2MHz、DC 准确的同步降压型 DC-DC 控制器

合集下载

同步整流降压型DC-DC过零检测电路的设计

同步整流降压型DC-DC过零检测电路的设计

t r e ty.Ac o di g t hi r l m o e e o de e tcr u ti e i ne e gr a l n c r n o t sp ob e a n v lz r — t c ic i s d sg d.By usn m b l nc ig i aa e r ss a c o ofs t h y c o z to r n it s u ni g o f d l y t cr u t c n r a ie f s e i t n e t f e t e s n hr nia i n t a ss or t r n f e a he ic i a e l a t z
国 Hy i 司 的 0 5, C nx公 . u m MOS工 艺 线 投 片 , 试 结 果证 明过 零 检测 电路 效 果 良好 。 测
关 键 词 : 步 ; 流 一 流 转 换器 ; 压 型 ; 零 检 测 同 直 直 降 过
中 图 分 类 号 : N4 3 T 3 文献标识码 : A 文 章 编号 : 0 0 3 1 ( 0 0 0 — 2 60 1 0 — 8 9 2 1 ) 20 7 — 5
王 子 科 技 大 学 机 电 工 程 学 院 , 安 , 1 0 1 ( 西 安 电 子科 技 大 学 C 西 7 0 7 )。 AD所 , 安 , 1 0 1 西 7 07 )
20 —20 0 8 1 — 5收 稿 , 0 9 0 — 4收 改 稿 20 —32
r c iia i n uc e tfc to b k DC— DC r s i wo k n DCM ( ic n i ou o d s o tnu s c ndu to d . An h s wi1m a e c i n mo e) d t i l k

dcdc同步整流降压电路 频率

dcdc同步整流降压电路 频率

dcdc同步整流降压电路频率DC/DC同步整流降压电路是一种非常常见的电路配置,被广泛应用于电源管理领域。

它具有高效率、低功耗、稳定性好等优点。

本文将介绍这种电路的工作原理、主要特点、频率选择以及一些相关参考内容。

首先,我们来了解一下DC/DC同步整流降压电路的工作原理。

该电路由两个关键部分组成:一个降压开关电路和一个同步整流电路。

降压开关电路将输入电压转换为高频正弦波,然后经过同步整流电路进行滤波,并输出稳定的降压电压。

其中,开关电路可使用MOSFET、BJT等器件,而同步整流电路通常由二极管和低压降压MOSFET组成。

DC/DC同步整流降压电路的主要特点如下:1. 高效率:同步整流电路可以减小开关损耗,使得整个电路的效率得到提升,通常可达到90%以上。

2. 低功耗:由于采用高频开关,导致开关过程非常快速,因此整个电路的功耗较低。

3. 稳定性好:采用负载反馈控制技术,可以实现输出电压的稳定控制,保证电路的稳定工作状态。

4. 小体积:相对于传统的线性降压电路,DC/DC同步整流降压电路体积更小,适用于一些有空间限制的应用场景。

频率选择对DC/DC同步整流降压电路的性能有着重要影响。

通常情况下,常见的频率选择范围是几十kHz到几百kHz。

较高的开关频率可以降低电感和电容元件的尺寸,从而减小整个电路的体积。

然而,较高的开关频率也会增加开关损耗,影响电路的效率。

因此,在选择频率时需要综合考虑电路效率和体积的平衡。

关于DC/DC同步整流降压电路的相关参考内容,下面列举了一些经典的技术资料和论文:1. 《Switching Power Supply Design》(作者:Abraham I. Pressman 等):这本经典的参考书介绍了开关电源设计的基本原理和实际应用。

2. 《High-Frequency Switching Power Supplies》(作者:George C. Hua 等):这本书对高频开关电源的设计和调试进行了深入的介绍,适合于有一定基础的读者。

一种双向DC-DC变换器的设计与实现

一种双向DC-DC变换器的设计与实现

一种双向DC-DC变换器的设计与实现马晓慧【摘要】本设计采用芯片BQ24610控制DC-DC降压及充电控制模块,芯片TPS55340控制升压模块,升压和降压模块共同构成了双向变换器.降压及充电控制模块构成效率达到95.5%,本设计产品可以在22 V~ 30 V输入电压下为18650锂电池组提供1A~2A充电电流.并且在输入电压波动时能稳定输出充电电流,其电流变化率仅为1.08%,通过采用BQ24610电源管理芯片,能耗控制效果十分明显,转换效率高达90%以上.【期刊名称】《山西电子技术》【年(卷),期】2016(000)004【总页数】3页(P49-51)【关键词】双向DC/DC变换器;充电控制模块;升压模块;降压模块【作者】马晓慧【作者单位】山西大学商务学院,山西太原030006【正文语种】中文【中图分类】TM46本文采用固定设定芯片设计并实现双向DC-DC变换器[1-3],能够控制输出电压,实现电池的充放电功能。

使用芯片BQ24610控制DC-DC降压及充电控制模块,芯片TPS55340控制升压模块。

升压和降压模块共同构成了双向变换器,其中降压模块给电池充电时是一个方向,电池通过升压后给负载供电是另一个方向,构成DC-DC双向变换器。

1.1 DC-DC降压及充电控制模块的分析1.1.1 BQ24610芯片介绍BQ24610是TI公司产品,是一种充电管理芯片,较传统控制器,散热少、效率高,可对5 V~28 V之间的锂电池进行充电管理,具有以下特点:1) 可高适配器功率:在充电过程中可持续为系统供电。

2) 可使设计更加灵活:集成型独立解决方案可使设计者对产品更加灵活的设计,简化整体解决方案,使其更加广泛的应用于便携式设备。

3) 利于延长电池寿命:充电电流和充电电压的准确度非常接近,趋近百分之百,利于延长电池的使用寿命[4]。

1.1.2 DC-DC降压原理分析该降压电路采用电闸不停充放电,控制电感来控制电源平衡。

SMPS选择和测试要领的分析

SMPS选择和测试要领的分析

SMPS选择和测试要领的分析在现代电子产品中,开关电源(SMPS)被普遍选择用为来提供各种不同的直流电源,因它对于提高DC-DC电源转换系统的效率和可靠性是必不可少。

然而在这设计和应用过程中对于了解与掌握高效率SMPS的选择和测试要领很为重要,为此本文将对SMPS的选择和测试要领作分析说明。

1、选择SMPS基本要领1.1从开关电源(SMPS)系统基本特征说起大多数现代系统中主流的直流电源体系结构是开关电源系统,它因为能够有效地应对变化负载而众所周知。

典型SMPS的电能“信号通路”包括无源器件、有源器件和磁性元件。

SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。

SMPS设备还有一个控制部分,其中包括脉宽调节器、脉频调节器以及反馈环路等组成部分。

控制部分可能有自己的电源。

图1是简化的SMPS示意图,图中显示了电能转换部分,包括有源器件、无源器件以及磁性元件。

绝大部分的电气直流负载由标准电源供电。

但是,标准电源的电压可能不符合微处理器、电机、LED或其他负载的电压要求,尤其当标准电源本身的输出电压并不稳定时。

电池供电设备就是一个最好的例子:标准的Li+电池或NiMH电池组的典型电压对于大多数应用而言,不是过高就是过低,或者随着放电过程电压下降的过多。

1.2选择要领拓扑结构很多有通用性幸运的是,SMPS的通用性帮我们解决了这一难题,它将标准电源电压转换成合适的、符合规定的电源电压。

SMPS拓扑结构有很多,但可以划分为几种基本的类型,不同类型的转换器可以对输入电压实现升压、降压、反转以及升/降压变换。

与线性稳压器只能对输入电压进行降压不同的是,可以选择不同拓扑的SMPS来满足任何输出电压的需求,这也正是SMPS极具吸引力的原因。

如上所述,根据电路拓扑的不同,SMPS可以将(DC-DC)直流输入电压转换成不同的直流输出电压。

实际应用中存在多种拓扑结构,比较常见有三种非隔离式DC-DC拓扑结构,按照功能划分为:降压(buck 图2a所示)、升压(boost图2b所示)、升/降压(buck-boost或反转图2c所示)。

同步整流降压型DC_DC过零检测电路的设计

同步整流降压型DC_DC过零检测电路的设计

1. 3 CCM 和 DCM 状态下的电感电流 在 Buck 型 DCDC 转换器中 , 由于其负载电流
1 电流倒灌的形成
1. 1 过零检测电路设计的必要性 在 BU CK 型 DC-DC 转换器中, 有异步和同步两 种。 对于异步 Buck 型 DC-DC 转换器 , 由于采用二极 管整流 , 因此当其工作在DCM 模式下不会出现电感 电流倒灌的现象 ; 但在低电压大电流输出的情况 下 , 整流二极管的导通压降较高 , 输出整流管的损耗 尤为突出 , 即使采用低压降的肖特基二极管也会产 生 0. 6 V 的压降, 导致整流损耗增大, 电源转换效率 降低。 采用同步整流技术可以改善这一问题 , 但当同 步整流 Buck 型 DCDC 工作在 DCM 模式下[ 2] , 会出 现电感电流的倒灌 , 同样会降低电源转换效率, 而且 当其处于超过放状态下 , 还会使整个系统在很大程 度上受损。 这使得过零检测电路 的设计尤为重要。 针对这一问题 , 设计一款电路性能优良, 而且结构简 单、 功耗低、 占用芯片面积小的电感电流过零检测电 路是非常必要的。 1. 2 同步 BUCK 型 DC-DC 的工作原理 图 1 是同步整流 Buck 型 DC -DC 转换器的拓扑 结构, 其中 M 1 为主开关管 , M 2 为同步开关管, L 为 换能电感, C 0 为输出电容, R 0 为负载电阻[ 4] 。 主开关 管 M 1 在每个周期开始时接通 , 电感电流通过 M 1 而 上升, 输入端 V I N的电能转换为磁能储存在电感磁场 中 , 到达一定占空比时 M 1 关断 , 电感电流通过同步 管 M 2 进行续流而逐渐下降 , 磁能转换为电能释放 到输出端V
[ 7]
图 2 CCM 与 DCM 的电感电流波 形 : ( a) CCM 电流波 形 ; ( b ) DCM 电流波形 Fig . 2 Induct or cur rent wav efor m fo r CCM a nd DCM : ( a ) Cur r ent w avefo rm o f CCM ; ( b ) Curr ent w avefo r m of DCM

同步降压式 DC-DC 转换器能够最大限度地提高降压 转换效率的原因及其使用

同步降压式 DC-DC 转换器能够最大限度地提高降压 转换效率的原因及其使用

同步降压式DC/DC转换器能够最大限度地提高降压转换效率的原因及其使用在包括汽车、工业自动化、电信、计算机、白色家电和消费电子在内的各种系统中,将高母线电压降至较低电压,从而为IC和其他负载供电的需求越来越大。

设计者面临的挑战是,如何以最高的效率、最小的热负荷、低成本以及尽可能小的解决方案尺寸来实现这种降压转换。

传统的异步降压转换器提供了一种潜在的低成本解决方案,但其转换效率较低,不能满足许多电子系统的需求。

设计者可以利用同步DC/DC转换器和同步DC/DC控制器来开发紧凑型高效率解决方案。

本文简要介绍了电子系统对高效DC/DC转换的性能要求,并回顾了异步和同步DC/DC转换器的区别。

然后,介绍来自Diodes,Inc、STMicroelectronics和ON Semiconductor的几种同步DC/DC 转换器设计方案,以及评估板和设计指南。

这些方案有助于快速启动高效率解决方案的开发。

为什么需要同步DC/DC转换器?所有类型电子系统对效率要求的都越来越高,而且复杂性也在不断提高,这就促使电源系统架构和电源转换拓扑也在相应地向前发展。

随着越来越多的独立电压域能够支持日益增多的功能,分布式电源架构(DPA)在愈来愈多的电子系统中得到了应用。

DPA并没有采用多个隔离电源来驱动不同的负载,而是仅包含一个用于产生相对较高配电电圧的隔离式AC/DC电源,以及多个较小的降压转换器。

其中,降压转换器用于根据每个负载的要求,将配电电压将至较低的水平(图1)。

采用多路降压转换器的优势在于体积小、效率高、性能优。

选择异步还是同步降压转换器时,需要在成本和效率之间进行权衡。

如果需要成本最低的解决方案,其可以同时接受较低的效率和较高的热负载,则异步降压方案可能是首选。

另一方面,如果优先考虑效率并希望采用发热更少的运行方案,那么成本更高的同步降压转换器通常是更优的选择。

同步与异步降压转换器的比较典型的异步降压转换器应用如图2所示。

双同步降压稳压器

双同步降压稳压器

提高轻负载下的能效 。
ADI
双 同步 降压稳压器
新 型I SL8 2 、I 0 2 SL8 3 / 0 3 A和
I 83 / SL 0 6 A降压 稳 压 器 的 静 态 电 流 仅 有 4u 0 A,输 入 电压 范 围2 8 .5~6 V,这 使 它 们 成 为 单 节 锂 离 子 电 池 、三 节 镍 氢 电
6 0 碳化硅 肖特 基二极管 5V
C DXX0 5 3 6 A系 ̄ 6 0 Z ; 5 V Re 肖 q c
与外 部 时 钟 同步 ,从而 消 除 转换 器之 器件 采 用 io o r 成 式 隔 离DC DC s P we 集 / 间 的系 统 拍频 ,避 免产 生 音 频噪 声 。 转换器技术 ,且 隔离额定值为5 Vr 。 k ms
E i uies ai@vsa .o ma :b s s s l n a i y cr h n
, t : www vs a . o , / f / o . ih y c m
此 外 ,A DI 司 还 推 出 了 公
要 。 这 款 新 型 D C DC 关 控 制 器 可 以 ADU 2 x 列双 通 道 数 字 隔 离 器 ,该 / 开 M6 0 系
标 准DCR为 9 5 9 5 ( ,最 大 DCR . ~2 .m 为 1 . ~3 .m (。 该 电感 可 处 理 高 瞬 14 30 态 电流 峰 值 而 不 会 硬 饱 和 。新 器件 符 合 RO S 范 、 10 铅 的 屏 蔽 复 合 结 构 H 规 0 %无 可 降 低 蜂 鸣 噪 声 的 水 平 ,工 作 温 度 范 围
电话 :8 0 1 1 4 0 8 0 7 2 坼) / : www.n lg c m / a ao . o

一种基于同步整流技术的降压DCDC转换器设计

一种基于同步整流技术的降压DCDC转换器设计
30.陈敏.吴金采用ZVS条件控制的DC-DC同步整流技术[期刊论文]-电子器件 2004(3)
31.Toru Ogawa.Shingo Hatanaka.Kenji Taniguchi An On-Chip High-Efficiency DC-DC Converter with a Compact Timing Edge Control Circuit
27.Alou P.Cohos J.A Uceda.Rascon M Roascon M Influence of windings coupling in low-voltage DC/DC converters with single winding self-driven synchronous rectification 2000
4.期刊论文李国厚.冯启高.LI Guo-hou.Feng Qi-gao电荷泵DC-DC转换器及其应用-河南职技师院学报
2000,28(2)
介绍了电荷泵DC-DC转换器的一般结构、工作原理及性能特点。详细讨论了利用DC-DC转换器进行电源系统设计的方法并给出了应用实例。这类电源系统可广泛应用于对电源的体积及效率有较高要求的便携式仪器仪表和测控系统中。
18.Middebrook RD Small-signal Modeling of Pulse-width Modulated Switched-mode Power Converters
1988(04)
19.张占松.蔡宣三开关电源的原理与设计 1998
20.Tang W.Lee F C.Ridley R B Small-signal Modeling of average Current-mode Cotrol.Power Electronics 1993(02)

DC/DC降压型转换器

DC/DC降压型转换器
品发布
户还可以导入 自己的数据 文件进行通 用 2 。G z P I 6 5 H X 综合测试仪
型研 究 ,从而 使得 整个 系统更 加 灵活 ,
能够满足 特殊用 户的测试需 求 。
Ke t l y ih e

NI BAE S se 与 y tms公 司 、P ae h s Mar ti 司 共 同 发 布 了一 款 针 对 军 事 和 x公
P ae Mar 公 司开发 的下变频模 VI 范 围内 。 h s ti x N
a s r a c o y t ms u t i mi r s s e
次探头 设 置连 接示波 器 ,即可 准确 地 、 块 ,包含射频 输入调 节模块 、微波频 段
确定性地 进行差分 测量 、单 端测量和 共 输入 、低频输 入 、本机振 荡器和 中频输
模测量 。
电 话 :0 - 7 2 5 0 5 6 6 —2 9 1 2
ht / www.utimirsse .o t / p: a sr coytmscm a
出调节模 块 。这五 个模块组 可设置成六 个 主 要 的 工 作 模 式 , 它 们 覆 盖 了

镯 : — 黔
应用的新型探头前端附件
的射频 /微波 下变频模块 为基础而 设计 用于单 节锂离子 电池或三节 AA 电池 的
这些 新型探头 前端附件 ,支持高 达 的 ,它拥 有从 1 0 Hz 6 5 0 k ~2 .GHz的频 应用 。 器件 支持 1 0 该 0 %的 占空 比 , 从而 8 Hz的信 号带 宽 ,是为探 测 D G DR2和 率 操 作 范 围 。 产 品 同 时 使 用 了 NI 司 可 实现 低 压 降 并从 电池 中汲 取 最 大 能 该 公

PWM PFM控制DC-DC降压稳压 说明书

PWM PFM控制DC-DC降压稳压 说明书

PWM/PFM 控制DC-DC 降压稳压器■产品概述是一款采用恒定频率、电流模式架构、双路输出的高效率同步DC/DC 降压稳压器。

该芯片具备可调输出电压型和固定输出电压型(1.2V 、1.8V 、3.3V )版本。

内置PWM/PFM 自动切换功能,在全负载范围内具有低纹波、高效率特性。

内部开关频率高达1.2MHz ,可采用小表面贴片型元件。

100%占空比实现了低压2V 操作,并延长了前级电池寿命。

■产品特点高效率:92%双路600mA 输出电流 2V 至5.5V 输入电压范围 全负载范围低纹波输出电压 小于1uA 关断电流 过热过流保护■用途手机 PDA MP3 数码相机 便携式仪表 笔记本电脑■封装MSOP-10■ 引脚配置MSOP-10KX5070KX5070引脚分配引脚编号引脚名功能描述1 GND1通道1接地端 2 FB1通道1反馈端 3 CE1通道1使能端,高电平有效 4 VIN2通道2输入电压端 5 SW2 通道2外接电感端 6 GND2通道2接地端 7 FB2 通道2反馈端8 CE2 通道2使能端,高电平有效 9 VIN1 通道1输入电压端 10 SW1 通道1外接电感端■功能框图图二分之一功能框图(对称结构)1 KX5070■绝对最大额定值项目符号绝对最大额定值单位输入电压V IN-0.3~6.5VV OUT-0.3~6.5输出电压V LX-0.3~VIN + 0.3CE端电压Vce -0.3~VIN + 0.3 VLX端电流I LX ±1000 mA容许功耗Pd 250mW工作环境温度Topr -40~+85℃保存温度Tstg -55~+125注意绝对最大额定值是指无论在任何条件下都不能超过的额定值。

万一超过此额定值,有可能造成产品劣化等物理性损伤。

■电气特性VIN=3.6V ,CIN=4.7uF ,CL=10uF ,L=3.3uH (Ta=25 ℃除非特殊指定) 项目符号条件最小值典型值最大值单位测试电路FB控制电压VFB -0.610.590.6V 工作电压VIN 2-61mV 负载调整度VOUT△ IL MAX=600mA 5 效率EFFI VIN=2.7V;IL=100mA -92 -%最低有效CE VCEH - 0.81V- 待机电流ISTB VCE=0V、VIN=3.6V 0 - 1uA静态电流IDD VFB=0.6V*0.9 -150 -3mA 电流限制ILIM - - 1200 -PFM切换点IL 60 mA 振荡频率FOSC -MHz1.1-2 最大占空比MAXDTY - 100%--■测试电路元件参数:LX1=LX2=3.3uH、C1=C4=4.7uF、C2=C6=22pF,C3=C5=10uF。

多相同步DC-DC PWM控制器LTC1629

多相同步DC-DC PWM控制器LTC1629

多相同步DC-DC PWM控制器LTC1629
陈又新;高大庆
【期刊名称】《电子元器件应用》
【年(卷),期】2003(5)2
【摘要】LTC1629是Linear公司专门为低压大电流的DC-DC变换电路设计的PWM控制电路,应用该公司的PolyPhaseTM技术,有效地减少了输入输出纹波电流,同时提高了变换器的效率.本文介绍它的基本组成部分的功能和简单应用电路.【总页数】4页(P24-27)
【作者】陈又新;高大庆
【作者单位】中国科学院近代物理研究所,甘肃,兰州,730000;中国科学院近代物理研究所,甘肃,兰州,730000
【正文语种】中文
【中图分类】TN409
【相关文献】
1.带集成驱动器的两相/多相降压PWM控制器ISL8120 [J], 毛兴武
2.Intersil业内首个具有AVSBus和综合电流控制的数字多相PWM控制器系列ISL681xx/691xx [J],
3.Intersil推出新的数字多相PWM控制器系列 [J],
4.安森美高压PWM控制器获“Top 10 DC-DC 2009”奖 [J],
5.数字多相PWM控制器系列 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

瑞泰特RT8070 4A同步降压DC-DC转换器数据手册说明书

瑞泰特RT8070 4A同步降压DC-DC转换器数据手册说明书

RT8070®©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.General DescriptionThe RT8070 is a simple, easy-to-use current mode controlled 4A synchronous step-down DC-DC converter with an input supply voltage range from 2.7V to 5.5V. The device built-in an accurate 0.8V reference voltage and integrates low R DS(ON) power MOSFETs to achieve high efficiency in both WDFN-8L 3x3 and SOP-8 (Exposed Pad)packages.The RT8070 operates in automatic PSM that maintains high efficiency during light load operation. The device features cycle-by-cycle current-limit protection to prevent the device from the catastrophic damage in output short circuit, over-current or inductor saturation. Adjustable soft-start function prevents inrush current during start-up. The device also features input under-voltage lockout, output under-voltage protection, and over-temperature protection to provide safe and smooth operation in all operating conditions.Ordering Information4A, 2MHz, Synchronous Step-Down ConverterNote :Richtek products are :❝ RoHS compliant and compatible with the current require-ments of IPC/JEDEC J-STD-020.❝ Suitable for use in SnPb or Pb-free soldering processes.Features●Input Voltage Range from 2.7V to 5.5V ●Integrated 110m Ω and 70m Ω FETs●100% Duty Cycle for Lowest Dropout ●Power Saving Mode for Light Loads ●Adjustable Frequency : 200kHz to 2MHz ●0.8V Reference Allows Low Output Voltage ●Enable Function ●External Soft-Start ●Power Good Function●Input Under-Voltage Lockout Protection ●Output Under-Voltage Protection ●Over-Temperature Protection●RoHS Compliant and Halogen FreeZ : ECO (Ecological Element with Halogen Free and Pb free)Applications●LCD TVs and Monitors ●Notebook Computers●Distributed Power Systems ●IP Phones●Digital CamerasRT8070ZSP : Product NumberYMDNN : Date CodeRT8070ZSPMarking InformationRT8070ZQW25 : Product CodeYMDNN : Date CodeRT8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Typical Application CircuitTable 1. Recommended Components Selection for f= 1MHzPin Configuration(TOP VIEW)SOP-8 (Exposed Pad)COMPSS EN VINPGOOD FB LXRT WDFN-8L 3x3OUTNote:Considering the effective capacitance de-rated with biased voltage level and size, the C OUT component needs satisfy theeffective capacitance at least 15μF or above at targeted output level for stable and normal operation.RT8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Functional Pin DescriptionRT8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Functional Block DiagramRT8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Absolute Maximum Ratings (Note 1)●Supply Input Voltage, VIN ---------------------------------------------------------------------------------------------- −0.3V to 6V ●LX Pin Switch Voltage --------------------------------------------------------------------------------------------------- −0.3V to 6V <10ns ----------------------------------------------------------------------------------------------------------------------- −2.5V to 8.5V ●Other I/O Pin Voltages -------------------------------------------------------------------------------------------------- −0.3V to 6V ●Power Dissipation, P D @ T A = 25°CSOP-8 (Exposed Pad)--------------------------------------------------------------------------------------------------1.333W WDFN-8L 3x3-------------------------------------------------------------------------------------------------------------1.429W ●Package Thermal Resistance (Note 2)SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------------------75°C/W SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------------------15°C/W WDFN-8L 3x3, θJA --------------------------------------------------------------------------------------------------------70°C/W WDFN-8L 3x3, θJC --------------------------------------------------------------------------------------------------------8.2°C/W ●Junction T emperature ----------------------------------------------------------------------------------------------------150°C ●Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------260°C●Storage T emperature Range ------------------------------------------------------------------------------------------- −65°C to 150°C ●ESD Susceptibility (Note 3)HBM (Human Body Model)---------------------------------------------------------------------------------------------2kVElectrical CharacteristicsRecommended Operating Conditions (Note 4)●Supply Input Voltage, VIN ----------------------------------------------------------------------------------------------2.7V to 5.5V ●Junction T emperature Range ------------------------------------------------------------------------------------------- −40°C to 125°C ●Ambient T emperature Range ------------------------------------------------------------------------------------------- −40°C to 85°CRT8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Note 1. Stresses beyond those listed “Absolute Maximum Ratings ” may cause permanent damage to the device. These arestress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.Note 2. θJA is measured at T A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC ismeasured at the exposed pad of the package.Note 3. Devices are ESD sensitive. Handling precaution is recommended.Note 4. The device is not guaranteed to function outside its operating conditions.RT8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Typical Operating CharacteristicsSwitching Frequency vs. Temperature0.940.950.960.970.980.991.001.011.021.031.04-50-25255075100125Temperature (°C)S w i t c h i n g F r e q u e n c y (M H z )Output Voltage vs. Output Current1.0701.0751.0801.0851.0901.0951.1001.1051.1101.1151.1201.1251.13000.511.522.533.54Output Current (A)O u t p u t V o l t a g e (V)Reference Voltage vs. Temperature0.760.770.780.790.800.810.820.830.84-50-25255075100125Temperature (°C)R e f e r e n c e V o l t a g e (V)V IN UVLO vs. Temperature1.81.92.02.12.22.32.42.52.62.72.8-50-25255075100125Temperature (°C)V I N U V L O (V )Enable Voltage vs. Temperature0.60.70.80.91.01.11.21.31.41.51.6-50-250255075100125Temperature (°C)E n a b l e V o l t a g e (V )Efficiency vs. Output Current1020304050607080901000.0010.010.1110Output Current (A)E f f i c i e n c y (%)RT8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.SwitchingTime (500ns/Div)V IN = 5V, V OUT = 1.1V, I OUT = 4AV LX (5V/Div)V OUT (10mV/Div)Power On from EN Time (500μs/Div)V EN (5V/Div)V OUT (1V/Div)I OUT (5A/Div)V PGOOD (5V/Div)V IN = 5V, V OUT = 1.1V, I OUT = 4A Load Transient ResponseTime (100μs/Div)V IN = 5V, V OUT = 1.1V, I OUT = 1A to 4A,R COMP = 10k Ω, C COMP = 560pFV OUT(200mV/Div)I OUT (2A/Div)Power Off from V INTime (5ms/Div)V IN (5V/Div)V OUT (1V/Div)I OUT (5A/Div)V PGOOD (5V/Div)V IN = 5V, V OUT = 1.1V, I OUT = 4A, EN = HighV IN (5V/Div)V OUT (1V/Div)I OUT (5A/Div)V PGOOD (5V/Div)Power On from V IN Time (2.5ms/Div)V IN = 5V, V OUT = 1.1V, I OUT = 4A, EN = HighPower Off from ENTime (250μs/Div)V EN (5V/Div)V OUT (1V/Div)I OUT (5A/Div)V PGOOD (5V/Div)V IN = 5V, V OUT = 1.1V, I OUT = 4ART8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Application InformationThe basic IC application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load current and begins with the selection of the inductor value and operating frequency followed by C IN and C OUT .Main Control LoopDuring normal operation, the internal upper power switch (P-MOSFET) is turned on at the beginning of each clock cycle. Current in the inductor increases until the peak inductor current reaches the value defined by the output voltage (V COMP ) of the error amplifier. The error amplifier adjusts its output voltage by comparing the feedback signal from a resistive voltage-divider on the FB pin with an internal 0.8V reference. When the load current increases,it causes a reduction in the feedback voltage relative to the reference. The error amplifier increases its output voltage until the average inductor current matches the new load current. When the upper power MOSFET shuts off,the lower synchronous power switch (N-MOSFET) turns on until the beginning of the next clock cycle.Output Voltage SettingThe output voltage is set by an external resistive voltage-divider according to the following equation :⨯OUT REF R1V = V (1+)R2where V REF equals to 0.8V typical.The resistive voltage-divider allows the FB pin to sense a fraction of the output voltage as shown in Figure 1.Figure 1. Setting the Output VoltageSoft-StartThe RT8070 provides adjustable soft-start function. The soft-start function is used to prevent large inrush current while converter is being powered-up. For the RT8070, the soft-start timing can be programmed by the external capacitor C SS between SS pin and ground. An internal current source I SS (10μA) charges an external capacitor to build a soft-start ramp voltage. The V FB will track the internal ramp voltage during soft start interval. The typical soft-start time is that V OUT rises from zero to 90% of setting value and can be calculated by the equation below :Power Good OutputThe power good output is an open-drain output and requires a pull up resistor. When the output voltage is 12.5% above or 12.5% below its set voltage, PGOOD will be pulled low. It is held low until the output voltage returns to within the allowed tolerances once more. During soft-start,PGOOD is actively held low and is only allowed to transition high when soft-start is over and the output voltage reaches 87.5% of its set voltage.Switching Frequency SettingThe RT8070 offers adjustable switching frequency setting and the switching frequency can be set by using external resistor RT . Switching frequency range is from 200kHz to 2MHz. Selection of the operating frequency is a tradeoff between efficiency and component size. High frequency operation allows the use of smaller inductor and capacitor values. Operation at lower frequencies improves efficiency by reducing internal gate charge and transition losses,but requires larger inductance values and capacitance to maintain low output ripple voltage. An additional constraint on operating frequency are the minimum on-time and minimum off-time. The minimum on-time, t ON_MIN , is the smallest duration of time in which the high-side switch can be in its “on ” state. This time is 90ns (typically). In continuous mode operation, the minimum on-time limit imposes a maximum operating frequency, f SW_MAX , of :f SW_MAX = V OUT / (t ON_MIN x V IN_MAX )SS SS SS0.8t = C I ⨯RT8070©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.0.00.20.40.60.81.01.21.41.61.82.025050075010001250150017502000R RT (k Ω)S w i t c h i n g F r e q u e n c y (M H z )Figure 2. Switching Frequency vs. R RT Resistor Inductor SelectionFor a given input and output voltage, the inductor value and operating frequency determine the ripple current. The ripple current, ΔI L , increases with higher V IN and decreases with higher inductance OUT OUT L IN V V I =1f L V ⎡⎤⎡⎤∆-⎢⎥⎢⎥⨯⎣⎦⎣⎦Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. Highest efficiency operation is achieved by reducing ripple current at low frequency, but attaining this goal requires a large inductor.For the ripple current selection, the value of ΔI L = 0.4(I MAX )is a reasonable starting point. The largest ripple current occurs at the highest V IN . To guarantee that the ripple current stays below a specified maximum value, the inductor value needs to be chosen according to the following equation :OUT OUT L(MAX)IN(MAX)V V L = 1f I V ⎡⎤⎡⎤-⎢⎥⎢⎥⨯∆⎢⎥⎢⎥⎣⎦⎣⎦Using Ceramic Input and Output CapacitorsHigher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at the input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at V IN large enough to damage the part.Slope Compensation and Peak Inductor CurrentSlope compensation provides stability in constantfrequency architectures by preventing sub- harmonic oscillations at duty cycles greater than 50%. It is accomplished internally by adding a compensating ramp to the inductor current signal. Normally, the peak inductor current is reduced when slope compensation is added.For the IC, however, separated inductor current signal is used to monitor over-current condition, so the maximum output current stays relatively constant regardless of the duty cycle.Hiccup Mode Under-Voltage ProtectionA Hiccup Mode under-voltage protection (UVP) function is provided for the IC. When the FB voltage drops below half of the feedback reference voltage, V FB , the UVP function is triggered to auto re-soft-start the power stage until this event is cleared. The Hiccup Mode UVP reduces the input current in short circuit conditions, but will not be triggered during soft-start process.Under-Voltage Lockout ThresholdThe RT8070 includes an input under-voltage lockout protection (UVLO) function. If the input voltage exceeds the UVLO rising threshold voltage, the converter will reset and prepare the PWM for operation. However, if the inputwhere V IN_MAX is the maximum operating input voltage.Through external resistor RT connect between RT pin and ground to set the switching frequency f SW . The equation below shows the relation between setting frequency and RT value.The switching frequency vs R RT value can be short with the formula below : f SW (MHz) = K x 0.9 / R RT (k Ω),where K = 3.67 x 105Note that the variation of f SW is ±15%.DS8070-09 November 2020©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.voltage falls below the UVLO falling threshold voltage during normal operation, the device will stop switching. The UVLO rising and falling threshold voltage has a hysteresis to prevent noise caused reset.Over-Temperature ProtectionThe RT8070 includes an over-temperature protection (OTP)circuitry to prevent overheating due to excessive power dissipation. The OTP will shut down switching operation when junction temperature exceeds a thermal shutdown threshold T SD (150°C). Once the junction temperature cools down by a thermal shutdown hysteresis (ΔT SD = 20°C),the IC will resume normal operation with a complete soft-start.Thermal ConsiderationsFor continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :P D(MAX) = (T J(MAX) − T A ) / θJAwhere T J(MAX) is the maximum junction temperature, T A is the ambient temperature, and θJA is the junction to ambient thermal resistance.For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θJA , is layout dependent. For SOP-8 (Exposed Pad) packages, the thermal resistance,θJA , is 75°C/W on a standard JEDEC 51-7 four-layer thermal test board. For WDFN-8L 3x3 packages, the thermal resistance, θJA , is 70°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T A = 25°C can be calculated by the following formulas :P D(MAX) = (125°C − 25°C) / (75°C/W) = 1.333W for SOP-8 (Exposed Pad) packageP D(MAX) = (125°C − 25°C) / (70°C/W) = 1.429W for WDFN-8L 3x3 packageThe maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance, θJA . The derating curves in Figure 3 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.Figure 3. Derating Curve of Maximum Power Dissipation 0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.50255075100125Ambient Temperature (°C)M a x i m u m P o w e r D i s s i p a t i o n (W )Layout ConsiderationsFollow the PCB layout guidelines for optimal performance of the IC.❝Connect the terminal of the input capacitor(s), C IN , as close to the VIN pin as possible. This capacitor provides the AC current into the internal power MOSFETs.❝LX node experiences high frequency voltage swings so should be kept within a small area.❝Keep all sensitive small signal nodes away from the LX node to prevent stray capacitive noise pick up.❝Connect the FB pin directly to the feedback resistors.The resistive voltage divider must be connected between V OUT and GND.©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Figure 4. PCB Layout GuidePlace the compensation C Place the feedbackresistors as close to as close to the IC as possible.CPlace the compensation C sEnsitive components away from this trace.Place the feedback resistors as close to as close to the IC as possible.C (a) For SOP-8 (Exposed Pad) package(b) For WDFN-8L 3x3 packageDS8070-09 November 2020©Copyright 2020 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Outline DimensionBFHMI(Bottom of Package)8-Lead SOP (Exposed Pad) Plastic PackageW-Type 8L DFN 3x3 PackageRichtek Technology Corporation14F, No. 8, Tai Yuen 1st Street, Chupei CityHsinchu, Taiwan, R.O.C.Tel: (8863)5526789Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.。

ADI公司推出具有内部补偿的高集成度降压型DC/DC同步稳压器

ADI公司推出具有内部补偿的高集成度降压型DC/DC同步稳压器
充 电 器 为 5 8V 和 6 5V, 节 MCP 3 1 . . 双 7 2 3和 MCP 3 2 713
者 输 出纹 波降 低 、 单 路 交 错输 出 的双 通 道 稳 压 器 。 4A
AD 公 司推 出具 有 内部 补偿 的高 集成 度 I 降压 型 DC D 同步 稳压 器 /C
ADP 1 4针 对 低 噪 声 负 载 点 应 用 而 设 计 , 有 以下 21 具 优 点 : 极 压 摆 率 针 对 噪 声 敏 感 的应 用 进 行 了优 化 , 栅 同时
防止 输 入 电 压 尖 峰 造 成 电池 充 电 器 电 路 的 过 热 和 损 坏 。
MCP 3 1 、 P 3 1 7 1 3 MC 7 1 4和 MC 7 2 3锂 离 子 ( i o ) P 31 L —I n 电
能, 以简 化 负 载 点 电 源 系 统 的 设 计 。ADP 1 8设 计 用 于 21
Mirc i co hp推 出模 拟 电 阻式触 摸 屏 控 制器
Mir c i c n lg n . 美 国微 芯 科 技 公 司) 出 co hpTe h oo yI c ( 推
支 持 从 医 疗 设 备 到 通 信 基 础 设 施 设 备 等 多 种 应 用 中的 高 性 能 信 号 链 负 载 , 些 应 用 信 号 链 可 能 包 括 AD 模 / 这 C( 数 转 换 器 ) D C 数 / 转 换 器 ) 精 密放 大器 以及 D P 数字 、A ( 模 、 S( 信 号 处 理 器 ) F G 现 场 可 编 程 门阵 列 ) 其 他 高性 能 和 P A( 等
充 电器 具 备 高 精 度 电 压 调 节 功 能 和 集 成 的 传 输 晶体 管 。 这些 特 点 的结 合 使 便 携 式 电子 设 备 设 计 的体 积 更 小 、 安 更 全, 而且 运 行 时 间 更 长 , 用 于 消 费类 、 适 医疗 和 工 业 市 场 。

同步DC/DC降压转换器ISL8012/13/14

同步DC/DC降压转换器ISL8012/13/14
字 内核 的电源 电压 。通过 将 电源 电压水 选择 的其 他特性 包括 :3 0 0 kHz切换频 平 调整至适 应 内核的处理状 态 ,便能 降 率;D DR存储 器跟踪;可 编程 P OOD。 G 低 能耗 ,以延长 电池 的使 用寿命 。为 了 S p RB c 采用 散热加 强型封装 , uI uk 侧面 使 DVS的效 能最大化 ,F AN5 5 的数 厚 度 为 0 9 35 . mm 。 字 可编程输 出电压具 有 0.5~1 9 5 7 .7 V 的 范围 ,并 且能够 以 1 .mV的增量进 25 行调节 。
为 1 0 Hz MHz 0 k ~1 ;具迟 滞的可编程 欠 关和 内部补偿 。 MAX8 1 A具 有 多种保护功 能 , 85 如
E L 7 5; 除 集 成 了 一 对 低 导 通 电 阻 开 关 压 闭锁 ;开路 L D状态 引脚( T3 5 )
L 7 5 ) WM 断接开 关 输 出过 载和短 路保护 、抑制软 启动期 间 MO F T,S 8 1 /1/l 还 可 以 与 一 频 率 同步 ( T3 5 一1.P S E IL 0 2 3 4
htp: t ,/ .ar hid e .o f ic l s mic m
同步D / C C D 降压转换器
IL 0 2 1 / 4 S 8 1/ 3 1
I L8 1 /l /1 S 0 4可执 行高 效率 的 2 3
过流和过压 ) 开 关频 率同步 , MB s , P u 接
Fa r h l S mi o d c o i c id e c n u t r I e n t 0 a Re fe nt r a i n l c iir t
电话 :0 0 8 3 8 9 l 6 0 — 15

dcdc降压控制器工作原理

dcdc降压控制器工作原理

DC-DC降压控制器是一种电子器件,主要用于将输入的直流电压降低到所
需的输出电压。

它的工作原理主要基于开关电源技术,通过控制开关元件的导通和截止,实现输入电压与输出电压之间的能量转换。

具体工作原理如下:
1. 开关元件:DC-DC降压控制器中的开关元件通常采用MOSFET或IGBT等功率开关器件。

开关元件在控制信号的作用下,周期性地导通和截止,使得输入电压在开关元件和续流二极管之间交替流动。

2. 续流二极管:当开关元件截止时,续流二极管导通,使得电感中的电流继续流动,为负载提供持续稳定的输出电流。

3. 电感和电容:DC-DC降压控制器中包含一个储能电感和一个输出滤波
电容。

储能电感在开关元件导通时充电,将输入电压的能量储存到电感中。

当开关元件截止时,电感开始放电,将储存的能量传递给输出滤波电容,从而实现输入电压到输出电压的转换。

4. 控制电路:DC-DC降压控制器的控制电路负责产生控制信号,控制开关元件的导通和截止。

控制电路通常包括反馈环路、PWM发生器、驱动电路等组成部分。

反馈环路用于检测输出电压,与设定值进行比较,产生误差信号。

PWM发生器根据误差信号生成脉冲宽度调制信号,控制开关元件的导通时间。

驱动电路则负责将PWM信号转换为适合开关元件的驱动电压。

综上所述,DC-DC降压控制器的工作原理是通过控制开关元件的导通和截
止,实现输入电压到输出电压的转换。

在此过程中,储能电感、续流二极管、输出滤波电容等元器件共同协作,完成能量的传递和转换。

dc2598a 描述 lt8390a 60v 2mhz 同步降压-升压控制器 示例手册说明书

dc2598a 描述 lt8390a 60v 2mhz 同步降压-升压控制器 示例手册说明书

1UG-1318 Rev ADESCRIPTIONLT8390A60V 2MHz Synchronous Buck-Boost ControllerDemonstration circuit 2598A is a 60V 2MHz synchronous buck-boost controller featuring the L T ®8390A . It accepts an input voltage from 4V to 24V (with transient to 60V) and regulates 12V output at up to 4A. DC2598A features high efficiency and 2MHz switching frequency, a high speed for a 4-switch buck-boost controller . It has a PGOOD flag, short-circuit fault protection, ISMON current-monitoring output signal, and spread spectrum frequency modulation (SSFM) or frequency synchronization.The LT8390A has a wide input voltage range from 4V to 60V. It can regulate an output as a boost, a buck, or a 4-switch boost-buck controller . It has adjustable switch-ing frequency between 600kHz and 2MHz. It has an option for external frequency synchronization or spread spec-trum frequency modulation. Its high switching frequency is unique to buck-boost controller ICs. Because of this, it can be used for high power when the input may be above, below, or equal to the output.DC2598A features an option to turn on spread spectrum by simply changing the position of a jumper from “NO SSFM/SYNC” to “SSFM” (or to “SYNC”).All registered trademarks and trademarks are the property of their respective owners.PERFORMANCE SUMMARYSmall ceramic input and output capacitors are used to save space and cost. There is a protection diode from LED+ to GND to prevent negative ringing during a short-circuit with long wires. Optional EMI input, output, and gate resistor component placeholders exist when a low EMI application is needed.Under voltage lockout can be adjusted with a few resistors and output voltage can be changed from 12V with FB resis-tors changes. Please note that higher voltage outputs may require higher voltage MOSFETs and output capacitors.The LT8390A data sheet gives a complete description of the part, operation and applications information. The data sheet must be read in conjunction with this demo manual for demonstration circuit 2598A. The LT8390AEUFD is assem-bled in a 28-lead 4mm × 5mm plastic QFN package with a thermally enhanced ground pad. LT8390A is also available in a 28-Lead plastic TSSOP (FE) package. Proper board layout is essential for maximum thermal performance. See the data sheet section “Layout Considerations”. Design files for this circuit board are available at /DC2598ASpecifications are at T A = 25°CPARAMETER CONDITIONMIN TYP MAX Input Voltage RangeOperating4V 60V Full Load (4A) Input Voltage Range Component Temp Rise <60°C with No Airflow 7V23VTypical Efficiency 12V Input, 12V 4A Output, 2MHz 90%Switching Frequency R3 = 59.0k 2MHz Peak Switch Current Limit R1 = 0.005Ω10A (AC) Output Ripple12V Input, 12V 4A Output 70mV P-P Input Under Voltage Lockout (Falling Turn-Off)R7 = 383k, R8 = 165k 4.0V Input Under Voltage Lockout (Rising Turn-On)R7 = 383k, R8 = 165k 5.0V V ISMON12V 4A Output 1.0VMaximum Load Current12V Input, 12V Output44.5A2UG-1318 Rev AQUICK START PROCEDUREFigure 1. Test Procedure Setup Drawing For DC2598ADemonstration circuit 2598A is easy to set up to evaluate the performance of the LT8390A Follow the procedure below:1. With the input power supply off, connect the input power supply and output load as shown in the test setup drawing in Figure 1.2. Connect the EN/UVLO terminal to GND.3. Make sure that the SSFM jumper is in the correct posi-tion – either with SSFM turned ON or OFF . Only placethe jumper in the SYNC position if an external SYNCfrequency source is connected to the SYNC pin.4. Turn the input power supply on and make sure the voltage is between 4V and 24V for proper steady state operation.5. Release the EN/UVLO-to-GND connection.6. Observe the 12V output voltage, the load current mea-surement via the ISMON pin voltage and the high effi-ciency of this small converter .QUICK START PROCEDUREFigure 2. DC2598A, LT8390A 2MHz Buck-Boost Efficiency 12V OUTFigure 3. Recommended Maximum DC Current with No Airflow (for DC2598A)UG-1318 Rev A3QUICK START PROCEDUREFigure 4. DC2598A, LT8390A Output Ripple Measured at C454UG-1318 Rev AQUICK START PROCEDUREUG-1318 Rev A56UG-1318 Rev AQUICK START PROCEDUREOptimized for Fast T ransient ResponseDC2598A is assembled as a very small 2MHz buck-boost converter with high efficiency. The ceramic output capaci-tors are used for a very small solution size overall. How-ever , for large signal transients on the output, more output capacitance may be useful, and matched with new com-pensation values. The figure below shows an optimizedlarge signal transient response DC2598A with the addi-tion of two aluminum electrolytic output capacitors and updated RC compensation values. Simply add two Sun-con 25HVHZ47M 47µF 25V capacitors to the output and change the compensation to R4 = 82k and C4 = 470pF. When these changes are made, the no load to full load (4A) transient has less than ±5% V OUT change.V IN V OUT R1L17UG-1318 Rev AITEM QTY REFERENCE PART DESCRIPTIONMANUFACTURER/PART NUMBERRequired Circuit Components11C1CAP ., 1μF, X7S, 100V, 10%, 080521C2CAP ., 4.7μF, X5R, 10V, 10%, 0402TDK, C1005X5R1A475K050BC 31C3CAP ., 0.47μF, X5R, 16V, 10%, 0402TAIYO YUDEN, EMK105ABJ474KV-F 41C4CAP ., 2200pF, X7R, 25V,1 0%, 0402MURATA, GRM155R71E222KA01D 61C5CAP ., 0.022μF, X7R, 25V, 10%, 0402MURATA, GRM155R71E223KA61D 71C6CAP ., 1μF, X7R, 25V, 10%, 0603KEMET , C0603C105K3RACTU 52C7, C8CAP ., 0.1μF, X7R, 25V, 10%, 0402AVX, 04023C104KAT2A81C10CAP ., 22μF, ALUM, 63V, 20%, SMD 6.3mm × 7.7mm SUN ELECTRONIC INDUSTRIES CORP , 63CE22FS 92C12, C32CAP ., 4.7μF, X7S, 100V, 20%, 1206AVX, 12061Z475MAT2A103C14, C20, C45CAP ., 22μF, X5R, 25V, 10%, 1206MURATA, GRM31CR61E226KE15L 162D1, D2DIODE, SCHOTTKY, 100V, 250mA, SOD-323F, AEC-Q101NXP SEMICONDUCTORS, BAT46WJ 251L1IND., 1μH, Power Shielded, 20%, 7.3A, 6mm × 5.5mm WURTH ELEKTRONIK, 74437336010272M1, M2XSTR., POWER MOSFET , 60V, 40A, TSDSON-8INFINEON, BSZ065N06LS5ATMA1292M3, M4XSTR., POWER MOSFET , 25V, 40A, TSDSON-8INFINEON, BSZ031NE2LS5ATMA1311R1RES., 0.005Ω, ±1%, 1.5W, 3216, AEC-Q200SUSUMU, KRL3216E-C-R005-F-T1321R2RES., 0.01Ω, 1%, 3/4W, 1206, SENSE SUSUMU, KRL1632E-M-R010-F-T5331R3RES., 59k, 1%, 1/16W, 0402, AEC-Q200VISHAY, CRCW040259K0FKED 342R4, R6RES., 10k, 1%, 1/16W, 0402VISHAY, CRCW040210K0FKED 351R5RES., 110k, 1%, 1/16W, 0402VISHAY, CRCW0402110KFKED 361R7RES., 383k, 1%, 1/16W, 0402, AEC-Q200VISHAY, CRCW0402383KFKED 371R8RES., 165k, 1%, 1/16W, 0402, AEC-Q200VISHAY, CRCW0402165KFKED 401R11RES., 100k, 5%, 1/16W, 0402VISHAY, CRCW0402100KFKED 451U1IC, 2MHz SYN. BUCK-BOOST CONTROLLER, 28-PIN QFNLINEAR TECH., LT8390AEUFD#TRPBF Optional Electrical Components 53C37, C38, C44CAP ., 0.1μF, X7R, 25V, 10%, 0402AVX, 04023C104KAT2A 110C26, C34, C39CAP ., OPTION, 0402121C27CAP ., 1μF, X5R, 16V, 10%, 0402AVX, 0402YD105KAT2A130C29, C30CAP ., 0805, OPTION 140C33, C40, C41, C42CAP ., OPTION, 1206152C35, C36CAP ., 0.1μF, X5R, 100V, 10%, 0402MURATA, GRM155R62A104KE14D 171D3DIODE, SCHOTTKY, 20V, 1A, SOD-323F NXP SEMICONDUCTORS, PMEG2010EJ 180D4, D5DIODE, OPTION, SCHOTTKY, SMD 220FB1, FB2, FB3, FB4, FB5, FB6IND., OPTION, BEAD, FERRITE, 1206260L2IND., OPTION, XAL4020 SERIES 30Q1XSTR., OPTION, PPAK 1212-8PARTS LISTPARTS LISTITEM QTY REFERENCE PART DESCRIPTION MANUFACTURER/PART NUMBER381R9RES., 124k, 1%, 1/16W, 0402VISHAY, CRCW0402124KFKED391R10RES., 75k, 1%, 1/16W, 0402VISHAY, CRCW040275K0FKEDRES., OPTION, 0402410R12, R20, R21, R25, R28,R29, R30426R14, R15, R16, R17, R24, R26RES., 0Ω, 1/16W, 0402, AEC-Q200VISHAY, CRCW04020000Z0ED432R18, R19RES., 10Ω, 5%, 1/16W, 0402VISHAY, CRCW040210R0FKED440R22, R23, R27RES., OPTION, 0805Hardware194E1, E2, E9, E10TEST POINT, TURRET, 0.094", MTG. HOLE MILL-MAX, 2501-2-00-80-00-00-07-0206E3, E4, E5, E6, E7, E8TEST POINT, TURRET, 0.064", MTG. HOLE MILL-MAX, 2308-2-00-80-00-00-07-0210E11TEST POINT, OPTION231JP1CONN., HDR, MALE, 2mm × 3,2mm, THT, STR WURTH ELEKTRONIK, 62000621121KEYSTONE, 575-4244J1, J2, J3, J4CONN., BANANA JACK, FEMALE, THT, NON-INSULATED, SWAGE284MH1, MH2, MH3, MH4STANDOFF, NYLON, SNAP-ON, 0.375"WURTH ELEKTRONIK, 702933000461XJP1CONN., SHUNT, FEMALE, 2 POS, 2mm WURTH ELEKTRONIK, 608002134218UG-1318 Rev A9UG-1318 Rev AInformation furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.SCHEMATIC DIAGRAM10UG-1318 Rev AUG16906-0-5/18(A)© ANALOG DEVICES, INC. 2017-2018ESD CautionESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.Legal Terms and ConditionsBy using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONL Y. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer , assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer , their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer . Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT . ADI SPECIFICALL Y DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT , OR CONSEQUENTIAL DAMAGES RESUL TING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT . Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW . This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2MHz、DC 准确的同步降压型DC/DC 控制器
近日(2010 年11 月 3 日)–凌力尔特公司(Linear Technology Corporation) 推出高频控制接通时间的同步DC/DC 控制器LTC3833,该器件具有差分输出电压检测和时钟同步功能。

通过在瞬态事件时提高工作频
率,受控的接通时间、谷值电流模式架构强制了一个非常快的瞬态响应,从
而允许LTC3833 仅在少数几个周期内就能从大的负载阶跃中恢复。

其 4.5V 至38V 的输入电压范围涵盖种类繁多的应用,包括大多数中间总线电压应用。

强大的内置N 沟道MOSFET 栅极驱动器允许使用大功率外部MOSFET,以在输出电压范围为0.6V 至 5.5V 的应用中实现高达25A 的大负载电流,从而非常适合用于满足负载点应用的需求。

LTC3833 的差分放大器对正和负端提供真正远端输出电压取样,从而可不
受走线、通孔及互连IR 损耗(高达±500mV)的影响,实现准确度很高的
调节。

非常短的20ns 最短接通时间在高频工作时允许使用高降压比电源。

工作频率可在200kHz 至2MHz 范围内选择,或者可同步至一个外部时钟。

通过检测输出电感器(DCR) 两端的压降来监视输出电流,以实现最高
效率,或通过使用一个检测电阻器来监视输出电流。

其他特点包括一个内置
的偏压LDO、软启动或跟踪、可调电流限制、过压保护、折返电流限制以及
外部VCC 控制。

LTC3833 提供卓越的总差分调节准确度,而且规定补偿所有误差源,包括
电压、负载和差分检测。

LTC3833 的总差分输出电压准确度在25°C时为±0.25%,在0ºC至85ºC时为±0.67%,而在-40°C至125°C的整个工作结温范围内为±1%。

LTC3833 采用耐热增强型3mm x 4mm QFN-20 封装或。

相关文档
最新文档