可学呢? 简单地说:《实变函数论》只做一件事,那就 是恰当的改造积分定义使得更多的函数可积,使得 操作更加灵活。
10
4.学习实变函数论的方法(四)
既然《实变函数与泛函》是《数学分析》 研究范围、内容的扩展,研究结果的改进和完 善,新旧知识之间就难免存在诸多内在联系, 及时复习相关旧知识以达温故而知新的目的, 注重体会如何借鉴旧方法来解决新问题的思路, 同时特别注意新方法与旧方法实质区别之处, 把握创新点。
11
2
Rieman积分的缺陷:
0 D(x) = 1
[ a ,b ]
x为[0,1]中无理数时 不可积 x为[0,1]中有理数时
n
( L)
f ( x) dx lim D(i ) | I i | 不存在
0
i 1
因为i 全取有理数时极限为1
i 全取无理数时极限为0
Rieman积分缺陷产生的根源: 分化呆板、苛刻:必须将定义域分成区间, 无论区间多么小D(x)的最大值都是1,最小值都 是0。 3 导致D(x)的大小和之差恒为1,无法任意小。
i 1
4
n
实现新思路的攻关路线:
首要问题:如何规定不规则集合
Ei {x : yi1 f ( x) yi } (第三章:测度论)
遗憾:不能对所有集合规定测度 退而求其次:探索哪些函数满足
的长度?
对任意yi1, yi , Ei {x : yi1 f ( x) yi }皆为可测集
1
(2) Riemann可积的充要条件
xi-1 xi
xi-1 xi
f(x)在[a,b]上Riemann可积


b
a
f ( x)dx lim M i xi lim mi xi f ( x)dx
b ||T || 0 i 1 ||T || 0 i 1 a
n
n
M i sup{ f ( x) : xi 1 x xi } mi inf{f ( x) : xi 1 x xi }
(第四章:可测函数)
5
准备充分后就改造积分定义: 方法1:根据初衷规定
( L)
[ a ,b ]
f ( x)dx lim i mEi
0
i 1
n
其中yi1 i yi , Ei {x : yi1 f ( x) yi } max{yi yi1}
方法2:随机应变直接规定
( L)
[ a ,b ]
f ( x)dx mG( f , E), 此处E [a, b]
(第五章:积分理论)
接着讨论积分的性质:
(第六章:微分与积分)
6
(第一章,第二章是必备公共基础)
2.《实变函数与泛函》的特点(一)
高度抽象,防不胜防:
抽象到什么程度呢?有人用八个字概括为:“似是 而非,似非而是”。在此举以下两例说明之: 例1:若许多同学站成一列,且男女生交叉排列, 任意两个男生中间有女生,任意两个女生中间有男生, 在其中任取一个片段,男女生的个数无非有三种可能, 但男女生个数至多相差一个。任意两个有理数中有无理 术,任意两个无理数中间有有理数,而任取一个片段, 无理数却比有理数多得多1,即“似是而非” 例2:有理数在直线上密密麻麻,自然数在直线上 稀稀拉拉,如果以前有人说自然数与有理数一样多的话, 没人敢承认,而《实变函数与泛函分析》通过严密论证 7 该结论无可非议。这就是所谓“似非而是”。
相关文档
最新文档