概率初步复习教案

合集下载

初中数学《概率初步-复习课》教案

初中数学《概率初步-复习课》教案

“三部五环”教学模式设计《第25章复习课》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》八年级上册第25章单元小结。

2.知识背景分析在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。

统计观念、概率思想已成为人们进行信息处理的必要数学观念,而概率(与统计)是课程改革中新增的唯一一块培养学生从不确定的角度观察、认识社会,让学生了解可能性是普遍的,有助于他们理解社会的数学内容。

学生已学完本章,通过小结,可使所学知识系统化。

3.学情背景分析教学对象是九年级学生,学生已经学习本章知识,本节课的重点在于查缺补漏,使所学知识系统化。

4.学习目标4.1知识与技能目标全面复习本章内容,使所学知识系统化。

4.2过程与方法目标通过复习,培养学生归纳总结能力。

4.3情感态度与价值观目标通过练习,培养学生探究问题、分析问题、解决问题的能力。

5、学习重、难点5.1学习重点系统复习本章知识,查缺补漏。

5.2学习难点解答练习,提高学生解决实际问题的能力。

6.教法设计与学法指导6.1 教法选择根据本节教材内容特点,针对八年级学生的认知结构和心理特征,本节教学注重学生自我反思,经历观察、归纳、总结的过程,全面系统掌握本章知识。

6.2学法指导在本节课为复习课,注重指导学生自我反思、归纳总结,指导学生用数学建模思想解决实际问题。

7.学习环境与资源设计7.1学习环境:多媒体教室。

7.2学习资源:教材、教学课件(多媒体课件)。

8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。

评价方式为:随堂提问、作品展评、作业反馈。

9.教学流程设计10.教学过程设计甲乙4.桌子上放有6张扑克牌,全都正面朝下,其中恰有两张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?与同伴实际做一做.活动5 推荐作业,延伸新知必做题:复习题25 1、3题选做题:复习题25 2、5题[师生互动]教师提出要求,学生按要求选择完成作业。

初中数学初三数学下册《概率初步》教案、教学设计

初中数学初三数学下册《概率初步》教案、教学设计
6.适时反馈,提高效果:在教学过程中,教师应及时了解学生的学习情况,给予个性化的指导和反馈,以提高教学效果。
7.情感教育,培养品质:通过概率学习,引导学生正确看待事物的不确定性,培养他们面对挑战的勇气和信心,提高心理素质。
8.跨学科整合,拓展视野:将概率知识与实际应用相结合,如统计学、经济学等领域,拓展学生的知识视野,提高他们的综合素养。
五、作业布置
为了巩固本章节所学知识,培养学生的实践能力和创新意识,特布置以下作业:
1.请同学们结合本节课所学内容,选取一个生活中的实例,运用频率估计概率的方法,计算并分析该事件发生的可能性。要求:不少于200字的案例分析,并附上实验数据。
“请同学们思考一下,你们在生活中还遇到过哪些可以用频率估计概率的事件?请选取一个实例进行计算和分析,将实验过程和结果记录下来。”
“当我们遇到复杂的事件时,可以借助树状图和列表法来分析事件的可能性。下面我们通过一个例子来学习如何使用这两种方法。”
(三)学生小组讨论
1.学生分成小组,针对教师提出的问题进行讨论,例如:如何用频率估计概率、如何用树状图和列表法分析事件发生的可能性等。
“请同学们分组讨论一下,你们在实验中是如何用频率估计概率的?在实际问题中,如何运用树状图和列表法来分析事件的可能性?”
四、教学内容与过程
(一)导入新课
1.教师以生活中的实际例子引入新课,例如:抛硬币、掷骰子、抽奖等活动,让学生思考这些活动中存在的不确定性,以及如何用数学方法来描述这种不确定性。
“同学们,你们在生活中遇到过一些不确定的事情吗?比如抛硬币的时候,我们不确定是正面朝上还是反面朝上。那么,我们如何用数学的语言来描述这种不确定性呢?今天我们就来学习一种新的数学知识——概率。”
3.掌握树状图和列表法分析事件发生的可能性,这一部分对学生来说较为抽象,需要通过具体的实例和练习来逐步突破。

人教版九年级数学上册《概率初步》复习教案

人教版九年级数学上册《概率初步》复习教案

第二十五章概率初步复习总结【课标要求】标要求【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件,那么0<P(A)<12.随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。

②实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算。

要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。

第二种:利用模拟实验的方法进行概率估算。

如,利用计算器产生随机数来模拟实验。

综上所述,目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。

这里要引起注意的是,虽然我们可以利用公式计算概率,但在学习这部分知识时,更重要的是要体会概率的意义,而不只是强化练习套用公式进行计算。

3.你知道概率有哪些应用吗?通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。

【能力训练】一、填空题:1.一个口袋中装有4个白球,2个红球,6个黄球,摇匀后随机从中摸出一个球是白球的概率是。

2.若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______。

人教版九年级数学上册概率初步《概率初步 整理与复习》示范公开课教学设计

人教版九年级数学上册概率初步《概率初步 整理与复习》示范公开课教学设计

《概率初步整理与复习》教学设计教学目标1.能正确辨别必然事件、不可能事件、随机事件.2.了解概率的意义,能用列举法(包括直接列举法、画树状图法和列表法)求事件的概率.3.能通过试验获得事件的频率,知道大量重复试验时频率可作为事件发生概率的估计值,并能通过用频率估计概率解决相关实际问题.教学重点1.能正确辨别必然事件、不可能事件、随机事件.2.了解概率的意义,能用列举法(包括直接列举法、画树状图法和列表法)求事件的概率.3.能通过试验获得事件的频率,知道大量重复试验时频率可作为事件发生概率的估计值.教学难点能通过用频率估计概率解决相关实际问题.教学过程复习导入请你带着下面的问题,进入本课的复习吧!1.举例说明什么是随机事件.2.在什么条件下,可以通过列举法得到随机事件的概率?3.用列举法求概率有哪些具体的方法?它们各有什么特点?4.简述用频率估计概率的一般做法.5.结合本章内容,说说你对概率的理解以及概率在实践中的作用.【设计意图】以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识设疑,从而激发学生的学习兴趣和求知欲望.要点复习考点一事件类型的辨别【例1】指出下列事件属于必然事件、不可能事件还是随机事件,并说明理由.(1)抛一枚质地均匀的硬币,正面向上;(2)用长度分别为1 cm,2 cm,3.5 cm的三条线段首尾相连组成一个三角形;(3)明天会下雨;(4)在纸上画一个三角形,剪下三角形的三个角,再对齐这三个角的顶点,无缝隙、无重叠地拼在一起,能拼成一个平角.【答案】解:(1)随机事件.因为抛一枚质地均匀的硬币,结果可能是正面向上,也可能是反面向上.(2)不可能事件.因为根据三角形的三边关系,这样的三条线段首尾相连不能构成三角形.(3)随机事件.因为明天可能下雨,也可能不下雨.(4)必然事件.因为三角形的三个内角的度数和为180°.【归纳】抓住关键词是辨别各种事件的关键(1)必然事件——一定发生;(2)不可能事件——一定不发生;(3)随机事件——可能发生也可能不发生.【跟踪训练1】不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是().A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【答案】A【解析】由必然事件和不可能事件的定义可知,袋子中装的6个球,只有4个黑球、2个白球,所以不可能摸出3个白球,故不可能事件是选项A.【设计意图】通过例1及跟踪训练1,让学生了解抓住关键词是辨别各种事件的关键.考点二概率的计算【例2】一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)请用列表法表示出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【答案】解:(1)列表分析所有可能的结果.所得的两位数为11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88,共16种等可能的结果.(2)算术平方根大于4且小于7的共6个,分别为17,18,41,44,47,48,则所求概率P=616=38.【归纳】1.求有限等可能性事件的概率(1)事件只包含一个因素:用列举的方法,根据公式mPn=求得结果.(2)事件包含两个因素:用列表或画树状图的方法,根据公式mPn=求得结果.(3)事件包含三个因素:用画树状图的方法,根据公式mPn=求得结果.2.求无限等可能性事件的概率一般与长度、角度、面积(或时间)有关,可以通过区域长度、角度、面积(或一段时间)与总长度、角度、面积(或总时间)的关系转化为有限等可能性事件来求解.【跟踪训练2】若n是一个两位正整数,且n的个位数字大于十位数字,则称为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用画树状图法,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】解:(1)根据题意,知所有个位数字是5的“两位递增数”是15,25,35,45,共4个.(2)画树状图如下:共有15种等可能的结果,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率为31 155=.【跟踪训练3】如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,求击中阴影区域的概率.【答案】解:设小正方形的边长为1,则阴影区域的面积为1117 333121322222⨯-⨯⨯-⨯⨯-⨯⨯=,游戏板的面积为3×3=9,所以击中阴影区域的概率为772918 =.【设计意图】通过例2及跟踪训练2,3,考查学生对概率求取方法的掌握情况.考点三游戏的公平性【例3】小王和小张都想去市运动会的开幕式,由于只有1张门票,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表法说明理由.【答案】解:(1)小王转动转盘,共有4个等可能结果,盘面数字为奇数的可能结果有2个,分别是1,3,因此盘面数字为奇数的概率是2142.(2)小王和小张各转动转盘一次,根据游戏规则,其结果列表如下:由上表可知,共有16种等可能结果,其中同为奇数与同为偶数的可能结果都是4种,所以P(小王胜)=416=14,P(小张胜)=416=14.所以P(小王胜)=P(小张胜),所以该游戏规则公平.【归纳】使游戏由不公平变公平的两种途径:(1)改变游戏规则,使双方获胜的概率相等;(2)不改变双方的概率,改变得分情况,使双方获得的分数相等.【跟踪训练4】在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.小明和小红约定做一个游戏,其规则为:若x,y满足xy>6则小明胜,若x,y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.【答案】解:列表如下:由表可知,共有12种等可能结果,其中x,y满足xy>6的结果有4种,x,y满足xy<6的结果有6种.所以P(小明胜)=412=13,P(小红胜)=612=12.所以P(小明胜)≠P(小红胜),所以该游戏规则不公平.修改规则如下:若x,y满足xy≥6则小明胜,若x,y满足xy<6则小红胜.(答案不唯一)【设计意图】通过例3及跟踪训练4,归纳出使游戏由不公平变公平的两种途径.考点四用频率估计概率【例4】一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球.将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球的频率稳定在30%.由此估计口袋中共有多少个小球.【答案】解:设袋中共有小球n个.因为通过大量重复上述试验后发现,摸到黄球的频率稳定在30%,所以估计P(摸到黄球)=30%.因为P(摸到黄球)=黄球的数量所有小球的数量.所以6n=30%,解得n=20.所以估计口袋中共有小球20个.【归纳】当试验的所有可能结果不是有限个或各种可能结果发生的可能性不相等时,我们可以通过统计大量重复试验的频率来估计概率.一些实际问题,往往需要用由频率来估计概率的思想来解决.【跟踪训练5】现有一水果商收购了大量的苹果,并拟运往某地.由于路途遥远,水果商为了准确折算成本,以确定批发价,他采集了另外几家水果商长途运送过程中苹果的损坏情况并制成下表:(1)通过计算,填写表中的空格;(结果保留小数点后四位)(2)观察你填的数据,估计苹果损坏的概率;(结果保留小数点后两位)(3)如果水果商将运10 000 kg苹果去某地,原来在未考虑有损坏时确定的批发价是2元/kg,为了保持原有的利润,那么现在的批发价应上涨多少?(结果保留小数点后两位)【答案】解:(1)0.065 00.070 00.057 50.063 30.061 00.059 5 0.060 3(2)从上面的计算中发现,当试验数据n越来越大时,频率越来越趋近0.06,故估计苹果损坏的概率为0.06.(3)因为共损坏的苹果的质量为10 000×0.06=600(kg),所以实际批发价应为21000010000600⨯-≈2.13(元/kg),2.13-2=0.13(元/kg),所以现在的批发价应上涨0.13元/kg.【设计意图】通过例4及跟踪训练5,考查学生用频率估计概率解决相关实际问题.课堂小结板书设计一、事件类型的辨别二、概率的计算三、游戏的公平性四、用频率估计概率课后任务完成教材第152页复习题25第1~5题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。

教案概率初步(全章)

教案概率初步(全章)

概率初步(第一章)教学目标:1. 了解概率的定义和基本概念。

2. 学会计算简单事件的概率。

3. 理解概率的意义和应用。

教学重点:1. 概率的定义和计算方法。

2. 概率的基本性质和规则。

教学难点:1. 概率的计算和应用。

教学准备:1. 教学PPT或黑板。

2. 教学材料和实例。

教学过程:一、导入(5分钟)1. 引入概率的概念,例如抛硬币、抽奖等。

2. 引导学生思考概率的实际应用和意义。

二、概率的定义(10分钟)1. 解释概率的定义:事件发生的可能性。

2. 强调概率的取值范围:0到1之间。

三、计算简单事件的概率(15分钟)1. 介绍计算概率的方法:实验法和理论法。

2. 举例讲解如何计算抛硬币、掷骰子等简单事件的概率。

四、概率的基本性质和规则(10分钟)1. 介绍概率的基本性质:互补性和独立性。

2. 讲解概率的基本规则:加法和乘法规则。

五、巩固练习(10分钟)1. 给出一些简单的概率问题,让学生独立解决。

2. 讨论答案,引导学生理解和掌握概率的计算方法。

教学反思:本节课通过引入实例和讲解,让学生了解了概率的定义和计算方法。

通过巩固练习,帮助学生理解和掌握概率的计算。

在教学过程中,注意引导学生思考概率的实际应用和意义,激发学生的学习兴趣。

在下一节课中,将继续深入学习概率的更深入概念和计算方法。

概率初步(第六章)教学目标:1. 学会使用概率树图来解决概率问题。

2. 理解互斥事件和独立事件的概率计算规则。

3. 能够应用概率知识解决实际问题。

教学重点:1. 概率树图的绘制和分析。

2. 互斥事件和独立事件的概率计算。

教学难点:1. 概率树图的绘制和理解。

2. 复杂情况下概率的计算。

教学准备:1. 教学PPT或黑板。

2. 教学材料和实例。

教学过程:六、概率树图(10分钟)1. 介绍概率树图的概念和作用。

2. 讲解如何绘制概率树图,包括事件的分解和概率的分配。

七、互斥事件和独立事件的概率计算(10分钟)1. 解释互斥事件和独立事件的定义。

概率初步(复习课)教学设计

概率初步(复习课)教学设计

第六章概率初步(复习题)教学设计教材分析:生活中,人们面临着很多机会和选择,常常需要在不确定的情境中作出合理的决策,而概率论就是研究随机现象及其规律的数学学科。

在本单元中,学生了解了不确定现象的特点,通过具体情境体会概率的意义,在丰富的实际问题中认识到概率是刻画不确定现象的数学模型,同时学习了一些计算概率的方法,并通过概率帮助自己作出合理的决策。

本节课以复习题的形式展开,增进对概率知识体系的认识,提高学生解决问题的能力。

教学目标:1、理解随机事件有关概念,能区分必然事件、不可能事件与随机事件,并感受随机事件发生的可能性有大有小;2、了解事件的概率,体会概率是描述随机现象的数学模型;3、了解两类事件(古典概型和可化为古典概型的概型)发生的概率,能进行简单的计算,并能设计符合要求的简单概率模型;4、体会随机现象在我们身边大量存在,能初步运用概率的思想解释身边的現象,感受数学与现实生活的密切联系,发展“用数学”的意识与能力。

教学重难点:重点:能区分必然事件、不可能事件与随机事件,了解概率的意义,并能进行简单的概率计算;难点:能设计符合要求的简单概率模型,树立一定的随机观念,发展“用数学”的意识与能力。

教学课时: 1课时教学过程:本节课设计了五个教学环节:情境引入;复习思考;合作探究;课堂小结;教学反思。

一、情境引入活动内容:1、同学们,生活中无时无刻都在上演着各种事件,这些事件发生的可能性有大有小,下面请大家先看一段视频(播放微课”生活中的各种事件”)。

2、请同学们总结事件可以分成哪几类?活动目的:活动通过学生感兴趣的事物入手,由生活中的事件回顾数学概念,体现教师的“亲和力”和学科与生活之间的“联系性”,展示了数学的深层价值。

媒体应用说明:播放微课,举例说明生活中的事件可以分为必然事件、不可能事件与随机事件。

二、复习思考活动内容:1、下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)车辆随机到达一个路口,遇到红灯;(2)两条线段可以组成一个三角形;(3)400人中有两人的生日在同一天;(4)掷一枚质地均均匀的骰子,掷出的点数是质数。

教案概率初步(全章)

教案概率初步(全章)

教案概率初步(全章)教案章节一:概率的定义与基础1.1 教学目标了解概率的定义和基本概念掌握必然事件、不可能事件和随机事件的区别学会用概率表示事件的发生可能性1.2 教学内容概率的定义和基本概念必然事件、不可能事件和随机事件的定义和例子概率的表示方法:分数、小数和百分数1.3 教学方法采用讲解和实例分析相结合的方法,让学生理解概率的概念通过小组讨论和游戏活动,让学生区分不同类型的事件利用计算器和软件工具,让学生实践计算简单事件的概率1.4 教学评估课堂提问和小组讨论,了解学生对概率概念的理解程度布置课后习题,巩固学生对必然事件、不可能事件和随机事件的区分能力设计概率计算练习题,检验学生对概率表示方法的掌握情况教案章节二:概率的基本计算规则2.1 教学目标掌握概率的基本计算规则学会计算简单事件的概率理解概率的加法和乘法规则2.2 教学内容概率的基本计算规则:加法和乘法规则计算简单事件的概率:抛硬币、抽卡片等概率的计算公式和示例2.3 教学方法通过讲解和实例分析,让学生理解概率的加法和乘法规则利用模拟实验和计算器,让学生实践计算简单事件的概率引导学生进行小组讨论,分享计算方法和结果2.4 教学评估课堂提问和小组讨论,了解学生对概率计算规则的理解程度布置课后习题,巩固学生对简单事件概率计算的掌握能力设计概率计算练习题,检验学生对概率计算公式的应用能力教案章节三:条件概率与独立事件3.1 教学目标理解条件概率的定义和计算方法掌握独立事件的定义和性质学会计算条件概率和独立事件的概率3.2 教学内容条件概率的定义和计算方法:给定一个事件A已经发生,事件B发生的概率独立事件的定义和性质:两个事件相互不影响的发生概率计算条件概率和独立事件的概率:公式和示例3.3 教学方法通过讲解和实例分析,让学生理解条件概率的定义和计算方法利用实验和计算器,让学生实践计算条件概率和独立事件的概率引导学生进行小组讨论,分享计算方法和结果3.4 教学评估课堂提问和小组讨论,了解学生对条件概率和独立事件的理解程度布置课后习题,巩固学生对条件概率和独立事件概率计算的掌握能力设计概率计算练习题,检验学生对条件概率和独立事件概率公式的应用能力教案章节四:离散型随机变量的分布4.1 教学目标理解离散型随机变量的定义和性质掌握离散型随机变量的概率分布及其计算方法学会运用离散型随机变量的分布列描述概率分布特征4.2 教学内容离散型随机变量的定义和性质:可能取的值及其概率离散型随机变量的概率分布:概率分布列及其计算方法离散型随机变量的分布列:概率分布特征的描述4.3 教学方法通过讲解和实例分析,让学生理解离散型随机变量的定义和性质利用模拟实验和计算器,让学生实践计算离散型随机变量的概率分布引导学生进行小组讨论,分享计算方法和结果4.4 教学评估课堂提问和小组讨论,了解学生对离散型随机变量的理解程度布置课后习题,巩固学生对离散型随机变量概率分布的掌握能力设计概率计算练习题,检验学生对离散型随机变量分布列的应用能力教案章节五:离散型随机变量的期望与方差5.1 教学目标理解离散型随机变量的期望值和方差的定义和性质掌握离散型随机变量的期望值和方差的计算方法学会运用期望值和方差描述随机变量的概率分布特征5.2 教学内容离散型随机变量的期望值:随机变量的平均取值教案章节六:离散型随机变量的期望与方差(续)5.3 教学内容(续)离散型随机变量的方差:随机变量取值与其期望值差的平方的期望值期望值和方差的计算公式和示例5.4 教学方法通过讲解和实例分析,让学生理解离散型随机变量的期望值和方差的定义和性质利用模拟实验和计算器,让学生实践计算离散型随机变量的期望值和方差引导学生进行小组讨论,分享计算方法和结果5.5 教学评估课堂提问和小组讨论,了解学生对离散型随机变量期望值和方差的理解程度布置课后习题,巩固学生对离散型随机变量期望值和方差的掌握能力设计概率计算练习题,检验学生对离散型随机变量期望值和方差公式的应用能力教案章节七:大数定律与中心极限定理7.1 教学目标理解大数定律和中心极限定理的定义和意义掌握大数定律和中心极限定理的证明方法和应用学会运用大数定律和中心极限定理分析随机现象的规律7.2 教学内容大数定律:随机样本数量足够大时,样本均值的概率分布趋于正态分布中心极限定理:大量独立同分布的随机变量的和趋于正态分布大数定律和中心极限定理的证明方法和应用示例7.3 教学方法通过讲解和实例分析,让学生理解大数定律和中心极限定理的定义和意义利用模拟实验和计算器,让学生实践验证大数定律和中心极限定理引导学生进行小组讨论,分享验证方法和结果7.4 教学评估课堂提问和小组讨论,了解学生对大数定律和中心极限定理的理解程度布置课后习题,巩固学生对大数定律和中心极限定理的掌握能力设计概率计算练习题,检验学生对大数定律和中心极限定理应用的能力教案章节八:概率论在实际问题中的应用8.1 教学目标了解概率论在实际问题中的应用范围和重要性学会运用概率论解决实际问题的方法和技巧培养学生的实际问题分析和解决能力8.2 教学内容概率论在实际问题中的应用范围:统计学、经济学、生物学、工程学等领域概率论解决实际问题的方法和技巧:建模、计算、分析、推断等实际问题案例分析:彩票、保险、质量控制等8.3 教学方法通过讲解和实例分析,让学生了解概率论在实际问题中的应用范围和重要性利用模拟实验和计算器,让学生实践运用概率论解决实际问题引导学生进行小组讨论,分享实际问题解决方法和结果8.4 教学评估课堂提问和小组讨论,了解学生对概率论在实际问题中的应用范围和方法的理解程度布置课后习题,巩固学生对概率论解决实际问题的掌握能力设计实际问题案例分析题,检验学生对概率论在实际问题中应用的能力教案章节九:概率论与数理统计的关系9.1 教学目标理解概率论与数理统计的关系和区别掌握数理统计的基本概念和方法学会运用概率论与数理统计分析数据和推断结论9.2 教学内容概率论与数理统计的关系:概率论是数理统计的基础,数理统计应用概率论的方法数理统计的基本概念:数据分析、估计、假设检验、回归分析等数理统计的方法及其与概率论的联系和区别9.3 教学方法通过讲解和实例分析,让学生理解概率论与数理统计的关系和区别利用模拟实验和计算器,让学生实践运用数理统计的方法引导学生进行小组讨论,分享数据分析、估计和推断的方法和结果9.4 教学评估课堂提问和小组讨论,了解学生对概率论与数理统计的关系和区别的理解程度布置课后习题,巩固学生对数理统计的基本概念和方法的掌握能力设计数据分析、估计和推断的练习题,检验学生对概率论与数理统计应用的能力教案章节十:概率论在现代科技领域的应用10.1 教学目标教案章节十:概率论在现代科技领域的应用10.1 教学目标了解概率论在现代科技领域的重要应用掌握概率论在信息技术、生物科学、金融工程等领域的具体应用案例培养学生的应用意识和创新能力10.2 教学内容概率论在信息技术领域的应用:如错误检测和纠正、网络通信的可靠性分析等概率论在生物科学领域的应用:如遗传概率、疾病预测、生态系统的随机模型等概率论在金融工程领域的应用:如期权定价、风险管理等概率论在其他科技领域的应用:如工程质量控制、地球科学等10.3 教学方法通过讲解和实例分析,让学生了解概率论在现代科技领域的重要应用利用模拟实验和计算器,让学生实践运用概率论解决科技领域的问题引导学生进行小组讨论,分享概率论在科技领域应用的方法和成果10.4 教学评估课堂提问和小组讨论,了解学生对概率论在现代科技领域应用的理解程度布置课后习题,巩固学生对概率论在科技领域应用的掌握能力设计科技领域应用案例分析题,检验学生对概率论在现代科技领域应用的能力教案章节十一:概率论的数学基础11.1 教学目标理解概率论的数学基础的重要性掌握概率论中常用的数学知识和技巧学会运用数学基础解决概率论问题11.2 教学内容概率论的数学基础:集合论、函数论、微积分、线性代数等概率论中常用的数学技巧:如随机变量、概率分布、期望、方差等数学基础在概率论中的应用示例11.3 教学方法通过讲解和实例分析,让学生了解概率论的数学基础的重要性利用模拟实验和计算器,让学生实践运用数学基础解决概率论问题引导学生进行小组讨论,分享运用数学基础解决概率论问题的方法和成果11.4 教学评估课堂提问和小组讨论,了解学生对概率论的数学基础的理解程度布置课后习题,巩固学生对概率论中数学基础的掌握能力设计数学基础解决概率论问题的练习题,检验学生对概率论中数学基础应用的能力教案章节十二:概率论的研究方法12.1 教学目标了解概率论的研究方法及其特点掌握概率论的研究方法和技巧学会运用概率论的研究方法解决问题12.2 教学内容概率论的研究方法:数学分析、随机模拟、统计推断等概率论中常用的研究技巧:如条件概率、独立性、随机变量等概率论研究方法在实际问题中的应用示例12.3 教学方法通过讲解和实例分析,让学生了解概率论的研究方法及其特点利用模拟实验和计算器,让学生实践运用概率论的研究方法和技巧引导学生进行小组讨论,分享运用概率论研究方法解决问题的方法和成果12.4 教学评估课堂提问和小组讨论,了解学生对概率论研究方法及其特点的理解程度布置课后习题,巩固学生对概率论研究方法和技巧的掌握能力设计运用概率论研究方法解决实际问题的练习题,检验学生对概率论研究方法应用的能力教案章节十三:概率论与现实世界的联系13.1 教学目标理解概率论与现实世界的密切联系掌握概率论在现实世界中的应用方法和技巧学会运用概率论分析和解决现实世界问题13.2 教学内容概率论与现实世界的联系:生活中的概率现象、社会现象等概率论在现实世界中的应用方法和技巧:如数据分析、预测、决策等概率论在现实世界中的应用示例13.3 教学方法通过讲解和实例分析,让学生了解概率论与现实世界的密切联系利用模拟实验和计算器,让学生实践运用概率论解决现实世界问题引导学生进行小组讨论,分享运用概率论分析和解决现实世界问题的方法和成果13.4 教学评估课堂提问和小组讨论,了解学生对概率论与现实世界联系的理解程度布置课后习题,巩固学生对概率论在现实世界应用的掌握能力设计现实世界问题案例分析题,检验学生对概率论在现实世界应用的能力教案章节十四:重点和难点解析重点:1. 概率的定义与基础概念,包括必然事件、不可能事件和随机事件。

概率初步全章教案

概率初步全章教案

概率初步全章教案第一章:概率的基本概念教学目标:1. 理解概率的定义和意义;2. 掌握必然事件、不可能事件和随机事件的区别;3. 学会用概率来描述事件的可能性。

教学内容:1. 概率的定义和意义;2. 必然事件、不可能事件和随机事件的定义;3. 概率的计算方法。

教学活动:1. 通过实例引入概率的概念,引导学生理解概率的意义;2. 通过讨论和练习,让学生掌握必然事件、不可能事件和随机事件的区别;3. 通过例题和练习,让学生学会用概率来描述事件的可能性。

教学评估:1. 通过课堂讨论和练习,检查学生对概率的基本概念的理解;2. 通过课后作业和练习题,检查学生对必然事件、不可能事件和随机事件的区分能力;3. 通过期末考试,检查学生对概率计算方法的掌握情况。

第二章:概率的计算教学目标:1. 掌握概率的基本计算方法;2. 学会用排列组合来计算事件的概率;3. 理解条件概率和独立事件的含义。

教学内容:1. 概率的基本计算方法;2. 排列组合的应用;3. 条件概率和独立事件的定义和计算方法。

教学活动:1. 通过例题和练习,让学生掌握概率的基本计算方法;2. 通过实例和练习,让学生学会用排列组合来计算事件的概率;3. 通过讨论和练习,让学生理解条件概率和独立事件的含义。

教学评估:1. 通过课堂练习和作业,检查学生对概率计算方法的掌握;2. 通过课后练习题,检查学生对排列组合的应用能力;3. 通过期末考试,检查学生对条件概率和独立事件的理解和计算能力。

第三章:几何概率教学目标:1. 理解几何概率的概念;2. 学会用几何概率来描述事件的可能性;3. 掌握几何概率的计算方法。

教学内容:1. 几何概率的定义和意义;2. 几何概率的计算方法;3. 几何概率的应用实例。

教学活动:1. 通过实例引入几何概率的概念,引导学生理解几何概率的意义;2. 通过讨论和练习,让学生掌握几何概率的计算方法;3. 通过实例和练习,让学生学会用几何概率来描述事件的可能性。

初中概率初步复习教案

初中概率初步复习教案

初中概率初步复习教案教学目标:1. 理解概率的基本概念,掌握概率的计算方法。

2. 能够运用概率解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和团队合作能力。

教学内容:1. 概率的基本概念2. 概率的计算方法3. 概率在实际问题中的应用教学过程:一、导入(5分钟)1. 引导学生回顾概率的基本概念,如必然事件、不可能事件、随机事件等。

2. 提问学生:概率是用来衡量什么的呢?概率的取值范围是什么?二、新课讲解(15分钟)1. 讲解概率的计算方法,包括古典概率、条件概率和联合概率等。

2. 通过例题讲解如何运用概率计算方法解决问题。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成。

2. 引导学生互相讨论,共同解决问题。

四、概率在实际问题中的应用(15分钟)1. 讲解概率在实际问题中的应用,如抽奖、赌博、天气预报等。

2. 让学生举例说明概率在实际生活中的应用,并进行讨论。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结概率的基本概念和计算方法。

2. 强调概率在实际问题中的应用重要性。

六、课后作业(课后自主完成)1. 复习本节课所学内容,巩固概率的基本概念和计算方法。

2. 完成课后练习题,提高解决问题的能力。

教学评价:1. 课后收集学生的课后作业,检查学生对概率的基本概念和计算方法的掌握程度。

2. 在下一节课开始时,进行课堂小测,了解学生对概率知识的掌握情况。

3. 观察学生在课堂上的参与程度和表现,了解学生的学习兴趣和积极性。

教学反思:本节课通过讲解概率的基本概念和计算方法,让学生了解概率的基本知识,能够运用概率解决实际问题。

在教学过程中,要注意引导学生积极参与课堂讨论,提高学生的逻辑思维能力和团队合作能力。

同时,还要关注学生的学习情况,及时进行教学调整,确保学生能够掌握概率知识。

概率初步全章教案

概率初步全章教案

概率初步全章教案第一章:概率的基本概念1.1 概率的定义引入概率的概念,让学生理解概率是衡量事件发生可能性大小的数学量。

解释概率的取值范围,即0到1之间。

1.2 必然事件和不可能事件讲解必然事件的概率为1,不可能事件的概率为0。

通过实例让学生区分必然事件和不可能事件。

1.3 随机事件介绍随机事件的定义,让学生理解随机事件是既不是必然事件也不是不可能事件的事件。

解释随机事件的概率大于0且小于1。

第二章:概率的计算方法2.1 古典概型讲解古典概型的定义,即试验结果有限且等可能发生。

介绍古典概型的概率计算公式:P(A) = n(A) / n(S),其中n(A)为事件A的发生次数,n(S)为样本空间的大小。

2.2 列举法讲解列举法的概念,即通过列举所有可能的结果来计算概率。

示范使用列举法计算概率的步骤。

第三章:条件概率和独立事件3.1 条件概率引入条件概率的概念,解释条件概率是在已知事件B发生的条件下事件A发生的概率。

讲解条件概率的计算公式:P(A|B) = P(A∩B) / P(B),其中P(A∩B)为事件A和B 发生的概率,P(B)为事件B发生的概率。

3.2 独立事件解释独立事件的定义,即两个事件的发生互不影响。

讲解独立事件的概率计算公式:P(A∩B) = P(A)P(B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率。

第四章:全概率公式和贝叶斯公式4.1 全概率公式讲解全概率公式的概念,即在多个互斥事件的情况下,事件A发生的概率可以通过各事件发生的概率乘以对应事件的条件概率之和来计算。

解释全概率公式的计算步骤。

4.2 贝叶斯公式引入贝叶斯公式的概念,解释贝叶斯公式是通过已知条件来推算事件发生的概率。

讲解贝叶斯公式的计算步骤。

第五章:随机变量及其分布5.1 随机变量的定义讲解随机变量的概念,即随机试验结果的量化描述。

解释随机变量的取值可以是具体的数值,也可以是其他类型的值。

5.2 离散型随机变量讲解离散型随机变量的定义,即随机变量取值有限或可数。

概率初步教案范文

概率初步教案范文

概率初步教案范文教案主题:概率初步一、教学目标:1.了解概率的概念与起源;2.掌握基本概率概念;3.能够进行简单的概率计算。

二、教学重点与难点:1.概率的概念与基本概念的理解;2.概率计算的方法与技巧。

三、教学内容与过程:1.知识点导入(15分钟):教师通过举例子引入概率的概念,如抛硬币、掷骰子等,让学生思考相关的问题。

然后带领学生一起讨论与概率相关的概念,如事件、随机试验等。

2.概率的基本概念(30分钟):(1)定义:教师引导学生通过实例理解事件和概率的概念,展示事件与概率的关系,以帮助学生理解概率的本质。

然后给出事件和概率的基本定义。

(2)互斥事件:通过实例介绍互斥事件的概念,并通过图示法解释互斥事件的特征,以加深学生对互斥事件的理解。

(3)独立事件:通过实例介绍独立事件的概念,并通过实际生活中的问题,让学生理解独立事件的特征。

3.概率计算的方法与技巧(45分钟):(1)古典概率的计算:通过抛硬币、掷骰子等实例,引导学生了解古典概率的计算方法,并让学生通过实验验证计算结果。

(2)几何概率的计算:通过几何概率计算公式的讲解,引导学生理解几何概率的计算方法,并通过实例进行计算练习。

(3)舍去法的应用:通过实例介绍舍去法的应用场景和计算方法,帮助学生掌握舍去法的应用,并进行实例练习。

4.练习与反馈(30分钟):教师将学生分成小组,每组选择一种方法计算概率,并进行实际问题的概率计算。

然后小组进行汇报,并与其他小组进行比较与讨论,从中发现问题与改进的地方。

学生还可以通过课后习题进行巩固,教师可以根据学生的掌握情况进行相应的调整与辅导。

五、教学资源与评价:教学资源:黑板、白板、投影仪、硬币、骰子等教学辅助工具。

评价方式:通过观察学生在课堂上的表现与参与度来评价。

六、教学拓展:为了提高学生对概率的理解和应用能力,可在课堂后进行拓展活动,如校园概率调查、相关案例分析等,进一步帮助学生将概率应用于现实生活中。

概率初步复习教案

概率初步复习教案

概率初步复习教案教学过程二、事件的概念1.必然事件在一定条件下重复进行试验时,在每次实验中会发生的事件是必然事件。

2.不可能事件在每次试验中发生的事件是不可能是事件。

3.随机事件在一定条件下,发生的事件。

三、事件的概率1 .概率;一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)= 。

2 .概率P(A)的取值范围为。

3.必然事件的概率:P(A)= 。

4.不可能事件的概率:P(A)= 。

5.随机事件的概率:P(A)= 。

四、求概率的常用方法重复试验法:用重复试验(足够多次)的方法观察频率,进而用频率估计概率值。

1.枚举法2.列表法。

3.画树状图法五、概率与频率的关系教师(1)频率与概率在试验中可以非常接近,但不一定相等;(2)用频率估计概率的大小,必须在相同条件下,试验次数越多,就越能较好地估计概率(3)六、知识框架考点1.知道什么是随机事件、必然事件、不可能事件.例1、下列事件中,是必然事件的是()A.购买一张彩票中奖一百万B.打开电视机,任选一个频道,正在播新闻C.在地球上,上抛出去的篮球会下落D.掷两枚质地均匀的骰子,点数之和一定大于6变式训练(1)下列成语所描述的事件是必然事件的是()A 水中捞月B拔苗助长C守株待兔D瓮中捉鳖解析:选D.“瓮中捉鳖”事件的发生概率为1,是一定能发生的,故此事件为必然事件备课概率=事件发生的所有事件发第2行第4列的黑色改为白色要点4.列表法和画树形图法求简单事件(出现结果比较复杂)的概率.例4有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,b)如图所示散乱地放在桌子上。

(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率。

(2)若从计算器和保护盖中随机取两个,用树状图或列表法,求恰好匹配的概率。

P(黑)= 95P(白)= 94小结:通过画树状图或列表的方法可以将复杂的概率问题化繁为简,化难为易,这种方法比较直观,把所有可能的结果一一罗列出来,便于计算结果。

概率初步复习教案

概率初步复习教案

概率初步复习教案一、教学目标1. 回顾概率的基本概念,理解必然事件、不可能事件和随机事件的特点。

2. 掌握概率的计算方法,包括古典概型、条件概率和联合概率。

3. 能够运用概率知识解决实际问题,提高数据分析能力和解决问题的能力。

二、教学内容1. 必然事件、不可能事件和随机事件的定义及特点。

2. 古典概型的概率计算方法。

3. 条件概率和联合概率的定义及计算方法。

4. 实际问题中概率的运用。

三、教学重点与难点1. 教学重点:必然事件、不可能事件和随机事件的识别,古典概型、条件概率和联合概率的计算方法。

2. 教学难点:条件概率和联合概率的理解及应用。

四、教学方法1. 采用案例分析法,通过具体案例让学生理解概率的概念和计算方法。

2. 运用互动教学法,引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。

3. 利用多媒体教学手段,展示概率问题的图像和模型,增强学生的直观感受。

五、教学过程1. 引入新课:通过抛硬币、抽签等实例,引导学生回顾概率的基本概念。

2. 讲解必然事件、不可能事件和随机事件的特点,举例说明。

3. 讲解古典概型的概率计算方法,引导学生通过实例进行计算。

4. 讲解条件概率和联合概率的定义及计算方法,引导学生通过实例进行计算。

5. 结合实际问题,让学生运用概率知识解决问题,巩固所学知识。

6. 课堂小结:总结本节课的主要内容和知识点。

7. 布置作业:布置相关练习题,巩固所学知识。

教案编辑专员:X日期:年月日六、教学评估1. 课堂问答:通过提问学生,了解学生对概率基本概念的理解程度。

2. 练习题:布置课堂练习题,检测学生对概率计算方法的掌握情况。

3. 小组讨论:组织学生进行小组讨论,评估学生在实际问题中运用概率知识的能力。

七、教学反馈与调整1. 根据课堂问答和练习题的反馈,针对学生的薄弱环节进行讲解和辅导。

2. 针对学生在小组讨论中的表现,给予针对性的指导和鼓励,提高学生的实际应用能力。

3. 调整教学进度和方法,确保学生能够扎实掌握概率知识。

第二十五章 概率初步复习课教学设计

第二十五章      概率初步复习课教学设计

第二十五章概率初步复习总结导学案学习目标:1、能确定必然事件、不可能事件和随机事件2、了解概率的意义3、运用列举法计算简单事件发生的概率,了解用实验法求概率,能解决实际问题。

学习重难点:如何求随机事件的概率学习过程:一、复习旧知1、在一定条件下必然要发生的事件,叫做。

在一定条件下不可能发生的事件,叫做。

在一定条件下可能发生也可能不发生的事件,叫做。

2、一般地,对于一个随机事件A,我们把刻画其发生可能性大小的,称为随机事件A发生的概率,记作_________。

3、生活中的事件的概率如下:①必然事件发生的概率为,即P(必然事件)= ;②不可能事件发生的概率为 ,即P(不可能事件)= ;③如果A为随机事件,那么。

4、随机事件发生的可能性(概率)的计算方法:(1)、一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为。

概率计算又分为如下两种情况:第一种:通过来计算只涉及一步实验的随机事件发生的概率;第二种:通过来计算涉及两步或两步以上实验的随机事件发生的概率。

(2)、用频率估计概率:用频率估计概率:大量的重复试验,可以用来估计概率.课堂练习:1、(2016年钦州市)小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件为必然事件的是()A.骰子向上的一面点数为奇数B.骰子向上的一面点数小于7C.骰子向上的一面点数是4D.骰子向上的一面点数大于62、(2016年北海)下列说法中正确的是() A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.三角形内角和是360˚二、典型例题讲解:例:一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:①求两次取出的小球的标号的和等于4的概率;②求第一次取出的小球标号能被第二次取出的小球标号整除的概率;(2)随机摸取一个小球然后不放回,再随机摸出一个小球,求两次取出的小球的标号的和等于4的概率是多少?如何选择用哪种列举法求概率比较方便?1、当事件要经过一步完成时可列举出所有可能情况就用直接列举法。

概率初步复习教案

概率初步复习教案

概率初步复习教案教案标题:概率初步复习教案教学目标:1. 复习学生对概率的基本概念和术语的理解。

2. 复习学生在计算概率时所使用的方法和技巧。

3. 引导学生应用概率概念解决实际问题。

教学准备:1. 教师准备白板、黑板或投影仪。

2. 准备概率相关的教学资源,如教科书、练习题、概率游戏等。

3. 确保学生具备计算概率所需的基本数学技能。

教学过程:引入:1. 向学生介绍本节课的主题:概率初步复习。

2. 提问学生对概率的理解,并引导他们回顾概率的基本概念和术语。

主体:1. 复习概率的基本概念和术语:a. 解释概率的定义,并与学生一起讨论概率的意义和应用。

b. 复习事件、样本空间、试验等概念,并通过实例说明它们的关系。

c. 回顾互斥事件和相互独立事件的定义,并提供相关的实例进行讨论。

2. 复习计算概率的方法和技巧:a. 复习计算简单事件概率的方法,如使用频率和相对频率。

b. 复习计算复合事件概率的方法,如使用加法原理和乘法原理。

c. 提供一些练习题,让学生运用所学方法计算概率。

3. 引导学生应用概率解决实际问题:a. 提供一些实际问题,让学生分析并计算相关的概率。

b. 引导学生思考如何应用概率概念解决生活中的问题,如投资、购买彩票等。

总结:1. 总结本节课的重点内容,并强调学生在复习概率时应注意的要点。

2. 鼓励学生继续加强对概率的理解和应用,并提供相关的练习资源供学生自主学习。

拓展活动:1. 提供一些概率游戏或实验,让学生通过实际操作来感受概率的应用和变化。

2. 鼓励学生在日常生活中寻找和应用概率的例子,并与同学分享。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

2. 布置一些练习题,以检验学生对概率的掌握程度。

3. 鼓励学生提出问题并进行小组讨论,以促进学生之间的合作和思维交流。

教学延伸:根据学生的理解情况和学校的教学计划,可以进一步拓展概率的相关内容,如条件概率、贝叶斯定理等。

教案概率初步(全章)

教案概率初步(全章)

教案概率初步(全章)教案内容:一、概率的定义与基础1.1 概率的定义:介绍概率的概念,描述随机事件的发生可能性。

1.2 样本空间与事件:解释样本空间的概念,举例说明。

介绍事件的类型,包括必然事件、不可能事件和随机事件。

1.3 概率的基本性质:讲解概率的基本性质,如概率的非负性、概率的和为1等。

1.4 条件概率与独立事件:介绍条件概率的概念,解释独立事件的含义,举例说明。

二、概率的计算方法2.1 排列组合:讲解排列组合的基本原理,包括排列和组合的计算方法。

2.2 古典概率计算:介绍古典概率的计算方法,举例说明。

2.3 几何概率计算:讲解几何概率的计算方法,举例说明。

2.4 概率的质量守恒:解释概率的质量守恒原理,即总概率为1。

三、概率分布3.1 概率质量函数:介绍概率质量函数的概念,解释概率分布的性质。

3.2 离散型随机变量:讲解离散型随机变量的概念,举例说明。

3.3 连续型随机变量:介绍连续型随机变量的概念,解释概率密度函数的含义。

3.4 随机变量的期望与方差:讲解随机变量的期望和方差的计算方四、概率论的应用4.1 抽样分布:介绍抽样分布的概念,解释中心极限定理的含义。

4.2 假设检验:讲解假设检验的基本原理,包括显著性水平和检验统计量的计算。

4.3 置信区间:解释置信区间的概念,讲解如何计算置信区间。

4.4 贝叶斯推断:介绍贝叶斯推断的基本原理,解释先验概率和后验概率的概念。

五、概率与统计软件的应用5.1 R软件简介:介绍R软件的功能和安装方法,讲解如何进行概率和统计分析。

5.2 概率分布的绘制:讲解如何使用R软件绘制概率分布图。

5.3 假设检验的实现:讲解如何使用R软件进行假设检验。

5.4 贝叶斯推断的实现:讲解如何使用R软件进行贝叶斯推断。

六、随机变量及其分布6.1 随机变量的概念:介绍随机变量的定义,区分离散随机变量和连续随机变量。

6.2 离散随机变量的概率分布:讲解离散随机变量的概率分布,包括几何分布、二项分布、泊松分布等。

概率初步全章教案

概率初步全章教案

概率初步全章教案第一章:概率的定义与基础1.1 概率的定义引入概率的概念,让学生了解概率是描述随机事件发生可能性大小的数值。

解释概率的取值范围,即0到1之间,0表示事件不可能发生,1表示事件必然发生。

1.2 样本空间与事件介绍样本空间的概念,即所有可能结果的集合。

解释事件的定义,即样本空间的一个子集,表示某种结果的发生。

1.3 概率的基本性质介绍概率的基本性质,包括非负性、归一性和可加性。

通过实例让学生理解这些性质的应用。

第二章:概率的计算2.1 古典概率计算引入古典概率的定义,即在试验中所有可能结果都是等可能的。

教授如何计算古典概率,即事件发生的次数除以所有可能结果的个数。

2.2 条件概率与独立事件解释条件概率的概念,即在给定另一个事件发生的情况下,某个事件发生的概率。

介绍独立事件的定义,即两个事件的发生互不影响。

教授如何计算条件概率和独立事件的概率。

2.3 概率的乘法规则介绍概率的乘法规则,即两个独立事件发生的概率等于各自概率的乘积。

通过实例让学生理解并应用概率的乘法规则。

第三章:随机变量与概率分布3.1 随机变量的定义引入随机变量的概念,即一个随机试验的结果的实数值。

解释离散随机变量和连续随机变量的区别。

3.2 概率分布的定义介绍概率分布的概念,即随机变量取每个可能值的概率。

解释概率分布的性质,包括非负性和归一性。

3.3 概率分布的图形表示教授如何绘制概率分布的图形,如概率质量函数(PMF)和概率密度函数(PDF)。

通过实例让学生理解并绘制概率分布的图形。

第四章:期望与方差4.1 期望的定义与计算引入期望的概念,即随机变量的平均值。

教授如何计算离散随机变量的期望,即每个可能值乘以其概率的和。

4.2 方差的定义与计算解释方差的概念,即随机变量与其期望值的偏差的平方的平均值。

教授如何计算离散随机变量的方差,即每个可能值与期望值的偏差的平方乘以其概率的和。

4.3 期望与方差的应用介绍期望和方差在实际问题中的应用,如估计总体的均值和方差。

概率初步复习教案

概率初步复习教案

概率初步复习教案一、教学目标1. 回顾概率的基本概念,理解随机事件、必然事件和不可能事件的区别。

2. 掌握概率的计算方法,包括古典概率计算和条件概率计算。

3. 能够应用概率知识解决实际问题,提高解决问题的能力。

二、教学内容1. 概率的基本概念随机事件、必然事件、不可能事件概率的定义和性质2. 古典概率计算排列和组合古典概率的计算公式3. 条件概率计算条件概率的定义和性质条件概率的计算公式4. 独立事件的概率计算独立事件的定义独立事件的概率计算方法5. 概率在实际问题中的应用概率模型建立概率解决问题的方法三、教学重点与难点1. 教学重点:概率的基本概念和计算方法古典概率计算和条件概率计算独立事件的概率计算2. 教学难点:条件概率的理解和计算独立事件的概率计算四、教学方法1. 采用讲解法,讲解概率的基本概念、计算方法和实际应用。

2. 利用案例分析和练习题,让学生通过实践巩固概率知识。

3. 鼓励学生提问和参与讨论,提高学生的理解和思维能力。

五、教学评估1. 课堂练习:布置相关的练习题,及时检查学生的掌握情况。

2. 课后作业:布置相关的作业题,要求学生在课后巩固所学知识。

3. 单元测试:进行单元测试,全面评估学生对概率初步知识的掌握程度。

六、教学内容6. 随机变量及其分布随机变量的定义离散型随机变量和连续型随机变量随机变量的分布函数7. 期望和方差随机变量的期望值随机变量的方差期望和方差的应用8. 大数定律和中心极限定理大数定律的定义和意义中心极限定理的定义和意义大数定律和中心极限定理的应用9. 概率分布的特殊情况二项分布正态分布泊松分布其他常见分布10. 概率分布的应用概率分布模型建立概率分布解决问题的方法七、教学重点与难点6. 教学重点:随机变量的定义和分类随机变量的分布函数7. 教学重点:随机变量的期望值和方差期望和方差的应用8. 教学难点:大数定律和中心极限定理的理解和应用9. 教学重点:常见概率分布的特点和计算方法10. 教学难点:概率分布模型的建立和应用八、教学方法6. 采用案例分析和讲解法,让学生理解随机变量的概念和分布函数的性质。

概率复习课教案初中

概率复习课教案初中

概率复习课教案初中课程目标:1. 巩固学生对概率基本概念的理解;2. 加深学生对概率计算方法的掌握;3. 提高学生解决实际问题的能力。

教学内容:1. 概率的基本概念;2. 概率的计算方法;3. 实际问题中的应用。

教学过程:一、导入(5分钟)1. 复习概率的定义:概率是指某个事件发生的可能性。

2. 复习概率的取值范围:概率的取值范围在0到1之间,包括0和1。

二、概率的基本计算方法(15分钟)1. 复习必然事件的概率:必然事件的概率为1。

2. 复习不可能事件的概率:不可能事件的概率为0。

3. 复习随机事件的概率:随机事件的概率大于0且小于1。

4. 复习独立事件的概率:独立事件的概率等于各自概率的乘积。

三、实际问题中的应用(20分钟)1. 举例讲解如何运用概率解决实际问题,如抛硬币、抽奖、骰子等。

2. 让学生尝试解决一些简单的实际问题,如计算抛两次硬币出现正面的概率。

四、课堂练习(15分钟)1. 布置一些有关概率的练习题,让学生独立完成。

2. 对学生的练习进行讲解和指导,纠正错误。

五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结概率的基本概念和计算方法。

2. 强调概率在实际生活中的重要性,鼓励学生学会运用概率解决实际问题。

教学评价:1. 课堂练习的正确率;2. 学生对实际问题中概率应用的掌握程度;3. 学生对概率知识的综合运用能力。

教学资源:1. 概率的相关教材或教辅;2. 练习题;3. 教学PPT或黑板。

教学建议:1. 在课堂上鼓励学生积极参与,提问回答问题;2. 注重培养学生的动手能力,多让学生实际操作;3. 注重培养学生的逻辑思维能力,引导学生学会分析问题;4. 因材施教,针对不同学生的学习情况给予适当的指导。

数学六年级下册《概率-复习课》教案

数学六年级下册《概率-复习课》教案
数学六年级下册《概率-复习课》教案
课题
概率
课时
第1课时
课型
复习课
主备
教师
修改
教师
上课
日期
6月10日




1、使学生进一步丰富对可能性的认识,掌握可能性的基础知识,能计算一些简单事件发生的可能性
2、经历预测等实验活动,发展学生初步的合情推理能力



教学重点:使学生进一步丰富对可能性的认识,掌握可能性的基础知识,能计算一些简单事件发生的可能性
教学难点:经历预测等实验活动,发展学生初步的合情推理能力
教具Biblioteka 小黑板个人修改教







一、回顾与交流
1、一定、可能、不可能
下面哪些现象是一定的,哪些是可能的,哪些是不可能的?
(1)明天会下雨
(2)2008年北京奥运会上,刘翔会创造110米栏记录
(3)王明身高会达到14.5米
(4)人每天都需要喝水
(5)明年手机会大幅度降价
(6)多边形的内角和与它的边数有关系
2、可能性的大小
(1)出示转盘,提出问题:
指针所停的区域有几种可能?是什么情况
指针停在什么区域的可能性大?为什么?
指针停在什么区域的可能性小?为什么?
(2)你还能举出哪些实例?来说明可能性的大小?
3、用分数表示可能性的大小
(1)摸球游戏
问题:摸到黑球的可能性是多少?
摸到白球的可能性是多少?你是怎么算的?
(2)掷硬币
问题:投掷硬币后,硬币正面向上与反面向上的可能性哪个大?
二、巩固练习
完成练习二十二的第5~7题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率初步复习课教学目标:1、理解随机事件的定义,概率的定义;2、会用列举法求随机事件的概率;利用频率估计概率(试验概率);3、体会随机观念和概率思想,逐步学习利用列举法分析问题和解决问题,提高解决实际问题的能力。

重难点:1.计算简单事件概率的方法,主要是列举法(包括列表法和画树形图法)。

2.利用频率估计概率(试验概率)。

教学过程一中考新课标解读 二题型预测概率是中考的必考题型,在中考试卷上一般填空或选择题1题,解答题1题,其中确定事件和随机事件,单因素决定的概率问题一般作为解答题出现.三知识梳理 1.基本概念(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%; (2)不可能事件是指一定不能发生的事件;(3)随机事件是指在一定条件下,可能发生也可能不发生的事件; (4)随机事件的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同. (5)概率一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数P 附近,•那么这个常数P 就叫做事件A 的概率,记为P (A )=P . (6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.(图6-30)(7)古典概率一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,•事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=m n. (8)几何图形的概率概率的大小与面积的大小有关,•事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结考点课标要求确定事件和随机事件1.理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系; 2.能区分简单生活事件中的必然事件、不可能事件、随机事件.考点 课标要求等可能试验中事件1.理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;2.会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;3.形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.果组成图形的面积.2.概率的理论计算方法有:①树状图法;②列表法.3.通过大量重复实验得到的频率估计事件发生概率的值4.利用概率的知识解决一些实际问题,如利用概率判断游戏的公平性等 四 典型例题例1、下列事件中,是必然事件的是( ) A.购买一张彩票中奖一百万B.打开电视机,任选一个频道,正在播新闻C.在地球上,上抛出去的篮球会下落D.掷两枚质地均匀的骰子,点数之和一定大于6例2.在一场足球比赛前,甲教练预言说:“根据我掌握的情况,这场比赛我们队有 60%的机会获胜”意思最接近的是( ) A.这场比赛他这个队应该会赢B.若两个队打100场比赛,他这个队会赢60场C.若这两个队打10场比赛,这个队一定会赢6场比赛.D.若这两个队打100场比赛,他这个队可能会赢60场左右.例3一个袋中装有6个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球,摸到白球的概率是( ) 例4.用树状图法求下列事件的概率:(1)连续掷两次硬币,两次朝上的面都相同的概率是多少? (2)连续掷三次,至少出现两次正面朝上的概率是多少例5.在一个口袋中有4个完全相同的小球,把它们分别标号l 、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.例6.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD .BD 上的点,EF∥AB,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( )A .B .C .D .例7.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.例8.一个密封不透明的盒子里有若干个白球, 在不允许将球倒出来的情况下, 为估计白球的个数, 小刚向其中放入8个黑球, 摇匀后从中随机摸出一个球记下颜色, 再把它放回盒中, 不断重复, 共摸球400次, 其中88次摸到黑球. 估计盒中大约有白球( )A 、28个B 、30个C 、36个D 、42个例9. 一个不透明的袋子中装有三个完全相同的小球,分别标有数字3,4,5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.例10.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是1112 (9323)A B C D小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.五 课堂小结1本章的主要内容是随机事件的定义,概率的定义;2.计算简单事件概率(古典概率类型)的方法,主要是列举法(包括列表法和画树形图法);.3利用频率估计概率(试验概率)即通过大量重复试验,对获得的数据进行统计整理,求出频率,然后进行研究分析,得出某一随机事件发生的概率。

六 当堂检测 1.下列事件中必然发生的是( )A .随意翻到一本书的某页,这页的页码是奇数B .地球上,抛出的铁球最后总往下落C .购买一张彩票,中奖D .篮球队员在罚球线上投篮一次,投中2.给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A.61 B. 31 C.21 D.323.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是( )A .0.2B .0.3C .0.4D .0.54.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面 图案是中心对称图形的概率为( ) A .14B .12C .34D . 15.一个口袋中有4个相同的小球,分别与写有字母A ,B ,C ,D ,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果; (2)求两次抽出的球上字母相同的概率.6.一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠颗.7.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.8.某校初三年级(1)班要举行一场毕业联欢会.规定每个同学分别转动下图中两个可以自由转动的均匀转盘A、B (转盘A被均匀分成三等份.每份分別标上1.2,3三个钕宇.转盘B被均匀分成二等份.每份分别标上4,5两个数字).若两个转盘停止后指针所指区域的数字都为偶数(如果指针恰好指在分格线上.那么重转直到指针指向某一数字所在区域为止).则这个同学要表演唱歌节目.请求出这个同学表演唱歌节目的概率(要求用画树状图或列表方法求解)练案1、甲、乙两队进行一场篮球赛,“甲队得分为奇数”是 事件,它的概率为 。

2、从其中含有4个次品的1000个螺钉中任取1个,它是次品的概率是 。

3、一个骰子,六个面上的数子分别1、2、3、4、5、6投掷一次向上的面出现的数子3的概率是 。

4、在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球,两个黄球。

如果第一次先从口袋中摸出一球后,不再放回,第二次再从口袋中摸出一球,那么两次都摸到黄球的概率是 。

5、为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条做上标记,然后放回湖里去,经过一段时间,待带标记的鱼完全混合于鱼群后,第二次再捕上200条,若其中带标记的鱼有25条,那么湖里大约有 条鱼。

6、三个人站成一排,通过实验可得,甲站在中间的概率为( ) A 、61 B 、31 C 、21 D 、417、如图6所示的两个圆盘中,指针居在每个数上的机会均等,那么两个指针同时落在偶数上的概率是( ) A 、255 B 、256 C 、2510 D 、2519图 68、小明的衣柜里有两件上衣,一件是长袖的,一件是短袖的;有三条裤子,分别为白色、黄色、蓝色,他任意拿出一件上衣和一条裤子,正好是长袖上衣和白色裤子的概率是( )A 、65B 、41C 、61D 、31 9、某商店举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率应该是()A 、100001 B 、1000050 C 、10000100 D 、1000015110、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条 11、一个质地均匀的正方形骰子的六个面上分别有1到6的点数将骰,子抛掷两次,抛第一次将朝上一面的点数记为x ,抛第二次,将朝上一面的点数记为y ,则点),(y x 落在直线5+-=x y 上的概率为:( ) (A )181(B )121(C )91 (D )4112、有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .13、有4张背面相同的扑克牌,正面数字分别为2,3,4,5.若将这4张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张,这两张扑克牌正面的数字之和是3的倍数的概率是14、小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.请用数状图或列表的方法求小莉去上海看世博会的概率;15、如图7是一幅扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法加以分析说明。

相关文档
最新文档