建筑能耗监测系统-简介

合集下载

建筑能耗监控系统方案

建筑能耗监控系统方案

建筑能耗监控系统方案建筑能耗监控系统是一种用于监测建筑能源消耗情况的系统,通过收集建筑各种能源数据并进行分析,帮助用户掌握建筑的能源使用情况,并提供相应的能源节约建议,从而实现能源的高效利用。

建筑能耗监控系统的方案需要从以下几个方面进行考虑和设计:第一,数据收集与监测。

建筑能耗监控系统需要能够实时地收集和监测建筑的能源消耗情况,包括电力、水、煤气等各种不同类型的能源。

可以通过安装传感器或智能电表等设备来收集数据,并将数据传输到中央服务器进行处理。

第二,数据分析与报告。

建筑能耗监控系统需要对收集到的能耗数据进行分析与计算,确定能源消耗的情况,包括能源消耗的峰值时段、消耗量以及消耗的费用等。

同时,还需要生成相关报告,供用户查看和参考。

第三,异常检测与报警。

建筑能耗监控系统需要能够对异常能耗情况进行检测和报警。

当建筑的能耗超过预设的阈值时,系统可以自动发送报警通知给用户,提示用户注意节约能源,避免能源的浪费。

第四,能耗分析与优化。

建筑能耗监控系统可以通过对能耗数据的分析和比对,找出建筑能耗的潜在问题和瓶颈,并给出相应的优化建议,帮助用户改善建筑能源的使用情况,实现能源的高效利用。

第五,节能指导与管理。

建筑能耗监控系统还可以提供与节能相关的指导和管理功能。

通过对能耗数据的整理和分析,系统可以给出节能建议,包括调整空调温度、合理使用照明设备、控制电器的使用时长等。

同时,系统还可以提供能耗监测的历史数据和趋势分析,帮助用户了解能耗的变化情况,并根据实际情况做出相应的调整和改进。

综上所述,建筑能耗监控系统是一种具有重要意义和实用价值的系统。

通过对建筑能耗情况的监测和分析,系统可以帮助用户掌握建筑能耗的实时状况,及时发现能耗异常并进行处理,同时还可以提供节能建议和管理,促使用户提高能源利用的效率,实现能源的节约与可持续发展。

建筑物能耗监测系统方案PPT

建筑物能耗监测系统方案PPT
Logo/Company
建筑物能耗监测系统方案
Design of Building Energy Consumption Monitoring System Scheme
汇报人: 2023.10.12
1. 系统设计概述 2. 能耗数据采集与传输 3. 数据存储与处理 4. 用户界面设计与实现 5. 系统安全与稳定性保障
PART TWO
Energy consumption data collection and transmission
02 能耗数据采集与传输
能耗监测设备选型
能耗监测设备选型需考虑精度 根据《中国建筑能耗研究报告》显示,2019年中国建筑总能耗达到2.8亿吨标准煤,其中空调能耗占比超过50%。因此, 选择具有高精度的能耗监测设备,能够更准确地反映建筑物的能耗情况,有助于制定更有效的节能策略。 能耗监测设备选型需考虑稳定性 根据《全球建筑能源效率报告》显示,2018年全球因设备故障导致的建筑能耗损失高达30%。因此,选择稳定性高的能 耗监测设备,能够减少设备故障带来的能耗损失,提高能源利用效率。 能耗监测设备选型需考虑易用性 根据《中国城市居民生活满意度调查报告》显示,2019年中国城市居民对生活设施的满意度中,公共设施的满意度仅为 60%,其中最主要的原因是设备操作复杂。因此,选择易用性强的能耗监测设备,能够提高用户的操作体验,提升能源管 理的效率。
PART FIVE
05
System security and stability assurance
系统安全与稳定性保障
数据加密与备份策略
能源消耗数据加密 建筑物能耗监测系统采用先进的加密技术,确保能源消耗数 据的机密性和完整性。 备份策略优化 通过定期备份和容灾计划,确保在突发情况下数据安全,降 低数据丢失风险。 多层级安全防护 采用多层次的安全防护措施,包括硬件、软件和网络防护, 确保数据安全无虞。 实时监控与预警 建立实时监控机制,对异常能耗进行预警,及时发现并处理 潜在问题。

能耗监测管理系统方案

能耗监测管理系统方案

能耗监测管理系统方案1. 简介能耗监测管理系统(Energy Monitoring and Management System,简称EMMS)是一种用于实时监测和管理能源消耗的系统。

它通过采集各种能源消耗数据,并进行分析和报告,帮助用户有效控制能源消耗,提高能源利用效率,降低能耗成本。

2. 系统组成EMMS主要由以下几个组成部分构成:- 数据采集设备:负责采集各种能耗数据,如电力、水、燃气等。

- 数据储存与处理平台:用于接收、存储和处理采集到的数据,并生成相应报表和分析结果。

- 监测与控制终端:提供用户接口,用于实时监测能耗数据、查询历史数据、设定能耗目标等操作。

- 报警与通知系统:根据设定的阈值进行实时监测,并通过短信、邮件等方式向用户发送报警信息。

3. 系统功能EMMS具备以下核心功能:- 实时监测与数据采集:能够实时采集各种能耗数据,并自动上传到数据储存与处理平台。

- 数据分析与报告:对采集到的数据进行统计、分析,并生成相应的报表、图表和趋势分析等。

- 预警与优化控制:根据设定的能耗目标以及预先设定的能耗阈值,进行实时监测和预警,帮助用户及时调整能源消耗行为,提高能源利用效率。

- 数据可视化:通过直观的界面和图表展示能耗数据,方便用户查看和理解。

- 能耗管理与优化方案:根据数据分析结果,提供能耗管理建议和优化方案,帮助用户制定合理的能源消耗策略。

4. 应用领域EMMS可广泛应用于各个领域,包括但不限于以下几个方面:- 工业生产:监测与控制生产设备的能耗,提高生产过程中能源利用效率。

- 商业建筑:监测与管理大楼内的能耗,优化空调、照明等系统的能源消耗。

- 住宅小区:实时监测小区内的水电燃气等能耗情况,帮助业主节约能源。

- 公共机构:如学校、医院等,通过监测能耗数据,发现并改进能源使用不当的地方。

- 新能源管理:对于新能源设施如太阳能、风能等,EMMS可以对其发电效率进行监测和优化。

5. 优势与收益EMMS具有以下几个优势和收益:- 节约能源:通过实时监测和预警,及时发现能源浪费现象,有效控制能源消耗,实现节能减排。

建筑能耗监测与管理系统的设计

建筑能耗监测与管理系统的设计

建筑能耗监测与管理系统的设计随着全球能源危机的日益严峻,建筑能耗的管理和监测变得愈发重要。

建筑能耗监测与管理系统的设计成为了一个热门话题。

本文将探讨该系统的设计原则、功能以及未来的发展趋势。

一、设计原则建筑能耗监测与管理系统的设计应遵循以下原则:1. 数据采集与分析:系统应能够准确地采集建筑物的能耗数据,并进行实时分析。

通过对数据的分析,可以了解建筑物的能耗情况,从而制定相应的节能措施。

2. 多功能性:系统应具备多种功能,包括能耗监测、能源管理、设备控制等。

通过集成多种功能,可以实现全面的能耗管理。

3. 实时监测与反馈:系统应能够实时监测建筑物的能耗情况,并及时反馈给用户。

这样,用户可以及时了解建筑物的能耗情况,做出相应的调整。

4. 用户友好性:系统应具备良好的用户界面,方便用户操作和管理。

用户可以通过系统界面查看能耗数据、制定节能计划等。

二、功能建筑能耗监测与管理系统应具备以下功能:1. 能耗监测:系统应能够实时监测建筑物的能耗情况,包括电力、水、气等能耗指标。

通过数据采集和分析,可以了解能耗的变化趋势,及时发现异常情况。

2. 能源管理:系统应能够对建筑物的能源进行管理,包括能源的采购、分配和使用等。

通过对能源的管理,可以实现能源的高效利用,降低能耗成本。

3. 设备控制:系统应能够对建筑物的设备进行控制,包括照明、空调、暖气等设备。

通过对设备的控制,可以实现能耗的调节和优化。

4. 节能建议:系统应能够根据建筑物的能耗情况,提供相应的节能建议。

通过节能建议,可以帮助用户制定合理的节能计划,降低能耗。

三、未来发展趋势建筑能耗监测与管理系统在未来将会有更多的发展趋势:1. 智能化:随着人工智能技术的发展,建筑能耗监测与管理系统将会更加智能化。

系统可以通过学习和分析数据,自动调整设备的能耗,实现最佳的能耗效果。

2. 云端服务:建筑能耗监测与管理系统将会越来越多地采用云端服务。

通过云端服务,可以实现数据的实时共享和远程管理,方便用户随时随地进行能耗监测和管理。

安科瑞能耗监测系统说明

安科瑞能耗监测系统说明


能耗监测系统的数据编码
各地方标准的建筑总能耗的分类分项标准有差异,编码方法也有差别,系统可根据
各地标准灵活设置。
分类能耗 一级子类 分项能耗 一级子项 (1)室内照明与插座☆ (A)照明插座用电★ (2)公共区域照明和应急照明☆ (3)室外景观照明☆ 二级子项 (A)室内照明☆ (B)室内插座☆ (C)公共区域照明☆ (D)应急照明☆ (E)冷水泵★ (F)冷却水泵★ (G)冷水机组★ (H)冷却塔☆ (I)热水泵★ (J)电锅炉★ (K)空调箱、新风机组☆ (L)分机盘管☆ (M)空调区域的通排风设备☆ (N)多联机/分体式空调☆ -
表的二次接线,不应与计费电表串接。

能耗计量装置及设备选型
2、数字水表 功能:累计流量 精度:不低于2.5级 电气接口:RS-485、MBUS 通信协议:MBUS 安装位置:市政给水管网引入总管、建筑物内部独立经济核算单元、厨房餐厅、洗衣房、 游乐设施、公共浴池、绿化、洗车房、冷却塔、游泳池、水景等 管径:DN20 安装方式:破管安装,法来连接 要求:满足水平衡测试、不影响原系统供水流量,宜安装在便于检修、不受曝晒、水淹和 污染的地方。

整体结构
2、网络层/传输层
网络层由数据采集装置、组网设备、中继设备、隔离设备以及通信线缆组成。 计量装置和数据采集器之间采用主-从结构的半双工通信方式,采用符合各相关行业 标准的通信接口(RS485)及通信协议(MODBUS、645规约)。 计量装置和数据采集器之间传输距离较远时可增加中继设备,通过环网交换机组成 光纤环网增加传输的可靠性和安全性。 当能耗监测系统没有设置本地能耗监测管理系统时,传输层的智能数据采集器完成 能耗数据的采集、分类分项、编码、加密、数据上传等功能,数据可透传,不再购

建筑能耗监测系统技术方案

建筑能耗监测系统技术方案

建筑能耗监测系统技术方案建筑能耗监测系统是指通过使用各种传感器和监测设备,对建筑物的能源使用情况进行实时、准确的监测和分析,以便采取相应的节能措施。

本文将介绍一种建筑能耗监测系统的技术方案,包括系统结构、数据采集与传输、数据处理与分析以及节能措施等内容。

一、系统结构1.数据采集与传输系统:安装在建筑物内部和外部的传感器和监测设备,用于监测建筑物各个区域的温度、湿度、光照强度、能源消耗等参数,并通过物联网或其他通信技术将数据传输至数据处理与分析系统。

2.数据处理与分析系统:接收传感器和监测设备传来的数据,并进行数据处理和分析。

该系统可以实时监测建筑物能源的使用情况,通过数据分析找出能源的浪费和不合理使用的情况,并为建筑物的能耗优化提供依据。

3.控制与反馈系统:根据数据处理与分析系统得出的结论,采取相应的节能措施,如自动调节空调温度、灯光亮度等,以减少能源的浪费。

该系统也可以向建筑物的管理人员提供能源优化的建议,并向用户提供实时能耗数据。

二、数据采集与传输1.传感器选择:根据建筑物的特点和需要监测的参数,选择适合的传感器,如温度传感器、湿度传感器、光照传感器等。

同时,应选择具有较高灵敏度和可靠性的传感器。

2.数据传输方式:根据建筑物的网络环境和数据量,选择合适的数据传输方式。

可以采用有线或无线通信技术,如以太网、Wi-Fi、LoRa等。

数据传输应保证数据的安全性和稳定性。

三、数据处理与分析1.数据存储:将传感器采集到的数据进行实时存储,可以选择云端存储或本地存储。

同时,为了保证数据的完整性和准确性,可以设置数据备份和故障恢复措施。

2.数据分析:借助数据处理与分析软件,对存储的数据进行分析,找出能源的浪费和优化空间。

可以采用机器学习和数据挖掘等技术,建立能源消耗模型,并通过模型预测建筑物未来的能源使用情况。

四、节能措施根据数据处理与分析结果,采取相应的节能措施。

如调整空调的温度和湿度设定值、优化照明系统、采用节能设备和技术等。

建筑能耗计量监测系统LMS8.0使用说明书

建筑能耗计量监测系统LMS8.0使用说明书

建筑能耗计量监测系统V8.0使用说明书广州柏诚智能科技有限公司2012年10月目录1概述 (2)2运行环境要求 (3)3LMS8.0软件安装 (4)4LMS8.0软件登录 (7)5LMS8.0软件主界面 (8)6系统参数设置 (10)7用户资料管理 (12)8设备管理 (15)9计费类型设定 (26)10计费设置 (27)11设备检测点配置 (32)12日表管理 (34)13月报表管理 (39)14权限管理 (50)15日志管理 (52)16检测点曲线分析 (53)17动态图编辑 (56)18动态图监控 (60)1概述BSH2000能源综合管理系统中的建筑能耗计量监测系统LMS 8.0是基于WINDOWS平台的管理软件。

安装于物业管理部门的计算机上,通过RS485/M-BUS、以太网或其它通讯网络实时监控和采集楼宇内供水、供电、煤气、空调、采暖等各种能源计量设备的数据,管理部门可实时了解楼宇能耗状况。

系统将能耗计量设备数据存储在系统数据库中,随时可以进行能源数据的统计、分析、处理以及各种数据报表的打印。

建筑能耗计量监测系统由建筑能耗计量监测软件LMS、区域管理器FMU、前端能耗计量仪表和辅助设备等构成,系统支持M-BUS网络、RS485网络、以太网TCP/IP联网方式。

系统运用了先进的计量技术、通信技术和管理技术,具有稳定性好,可靠性强、布线简单、施工快捷和维护方便等优点。

管理中心通过GPRS/CDMA/3G无线网络、ADSL有线宽带实现远程监控、计量、诊断、控制等多种功能。

为物业管理和节能管理部门提供能耗参考数据,以达到提高能源管理水平的目的。

2运行环境要求2.1计算机配置2.1.1CPU:双核处理器,主频≥ 2.0GHz;2.1.2硬盘:≥ 250GB,内存:≥ 2GB;2.1.3显示器:19英寸液晶显示器;2.1.4后备电源:UPS后备式电源;2.1.5接口:配置10/100BaseT网卡、至少1个RS-232串行口、两路USB2.0接口;2.1.6其他配置:声卡、光驱、键盘、鼠标。

公共建筑能耗监测系统技术规程

公共建筑能耗监测系统技术规程

公共建筑能耗监测系统技术规程一、引言公共建筑是市政工程中不可缺少的一项基础设施,包括城市道路、公园、广场、政府大楼、学校、博物馆、图书馆、医院、体育馆、剧院等建筑文化设施。

随着城市化进程的不断加快,公共建筑数量不断增多,其能耗问题已经成为了一个不可忽视的问题。

为了控制公共建筑能耗的问题,提高能源使用效率,减少虚耗,从而实现可持续发展,公共建筑能耗监测系统应运而生。

本文首先介绍了公共建筑能耗监测系统的定义和特点,然后详细讨论了公共建筑能耗监测系统技术规程。

二、公共建筑能耗监测系统的定义和特点公共建筑能耗监测系统是指通过独立的系统或与其他系统相结合,对公共建筑的能耗进行监测和管理的一种技术手段。

其主要包括监测仪表、监测系统、数据通信、数据库和数据处理等组成部分。

公共建筑能耗监测系统的特点主要有以下几点:(1)智能化:公共建筑能耗监测系统通过采用智能化控制技术,可自动控制空调、照明、水暖等设备的使用,从而实现能源的合理使用和管理;(2)实时监测:公共建筑能耗监测系统可以实时监测能源使用情况,对节能降耗措施的实施效果进行精细化评估,有利于节能减排和精细管理;(3)集成性:公共建筑能耗监测系统可以与其他智能化控制系统相结合,形成一个完整的智能化控制系统,对公共建筑实施智能化管理;(4)数据可视化:公共建筑能耗监测系统可以将监测数据通过界面呈现出来,使数据可视化,便于管理人员对于数据的分析和辅助决策。

三、公共建筑能耗监测系统技术规程1、监测仪表技术规程(1)精度:监测仪表的精度应符合国家标准,以确保监测数据的准确性;(2)稳定性:监测仪表的稳定性应符合国家标准,以确保监测数据的稳定性;(3)适用性:监测仪表应选用适用于公共建筑的仪表进行监测,以确保监测数据的准确性和可靠性;(4)可靠性:监测仪表应选用可靠的仪表进行监测,以确保监测数据的可靠性和准确性。

2、监测系统技术规程(1)数据采集方式:监测系统应选择可靠、准确的数据采集方式进行数据采集,以确保监测数据的准确性和可靠性;(2)数据传输方式:监测系统应选择可靠、高效的数据传输方式进行数据传输,以确保监测数据的实时性和可靠性;(3)数据处理方式:监测系统应采用先进的数据处理技术进行数据处理,以确保监测数据的精准性和可视化程度;(4)监测报警功能:监测系统应具备监测报警功能,及时发现能源浪费等问题,并进行有效的警报和处置。

浅谈智能建筑能源管理与能耗监测系统-表格图形可以参考

浅谈智能建筑能源管理与能耗监测系统-表格图形可以参考

浅谈智能建筑能源管理与能耗监测系统随着我国经济的发展,国家机关办公建筑和大型公共建筑高耗能的问题日益突出。

目前,我国每年竣工建筑面积约为20亿m2,其中公共建筑约有4亿m2。

2万m2以上的大型公共建筑面积占城镇建筑面积的比例不到4%,但是能耗却占到建筑能耗的20%以上,其中单位面积耗电量更是普通民宅的10到15倍。

在公共建筑(特别是大型商场、高档旅馆酒店、高档办公楼等)的全年能耗中,大约50%~60%消耗于空调制冷与采暖系统,20%~30%用于照明.在我国现有的约430亿m2建筑中,只有4%采取了能源效率措施,单位建筑面积采暖能耗为发达国家新建建筑的3倍以上。

根据测算,如果不采取有力措施,到2020年中国建筑能耗是现在的3倍以上。

因此,做好大型公共建筑的节能管理工作,对实现“十一五"建筑节能规划目标具有重要意义。

2 智能建筑节能措施和现状目前,智能建筑的能源管理主要是由建筑设备管理系统(BAS系统)来实现的。

BAS系统可以根据预先编排的时间程序对电力、照明、空调等设备进行最优化的管理,从而达到节能的目的。

在工程中,通常采用如下节能措施:1)定时法:根据大楼工作作息时间按时启停控制设备,如风机、照明等.2)温度—时间延滞法:根据大楼内温度保持的延滞时间,提前关闭空调主机或锅炉达到节能之目的。

3)调节供水温度:根据室内外实际温度调节空调系统的供水温度,设定合适的供水温度减少系统主机的过度运行,实现节能.4)经济运行法:在室外温度达到13℃时,可直接将室外新风作为回风;在室外温度达到24℃时,可直接将室外新风送入室内.在这样的情况下,系统可节约对送回风系统进行处理的能源。

5)设备等寿命运行:对楼内冷热源主机、泵机、风机等设备进行等时间交替运行,延长设备的运行寿命,节省维护费用。

根据国外工程经验,建筑设备管理系统(BAS系统)可为新的办公大楼节能20%左右。

然而据统计,国内智能建筑中真正达到节能目标的还不到10%,80%以上的智能建筑内BAS系统仅仅作为设备状态监视和自动控制使用,造成投资的极大浪费。

建筑行业建筑能耗监测系统开发方案

建筑行业建筑能耗监测系统开发方案

建筑行业建筑能耗监测系统开发方案第一章建筑能耗监测系统概述 (3)1.1 建筑能耗监测系统定义 (3)1.2 建筑能耗监测系统发展背景 (3)1.3 建筑能耗监测系统意义 (3)第二章建筑能耗监测系统需求分析 (4)2.1 建筑能耗监测系统功能需求 (4)2.1.1 数据采集与传输 (4)2.1.2 数据存储与管理 (4)2.1.3 数据分析与展示 (4)2.1.4 能耗监测与预警 (4)2.1.5 能耗优化与节能管理 (4)2.2 建筑能耗监测系统功能需求 (4)2.2.1 系统稳定性 (4)2.2.2 系统响应速度 (4)2.2.3 系统兼容性 (5)2.2.4 系统扩展性 (5)2.3 建筑能耗监测系统用户需求 (5)2.3.1 系统易用性 (5)2.3.2 系统个性化 (5)2.3.3 系统安全性 (5)2.3.4 系统售后服务 (5)第三章系统架构设计 (5)3.1 系统总体架构 (5)3.1.1 数据采集层 (5)3.1.2 数据传输层 (5)3.1.3 数据处理与分析层 (6)3.1.4 应用层 (6)3.2 系统模块划分 (6)3.2.1 数据采集模块 (6)3.2.2 数据传输模块 (6)3.2.3 数据处理与分析模块 (6)3.2.4 应用模块 (6)3.3 系统通信协议设计 (6)3.3.1 有线传输协议 (6)3.3.2 无线传输协议 (7)3.3.3 数据格式 (7)3.3.4 数据传输流程 (7)第四章数据采集与传输 (7)4.1 数据采集设备选型 (7)4.2 数据传输方式 (8)4.3 数据采集与传输的安全性 (8)第五章能耗监测与分析 (8)5.1 能耗数据存储与管理 (8)5.2 能耗数据分析方法 (9)5.3 能耗监测结果展示 (9)第六章系统集成与对接 (9)6.1 与其他建筑智能化系统的集成 (9)6.1.1 集成概述 (10)6.1.2 集成方法 (10)6.1.3 集成效果 (10)6.2 与第三方能耗监测平台的对接 (10)6.2.1 对接概述 (10)6.2.2 对接方法 (10)6.2.3 对接效果 (10)6.3 系统兼容性与扩展性 (11)6.3.1 兼容性 (11)6.3.2 扩展性 (11)第七章系统安全与稳定性 (11)7.1 系统安全策略 (11)7.2 系统稳定性保障措施 (12)7.3 系统故障处理与恢复 (12)第八章系统开发与实施 (13)8.1 系统开发流程 (13)8.1.1 需求分析 (13)8.1.2 系统设计 (13)8.1.3 编码实现 (13)8.1.4 系统测试 (13)8.1.5 系统部署与调试 (13)8.2 系统实施步骤 (14)8.2.1 硬件设备安装 (14)8.2.2 软件系统部署 (14)8.2.3 系统集成与调试 (14)8.2.4 用户培训与验收 (14)8.3 系统验收与交付 (14)8.3.1 验收标准 (14)8.3.2 验收流程 (14)8.3.3 系统交付 (15)第九章建筑能耗监测系统运营与管理 (15)9.1 系统运行维护 (15)9.1.1 运行维护目标 (15)9.1.2 运行维护内容 (15)9.1.3 运行维护制度 (15)9.2 能耗监测报告编制 (15)9.2.1 报告编制目标 (15)9.2.2 报告编制内容 (16)9.2.3 报告编制流程 (16)9.3 能耗监测数据应用 (16)9.3.1 数据挖掘与分析 (16)9.3.2 节能潜力评估 (16)9.3.3 能耗监测与预警 (16)第十章建筑能耗监测系统前景与展望 (17)10.1 建筑能耗监测系统发展趋势 (17)10.2 建筑能耗监测系统市场前景 (17)10.3 建筑能耗监测系统创新点与挑战 (17)第一章建筑能耗监测系统概述1.1 建筑能耗监测系统定义建筑能耗监测系统,是指通过一系列监测设备、传输网络和数据处理平台,对建筑物的能耗数据进行实时监测、统计分析和信息反馈的技术系统。

建筑能耗监测系统设计与实践

建筑能耗监测系统设计与实践

建筑能耗监测系统设计与实践建筑能耗监测系统是为了解决建筑能源消耗过高、环境污染严重的问题,对建筑能源使用情况进行监测,发现问题并及时处理,提高建筑节能水平,降低污染排放量,实现可持续发展的目标。

建筑能耗监测系统旨在通过对建筑能源的实时监测、分析和管理,提高建筑能源的使用效率,减少能源浪费和二氧化碳排放。

一、建筑能耗监测系统的设计1.系统架构建筑能耗监测系统采用分布式系统架构,包括前端数据采集、后端数据处理与展示。

前端数据采集设备位于建筑内部,包括智能传感器和控制器,用来采集建筑内部的光照、温度、湿度等环境数据。

后端数据处理与展示主要包括数据处理器和数据展示器,用来对采集数据进行处理和分析,并通过数据可视化的方式呈现给用户。

2.数据采集与传输建筑能耗监测系统需要采集大量的数据,并将这些数据传输到后端进行处理和分析。

数据采集和传输是系统设计中的重要环节。

在数据采集和传输中需要考虑以下几点:传输速度、传输距离、安全性和可靠性。

一般来说,建筑能耗监测系统采用局域网进行数据传输,采用TCP/IP协议进行通信。

同时,系统可以采用无线传输技术,提高数据采集的灵活性。

3.数据处理与分析建筑能耗监测系统采集的数据必须经过处理和分析,才能得出有意义的结论。

数据处理和分析是建筑能耗监测系统设计中的关键环节。

数据处理和分析要考虑的方面是:数据存储、数据处理算法、数据可视化等。

建筑能耗监测系统可以根据实际情况采用不同的数据处理算法,比如神经网络算法、遗传算法等。

同时,系统还需要提供数据可视化功能,以便用户能够直观地了解建筑的能源使用情况。

二、建筑能耗监测系统的实践1.实际应用场景建筑能耗监测系统已经在许多实际应用场景中得到了应用。

比如,在商业建筑中,可以通过监测建筑内外的光照、温度、湿度等数据,进行空调、照明等设备的自动调节,以实现节能降耗的目的。

在居民楼、公共建筑中,可以通过监测水、电、气等能源的使用情况,进行合理的管控,实现节能降耗、减少污染排放的目的。

建筑能耗管理系统调试方案

建筑能耗管理系统调试方案

建筑能耗管理系统调试方案建筑能耗管理系统(Building Energy Management System,简称BEMS)是指通过采用各种传感器、控制装置、通讯装置、数据库等技术手段,实现对建筑能耗进行实时监测、智能控制以及数据分析,从而提高建筑能源利用效率,减少能耗,保障建筑安全和环境舒适。

调试方案是指在BEMS系统建设、安装与运行过程中所执行的一系列操作,以确保系统能够稳定运行并发挥出最佳效果。

下面将详细介绍一个基于建筑能耗管理系统的调试方案。

1.系统安装与接线首先,需要安装好BEMS系统的硬件设备,包括传感器、控制装置、通讯装置等。

调试人员需要仔细检查各个设备是否正确安装并接线准确无误。

在接线过程中,应特别注意设备之间的连接方式和信号传输稳定性,避免出现接线错误或松动导致的故障。

2.系统配置与参数设置BEMS系统需要根据建筑特点进行相应的配置与参数设置。

调试人员应根据建筑的布局、能耗需求、设备类型等因素,合理设置系统的各种参数,如温度传感器的灵敏度、控制策略的优先级等。

此外,还需要进行系统的时钟校准,确保系统的时间准确无误。

3.数据采集与监测BEMS系统的核心功能是实时监测建筑能耗,对此,调试人员需要检查各个传感器的工作情况,确保数据采集的准确性。

同时,还需要编写相关的程序代码,实现数据的采集、传输与存储功能。

调试人员还需进行实时监测,确保系统能够及时准确地响应各种数据变化。

4.控制与调节BEMS系统能够根据建筑能耗情况进行智能控制与调节,以达到节能减排的目的。

为此,调试人员需要编写相应的控制算法,并进行测试与调试。

在调试过程中,应特别注意控制策略的合理性与有效性,及时进行参数调整和优化。

5.系统集成与通讯BEMS系统通常需要与其他楼宇自控系统或建筑管理系统进行集成与通讯。

为此,调试人员需要进行相关接口的配置与设定,确保系统之间能够正常交换数据,并实现联动控制。

此外,还需进行通讯网络的调试,保证系统之间的连接稳定可靠。

建筑能耗监测系统技术方案

建筑能耗监测系统技术方案

建筑能耗监测系统技术方案建筑能耗监测系统是一种通过监测建筑能耗数据来实时掌握能源使用情况,并针对能耗异常提供相应的优化建议的技术方案。

在目前的能源危机背景下,建筑能耗监测系统能够有效降低建筑能耗,节约能源。

本文将从硬件设备、传感器、数据采集与处理、数据分析与展示等方面介绍建筑能耗监测系统的技术方案。

一、硬件设备建筑能耗监测系统的硬件设备主要包括数据采集设备、传感器、通信设备等。

数据采集设备通常由主机、服务器等组成,用于接收和存储传感器采集的数据。

传感器用于监测建筑中的环境参数,如温度、湿度、光照等。

通信设备用于将采集到的数据传输给数据采集设备。

二、传感器建筑能耗监测系统中的传感器是关键设备,用于实时监测建筑中的各项环境参数。

常见的传感器有温湿度传感器、光照传感器、能耗传感器等。

这些传感器能够通过无线方式将采集的数据传输给数据采集设备,实现数据的实时监测与采集。

三、数据采集与处理数据采集与处理是建筑能耗监测系统的核心技术环节。

通过数据采集设备接收到的传感器数据,经过处理后存储到数据库中。

数据采集与处理的流程主要包括数据的解析、质量检查与校正、数据的存储等。

同时,数据采集与处理过程中需要对数据进行清洗和校验,剔除异常数据,确保数据的准确性和可靠性。

四、数据分析与展示数据分析与展示是建筑能耗监测系统的另一个重要环节。

通过对采集到的数据进行分析,可以寻找建筑能源消耗的规律和特点,并提供相应的优化建议。

数据分析与展示的方法有多种,如数据可视化、大数据分析、机器学习等。

通过对数据的分析和展示,可以及时发现建筑能耗异常情况并进行相应优化,同时也可以为建筑能源管理提供决策依据。

五、优化建议建筑能耗监测系统通过对建筑能耗数据的实时监测和分析,能够提供相应的优化建议。

例如,在温度过高或过低时,可以建议适当调整空调的温度设定值,以减少能源浪费。

在光照过弱或过强时,可以建议合理设置灯光亮度,以降低能耗。

另外,还可以将能耗数据与历史数据进行对比分析,寻找出能耗过高的时间段或区域,提供相应的优化措施。

建筑能耗监管系统方案模板

建筑能耗监管系统方案模板

建筑能耗监管系统方案模板建筑能耗监管系统方案模板一、背景介绍随着城市化进程的加速,建筑行业对能源消耗的需求也越来越大。

然而,目前建筑行业对能耗的监管和管理还存在一些问题,如无法实时监测能耗情况、无法迅速发现能耗异常等。

而建筑能耗监管系统的出现,为解决这些问题提供了一种可行的方案。

二、系统概述建筑能耗监管系统是一种基于互联网和物联网技术的系统,旨在帮助建筑行业进行能耗的实时监测、异常报警和能耗数据的分析。

该系统由传感器、数据采集设备、云平台和管理终端组成,可以全面提升建筑行业对能耗的管理效率和监管能力。

三、系统功能1. 实时监测能耗:系统通过安装在建筑内的传感器,实时监测建筑的电、水、气等能耗情况。

并将监测数据传输至云平台,实现对能耗的远程监控。

2. 能耗异常报警:系统可以根据预设的能耗阈值,自动判断能耗是否异常,并在异常情况下发出报警提示,提醒相关责任人及时处理。

3. 能耗数据分析:系统可以对历史能耗数据进行分析和统计,生成能耗报表和图表,为建筑行业提供数据支持,帮助管理者更好地了解和评估能耗状况。

4. 能耗优化建议:系统可以根据建筑能耗的特点和历史数据,给出能耗优化建议,帮助建筑行业制定科学合理的能源消耗策略,提高能耗利用效率。

四、系统优势1. 实时监测:系统可以实时监测能耗情况,帮助建筑行业发现能耗异常和设备故障等问题,并及时采取措施加以处理。

2. 自动报警:系统可以自动判断能耗是否异常,并发出报警提示,避免因能耗过高或过低而导致的损失。

3. 数据分析:系统可以对能耗数据进行大数据分析,提供有针对性的数据支持和能耗优化建议,帮助建筑行业更好地管理能源消耗。

4. 操作简便:系统界面简洁直观,易于操作和管理,不需要专业技术人员即可使用。

五、系统应用前景建筑能耗监管系统具有广阔的市场应用前景。

一方面,随着节能环保意识的提高,建筑行业对能耗监管的需求也将越来越大;另一方面,利用智能化技术和大数据分析为建筑行业提供能耗管理的解决方案正成为未来发展的趋势。

建筑节能检测的主要内容与检测技术

建筑节能检测的主要内容与检测技术

建筑节能检测的主要内容与检测技术随着社会经济的快速发展和对环境保护意识的提高,建筑节能已成为当前建筑行业的重要课题。

建筑节能检测是评估建筑能耗和节能潜力的重要手段,它能帮助建筑业主和管理者了解建筑的能耗情况,并提出相关的节能改进建议。

本文将重点介绍建筑节能检测的主要内容和检测技术,以期为建筑节能工作提供参考。

一、建筑节能检测的主要内容1. 建筑能耗数据的收集与分析建筑节能检测的第一步是对建筑能耗数据进行收集和分析。

这包括建筑的用电量、用水量、空调能耗等数据的收集,通过对这些数据进行统计和分析,可以全面了解建筑的能耗情况,发现能耗高的问题区域,为后续能耗改进工作做好准备。

2. 建筑节能系统设备的检测与评估建筑节能检测还要对建筑的节能系统设备进行全面的检测与评估。

这包括建筑的供暖系统、通风系统、照明系统和其他节能设备的运行状态和性能进行检测,评估这些设备的能耗情况和是否存在节能改进的空间。

3. 建筑能效评价与节能潜力分析建筑节能检测的内容还包括对建筑能效的评价和节能潜力的分析。

通过对建筑能效的评价,了解建筑能耗的合理性和提出建筑节能改进建议,为建筑节能提供重要的参考依据。

4. 节能改进建议和方案设计建筑节能检测还要根据上述的数据收集与分析,为建筑提出具体的节能改进建议和方案设计,包括建筑的节能改进方案、节能设备选型、节能技术应用等,为建筑的节能改进工作提供可靠支撑。

1. 建筑能耗监测系统建筑能耗监测系统是一种用于实时监测和记录建筑能耗数据的系统,它能够自动地获取建筑的用电量、用水量、空调能耗等数据,并且能够通过互联网进行实时的数据传输和远程监控,及时发现并解决能耗异常情况。

建筑节能系统设备测试仪器是一种用于检测建筑节能设备性能和能耗的专用仪器,包括用电量测试仪、热像仪、空气质量测试仪器、节能灯光测试仪器等,它们能够对建筑的节能设备进行全面的检测和评估。

3. 节能评价与模拟软件节能评价与模拟软件是一种工程仿真软件,通过对建筑的能耗进行模拟计算,可以评估建筑的能效水平,并且可以对建筑的节能改进建议进行模拟和优化,为建筑的节能改进提供科学依据。

建筑能耗监测与管理系统研究

建筑能耗监测与管理系统研究

建筑能耗监测与管理系统研究建筑能耗监测与管理系统在当今社会中扮演着至关重要的角色。

随着全球能源消耗的不断增加和环境问题的日益严重,建筑能耗监测与管理系统的研究变得愈发迫切。

本文将深入探讨建筑能耗监测与管理系统的相关内容,包括系统的原理、技术应用、发展趋势等方面,旨在为相关研究和实践提供参考和指导。

一、建筑能耗监测与管理系统的概述建筑能耗监测与管理系统是指通过各种传感器和监测设备,实时监测建筑能源消耗情况,并通过数据分析和管理系统,实现能源消耗的优化和管理。

该系统的研究旨在提高建筑能源利用效率,减少能源浪费,降低能源消耗成本,实现可持续发展的目标。

二、建筑能耗监测与管理系统的原理与技术建筑能耗监测与管理系统的核心技术包括传感器技术、数据采集技术、数据传输技术、数据分析技术等。

传感器技术是建筑能耗监测与管理系统的基础,通过各种传感器实时监测建筑内部环境参数和能源消耗情况。

数据采集技术用于将传感器采集到的数据传输至数据管理系统,实现数据的集中管理和分析。

数据传输技术包括有线传输和无线传输两种方式,实现数据的实时传输和监测。

数据分析技术是建筑能耗监测与管理系统的关键,通过数据分析和算法优化,实现能源消耗的优化和管理。

三、建筑能耗监测与管理系统的应用案例建筑能耗监测与管理系统在各个领域都有着广泛的应用,包括商业建筑、住宅建筑、工业建筑等。

以商业建筑为例,通过建筑能耗监测与管理系统,可以实时监测建筑内部环境参数和能源消耗情况,实现能源消耗的优化和管理,降低能源消耗成本,提高建筑能源利用效率。

四、建筑能耗监测与管理系统的发展趋势随着科技的不断发展和社会的不断进步,建筑能耗监测与管理系统也在不断创新和发展。

未来建筑能耗监测与管理系统将更加智能化和自动化,实现能源消耗的智能控制和管理。

同时,建筑能耗监测与管理系统将与人工智能、大数据等技术相结合,实现更加精准和高效的能源管理。

梳理一下本文的重点,我们可以发现,建筑能耗监测与管理系统的研究对于提高建筑能源利用效率、减少能源浪费、降低能源消耗成本具有重要意义。

建筑施工中的节能监测与控制技术

建筑施工中的节能监测与控制技术

建筑施工中的节能监测与控制技术在建筑施工中,节能监测与控制技术的应用越来越受到关注。

随着全球对于能源消耗和环境保护的重视程度不断提高,建筑行业也在积极探索和应用可持续发展的节能技术。

本文将介绍建筑施工中的节能监测与控制技术,并探讨其在实践中的应用。

一、节能监测技术1. 建筑能耗监测系统建筑能耗监测系统通过安装各种传感器和仪表,实时监测建筑内部能耗情况。

这些传感器可以测量温度、湿度、光照等参数,并将数据传输到中央控制系统中进行分析和处理。

通过对能耗数据的监测,可以及时发现能耗异常,并进行相应的调整和优化,从而降低能源的浪费。

2. 分项能耗监测技术建筑中不同系统和设备的能耗情况是建筑能耗的重要组成部分。

通过对建筑内部各个分项能耗进行监测,可以了解到哪些系统和设备的能耗占比较高,从而有针对性地进行能耗优化。

例如,通过分项能耗监测技术,可以发现空调系统的能耗占比较高,进而采取一系列的调控措施来降低空调系统的能耗。

二、节能控制技术1. 自动控制系统在建筑施工中,自动化控制系统广泛应用于节能控制。

自动控制系统可以根据实时监测到的能耗数据,自动调整各项设备的运行状态,从而实现能源的合理利用和节约。

例如,当室内温度达到设定值时,自动控制系统可以切断空调系统的运行,避免能源的不必要消耗。

2. 能耗预测与优化建筑施工中,通过对历史能耗数据的分析,可以建立能耗模型,进而预测未来的能耗情况。

在建筑施工过程中,根据能耗预测结果,可以采取一系列措施来优化能耗。

例如,在预测到某一时段能耗较高的情况下,可以事先调整设备的运行状态,以降低能耗。

三、节能监测与控制技术的应用案例1. 建筑外墙保温系统的节能监测与控制在建筑外墙保温系统中,通过传感器监测系统,实时监测外墙的温度和湿度等参数,从而及时发现外墙保温效果是否达到要求,是否存在能耗过高的情况。

通过自动控制系统,可以根据监测结果调整外墙保温系统的运行状态,实现能源的合理利用和节约。

能耗监测系统校园方案

能耗监测系统校园方案

能耗监测系统校园方案简介能耗监测系统是一种利用物联网技术,对校园内各个建筑物能耗数据进行实时采集、分析和监测的系统。

通过对能耗数据的监测和分析,可以帮助学校实现能耗的精细管理,提高能源利用效率,减少能源浪费,降低运营成本,同时也有助于提高学生与教职员工对节能环保的意识。

本文档将介绍能耗监测系统在校园中的应用方案,包括系统的工作原理、主要功能和实施步骤等。

工作原理能耗监测系统主要由传感器、数据采集设备、数据处理服务器和用户界面组成。

1.传感器:部署在校园不同建筑物的关键位置,用于感知电力、水量、气体等能耗数据。

2.数据采集设备:连接传感器和数据处理服务器,负责采集传感器数据并传输到数据处理服务器。

3.数据处理服务器:接收并储存从数据采集设备传过来的能耗数据,进行数据处理和分析,生成能耗报表和实时监测信息。

4.用户界面:为管理员、教职员工和学生提供图形化的界面,可以实时查看能耗数据、能耗分析结果和能耗报表,进行能耗监测和管理。

主要功能实时监测能耗数据能耗监测系统可以实时监测校园内各个建筑物的能耗数据,包括电力、水量、气体等能耗指标。

用户可以通过用户界面查看实时数据,以直观了解当前能耗情况,并及时发现异常情况。

能耗数据分析能耗监测系统具备能耗数据的分析功能,可以对历史能耗数据进行统计和分析。

通过分析能耗数据,系统可以识别能耗高峰期、能耗异常情况等,并生成相关报表,为学校制定节能政策和措施提供数据支持。

能耗报表生成能耗监测系统可以根据能耗数据生成能耗报表,包括日报表、周报表、月报表等不同时间粒度的报表。

报表中包括能耗统计数据、能耗趋势图等信息,为学校能耗管理提供参考依据。

异常预警能耗监测系统可以设置能耗异常预警功能,当能耗数据超出设定阈值或出现异常情况时,系统会及时发送预警通知给管理员和相关人员,以便采取相应的措施进行调整和修复。

能耗管理策略制定通过对能耗数据的实时监测和分析,能耗监测系统可以帮助学校制定合理的能耗管理策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

监测平台的构成
1、能耗构成 、
无线系统结构原理
系统结构原理
2、建筑能耗监测内容
建筑用电:电量、功率、功率因数; 建筑用电:电量、功率、功率因数; 采暖、锅炉、空调、制冷、照明、办公、 采暖、锅炉、空调、制冷、照明、办公、 电梯等具有485通讯功能的电表或智能 电梯等具有 通讯功能的电表或智能 电量测试模块。 电量测试模块。 采暖用热(汽 :具有485通讯功能的热 采暖用热 汽):具有 通讯功能的热 量表或者蒸汽流量计; 量表或者蒸汽流量计; 用水:可安装485通讯水表,也网上月 通讯水表, 用水:可安装 通讯水表 报;
照片
附现场照片
附现场照片
3、用户端监测仪表设备
智能电量监测模块:可监测电压、电流、频率、 智能电量监测模块:可监测电压、电流、频率、 有功功率、无功功率、视在功率、功率因数、 有功功率、无功功率、视在功率、功率因数、 正向有功电能、反向有功电能、正向无功电能、 正向有功电能、反向有功电能、正向无功电能、 反向无功电能等参数,体积小,便于安装。 反向无功电能等参数,体积小,便于安装。 多种智能电量检测模块和仪表可供选择,多种 多种智能电量检测模块和仪表可供选择, 电参数测量、多功能、高精度、高可靠性、 电参数测量、多功能、高精度、高可靠性、体 积小、导轨式安装等, 积小、导轨式安装等,根据实际的电流量程选 用不同电流互感器, 用不同电流互感器,可以灵活设定模块的内部 变比,实现数据的直接显示或输出。 变比,实现数据的直接显示或输出。
三、建设意义与必要性
1、我国社会和经济发展的迫切需求
能源严重不足: 能源严重不足:需求增长远大于产出增长 电力短缺严峻: 30个省份连年缺电 电力短缺严峻:近30个省份连年缺电 煤炭供应严重缺口:运力不足、 煤炭供应严重缺口:运力不足、体制不科学 原油对外依赖度逐年加大:已接近40% 原油对外依赖度逐年加大:已接近40% 单位GDP能耗高: GDP能耗高 3~11倍 单位GDP能耗高:2倍、3~11倍 建筑能耗不断增加: 建筑能耗不断增加:27.6% 能源环境问题突出:CO2、SO2、NOX、 能源环境问题突出:CO2、SO2、NOX、粉尘 我国长期面临能源供应和环境保护的巨大压力
中国经济与能源增长
GDP 年平均增长 % 1980-1985 1986-1990 1991-1995 1996-2000 2001 2002 2003 2004 2005 2006 2007 10.7 7.9 12.0 8.3 7.5 8.3 9.5 10.1 10.4 11.6 11.4 总能耗 年平均增长 % 4.9 5.2 5.9 -0.1 3.4 6.0 15.3 16.1 9.9 9.6 7.8
燃气燃煤:可安装 通讯天燃气表, 燃气燃煤:可安装485通讯天燃气表,网上周 通讯天燃气表 报和月报; 报和月报; 环境参数:室内外温湿度; 环境参数:室内外温湿度; 采暖空调供回水温度; 采暖空调供回水温度; 以上设备均可通过数据采集器, 以上设备均可通过数据采集器,将数据集中收 然后通过GPRS无线传输模块传输到数据 集,然后通过 无线传输模块传输到数据 中心,或者通过网络转换器, 中心,或者通过网络转换器,通过网线将数据 传送到数据中心。( 。(具体的传输方式视现场情 传送到数据中心。(具体的传输方式视现场情 况而定) 况而定)
公共建筑能耗监测系统
中国兵器工业第五八研究所 绵阳市维博电子有限责任公司
一、背景
全球
经济: 经济:金融动荡引发经济危机 能源: 能源:油价飙升与剧降引发未来能源安全思考 全球变暖:关乎人类生存,大国政治、 全球变暖:关乎人类生存,大国政治、经济外交博弈 的新舞台
中国
基本国策:节能减排, 基本国策:节能减排,确保能源安全和环境承载 近期:拉动内需,促进产业结构转变和经济增长方式 近期:拉动内需, 的转变
二、建筑能耗监测系统的基本功能
满足国家对公建能耗统计、分项计量和能耗报表上传 满足国家对公建能耗统计、 的要求进行建筑能耗数据分析; 的要求进行建筑能耗数据分析; 实现建筑能源系统管理由粗放型转变为精细型的科学 管理; 管理; 实现建筑系统的持续节能运行,降低能源费用; 实现建筑系统的持续节能运行,降低能源费用; 实现对能源系统的低效率、故障运行的监测和诊断; 实现对能源系统的低效率、故障运行的监测和诊断; 实现建筑节能的量化评价; 实现建筑节能的量化评价; 实现建筑群能源调度与优化匹配, 实现建筑群能源调度与优化匹配,为业主提供建筑能 源系统运行咨询报告。 源系统运行咨询报告。
相关文档
最新文档