《命题逻辑》课外习题及答案
离散数学第一章命题逻辑习题答案
![离散数学第一章命题逻辑习题答案](https://img.taocdn.com/s3/m/8e23df0ade80d4d8d15a4f7e.png)
习题一
1.
利用逻辑联结词把下列命题翻译成符号逻辑形式: (7)不识庐山真面目,只缘生在此山中。 令P:身在此山中; Q:识庐山真面目;译为P ~ Q (8)两个三角形相似当且仅当它们对应角相等或者对应边 成比例。 令P:两个三角形相似; Q:对应角相等; R:对应边成比例;译为 P (Q R) (9)如果一个整数能被6整除,那么它就能被2和3整除。 如果一个整数能被3整除,那么它的各位数字之和也能 被3整除。 令P:被6整除; Q:被2整除; R:被3整除; S:各位数字之和被3整 除。译为(P (Q R)) (R S)
习题一 14.
• 从A、B、C、D4人中派2人出差,要求满足下述条件:如 果A去,则必须在C或D中选一人同去;B和C不能同时去; C和D不能同去。用构造范式的方法决定出选派方案。 若X表示“X去出差”, 可得公式 (A (C D)) ~(B C) ~(C D) (~A (C ~D) (~C D) ) (~B ~C ) (~C ~D ) …… (~A ~B ~C ~D) (~A ~B ~C D) (~A ~B C ~D) (~A B ~C ~D) (A ~B ~C D) (A ~B C ~D) (~A B ~C D) (A B ~C D) 可得派法: {B, D} {A, C} {A, D}
命题逻辑-习题参考解答
![命题逻辑-习题参考解答](https://img.taocdn.com/s3/m/20cbb27d7e21af45b307a8a7.png)
命题逻辑参考答案及提示1.(1)是命题,真值为1(2)不是命题(3)是命题,真值视具体情况而定(4)不是命题(5)是命题,真值为1(6)是命题,真值为1(7)是命题,真值为0(8)不是命题(9)是命题,真值视具体情况而定(10)不是命题2.(1)不是命题(2)不是命题(3)不是命题(4)是命题。
令P:所有的人都是要死的;Q:所有的人都怕死,则命题可符号化为:可表示为P∧⌝Q(5)是命题。
令P:我明天去苏州;Q:我后天去苏州,则命题可符号化为:P∨Q(6)是命题。
令P:我明天去苏州;Q:我后天去苏州,则命题可符号化为:⌝(P∨Q)(7)是命题。
令P:我明天去北京;Q:我明天去天津;R:我后天去北京;S:我后天去天津,则命题可符号化为:P∨Q∨R∨S(8)是命题。
令P:我买到飞机票;Q:我出去,则命题可符号化为:⌝P→⌝Q(9)是命题。
令P:他余款多;Q:他出门;R:他买书,则命题可符号化为:(P∧Q→R) ∧(⌝P∧Q→R)(10)是命题。
令P:你陪伴我;Q:你代我雇车;R:我去,则命题可符号化为:R↔ (P∨Q)(11)是命题。
令P:你充分考虑了一切论证;Q:你得到了可靠见解,则命题可符号化为:(P→Q)∧(Q→P)或P↔Q(12)是命题。
令P:我懂得希腊文;Q:我了解柏拉图,则命题可符号化为:(Q→P)→⌝Q (13)是命题。
令P:你去;Q:他去;R:我去,则命题可符号化为:(P→R)∧(Q→R) ∧(⌝P→R)∧(⌝Q→R)(14)是命题。
令P:上午下雨;Q:我去看电影;R:我在家里看书;S:我在家里看报,则命题可符号化为:(⌝P→Q)∧(P→(R∨S))(15)是命题。
令P:我今天进城;Q:下雨,则命题可符号化为:P→⌝Q(16)是命题。
令P:你走;Q:我留下,则命题可符号化为:P↔Q(17)是命题。
令P:某一个数是素数;Q:某一个数能被1整除;R:某一个数能被它自身整除;则命题可符号化为:P↔Q∧R3.(1)不是命题公式。
命题逻辑和谓词逻辑习题课的题目与参考答案
![命题逻辑和谓词逻辑习题课的题目与参考答案](https://img.taocdn.com/s3/m/76579350b7360b4c2e3f64f4.png)
命题逻辑和谓词逻辑习题课的题目及参考答案说明:红色标注题目可以暂且不做命题逻辑和谓词逻辑习题课的题目一、填空1、若P,Q,为二命题,QP→真值为0 当且仅当。
2、命题“对于任意给定的正实数,都存在比它大的实数”令F(x):x为实数,:),(则命题的逻辑谓词公式yL>xxy为。
3、谓词合式公式)(xP∃∀的前束式x→)(xxQ为。
4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为换名规则。
5、设x是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y是自由的,则被称为存在量词消去规则,记为ES。
6.设P,Q 的真值为0,R,S的真值为1,则→∨QP⌝∨⌝的真值→∧⌝(S)))(R()PR(= 。
7.公式P∧)()(的主合取式为∨RSRP⌝∨∧。
8.若解释I的论域D仅包含一个元素,则)(xP∀→∃在I下真值为xP)(xx。
9. P:你努力,Q:你失败。
“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为。
10. 论域D={1,2},指定谓词P则公式),(x y∀真值x∃yP为。
11.P,Q真值为0 ;R,S真值为1。
则∧wff∧R∨→))∧的真值∨SP))P)((((QR(S为。
12. R⌝))((的主合取式∧RQ∨Pwff→为。
13.设 P(x):x是素数, E(x):x 是偶数,O(x):x是奇数 N (x,y):x可以整数y。
则谓词)))xyOPy∀的自然语言是→∃wff∧x()(N(,y((x)。
14.谓词)),,(xyzPxz∀的前束∀P∃∧→wff∃y),(,))y(z(uQx(u式为。
二、选择1、下列语句是命题的有()。
A、明年中秋节的晚上是晴天;B、0>x;+yC、0>xy当且仅当x和y都大于0;D、我正在说谎。
2、下列各命题中真值为真的命题有()。
A、2+2=4当且仅当3是奇数;B、2+2=4当且仅当3不是奇数;C、2+2≠4当且仅当3是奇数;D、2+2≠4当且仅当3不是奇数;3、下列符号串是合式公式的有()A、QP⌝∨Q⌝;P∨∧P⇔;B、Q(QP⇒;C、)P∨)(D、)⌝。
命题逻辑和谓词逻辑习题课的题目及参考答案
![命题逻辑和谓词逻辑习题课的题目及参考答案](https://img.taocdn.com/s3/m/cba5b3b33169a4517623a396.png)
命题逻辑和谓词逻辑习题课的题目及参考答案说明:红色标注题目可以暂且不做命题逻辑和谓词逻辑习题课的题目一、填空1、若P,Q,为二命题,QP→真值为0 当且仅当。
2、命题“对于任意给定的正实数,都存在比它大的实数”令F(x):x为实数,y,(x:)L>yx 则命题的逻辑谓词公式为。
3、谓词合式公式)(xP∃∀的前束范式x→)(xxQ为。
4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为换名规则。
5、设x是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y是自由的,则被称为存在量词消去规则,记为ES。
6.设P,Q 的真值为0,R,S的真值为1,则→∨QP⌝∨⌝的真值→∧⌝(S)))(R()PR(= 。
7.公式P∧)()(的主合取范式为∨RSRP⌝∨∧。
8.若解释I的论域D仅包含一个元素,则)(→xP∀∃在I下真值为(x)xPx。
9. P:你努力,Q:你失败。
“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为。
10. 论域D={1,2},指定谓词P则公式),(x y∀真值yPx∃为。
11.P,Q真值为0 ;R,S真值为1。
则PSwff∧R∨∧的真值∨→∧P)())Q((R))(S(为。
12. R⌝))((的主合取范式R∧Q∨Pwff→为。
13.设P(x):x是素数,E(x):x 是偶数,O(x):x是奇数N (x,y):x可以整数y。
则谓词)))xPyOywff∧∀的自然语言是→∃x))(N(,y((x(。
14.谓词)),,(yxzPxz∀的前束∀P∃∧→wff∃(u),(,))y(zuQx(y范式为。
二、选择1、下列语句是命题的有()。
A、明年中秋节的晚上是晴天;B、0>x;+yC、0>xy当且仅当x和y都大于0;D、我正在说谎。
2、下列各命题中真值为真的命题有()。
A、2+2=4当且仅当3是奇数;B、2+2=4当且仅当3不是奇数;C、2+2≠4当且仅当3是奇数;D、2+2≠4当且仅当3不是奇数;3、 下列符号串是合式公式的有( )A 、Q P ⇔;B 、Q P P ∨⇒;C 、)()(Q P Q P ⌝∨∧∨⌝;D 、)(Q P ↔⌝。
命题逻辑练习题附答案
![命题逻辑练习题附答案](https://img.taocdn.com/s3/m/32751696783e0912a3162a4b.png)
命题逻辑练习题一、从五个备选答案中选择一个正确地答案,并做出简要地分析:1、古代一位国王率领X、王、、、钱五位将军一起打猎,各人地箭上均刻有自己地姓氏.围猎中,一只鹿中箭倒下,但却不知是何人所射.国王令众将军猜想.X说:“或者是我射中地,或者是李将军射中地.〞王说:“不是钱将军射中地.〞李说:“如果不是赵将军射中地,那么一定是王将军射中地.〞赵说:“既不是我射中地,也不是王将军射中地.〞钱说:“既不是李将军射中地,也不是X将军射中地.〞国王令人把射中鹿地箭拿来,看了看,说:“你们五位将军地猜想,只有两个人地话是真地.〞根据国王地话,可以判定以下哪项是真地?A、X将军射中此鹿.B、王将军射中此鹿.C、李将军射中此鹿.D、赵将军射中此鹿.E、钱将军射中此鹿.1、某大学进展演讲比赛,得第一名地只有一人.在对六个参赛者进展名次预测时,四人作了如下预测:甲:取得第一名地要么是我,要么是乙.乙:取得第一名地要么是甲,要么是丙.丙:如果不是戊取得第一名,就一定是己.丁:第一名决不会是甲.比赛结果发现,只有一个人地预测正确.请问谁得第一名?谁地预测正确?A、甲得第一名,乙地预测正确.B、乙得第一名,甲地预测正确.C、丙得第一名,乙地预测正确.D、丁得第一名,丁地预测正确.E、戊得第一名,丙地邓测正确.2、销售经理地人选,对于一个公司地生存和开展十分重要.哈维珍珠XX公司对于销售经理地任用,就非常填重.由于前任销售经理因故离任,关于公司新销售经理地人选,甲、乙、丙三位董事经过充分考虑,提出了他们地意见:甲:要么聘用李先生,要么聘用王先生.乙:如果不聘用李先生,那么也不聘用王先生.丙:如果不聘用王先生,那么就聘用李先生.以下诸项中,能同时满足甲、乙、丙三位董事意见地方案是哪一项?A、聘用李先生,不聘用王先生.B、聘用王先生,不聘用李先生.C、李先生和王先生两人都聘用.D、李先生和王先生两人都不聘用.E、聘用其他人当销售经理.5、某公安局地刑侦员甲、乙、丙、丁通过广泛地调查取证,对某案地嫌疑犯李、赵作了如下断定:甲:“我认为赵不是凶犯.〞乙:“或者李是凶犯,或者赵是凶犯.〞丙:“如果李是凶犯,那么赵不是凶犯.〞丁:“我看李和赵都是凶犯.〞事后证明,这四位刑侦员地断言只有一句是假地.根据以上情况,可以推知:A、李和赵都是凶犯.B、甲地话是假地.C、李是凶犯,丙地话是真地.D、赵是凶犯,而李不是凶犯.E、丁地话是真地.6、“如果货币地储蓄额和销售回笼额都没有增长,那么货币地入股额一定增长〞,以此为前提,假设再增加一个前提,可以推出“货币地储蓄额事实上增长了〞地结论.以下哪项是该增加地前提?A、货币地入股额一定增长了.B、货币地入股额事实上没有增长.C、货币地销售回笼额没有增长.D、货币地销售回笼额和入股额事实上都没有增长.E、货币地销售回笼额和入股额事实上都增长了.7、八个硕士研究生赵、钱、、、周、吴、、王正在争取获得某项科研基金.按规定只有一人能获得该项基金.谁能获得该项基金,由学校评委地投票数决定.评委分成不同地投票小组.如果李获得地票数比陈多,那么钱将获得该项基金.如果王获得地票数比孙多,或者钱获得地票数比周多,那么吴将获得该项基金.如果孙获得地票数比王多,同时陈获得地票数比李多,那么赵将获得该项基金.如果吴获得了该项基金,那么下面哪个结论一定是正确地?A、孙获得地票数比王多.B、王获得地票数比孙多.C、李获得地票数不比陈多.D、钱获得地票数比周多.E、陈获得地票数比李多.1、如果赵川参加宴会,那么钱华、孙旭和李元将一起参加宴会.如果上述断定是真地,那么,以下哪项也是真地?A、如果赵川没参加宴会,那么,钱、、李三人中至少有一人没参加宴会.B、如果赵川没参加宴会,那么,钱、、李三人都没有参加宴会.C、如果钱、、李三人都参加了宴会,那么,赵也参加宴会.D、如果李元没参加宴会,那么,钱华和孙旭不会都参加宴会.E、如果孙旭没参加宴会,那么,赵川和李元不会都参加宴会.二、分析题1、写出以下推理地形式,并分析其是否有效.如果小林根底好并且学习努力,那么,他能取得好成绩;他没有取得好成绩;所以,他根底不好,学习也不努力.答:A∧B→C⌝C→⌝A∧⌝B根据充分条件假言命题地推理规那么【1】否认后件那么否认前件,所以⌝C→⌝〔A∧B〕又⌝〔A∧B〕←→⌝A∨⌝B因此推理无效2、以下A、B两命题是不是一对具有矛盾关系地命题?为什么?A:如果李军是团员,那么,林胜也是团员.B:如果李军是团员,那么,林胜不是团员.答:A: p→q, B: p→⌝q当A命题为真时,假设p为假,那么B命题必定真;假设p为真,那么B命题假.所以当A命题为真时,B命题真假不定,所以A、B不是矛盾关系.3、列出以下推理地形式,并分析其是否有效.如果老王不出席,那么老李出席;如果老X不出席,那么老白出席;老王或老X出席;所以,老李不出席或老白不出席.答:W:老王L:老李Z:老X B:老白(⌝W→L)∧(⌝Z→B)∧(W∨Z)→⌝L∨⌝B假设⌝L∨⌝B=0 那么,假设推理为假,那么前件为真假设前件为真,那么⌝W→L=1,⌝Z→B=1,W∨Z=1由⌝L∨⌝B=0可知L=1且B=1,又W∨Z=1,所以W=1且Z=1那么⌝W→L=1,⌝Z→B=1均成立,即该推理可由真前提推出假结论所以推理无效4、断定一个复合命题为真,是否断定了其所有支命题为真?试以假言命题为例加以说明.答:根据下表可知,断定一个符合命题为真,不能断定其所有支命题为真5、以以下〔1〕和〔2〕为前提,能否推出结论〔3〕?如果能,那么说明所应用地是什么推理?〔1〕如果这次春游去XX或者去XX,那么,小丁和小李都要去.〔2〕小丁不去或者小李不去.〔3〕这次春游不去XX.答:(1)可写为G∨K→D∧L(2)可写为⌝D∨⌝L〔3〕可写为⌝K因为⌝D∨⌝L=⌝〔D∧L〕=1 所以D∧L=0又G∨K→D∧L=1 所以G∨K=0,G=0,K=0⌝K=1所以可以推出结论〔3〕三、综合题1、几个大学生在一起议论现代社会中地某些难题.设他们地如下论断都是真地,那么从中可以得出什么良策?说明在推导过程中地每一步用地是什么推理形式.〔1〕要么保住耕地,要么饿肚子.〔2〕如果人口增长,那么就要增加住房.〔3〕只有多盖高楼,才能既增加住房,又保住耕地.〔4〕人口在增长,又不能饿肚子.答:〔1〕B ∨E〔2〕R→F(3) L←〔F∧B〕(4) R∧⌝E(5) 由〔4〕得R=1 E=0 〔联言命题真那么命题支同真〕〔6〕由〔2〕〔5〕得F=1 〔假言命题肯定前件肯定后件〕〔7〕由〔1〕〔5〕得B=1 〔选言命题真那么选言支至少有一个为真〕〔8〕由〔6〕〔7〕得F∧B=1 〔命题支同真那么联言命题真〕〔9〕由〔3〕〔8〕得L=1 〔必要条件假言命题肯定后件那么肯定前件〕所以,良策是:多盖高楼2、某公司有甲、乙、丙、丁、戊五位职员,大家商量假日地值班问题,有如下四条意见:〔1〕如果甲来值班,那么乙或丙也来值班.〔2〕如果乙来值班,那么丁也来值班.〔3〕如果丙来值班,那么丁也来值班.〔4〕只有甲来值班,戊才来值班.〔5〕戊是来值班地.问:丁是不是来值班?说明在推导过程中地每一步用地是什么推理形式.答:〔1〕甲→乙∨丙〔2〕乙→丁〔3〕丙→丁〔4〕甲←戊〔5〕戊〔6〕由〔5〕〔4〕得甲=1 〔必要条件假言命题肯定后件那么肯定前件〕〔7〕由〔1〕〔6〕得乙∨丙=1 〔充分条件假言命题肯定前件那么肯定后件〕〔8〕由〔2〕〔3〕〔7〕得丁=1 〔选言命题只要有一个命题支为真那么命题为真;充分条件假言命题肯定前件那么肯定后件〕所以,丁是来值班地1、:〔1〕如果甲和乙参加会议,那么丙不参加会议.〔2〕只有甲参加会议,丁才参加会议.〔3〕乙和丙都参加会议.试问:甲和丁是否参加会议?说明在推导过程中地每一步用地是什么推理形式.答:〔1〕甲∧乙→ 丙〔2〕甲←丁〔3〕乙∧丙〔4〕由〔3〕得乙=1 丙=1 〔联言命题真那么命题支都真〕〔5〕由〔1〕〔4〕得甲∧乙=0 甲=0 〔充分条件假言命题否认后件那么否认前件;联言命题假那么至少有一个命题支为假〕〔6〕由〔2〕〔5〕得丁=0 〔必要条件假言命题否认前件那么否认后件〕所以,甲和丁都不参加会议2、某案件有四名嫌疑犯,调查后确认:〔1〕只有B是罪犯,C才是罪犯.〔2〕如果C不是罪犯,那么D是罪犯.〔3〕或者A是罪犯,或者B不是罪犯.〔4〕A不是罪犯.根据以上确认,可确定谁是罪犯?说明在推导过程中地每一步用地是什么推理形式.答:〔1〕B←C(2) ⌝C→D(3) A ∨⌝B(4) ⌝A(5) 由〔3〕〔4〕得A=0 B=0〔负命题与原命题真假相反;选言命题为真那么至少由一个命题支为真〕〔6〕由〔1〕〔5〕得C=0 〔必要条件假言命题否认前件那么否认后件〕〔7〕由〔2〕〔6〕得D=1 〔充分条件假言命题肯定前件那么肯定后件〕所以D是罪犯3、某单位有采购员A、B、C、D、E五人.:〔1〕或者C去XX,或者B去XX.〔2〕如果A不去,那么B去XX.〔3〕只有E去XX,D和A才都去.〔4〕如果C去XX,那么D去.〔5〕B不去XX.问:E是否去XX?说明在推导过程中地每一步用地是什么推理形式.答:〔1〕C∨B(2) ⌝A→B(3) E ←D∧A(4) C→D(5) ⌝B(6) 由〔1〕〔5〕得B=0 C=1 〔负命题与原命题真假相反;选言命题为真那么至少由一个选言支为真〕〔7〕由〔2〕〔6〕得A=1 〔充分条件假言命题否认后件那么否认前件〕〔8〕由〔4〕〔6〕得D=1 (充分条件假言命题肯定前件那么肯定后件)〔9〕由〔3〕〔7〕〔8〕得E=1 〔必要条件假言命题肯定后件那么肯定前件〕所以E去XX.4、以下四句中只有一句真,问:小王、小李、小林是否去值班?说明推导过程.〔1〕或者小王不去值班,或者小李不去值班.〔2〕如果小王不去值班,那么小李也不去值班.〔3〕小林去值班,小李也去值班.〔4〕小王不去值班.答:〔1〕⌝W ∨⌝L(2) ⌝W→⌝L(3) N∧L(4) ⌝W(5) 因为假设〔4〕为真那么〔1〕为真,所以〔4〕必假,得W=1 〔选言命题只要有一个选言支为真那么为真〕〔6〕因为〔4〕为假,所以〔2〕必真,那么〔1〕〔3〕皆假,得L=1 N=0〔充分条件假言命题地假前提可以包涵所有命题;选言命题为假那么选言支都为假;联言命题为假那么至少由一个命题支为假〕所以小王和小李去值班,小林不去.5、在某次税务检查后,四个工商管理人员有如下结论:甲:所有个体户都没纳税.乙:服装个体户陈老板没纳税.丙:并非所有个体户都没纳税.丁:有地个体户没纳税.如果四人中只有两人地断定属实,请问服装个体户陈老板有没有纳税?说明推导过程.答:因为丙命题为甲命题地负命题,所以真假必定相反.假设甲断定为假,那么丙断定为真,丁断定和乙断定都真假不定.假设甲断定属实,那么乙断定为真,丙断定为假,丁断定为假,符合题目要求,所以个体户陈老板没有纳税.6、三位同学从学校毕业后,一个当了律师,一个当了教师,一个当了会计.同学会上,大家作了如下议论:A:甲当了律师,乙当了教师.B:甲当了教师,丙当了律师.C:甲当了会计,乙当了律师.但大家地议论都只说对了一半,请问他们各选择了什么职业?说明推导过程.答:由于大家地议论都只说对了一半,所以:假设A说地甲当了律师是对地,那么B说地都是错地,不合题意所以,A说法中,甲当了律师是错地,乙当了教师是对地.那么B说法中,甲当了教师是错地,丙当了律师是对地C说法中,甲当了会计是对地,乙当了律师是错地所以,甲是会计,乙是教师,丙是律师。
华南理工《离散数学》命题逻辑练习题(含答案)(最新整理)
![华南理工《离散数学》命题逻辑练习题(含答案)(最新整理)](https://img.taocdn.com/s3/m/34dbef5c178884868762caaedd3383c4bb4cb4b9.png)
华南理工《离散数学》命题逻辑练习题(含答案)(最新整理)第一章命题逻辑1.1 命题与联结词一、单项选择题1、 A.明年“五一”是晴天。
B.这朵花多好看呀!。
C.这个男孩真勇敢啊! D.明天下午有会吗?在上面句子中,是命题的是( )2. A.1+101=110 B.中国人民是伟大的。
C.这朵花多好看呀! D.计算机机房有空位吗?在上面句子中,是命题的是( )3. A.如果天气好,那么我去散步。
B.天气多好呀!C.x=3。
D.明天下午有会吗?在上面句子中( )是命题4.下面的命题不是简单命题的是( )A.3是素数或4是素数 B.2018年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积5.下面的表述与众不一致的一个是( )A.P:广州是一个大城市 B.?P:广州是一个不大的城市C.?P:广州是一个很不小的城市 D.?P:广州不是一个大城市6.设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
” 可符号化为:( )A.P ∧Q B.P→QC.P∨?Q D.P∧?Q7.设:P :刘平聪明。
Q:刘平用功。
在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:( )A.P ∧Q B.?P∨QC.P∨?Q D.P∧?Q8.设:P:他聪明;Q:他用功。
则命题“他虽聪明但不用功。
”在命题逻辑中可符号化为( )A.P ∧Q B.P→QC.P∨?Q D.P∧?Q9.设:P:我们划船。
Q:我们跑步。
在命题逻辑中,命题:“我们不能既划船又跑步。
” 可符号化为:( )A.P→Q B.?(P ∧Q)C.P∨Q D.P∧?Q10.设:P:王强身体很好;Q:王强成绩很好。
命题“王强身体很好,成绩也很好。
”在命题逻辑中可符号化为( )A.P ∨Q B.P→QC.P∧?Q D.P∧Q11.设:P:你努力;Q:你失败。
则命题“除非你努力,否则你将失败。
”在命题逻辑中可符号化为( )A .Q →PB .P → QC .? P →QD .Q ∨?P12.设:p :派小王去开会。
命题逻辑习题及其参考答案
![命题逻辑习题及其参考答案](https://img.taocdn.com/s3/m/e149c208102de2bd97058864.png)
1.某地发生一起刑事案件,经过公安人员的努力侦破,作案嫌疑人锁定在A、E、C三人中,并且摸清了以下情况:①只有0 1号案件成功告破,才能确认A、B、C三人都是作案人。
②目前,0 1号案件还是一起悬案。
③如果A不是作案人,那么A的供词是真的,但A说自己与B都不是作案人。
④如果B不是作案人,那么B的供词也是真的,但B说自己与C是好朋友。
⑤现已查明C根本不认识B。
根据上述线索,问:A、B、C三人中谁是作案人?解:令p: 0 1号案件成功告破;q、r、s分别表示A、E、C作案;t: E与C是好朋友。
据题意有:1.⑴n (qArAs)P2.{2}-1 p P3.⑴"1 qfqAn r)P4.{4}n Lt P5.{5}n t P6.{4.5}r T4.5否定后件7.{1.2}n (qArAs)T1.2肯定前件&{1.2}"1 qVn rVq s T7德摩根9.{1.2.3}q T3.6否定后件10.{123.4.5}qAr P6.9组合式答:AB作案,至于C尚待侦查。
2.综合分析题(要求写出推导过程):某班有学生61人,卞面有三句话:①该班有些学生会使用计算机。
②该班有些学生不会使用计算机。
③该班班长不会使用计算机。
已知上述三句话中,只有一句话是真的,试问:哪一句话是真话?该班有多少学生会使用计算机?解:①②分别为I命题和O命题,二者是下反对关系,必有一真,或许都真;但据题设只有一句真话,可知③为假,真实情况是班长会使用计算机。
既然这样第一句话“该班有些学生会使用计算机”就是真的,而第二句话就是假的。
O命题假,根据矛盾关系可知,A命题即“该班所有学生都会使用计算机”就真,所以,全班61个学生都会计算机。
3.下面有三句话:①如果甲是篮球队员,则乙就是足球队员。
②如呆乙是足球队员,则甲就是篮球队员。
③甲不是篮球队员。
已知上述三句话中只有一句话是真话,问:甲是不是篮球队员?乙是不是足球队员?哪一句话是真话?(要求写出推导过程)解:令p表示“甲是篮球队员”,q表示''乙是足球队员”,再令③即5 p”真,据题设有:①{1} 1(p~*q)②{2} 1(q~p)③{3} 1 p④{1} pAn q⑤{1}P pppT①等值关系T④合取分解T ③©合取组合 T 归谬③⑥ T ②等值关系 T ⑧合取分解 T ⑦©合取组合 归谬②®一三两句为假。
命题逻辑习题
![命题逻辑习题](https://img.taocdn.com/s3/m/92f5b3d15a8102d277a22f70.png)
数理逻辑习题命题逻辑(_)1・指出下列语句中哪些是命题a)离散数学的研究对象是自然数。
b)请勿喧哗。
c)夸夸其谈可以创造财富。
d)“飞碟”来自于银河系之外。
e)今天很冷。
f)你明天还来吗?[解]町是命题。
因为它是假的陈述句。
b)不是命题。
因为它是祈使句。
c)是命题。
因为它是假的陈述句。
d)是命题。
因为它是可确定真假的陈述句,虽然其真假性现时还无法确定,但随着人类认识的发展终将得到证实。
e)是命题。
因为它是可确定真假的陈述句,其真假取决于说话人的主观判断和外部环境的客观温度。
f)不是命题。
因为它是疑问句。
2•用符号形式写下面命题,其中P表示命题“明天下雪”;Q表示命题“我们明天上课”;R表示命题“我们明天上公园”。
a)如果明天下雪且我们停课,那么我们去公园。
b)只有明天不下雪,我们才去公园。
c)除非明天不下雪且我们上公园,否则我们将上课。
d)无论明天下雪与否,我们照常上课。
[解]a) P—Q-R;b)「P-*「R (或 R—P);c)—1(—P A R)<->—Q (14k ―P/\R _Q);d)Pv-,P-Q (或 Q)。
3•用上题的命题P, Q, R解释下面的形式命题。
a)-iPvQ-*—>Rb)P A Rc)^P-*QvRd)—>QoR[解]a)只有明天下雪且不上课,我们才去公园;b)明天下雪,明天我们去公园;c)如果明天不下雪,那么我们上课或去公园;d)除非明天不停课(上课),否则我们去公园。
4•将下述命题符号化a)不是小王就是老李来找过你。
b)尽管小张与小赵是同学,但他们很少在一起。
c)如果程序能正常结束,那么就不会有语法错误。
d)既然你今天不去开会,就该在家好好休息一下。
e)只有博览群书,知识才能丰富。
f)只要懂得法律,就能够成为一名律师。
g)学好数、理、化,走扁天下都不怕。
h)并非由于学校是重点,毕业生才是一流的,而是由于毕业生是一流的,学校才能成为重点。
1)他能考上交大,除了由于他有一个较好的环境之外,还在于他平时的刻苦精神。
(完整版)命题逻辑复习题及答案
![(完整版)命题逻辑复习题及答案](https://img.taocdn.com/s3/m/83c5f1b92af90242a995e55a.png)
命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题? ( C )A 、你的离散数学考试通过了吗?B 、请系好安全带!C 、 π是有理数D 、 本命题是假的 2、下列句子中哪个不是命题? ( C )A 、你通过了离散数学考试B 、我俩五百年前是一家C 、 我说的是真话D 、 淮海工学院是一座工厂 3、下列联接词运算不可交换的是( C )A 、∧B 、∨C 、 →D 、 ↔ 4、命题公式P Q ⌝→不能表述为( B )A 、P 或QB 、非P 每当QC 、非P 仅当QD 、除非P ,否则Q 5、永真式的否定是 ( B )A 、 永真式B 、永假式C 、可满足式D 、 以上答案均有可能 6、下列哪组赋值使命题公式()P P Q →∧的真值为假( D )A 、P 假Q 真B 、P 假Q 假C 、P 真Q 真D 、P 真Q 假 7、下列为命题公式()P Q R ∧∨⌝成假指派的是( B )A 、100B 、101C 、110D 、111 8、 下列公式中为永真式的是 ( C )A 、()P P Q →∧B 、()P P Q ⌝→∧C 、()P Q Q ∧→D 、()P Q Q ∨→ 9、 下列公式中为非永真式的是( B )A 、 ()P P Q ∧⌝→B 、()P P Q ∨⌝→C 、()P P Q ∧⌝→D 、()P P Q ∨⌝→ 10、下列表达式错误的是( D )A 、()P P Q P ∨∧⇔B 、()P P Q P ∧∨⇔C 、()P P Q P Q ∨⌝∧⇔∨D 、()P P Q P Q ∧⌝∨⇔∨ 11、下列表达式正确的是( D )A 、P P Q ⇒∧B 、P Q P ⇒∨C 、()Q P Q ⌝⇒⌝→D 、Q Q P ⌝⇒→⌝)( 12、下列四个命题中真值为真的命题为( B )(1)224+=当且仅当3是奇数 (2)224+=当且仅当3不是奇数; (3)224+≠当且仅当3是奇数 (4)224+≠当且仅当3不是奇数 A 、(1)与(2) B 、(1)与(4) C 、(2)与(4) D 、(3)与(4)13、设P :龙凤呈祥是成语,Q :雪是黑的,R :太阳从东方升起,则下列假命题为( A ) A 、R Q P ∧→ B 、Q P S →∧ C 、P Q R →∨ D 、 Q P S →∨14、设P :我累,Q :我去打球,则命题:“除非我累,否则我去打球”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝15、设P :我听课,Q :我睡觉,则命题 “我不能一边听课,一边睡觉”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝ 提示:()P Q P Q ⌝∧⇔→⌝16、设P :停机;Q :语法错误;R :程序错误,则命题 “停机的原因在于语法错误或程序错误” 的符号化为( D )A 、R Q P ∧→B 、P Q R →∨C 、Q R P ∧→D 、Q R P ∨→ 17、设P :你来了;Q :他唱歌;R :你伴奏则命题 “如果你来了,那末他唱不唱歌将看你是否伴奏而定” 的符号化为( D ) A 、()P Q R →∧ B 、()P Q R →→ C 、()P R Q →→ D 、()P Q R →↔ 18、在命运题逻辑中,任何非永真命题公式的主合取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定19、在命题逻辑中,任何非永假命题公式的主析取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 20、n 个命题变元所产生互不等价的极小项项数为( D )A 、nB 、2nC 、2n D 、2n 21、n 个命题变元所产生互不等价的极大项项数为( D )A 、nB 、2nC 、2n D 、2n二、填充题(每题4分)1、设P :你努力,Q :你失败,则 “虽然你努力了,但还是失败了” 符号化为Q P ∧.2、设P :它占据空间,Q :它有质量,R :它不断运动,S :它叫做物质, 则 “占据空间的,有质量的而且不断运动的叫做物质”符号化为R Q P S ∧∧↔.3、一个命题含有n 个原子命题,则对其所有可能赋值有2n 种.4、推理规则()A A B B ∧→→的名称为假言推理.5、推理规则()B A B A ⌝∧→→⌝的名称为拒取式.6、推理规则()A A B B ⌝∧∨⇒的名称为析取三段论.7、推理规则()()A B B C A C →∧→⇒→的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为1. 10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0. 11、n 个命题变元可构造包括F 的不同的主析取范式类别为22n. 12、n 个命题变元可构造包括T 的不同的主合取范式类别为22n .三、问答题(每题6分)1、设A 、B 是任意命题公式,请问,A B A B →⇒分别表示什么?其有何关系? 答:A B →表示A 蕴含B ,A B ⇒表示A 永真蕴含B ; 其关系表现为:若A B →为永真式,则有A B ⇒.2、设A 、B 是任意命题公式,请问,A B A B ↔⇔分别表示什么?其有何关系? 答:A B ↔表示A 等值于B ,A B ⇔表示A 与B 逻辑等价; 其关系表现为:若A B ↔为永真式,则有A B ⇔.3、设A 、B 、C 是任意命题公式,若A C B C ∨⇔∨ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为真,则A C B C ∨⇔∨成立,但A B ⇔不成立.4、设A 、B 、C 是任意命题公式,若A C B C ∧⇔∧ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为假,则A C B C ∧⇔∧成立,但A B ⇔不成立. 5、设A 、B 是任意命题公式,()A A B B ∧→→一定为真吗?为什么?答:一定为真;因()()()()A A B B A A B B A A A B B ∧→→⇔∧⌝∨→⇔∧⌝∨∧→()F A B B A B B T ⇔∨∧→⇔∧→⇔.(用真值表也可证明)6、设A 、B 是任意命题公式,()()A B A B A →∧→⌝↔⌝一定为真吗?为什么? 答:一定为真;因()()()()()A B A B A B A B A B B →∧→⌝⇔⌝∨∧⌝∨⌝⇔⌝∨∧⌝ A F A ⇔⌝∨⇔⌝.(用真值表也可证明)四、填表计算题(每题10分)1、对命题公式 ()()A p q p q =⌝→∧∨,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q p q → ()p q ⌝→p q ∨A 00 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 111 0 1主析取范式(2)A ⇔∑ ;主合取范式(0,1,3)A ⇔∏.2、对命题公式 ()A p q r =→↔,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q r p q → A 00 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 11111主析取范式(1,3,4,7)A ⇔∑ ;主合取范式(0,2,5,6)A ⇔∏.3、对命题公式 ()()A p q p r =∧∨∧,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q r p q ∧ p r ∧ A 00 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 111111主析取范式(5,6,7)A ⇔∑ ;主合取范式(0,1,2,3,4)A ⇔∏.4、对命题公式()()A p q p r =⌝→∧→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(2,3,5,7)A ⇔∑ ;主合取范式(0,1,4,6)A ⇔∏.5、对命题公式()A p q r =⌝∨⌝→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(1,3,5,6,7)A ⇔∑ ;主合取范式(0,2,4)A ⇔∏.五、证明题(每题10分)1、证明下列逻辑恒等式:()()()P Q R Q P R Q →∧→⇔∨→. 证明 : 左()()()P Q R Q P R Q ⇔⌝∨∧⌝∨⇔⌝∧⌝∨()P R Q P R Q ⇔⌝∨∨⇔∨→⇔右.(用真值表也可证明) 2、证明下列逻辑恒等式: P Q R R Q P ⌝∧⌝→⌝⇔→∨. 证明:左()P Q R P Q R ⇔⌝⌝∧⌝∨⌝⇔∨∨⌝()R Q P R Q P ⇔⌝∨∨⇔→∨⇔右.(用真值表也可证明)3、证明下列逻辑恒等式:()()()P Q P Q P Q ⌝↔⇔∨∧⌝∧. 证明:左()()()()()P Q P Q P Q P Q ⇔⌝∨⌝∧⌝∨⇔⌝∨⌝∨⌝⌝∨()()()()()()Q Q P Q Q P P P Q P Q P ⌝∨∧∨∧⌝∧⌝∧⌝∨⇔⌝∧∨∧⌝⇔()()⇔⌝∨⌝∧∨⇔Q P Q P ()()P Q P Q ∨∧⌝∧右⇔.(用真值表也可证明)4、用逻辑推理规则证明: ()a b c ∧→ ,d ⌝ ,c d ⌝∨ ⇒ a b ⌝∨⌝ . 证明:(1) c d ⌝∨ P(2) d ⌝ P(3)c ⌝ T (1),(2) (析取三段论) (4) ()a b c ∧→ P(5)()a b ⌝∧ T (3),(4) (拒取式) (6) a b ⌝∨⌝ T (5) (德.摩根律) . 5、用逻辑推理规则证明: , ,p q p s s r r q ∨→→⇒⌝→. 证明: (1) p s → P(2) s r → P (3) p r → T (1),(2) (前提三段论) (4)r p ⌝→⌝ T (3) (逆反律) (5)p q ∨ P (6)p q ⌝→ T (5) (蕴含表达式)(7)r q ⌝→ T (4),(6) (前提三段论) .6、用逻辑推理规则证明:p q →,p r ∧, q r ⌝∨,r ⌝,s p s ⌝∨⇒⌝. 证明: (1) r ⌝ P(2) q r ⌝∨ P(3) q ⌝ T (1),(2) (析取三段论) (4)p q → P(5) p ⌝ T (3),(4) (拒取式) (6) s p ⌝∨ P(7) s ⌝T (5),(6) (析取三段论) .7、用逻辑推理规则证明:()()p q r s ⌝→→⌝∨,()q p r →∨⌝, r p q ⇒↔. 证明: (1) r P(2) ()q p r →∨⌝ P(3) q p → T (1),(2) (析取三段论) (4) r s ∨ T (1) (加法式)(5) ()()p q r s ⌝→→⌝∨ P (6) p q → T (4),(5) (拒取式) (7) ()()p q q p →∧→ T (3),(6) (合取式) (8) p q ↔ T (7) (等值表达式) .8、用逻辑推理规则证明: , ,s p p r q r s q ⌝∨→∧⇒→.证明: (1) s P(2) s p ⌝∨ P(3) p T (1),(2) (析取三段论)(4) p r q →∧ P(5) r q ∧ T (3),(4) (假言推理) (6) q T (5)(简化式) (7) s q → CP . 9、用逻辑推理规则证明:()()p q r p q r ∨→⇒∧→ 证明:(1) p q ∧ P (附加前提)(2) p T (1)(简化式)(3) p q ∨ T (2)(加法式) (4) ()p q r ∨→ P(5) r T (3),(4)(假言推理) (6) ()()p q r p q r ∨→⇒∧→ CP .10、用逻辑推理规则证明:,,p q q r r s p s ⌝∨⌝∨→⇒→. 证明:(1)p P (附加前提)(2) p q ⌝∨ P(3) q T (1),(2) (析取三段论) (4)q r ⌝∨ P(5) r T (3),(4) (析取三段论) (6) r s → P(7) s T (5),(6) (假言推理) (8) p s → CP .11、用逻辑推理规则证明:()()p q r s ∨→∧,()r s t p t ∨→⇒→ . 证明:(1)p P (附加前提) (2)p q ∨ T (1)(加法式) (3)()()p q r s ∨→∧ P(4)r s ∧ T (2),(3)(假言推理) (5)r T (4)(简化式) (6)r s ∨ T (5)(加法式)(7)()r s t ∨→ P (8)t T (6),(7)(假言推理)(9)p t → CP . 12、用逻辑推理规则证明:(),,t w s q s t s q t →⌝→⌝⌝∨→⌝⇒→ 证明:(1)q P (附加前提)(2) q s ⌝∨ P(3) s T (1),(2) (析取三段论)(4) ()t w s →⌝→⌝ P(5)()t w ⌝→⌝ T (3),(4) (拒取式) (6)()t w ⌝⌝∨⌝ T (5) (蕴含表达式) (7) t w ∧ T (6) (德.摩根律) (8) t T (7) (简化式)(9)q t → CP .13、用逻辑推理规则证明:a b c →∧,()e f c →⌝→⌝,()b a s →∧⌝⇒b e →. 证明:(1) b P (附加前提) (2)()b a s →∧⌝ P(3) a s ∧⌝ T (1),(2) (假言推理) (4) a T (3) (简化式) (5) a b c →∧ P(6) b c ∧ T (4),(5) (假言推理)(7) c T (6) (简化式) (8)()e f c →⌝→⌝ P(9) ()e f ⌝→⌝ T (7),(8) (拒取式) (10)()e f ⌝⌝∨⌝ T (9) (蕴含表达式) (11) e f ∧ T (10) (德.摩根律) (12) e T (11) (简化式) (13) b e → CP .14、用逻辑推理规则证明:p q →,p q q ⌝→⇒. 证明:(1) q ⌝ P (附加前提) (2) p q → P(3) p ⌝ T (1),(2) (拒取式) (4) p q ⌝→ P(5) q T (3),(4) (假言推理)(6) q q ⌝∧ T (1),(5) (合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明: p q ∧ ,()()p q t s ↔→∨ ⇒ t s ∨ . 证明:(1)()t s ⌝∨ P (附加前提)(2) ()()p q t s ↔→∨ P(3)()p q ⌝↔ T (1),(2) (拒取式) (4) (()())p q p q ⌝⌝∨∧∨⌝ T (3)(等值与蕴含表达式) (5) ()()p q p q ∧⌝∨⌝∧ T (4) (德.摩根律)(6) ()()p q p q ⌝∨⌝∧∨ T (5) (结合律或范式等价) . (7) p q ⌝∨⌝ T (7) (简化式) (8) ()p q ⌝∧ T (4) (德.摩根律) (9) p q ∧ P(10) ()()p q p q ⌝∧∧∧ T (9),(10) (合取式) 由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q →,p r ∧, ()q r ⌝∨不能同时为真. 证明:(1) p r ∧ P(2) p T (1) (简化式) (3) p q → P(4) q T (2),(3) (假言推理) (5) ()q r ⌝∨ P(6) q r ⌝∧⌝ T (5) (德.摩根律) (7) q ⌝ T (6) (简化式) (8) q q ⌝∧ T (4),(7) (合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学.因此,如果许多学生喜欢逻辑,那么数学并不难学. 证明:设p :逻辑难学;q :有少数学生不喜欢逻辑学;r :数学容易学.该推理就是要证明:, p q r p q r ∨→⌝⇒⌝→⌝. (1) p q ∨ P(2) p q ⌝→ T (1) (蕴含表达式) (3) r p →⌝ P(4) r q → T (2),(3) (前提三段论)(5) q r ⌝→⌝ T (4) (逆反律) .18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p :今天是星期三;q :我有一次离散数学测验;r :我有一次数字逻辑测验;s :离散数学课老师有事. 该推理就是要证明:(), , p q r s q p s r →∨→⌝∧⇒. (1) p s ∧ P(2) p T (1) (简化式) (3) s T (1) (简化式) (4) s q →⌝ P(5) q ⌝ T (3) ,(4) (假言推理)(6) ()p q r →∨ P(7) q r ∨ T (2) ,(6) (假言推理)(8) r T (5) ,(7) (析取三段论) .19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。
命题逻辑习题及答案
![命题逻辑习题及答案](https://img.taocdn.com/s3/m/e907640026fff705cc170af3.png)
习题1l.判断下列语句是否命题。
若是,请给出命题的真值。
(1) 离散数学是计算机专业的必修课。
(2) 2是无理数。
(3) 我正在说谎话。
(4) 今天天气好热呀!(5) 整数3 能被2 整除。
(6) 下午开会吗?(7) 三角形有三条边,当且仅当5是素数。
(8) 马有四条腿。
(9) 雪是白的当且仅当太阳从东方升起。
(10) 9+2≤10。
(11) 如果1+1=2,则2+3=5。
(12) 鲁迅获得过诺贝尔文学奖。
解答:(1) 是命题,T。
(2) 是命题,F。
(3) 不是命题。
(4) 不是命题。
(5) 是命题,F。
(6) 不是命题。
(7) 是命题,T。
(8) 是命题,T。
(9) 是命题,T。
(10) 是命题,T/F。
(11) 是命题,T。
(12) 是命题,F。
2.将下列命题符号化。
(1) 太阳高照且气温不高。
(2) 如果明天下雨,我就乘公交车上班。
(3) 我买电脑,仅当我有钱。
(4) 虽然天气很好,老吴还是不来。
(5) 王明不但学习好而且还有运动天赋。
(6) 明天他在广州,或在深圳。
(7) 若两个圆面积相等,则半径相等,反之亦然。
(8) 打印机既可作为输入设备,又可作为输出设备。
(9) 只有我不复习功课, 我才去看电影。
(10) 如果a和b是奇数,则a+b不是奇数。
解答:(1) 设P:太阳高照;Q:气温不高。
则命题可符号化为:P∧Q。
(2) 设P:明天下雨;Q:我乘公交车上班。
则命题可符号化为:P→Q。
(3) 设P:我买电脑;Q:我有钱。
则命题可符号化为:P→Q。
(4) 设P:天气很好;Q:老吴来。
则命题可符号化为:P∧⌝Q。
(5) 设P:王明学习好;Q:王明有运动天赋。
则命题可符号化为:P∧Q。
(6) 设P:明天他在广州;Q:明天他在深圳。
则命题可符号化为:P∨Q。
(7) 设P:两个圆面积相等;Q:两个圆半径相等。
则命题可符号化为:P↔Q。
(8) 设P:打印机可作为输入设备;Q:打印机可作为输出设备。
逻辑学教程课后习题答案
![逻辑学教程课后习题答案](https://img.taocdn.com/s3/m/a0da706aef06eff9aef8941ea76e58fafab04528.png)
逻辑学教程课后习题答案习题一:命题逻辑1. 判断下列命题的真假:- 命题A: “所有的猫都是哺乳动物。
”(真)- 命题B: “有些猫不是哺乳动物。
”(假)2. 将下列命题转化为逻辑表达式:- 命题C: “如果今天是星期一,那么明天是星期二。
” 可表示为:(M → T),其中M代表“今天是星期一”,T代表“明天是星期二”。
习题二:演绎推理1. 根据以下前提,推导出结论:- 前提1: 所有学生都需要学习逻辑。
- 前提2: 小明是一名学生。
- 结论:小明需要学习逻辑。
2. 判断下列推理是否有效:- 推理:如果下雨,地面就会湿。
今天地面湿了,所以今天下雨了。
- 这是一个无效推理,因为地面湿了可能有其他原因,不一定是因为下雨。
习题三:归纳推理1. 观察以下事实,归纳出一个一般性结论:- 事实1: 苹果落地。
- 事实2: 橙子落地。
- 事实3: 梨落地。
- 结论:所有水果都会落地。
2. 分析下列归纳推理是否合理:- 推理:我们观察到的天鹅都是白色的,因此所有天鹅都是白色的。
- 这是一个不完全归纳推理,因为存在黑天鹅,所以这个推理是不合理的。
习题四:逻辑谬误1. 识别下列论证中的逻辑谬误:- 论证:没有人是完美的,所以没有人应该追求完美。
- 谬误:滑坡谬误,错误地假设因为没有人是完美的,追求完美就是不可能的或不合理的。
2. 指出下列论证中的非形式谬误:- 论证:因为许多成功的企业家都穿西装,所以穿西装是成功的关键。
- 谬误:因果谬误,错误地将相关性当作因果关系。
习题五:条件命题1. 判断下列条件命题的真假:- 命题D: “如果考试及格,那么就能毕业。
”(真或假,取决于具体情况)- 命题E: “只有考试及格,才能毕业。
”(假,因为可能还有其他毕业条件)2. 转换条件命题为逆命题、否命题和逆否命题,并判断它们的真假:- 逆命题:如果毕业,那么考试及格。
- 否命题:如果考试不及格,那么不能毕业。
- 逆否命题:如果不能毕业,那么考试不及格。
离散数学命题逻辑练习题及答案
![离散数学命题逻辑练习题及答案](https://img.taocdn.com/s3/m/88fdf8c48662caaedd3383c4bb4cf7ec4afeb6e9.png)
离散数学命题逻辑练习题及答案本文档包含了一些离散数学中的命题逻辑练习题及其详细答案。
在离散数学中,命题逻辑是一种符号逻辑系统,它研究命题的形式和逻辑推理的规则。
这些练习题旨在帮助读者巩固对命题逻辑基本概念的理解,并锻炼逻辑推理能力。
练习题1.写出下列命题的否定形式:a)如果今天下雨,我就不出门。
b)数学和计算机科学是紧密相关的学科。
c)所有猫都有尾巴。
d)如果一个数是偶数,它肯定可以被2整除。
2.判断以下陈述是否为命题,并给出理由:a)蓝色是我最喜欢的颜色。
b)2加2等于4。
c)这是一个错误的陈述。
d)如果明天下雨,我就会带伞。
3.使用真值表判断以下复合命题的真值:a)P ∧ (¬Q ∨ R)b)(P ∧ Q) ∨ (¬R ∧ S)c)(P → Q) ∧ (R → S)d)(P ∨ Q) ∧ (¬P ∨ Q)4.使用推理规则化简以下逻辑表达式:a)~((P ∧ Q) ∨ R)b)~(P ∨ (Q ∧ R))c)(~P ∧ Q) ∨ ((~P ∨ Q) ∧ R)d)(P → Q) ∨ (¬Q → ¬P)答案a)今天下雨而且我不出门。
b)数学和计算机科学不是紧密相关的学科。
c)存在不具备尾巴的猫。
d)存在一个偶数,它不能被2整除。
a)不是命题。
因为它表达了个人偏好,无法判断真假。
b)是命题。
因为它可以明确地判断为真。
c)不是命题。
因为它没有明确的真值。
d)是命题。
因为它可以根据明天的天气情况来判断真假。
P Q R¬Q ∨ R P ∧ (¬Q ∨ R)T T T T TT T F F FT F T T TT F F T TF T T T FF T F T FF F T T FF F F T FP Q R P ∧ Q¬R ∧ S(P ∧ Q) ∨ (¬R ∧ S) T T T T F TT T F T F TT F T F T TT F F F T TF T T F F FF T F F F FF F T F F FF F F F F FP Q R P → Q R → S(P → Q) ∧ (R → S) T T T T T TT T F T F FT F T F T FT F F F T FF T T T T TF T F T F TF F T T T TF F F T T TP Q(P ∨ Q)¬P ∨ Q(P ∨ Q) ∧ (¬P ∨ Q) T T T T TT F T F FF T T T TF F F F F~((P ∧ Q) ∨ R)= ~(P ∧ Q) ∧ ~R~(P ∨ (Q ∧ R))= ~P ∧ ~(Q ∧ R)= ~P ∧ (~Q ∨ ~R)(~P ∧ Q) ∨ ((~P ∨ Q) ∧ R)= (~P ∨ ~P) ∧ (Q ∨ Q) ∧ (Q ∨ R) ∧ (~P ∨ R) = ~P ∧ Q ∨ R(P → Q) ∨ (¬Q → ¬P)= (~P ∨ Q) ∨ (Q ∨ ¬P)= (~P ∨ Q) ∨ (¬P ∨ Q)= T以上是一些离散数学命题逻辑的练习题及答案。
《命题逻辑》课外习题及答案
![《命题逻辑》课外习题及答案](https://img.taocdn.com/s3/m/1799f0b8a6c30c2258019e38.png)
第一章命题逻辑课外习题及解答练习一1判断下列语句是否是命题,若是命题则请将其形式化:(1)a+b(2)x>0(3)“请进!”(4)所有的人都是要死的,但有人不怕死。
(5)我明天或后天去苏州。
(6)我明天或后天去苏州的说法是谣传。
(7)我明天或后天去北京或天津。
(8)如果买不到飞机票,我哪儿也不去。
(9)只要他出门,他必买书,不管他余款多不多。
(10)除非你陪伴我或代我雇辆车子,否则我不去。
(11)只要充分考虑一切论证,就可得到可靠见解;必须充分考虑一切论证,才能得到可靠见解。
(12)如果只有懂得希腊文才能了解柏拉图,那么我不了解柏拉图。
(13)不管你和他去不去,我去。
(14)侈而惰者贫,而力而俭者富。
(韩非:《韩非子•显学》)(15)骐骥一跃,不能十步;驽马十驾,功在不舍;锲而舍之,朽木不折;锲而不舍,金石可镂。
(荀况:《荀子砂学》解 (1) a+b 不是命题(2)x>0 不是命题(X是变兀)(3)“请进!”不是命题(4)所有的人都是要死的,但有人不怕死。
是命题可表示为p∧∏q,其中p:所有的人都是要死的,q:所有的人都怕死(5)我明天或后天去苏州。
是命题可表示为P ∨q,其中p:我明天去苏州;q:我后天去苏州(6)我明天或后天去苏州的说法是谣传。
是命题可表示为「(P ∨q),其中p、q同(5)(7)我明天或后天去北京或天津。
是命题可表示为P ∨q∨r ∨s,其中P :我明天去北京,q:我明天去天津,r:我后天去北京, s:我后天去天津(8)如果买不到飞机票,我哪儿也不去。
是命题可表示为「P→∏q,其中,P:我买到飞机票,q:我出去(9)只要他出门,他必买书,不管他余款多不多。
是命题可表示为(P ∧q→ r)∧(∏P ∧q→r)或q→r,其中P :他余款多,q :他出门,r:他买书(10)除非你陪伴我或代我雇辆车子,否则我不去。
是命题可表示为(P ∨q)㈠r,其中P :你陪伴我,q:你代我雇车,r :我去(11)只要充分考虑一切论证,就可得到可靠见解;必须充分考虑一切论证,才能得到可靠见解。
命题逻辑习题课答案PPT教学课件
![命题逻辑习题课答案PPT教学课件](https://img.taocdn.com/s3/m/b87cffb780eb6294dd886cd6.png)
(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)
∏(1,2,3,4,5,6)
2020/12/11
11
P Q R P(Q∧R) P(Q∧R ) A(P, Q, R)
0 FF F
T
T
T
1 FF T
T
F
F
2 FT F
T
F
F
3 FT T
T
F
F
4 TF F
F
T
F
5 TF T
F
T
F
6 TT F
F
T
F
7 TT T
T
2020/12/11
5
方法3 (P→Q)→(P→(P∧Q))
(P∨Q)∨(P∨(P∧Q)) (P∧Q)∨P∨(P∧Q) (P∧Q)∨(P∧(Q∨Q))∨(P∧Q) (P∧Q)∨(P∧Q)∨(P∧Q)∨(P∧Q) (P∧Q)∨(P∧Q)∨(P∧Q)∨(P∧Q)
可见,该公式的主析取范式含有全部(四个) 小项,这表明(P→Q)→(P→(P∧Q))是永真式
4
方法2: (P→Q)→(P→(P∧Q)) (P∨Q)∨(P∨(P∧Q)) (P∧Q)∨((P∨P)∧(P∨Q)) (P∧Q)∨(T∧(P∨Q)) (P∧Q)∨(P∨Q) (P∨(P∨Q) )∧(Q∨(P∨Q) ((P ∨P)∨Q) )∧(Q∨(Q∨P) (T∨Q) )∧((Q∨Q)∨P) T∧(T∨P) T∧T
2020/12/11
6
三.重言蕴涵式的证明方法
方法1.列真值表。(即列永真式的真值表) (略) 方法2.假设前件为真,推出后件也为真。 方法3.假设后件为假,推出前件也为假。 证明
命题逻辑复习题及答案
![命题逻辑复习题及答案](https://img.taocdn.com/s3/m/46238c87227916888586d79c.png)
命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题 ( C )A 、你的离散数学考试通过了吗B 、请系好安全带!C 、 π是有理数D 、 本命题是假的 2、下列句子中哪个不是命题 ( C )A 、你通过了离散数学考试B 、我俩五百年前是一家C 、 我说的是真话D 、 淮海工学院是一座工厂 3、下列联接词运算不可交换的是( C )A 、∧B 、∨C 、 →D 、 ↔ 4、命题公式P Q ⌝→不能表述为( B )A 、P 或QB 、非P 每当QC 、非P 仅当QD 、除非P ,否则Q 5、永真式的否定是 ( B )A 、 永真式B 、永假式C 、可满足式D 、 以上答案均有可能 6、下列哪组赋值使命题公式()P P Q →∧的真值为假( D )A 、P 假Q 真B 、P 假Q 假C 、P 真Q 真D 、P 真Q 假 7、下列为命题公式()P Q R ∧∨⌝成假指派的是( B )A 、100B 、101C 、110D 、111 8、 下列公式中为永真式的是 ( C )A 、()P P Q →∧B 、()P P Q ⌝→∧C 、()P Q Q ∧→D 、()P Q Q ∨→ 9、 下列公式中为非永真式的是( B )A 、 ()P P Q ∧⌝→B 、()P P Q ∨⌝→C 、()P P Q ∧⌝→D 、()P P Q ∨⌝→ 10、下列表达式错误的是( D )A 、()P P Q P ∨∧⇔B 、()P P Q P ∧∨⇔C 、()P P Q P Q ∨⌝∧⇔∨D 、()P P Q P Q ∧⌝∨⇔∨ 11、下列表达式正确的是( D )A 、P P Q ⇒∧B 、P Q P ⇒∨C 、()Q P Q ⌝⇒⌝→D 、Q Q P ⌝⇒→⌝)( 12、下列四个命题中真值为真的命题为( B )(1)224+=当且仅当3是奇数 (2)224+=当且仅当3不是奇数;(3)224+≠当且仅当3是奇数 (4)224+≠当且仅当3不是奇数 A 、(1)与(2) B 、(1)与(4) C 、(2)与(4) D 、(3)与(4)13、设P :龙凤呈祥是成语,Q :雪是黑的,R :太阳从东方升起,则下列假命题为( A ) A 、R Q P ∧→ B 、Q P S →∧ C 、P Q R →∨ D 、 Q P S →∨14、设P :我累,Q :我去打球,则命题:“除非我累,否则我去打球”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝15、设P :我听课,Q :我睡觉,则命题 “我不能一边听课,一边睡觉”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝ 提示:()P Q P Q ⌝∧⇔→⌝16、设P :停机;Q :语法错误;R :程序错误,则命题 “停机的原因在于语法错误或程序错误” 的符号化为( D ) A 、R Q P ∧→ B 、P Q R →∨ C 、Q R P ∧→ D 、Q R P ∨→ 17、设P :你来了;Q :他唱歌;R :你伴奏则命题 “如果你来了,那末他唱不唱歌将看你是否伴奏而定” 的符号化为( D ) A 、()P Q R →∧ B 、()P Q R →→ C 、()P R Q →→ D 、()P Q R →↔ 18、在命运题逻辑中,任何非永真命题公式的主合取范式都是( A ) A 、 存在并且唯一 B 、存在但不唯一 C 、 不存在 D 、 不能够确定 19、在命题逻辑中,任何非永假命题公式的主析取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 20、n 个命题变元所产生互不等价的极小项项数为( D )A 、nB 、2nC 、2n D 、2n21、n 个命题变元所产生互不等价的极大项项数为( D )A 、nB 、2nC 、2nD 、2n二、填充题(每题4分)1、设P :你努力,Q :你失败,则 “虽然你努力了,但还是失败了” 符号化为Q P ∧.2、设P :它占据空间,Q :它有质量,R :它不断运动,S :它叫做物质, 则 “占据空间的,有质量的而且不断运动的叫做物质”符号化为R Q P S ∧∧↔.3、一个命题含有n 个原子命题,则对其所有可能赋值有2n种.4、推理规则()A A B B ∧→→的名称为假言推理.5、推理规则()B A B A ⌝∧→→⌝的名称为拒取式.6、推理规则()A A B B ⌝∧∨⇒的名称为析取三段论.7、推理规则()()A B B C A C →∧→⇒→的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为1. 10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0. 11、n 个命题变元可构造包括F 的不同的主析取范式类别为22n. 12、n 个命题变元可构造包括T 的不同的主合取范式类别为22n .三、问答题(每题6分)1、设A 、B 是任意命题公式,请问,A B A B →⇒分别表示什么其有何关系 答:A B →表示A 蕴含B ,A B ⇒表示A 永真蕴含B ; 其关系表现为:若A B →为永真式,则有A B ⇒.2、设A 、B 是任意命题公式,请问,A B A B ↔⇔分别表示什么其有何关系 答:A B ↔表示A 等值于B ,A B ⇔表示A 与B 逻辑等价; 其关系表现为:若A B ↔为永真式,则有A B ⇔.3、设A 、B 、C 是任意命题公式,若A C B C ∨⇔∨ ,则A B ⇔成立吗为什么 答:不一定有A B ⇔;若A 为真,B 为假,C 为真,则A C B C ∨⇔∨成立,但A B ⇔不成立. 4、设A 、B 、C 是任意命题公式,若A C B C ∧⇔∧ ,则A B ⇔成立吗为什么 答:不一定有A B ⇔;若A 为真,B 为假,C 为假,则A C B C ∧⇔∧成立,但A B ⇔不成立. 5、设A 、B 是任意命题公式,()A A B B ∧→→一定为真吗为什么答:一定为真;因()()()()A A B B A A B B A A A B B ∧→→⇔∧⌝∨→⇔∧⌝∨∧→()F A B B A B B T ⇔∨∧→⇔∧→⇔.(用真值表也可证明)6、设A 、B 是任意命题公式,()()A B A B A →∧→⌝↔⌝一定为真吗为什么 答:一定为真;因()()()()()A B A B A B A B A B B →∧→⌝⇔⌝∨∧⌝∨⌝⇔⌝∨∧⌝A F A ⇔⌝∨⇔⌝.(用真值表也可证明)四、填表计算题(每题10分)1、对命题公式 ()()A p q p q =⌝→∧∨,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q p q → ()p q ⌝→p q ∨A 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1111主析取范式(2)A ⇔∑ ;主合取范式(0,1,3)A ⇔∏.2、对命题公式 ()A p q r =→↔,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q rp q → A 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 11111主析取范式(1,3,4,7)A ⇔∑ ;主合取范式(0,2,5,6)A ⇔∏.3、对命题公式 ()()A p q p r =∧∨∧,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q rp q ∧ p r ∧ A 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 111111主析取范式(5,6,7)A ⇔∑ ;主合取范式(0,1,2,3,4)A ⇔∏.4、对命题公式()()A p q p r =⌝→∧→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(2,3,5,7)A ⇔∑ ;主合取范式(0,1,4,6)A ⇔∏.5、对命题公式()A p q r =⌝∨⌝→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(1,3,5,6,7)A ⇔∑ ;主合取范式(0,2,4)A ⇔∏.五、证明题(每题10分)1、证明下列逻辑恒等式:()()()P Q R Q P R Q →∧→⇔∨→. 证明 : 左()()()P Q R Q P R Q ⇔⌝∨∧⌝∨⇔⌝∧⌝∨()P R Q P R Q ⇔⌝∨∨⇔∨→⇔右.(用真值表也可证明)2、证明下列逻辑恒等式: P Q R R Q P ⌝∧⌝→⌝⇔→∨. 证明:左()P Q R P Q R ⇔⌝⌝∧⌝∨⌝⇔∨∨⌝()R Q P R Q P ⇔⌝∨∨⇔→∨⇔右.(用真值表也可证明)3、证明下列逻辑恒等式:()()()P Q P Q P Q ⌝↔⇔∨∧⌝∧. 证明:左()()()()()P Q P Q P Q P Q ⇔⌝∨⌝∧⌝∨⇔⌝∨⌝∨⌝⌝∨()()()()()()Q Q P Q Q P P P Q P Q P ⌝∨∧∨∧⌝∧⌝∧⌝∨⇔⌝∧∨∧⌝⇔()()⇔⌝∨⌝∧∨⇔Q P Q P ()()P Q P Q ∨∧⌝∧右⇔.(用真值表也可证明)4、用逻辑推理规则证明: ()a b c ∧→ ,d ⌝ ,c d ⌝∨ ⇒ a b ⌝∨⌝ .证明:(1) c d ⌝∨ P(2) d ⌝ P(3)c ⌝ T (1),(2) (析取三段论) (4) ()a b c ∧→ P(5)()a b ⌝∧ T (3),(4) (拒取式) (6) a b ⌝∨⌝ T (5) (德.摩根律) . 5、用逻辑推理规则证明: , ,p q p s s r r q ∨→→⇒⌝→.证明: (1) p s →P (2) s r → P(3) p r → T (1),(2) (前提三段论) (4)r p ⌝→⌝ T (3) (逆反律) (5)p q ∨ P(6)p q ⌝→ T (5) (蕴含表达式) (7)r q ⌝→T (4),(6) (前提三段论) .6、用逻辑推理规则证明:p q →,p r ∧, q r ⌝∨,r ⌝,s p s ⌝∨⇒⌝. 证明: (1) r ⌝ P(2) q r ⌝∨ P(3) q ⌝ T (1),(2) (析取三段论) (4)p q → P(5) p ⌝ T (3),(4) (拒取式) (6) s p ⌝∨ P (7) s ⌝T (5),(6) (析取三段论) .7、用逻辑推理规则证明:()()p q r s ⌝→→⌝∨,()q p r →∨⌝, r p q ⇒↔. 证明: (1) r P(2) ()q p r →∨⌝ P(3) q p → T (1),(2) (析取三段论) (4) r s ∨ T (1) (加法式) (5) ()()p q r s ⌝→→⌝∨ P(6) p q → T (4),(5) (拒取式) (7) ()()p q q p →∧→T (3),(6) (合取式)(8) p q ↔ T (7) (等值表达式) .8、用逻辑推理规则证明: , ,s p p r q r s q ⌝∨→∧⇒→.证明: (1) s P(2) s p ⌝∨ P(3) p T (1),(2) (析取三段论) (4) p r q →∧ P(5) r q ∧ T (3),(4) (假言推理) (6) q T (5)(简化式) (7) s q → CP . 9、用逻辑推理规则证明:()()p q r p q r ∨→⇒∧→ 证明:(1) p q ∧ P (附加前提)(2) p T (1)(简化式) (3) p q ∨ T (2)(加法式) (4) ()p q r ∨→ P(5) r T (3),(4)(假言推理) (6) ()()p q r p q r ∨→⇒∧→ CP .10、用逻辑推理规则证明:,,p q q r r s p s ⌝∨⌝∨→⇒→. 证明:(1)p P (附加前提)(2) p q ⌝∨ P(3) q T (1),(2) (析取三段论) (4)q r ⌝∨ P(5) r T (3),(4) (析取三段论) (6) r s → P(7) s T (5),(6) (假言推理) (8) p s → CP .11、用逻辑推理规则证明:()()p q r s ∨→∧,()r s t p t ∨→⇒→ . 证明:(1)p P (附加前提) (2)p q ∨ T (1)(加法式) (3)()()p q r s ∨→∧ P(4)r s ∧ T (2),(3)(假言推理) (5)r T (4)(简化式) (6)r s ∨ T (5)(加法式)(7)()r s t ∨→ P(8)t T (6),(7)(假言推理)(9)p t → CP .12、用逻辑推理规则证明:(),,t w s q s t s q t →⌝→⌝⌝∨→⌝⇒→ 证明:(1)q P (附加前提)(2) q s ⌝∨ P(3) s T (1),(2) (析取三段论) (4) ()t w s →⌝→⌝ P(5)()t w ⌝→⌝ T (3),(4) (拒取式) (6)()t w ⌝⌝∨⌝ T (5) (蕴含表达式) (7) t w ∧ T (6) (德.摩根律) (8) t T (7) (简化式)(9)q t → CP .13、用逻辑推理规则证明:a b c →∧,()e f c →⌝→⌝,()b a s →∧⌝⇒b e →. 证明:(1) b P (附加前提) (2)()b a s →∧⌝ P(3) a s ∧⌝ T (1),(2) (假言推理) (4) a T (3) (简化式) (5) a b c →∧ P(6) b c ∧ T (4),(5) (假言推理)(7) c T (6) (简化式)(8) ()e f c →⌝→⌝ P(9) ()e f ⌝→⌝ T (7),(8) (拒取式) (10)()e f ⌝⌝∨⌝ T (9) (蕴含表达式) (11) e f ∧ T (10) (德.摩根律) (12) e T (11) (简化式) (13) b e → CP . 14、用逻辑推理规则证明:p q →,p q q ⌝→⇒. 证明:(1) q ⌝ P (附加前提) (2) p q → P(3) p ⌝ T (1),(2) (拒取式) (4) p q ⌝→ P(5) q T (3),(4) (假言推理) (6) q q ⌝∧ T (1),(5) (合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明: p q ∧ ,()()p q t s ↔→∨ ⇒ t s ∨ . 证明:(1)()t s ⌝∨ P (附加前提)(2) ()()p q t s ↔→∨ P(3)()p q ⌝↔ T (1),(2) (拒取式) (4) (()())p q p q ⌝⌝∨∧∨⌝ T (3)(等值与蕴含表达式) (5) ()()p q p q ∧⌝∨⌝∧ T (4) (德.摩根律)(6) ()()p q p q ⌝∨⌝∧∨ T (5) (结合律或范式等价) . (7) p q ⌝∨⌝ T (7) (简化式) (8) ()p q ⌝∧ T (4) (德.摩根律) (9) p q ∧ P(10) ()()p q p q ⌝∧∧∧ T (9),(10) (合取式) 由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q →,p r ∧, ()q r ⌝∨不能同时为真. 证明:(1) p r ∧ P(2) p T (1) (简化式)(3) p q → P(4) q T (2),(3) (假言推理)(5) ()q r ⌝∨ P(6) q r ⌝∧⌝ T (5) (德.摩根律)(7) q ⌝ T (6) (简化式)(8) q q ⌝∧ T (4),(7) (合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学.因此,如果许多学生喜欢逻辑,那么数学并不难学.证明:设p :逻辑难学;q :有少数学生不喜欢逻辑学;r :数学容易学.该推理就是要证明:, p q r p q r ∨→⌝⇒⌝→⌝.(1) p q ∨ P(2) p q ⌝→ T (1) (蕴含表达式)(3) r p →⌝ P(4) r q → T (2),(3) (前提三段论)(5) q r ⌝→⌝ T (4) (逆反律) .18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p :今天是星期三;q :我有一次离散数学测验;r :我有一次数字逻辑测验;s :离散数学课老师有事.该推理就是要证明:(), , p q r s q p s r →∨→⌝∧⇒.(1) p s ∧ P(2) p T (1) (简化式)(3) s T (1) (简化式)(4) s q →⌝ P(5) q ⌝ T (3) ,(4) (假言推理)(6) ()p q r →∨ P(7) q r ∨ T (2) ,(6) (假言推理)(8) r T (5) ,(7) (析取三段论) .19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。
离散数学命题逻辑练习题及答案
![离散数学命题逻辑练习题及答案](https://img.taocdn.com/s3/m/cd52ad29571252d380eb6294dd88d0d233d43caf.png)
离散数学命题逻辑练习题及答案1. 命题逻辑基础1.1 命题逻辑概念1.什么是命题?答案:命题是可以判断真假的陈述句。
2.命题的两个基本操作是什么?答案:命题的两个基本操作是合取和析取。
1.2 命题逻辑表达式3.将以下中缀表达式转换为后缀表达式:((P ∧ Q) → (R ∨ S)) ∨ T答案:后缀表达式为P Q ∧ R S ∨ → T ∨4.使用真值表验证以下命题逻辑公式是否为重言式(永远为真):(P ∨ Q) ∧ (¬P ∨ Q) ⟺ Q答案:P Q(P ∨ Q) ∧ (¬P ∨ Q)QT T T TT F T FF T T TF F F F结论:命题逻辑公式(P ∨ Q) ∧ (¬P ∨ Q)是重言式。
1.3 命题逻辑推理5.使用命题逻辑进行推理,判断以下论断是否成立(推理过程可用真值表验证):P → Q, Q → R ∈ L, ∴ P → R答案:P Q R P → Q Q → R P → R T T T T T TT T F T F FT F T F T TT F F F T FF T T T T TF T F T F TF F T T T TF F F T T T结论:论断P → R成立。
2. 命题逻辑的应用2.1 命题逻辑在计算机科学中的应用6.命题逻辑在计算机科学中有哪些应用?答案:命题逻辑在计算机科学中的应用包括逻辑电路设计、计算机程序的正确性验证、控制流分析等。
7.请简要说明命题逻辑在逻辑电路设计中的应用。
答案:命题逻辑在逻辑电路设计中用于描述逻辑电路的功能和工作原理。
通过使用命题逻辑符号和逻辑运算,可以建立逻辑电路的逻辑模型,进而进行电路的设计、优化和验证。
2.2 命题逻辑推理的应用8.请举一个命题逻辑推理在实际生活中的应用例子。
答案:命题逻辑推理在实际生活中的一个应用例子是法庭判案。
法庭根据掌握的事实和证据,通过进行命题逻辑推理来确定被告是否犯罪或无罪,从而作出最终的判决。
逻辑学教程张君练习题答案
![逻辑学教程张君练习题答案](https://img.taocdn.com/s3/m/9085b80bb94ae45c3b3567ec102de2bd9605dea7.png)
逻辑学教程张君练习题答案练习一:命题逻辑1. 题目:分析下列命题的真值表。
- P: 今天是晴天。
- Q: 我将去公园。
- R: 我将去游泳。
答案:要分析这个命题的真值表,我们需要考虑P、Q、R三个命题的所有可能组合。
真值表如下:| P | Q | R | (P ∧ Q) → R |||||-|| T | T | T | T || T | T | F | F || T | F | T | T || T | F | F | T || F | T | T | T || F | T | F | T || F | F | T | T || F | F | F | T |其中,T代表真(True),F代表假(False)。
2. 题目:证明以下命题的等价性:(P ∨ ¬Q) → R ≡ (P → R) ∧ (¬Q → R)。
答案:我们可以使用真值表来证明这两个命题的等价性。
通过列出所有可能的P、Q、R的真值组合,我们可以观察到无论P、Q、R的真值如何,两个命题的真值总是相同的。
练习二:谓词逻辑1. 题目:如果所有的猫都怕水,而Tom是猫,请证明Tom怕水。
答案:根据全称量词的引入,我们可以写出如下的逻辑表达式: - ∀x (Cat(x) → AfraidOfWater(x))- Tom = x0- Cat(Tom)根据逻辑推理,我们可以得出:- AfraidOfWater(Tom)2. 题目:如果所有的学生都通过了考试,并且John是学生,那么John通过了考试。
答案:这个命题可以通过以下逻辑表达式来表示:- ∀x (Student(x) → PassedExam(x))- John = x1- Student(John)根据逻辑推理,我们可以得出:- PassedExam(John)练习三:演绎推理1. 题目:使用三段论证明以下命题:如果所有的A都是B,并且所有的C都是A,那么所有的C都是B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章命题逻辑课外习题及解答练习一1、判断下列语句是否是命题,若是命题则请将其形式化:(1)a+b(2)x>0(3)“请进!”(4)所有的人都是要死的,但有人不怕死。
(5)我明天或后天去苏州。
(6)我明天或后天去苏州的说法是谣传。
(7)我明天或后天去北京或天津。
(8)如果买不到飞机票,我哪儿也不去。
(9)只要他出门,他必买书,不管他余款多不多。
(10)除非你陪伴我或代我雇辆车子,否则我不去。
(11)只要充分考虑一切论证,就可得到可靠见解;必须充分考虑一切论证,才能得到可靠见解。
(12)如果只有懂得希腊文才能了解柏拉图,那么我不了解柏拉图。
(13)不管你和他去不去,我去。
(14)侈而惰者贫,而力而俭者富。
(韩非:《韩非子•显学》)(15)骐骥一跃,不能十步;驽马十驾,功在不舍;锲而舍之,朽木不折;锲而不舍,金石可镂。
(荀况:《荀子•劝学》)解(1)a+b 不是命题(2)x>0 不是命题(x是变元)(3)“请进!”不是命题(4)所有的人都是要死的,但有人不怕死。
是命题可表示为p∧┐q,其中p:所有的人都是要死的,q:所有的人都怕死(5)我明天或后天去苏州。
是命题可表示为p∨q,其中p:我明天去苏州;q:我后天去苏州(6)我明天或后天去苏州的说法是谣传。
是命题可表示为┐(p∨q),其中p、q同(5)(7)我明天或后天去北京或天津。
是命题可表示为p∨q∨r∨s,其中p:我明天去北京,q:我明天去天津,r:我后天去北京,s:我后天去天津(8)如果买不到飞机票,我哪儿也不去。
是命题可表示为┐p→┐q,其中,p:我买到飞机票,q:我出去(9)只要他出门,他必买书,不管他余款多不多。
是命题可表示为(p∧q→r)∧(┐p∧q→r)或q→r,其中p:他余款多,q:他出门,r:他买书(10)除非你陪伴我或代我雇辆车子,否则我不去。
是命题可表示为(p∨q) ↔ r,其中p:你陪伴我,q:你代我雇车,r:我去(11)只要充分考虑一切论证,就可得到可靠见解;必须充分考虑一切论证,才能得到可靠见解。
是命题可表示为(p→q) ∧(q→p )或p ↔q,其中p:你充分考虑了一切论证,q:你得到了可靠见解(12)如果只有懂得希腊文才能了解柏拉图,那么我不了解柏拉图。
是命题可表示为(q→p ) →┐q,其中p:我懂得希腊文,q:我了解柏拉图(13)不管你和他去不去,我去。
是命题可表示为(p→r) ∧(q→r) ∧( ┐p→r) ∧( ┐q→r)或r,其中p:你去,q:他去,r:我去(14)侈而惰者贫,而力而俭者富。
(韩非:《韩非子•显学》)是命题可表示为((p∧q)→r) ∧((┐p∧┐q)→┐r),其中p:你奢侈,q:你懒惰,r:你贫困(15)骐骥一跃,不能十步;驽马十驾,功在不舍;锲而舍之,朽木不折;锲而不舍,金石可镂。
(荀况:《荀子•劝学》)是命题可表示为(p→┐q) ∧(s→r) ∧(m∧n→┐o) ∧(m∧┐n→v),其中p:骐骥一跃,q:骐骥一跃十步,r:驽马行千里,s:驽马不断奔跑,m:你雕刻,n:你放弃,o:将朽木折断,v:金石可雕刻2、判定下列符号串是否为公式,若是,请给出它的真值表,并请注意这些真值表的特点(公式中省略了可以省略的括号):(1)┐(p)(p为原子命题)(2)(p∨qr)→s(3)(p∨q)→p(4)p→(p∨q)(5)┐(p∨┐p)(6)p∧(p→q)→q(7)p∧(p→q)∧(p→┐q)(8)(p→q) ↔ (┐q→┐p)(9)┐(p∨q) ↔┐q∧┐p(10)┐p∨q↔ (p→q)(11)(p→q)∧(q→r)→(p→r)(12)(p∨q→r) ↔ (p→r)∧(q→r)解(1)┐(p) 不是公式(2)(p∨qr)→s 不是公式(4)p→(p∨q) 是公式(真值表见上表,恒真)(5(6(7(8(9(((3、A国的人只有两种,一种永远说真话,一种永远说假话。
你来到A国,并在一个二叉路口不知如何走才能到达首都。
守卫路口的士兵只准你问一个问题,而且他只答“是”或“不是”。
你应该如何发问,才能从士兵处获知去首都的道路。
解设p:你是说真话的;q:我应当向右走去首都你应当问:p↔q ?当回答“是(真)”,你选择向右走;当回答“不(假)”时,你选择向左走。
因为p↔q真,当且仅当p真且q真(士兵说真话且应当向右走)或p假且q假(士兵说假话且应当向左走)p↔q假,当且仅当p真且q假(士兵说真话且应当向左走)或p假且q假(士兵说假话且应当向右走)练习二1、试判定以下各式是否为重言式:(1)(p→q)→(q→p)(2)┐p→(p→q)(3)q→(p→q)(4)p∧q→(p↔q)(5)(p→q)∨(r→q)→((p∨r)→q)(6)(p→q)∨(r→s)→((p∨r)→(q∨s))解(1)否(2)是(3)是(4)是(5)否(6)否2、试用真值表验证┐(A∧B) ↔┐A∨┐B和(A∧B→C) ↔ (A→(B→C))。
证3、不用真值表,用代入、替换证明(1)A∨(A∧B) ⇔A(2)A∧(A∨B) ⇔ A(3)A→B ⇔┐B→┐A证(1)A∨(A∧B) ⇔ (A∧t)∨(A∧B) 据E17用RR⇔A∧(t∨B) 对E8用RS⇔A∧t 据E16用RR⇔A 据E17(2)A∧(A∨B) ⇔ (A∨f)∧(A∨B) 据E18用RR⇔A∨(f∧B) 对E9用RS⇔A∨f 据E19用RR⇔A 据E18(3)┐B→┐A⇔┐┐B∨┐A 对E14用RS⇔B∨┐A 据E1用RR⇔┐A∨B 对E4用RS⇔ A→B 据E144、试用真值表验证:(1)┐A∧(A∨B)→B和┐B∧(A∨B)→A(2)(A→B) ∧(B→C) →(A→C)证(25、不用真值表,用代入、替换证明I7,I8。
证(1)I7:(A→B)∧(C→D)⇒ (A∧C)→(B∧D)(A→B)∧(C→D) ⇔ (┐A∨B)∧(┐C∨D)(A∧C)→(B∧D) ⇔ (┐A∨┐C)∨(B∧D)⇔ (┐A∨┐C∨B)∧(┐A∨┐C∨D)由于(┐A∨B)∧(┐C∨D) ⇒ (┐A∨┐C∨B)∧(┐A∨┐C∨D)故(A→B)∧(C→D) ⇒ (A∧C)→(B∧D)。
(2)I8:(A↔B)∧(B↔C) ⇒ (A↔C)(A↔B)∧(B↔C) ⇔ (A→B)∧(B→A)∧(B→C)∧(C→B)⇔ ((A→B)∧(B→C)) ∧((C→B)∧(B→A))⇒ (A→C)) ∧(C→A)⇔ (A↔C)6、用三种不同方法证明下列逻辑等价式:(1)A↔B⇔ (A∧B)∨(┐A∧┐B)(2)A→(B→C) ⇔B→(A→C)(3)A→(A→B) ⇔A→B(4)A→(B→C) ⇔ (A→B)→(A→C)⇔ (┐A∨B)∧(┐B∨A)⇔ (┐A∧┐B)∨(┐A∧A)∨(B∧┐B)∨(B∧A)⇔ (A∧B)∨(┐A∧┐B)证法3:先证A↔B⇒ (A∧B)∨(┐A∧┐B) (a)设α为任一指派,使α(A↔B)=1,那么α(A)= α(B)=1或α(A)= α(B)=0,从而α(A∧B)=1或α(┐A∧┐B)=1,即α((A∧B)∨(┐A∧┐B))=1。
(a)得证;再证(A∧B)∨(┐A∧┐B) ⇒ A↔B (b)设α为任一指派,使α(A↔B)=0,那么α(A)=1,α(B)=0,或者α(A)=0,α(B)=1,从而α(A∧B)=0且α(┐A∧┐B)=0,即α((A∧B)∨(┐A∧┐B))=0。
(b)得证。
(2⇔ (┐A∨┐B)∨C⇔ (┐B∨┐A)∨C⇔┐B∨(┐A∨C)⇔B→(A→C)证法3:先证A→(B→C) ⇒ B→(A→C) (a)设α为任一指派,使α(A→(B→C))=1,那么ⅰ)α(A)= 0,则α( A→C)=1,从而α( B→(A→C))=1ⅱ)α(A)= 1,α(B)=0,则α( B→(A→C))=1ⅲ)α(A)=α(B)=α(C)=1,则α( B→(A→C))=1综上,(a)得证;同理可证B→(A→C) ⇒ A→(B→C)。
(3⇔ (┐A∨┐A)∨B⇔┐A∨B⇔A→B证法3:先证A→(A→B) ⇒ A→B (a)设α为任一指派,使α( A→B)=0,那么α(A)=1,α(B)=0,从而α( A→(A→B))=0。
(a)得证;再证A→B⇒ A→(A→B) (b)设α为任一指派,使α(A→(A→B))=0,那么α(A)=1,α(A→B)=0。
(b)得证。
(⇔ (A∧┐B) ∨(┐A∨C)⇔ ( (A∧┐B)∨┐A)∨C⇔ ((A∨┐A)∧(┐B∨┐A) )∨C⇔ (t∧(┐A∨┐B) )∨C⇔ (┐A∨┐B)∨C⇔┐A∨(┐B∨C)⇔A→(B→C)证法3:先证A→(B→C) ⇒ (A→B)→(A→C) (a)设α为任一指派,使α((A→B)→(A→C))=0,那么α( A→B)=1,α( A→C)=0,即α(A)= α(B)=1,α(C)=0,从而α( B→C)=0,α( A→(B→C))=0。
(a)得证;再证(A→B)→(A→C) ⇒ A→(B→C) (b)设α为任一指派,使α( A→(B→C))=0,那么α(A)=1,α(B→C)=0,即α(B)=1,α(C)=0,从而α(A→B)=1,α( A→C)=0,α((A→B)→(A→C))=0。
(b)得证。
7、用三种不同方法证明下列逻辑蕴涵式:(1)A∧B⇒ A↔B(2)(A→B)→A⇒ A(3)A→B⇒ ((A↔B)→A)→B(4)(A∨B)∧(A→C)∧(B→C) ⇒ C证(1⇔A↔B证法3:设α为任一指派,使α(A∧B)=1,则α(A)= α(B)=1,从而α( A↔B)=1。
A∧B⇒ A↔B得证。
(2⇔ (A∧┐B) ∨A⇔ (A∨A)∧(┐B∨A)⇔ A∧(┐B∨A)⇒ A证法3:设α为任一指派,使α(A)=0,则α(A→B)= 1,从而α((A→B)→A)=0。
(A→B)→A⇒ A得证。
(3((A↔B)→A)→B⇔┐((A↔B)→A)∨B⇔ ((A↔B) ∧┐A)∨B⇔ (((A∧B)∨(┐A∧┐B))∧┐A)∨B⇔ (┐A∧┐B)∨B⇔┐A∨B∴A→B⇒ ((A↔B)→A)→B证法3:设α为任一指派,使α( A→B)=1,则(ⅰ)α(A)= 0;(ⅱ)α(B)= 1。
对(ⅱ)显然有α( ((A↔B)→A)→B)=1;对(ⅰ)则可令α(B)= 0(α(B)= 1的情况已证),于是α(A↔B)=1,α((A↔B)→A)=0,α(((A↔B)→A)→B) =1。
A→B⇒ ((A↔B)→A)→B得证。
⇔(A∨B∨C)∧(A∨B∨┐C)∧(┐A∨B∨C)∧(┐A∨┐B∨C)∧(A∨┐B∨C)⇒ (A∨B∨C)∧(A∨┐B∨C)∧(┐A∨B∨C)∧(┐A∨┐B∨C)⇔ (A∨C) ∧(┐A∨C)⇔C证法3:设α为任一指派,使α((A∨B)∧(A→C)∧(B→C))=1,则α(A∨B)= α( A→C)= α( B→C)=1。