初二数学试题-实数与数轴练习题 最新

合集下载

2022-2023学年苏科版八年级数学上册第四章《实数》试题卷附答案解析

2022-2023学年苏科版八年级数学上册第四章《实数》试题卷附答案解析

2022-2023学年八年级数学上册第四章《实数》试题卷一、单选题1( )A .B .±9C .±3D .92.下列等式中,正确的是( )A .34=B 34=C .38=±D 34=± 3.下列语句中正确的是( )A .16的平方根是4B .﹣16的平方根是4C .16的算术平方根是±4D .16的算术平方根是4 4.在下列各组数中,互为相反数的一组是( )A .2-B .-2与1-2C .-D .25.下列说法:①无限小数都是无理数;②无理数都是带根号的数;③负数没有立方根;的平方根是±8;⑤无理数减去任意一个有理数仍为无理数.其中正确的有( )A .0个B .1个C .2个D .3个 6.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a 2>-B .b 1<C .a b ->D .a b <7.实数﹣3,3,0,中最大的数是( )A .﹣3B .3C .0 D8.为落实“双减”政策,鼓楼区教师发展中心开设“鼓老师讲作 业”线上直播课.开播首月该栏目在线点击次数已达66799次,用四舍五入法将66799精确到千位所得到的近似数是( )A .36.710⨯B .46.710⨯C .36.7010⨯D .46.7010⨯9.某市年财政收入取得重大突破,地方公共财政收入用四舍五人法取近似值后为35.29亿元,那么这个数值( )A .精确到十分位B .精确到百分位C .精确到千万位D .精确到百万位10.如图,在数轴上点B 表示的数为1,在点B 的右侧作一个边长为1的正方形BACD ,将对角线BC 绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M 处,则点M 表示的数是( )A B +1 C .1﹣ D .﹣二、填空题11.如果14x +是的平方根,那么x = .12.已知一个正数的两个平方根是32x +和520x -,则这个数是 .13的相反数为 ,倒数为 ,绝对值为 .14.可以作为“两个无理数的和仍为无理数”的反例的是 .151 3(填“>”、“<”或“=”).三、计算题16.计算:12011|7|(π 3.14)43--⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭. 17.计算:)1021112-⎛⎫-+ ⎪⎝⎭18.计算 ()31-+.四、解答题19.将-π,0,2 ,-3.15,3.5用“>”连接.20.把下列各数填入相应的集合圈里(填序号)⑴﹣30 ⑴ ⑴3.14 ⑴ 225 ⑴0 ⑴+20 ⑴﹣2.6 ⑴ ⑴ -2π⑴ 0.05 ;⑴﹣0.5252252225…(每两个5之间依次增加1个2) ⑴ ⑴21.若 x y + 是9的算术平方根, x y - 的立方根是 2- ,求 22x y - 的值.22.已知a 的平方根是±3,b -1的算术平方根是2,求a -2b 的立方根.23.已知实数 a 、 b 、 c 在数轴上的对应点为 A 、 B 、 C ,如图所示:化简: b a c b ----.24.甲同学用如图所示的方法作出C OAB 中,90OAB ∠=,2OA =,3AB =,且点O ,A ,C 在同一数轴上,OB OC =.仿照甲同学的做法,在如图所示的数轴上描出表示F .25.一个篮球的体积为39850cm ,求该篮球的半径r (π取3.14,结果精确到0.1cm ).答案解析部分1.【答案】A【解析】3=.故答案为:A.3=,再求出3的平方根即可.2.【答案】B【解析】【解答】解:34=±,故A、C错误;34=,故B正确,D错误;故答案为:B.【分析】根据平方根、算术平方根逐一计算,并判断即可.3.【答案】D【解析】【解答】解:∵16的平方根是±4,16的算术平方根是4,负数没有平方根,∴选项D正确.故答案为:D.【分析】一个正数x2=a(a>0)则这个正数x就是a的算术平方根,一个数x2=a(a>0)则这个数x就是a的平方根;正数有两个平方根,这两个平方根互为相反数,0的平方根是0,负数没有平方根,据此一一判断得出答案.4.【答案】C【解析】【解答】解:A2=-,故本选项不符合题意;B、-2与2是相反数,故本选项不符合题意;C、-=是相反数,故本选项符合题意;D2=,故本选项不符合题意故答案为:C.【分析】利用二次根式的性质、立方根、绝对值的性质将各选项中能化简的数先化简,再根据只有符号不同的数是互为相反数,可得答案.5.【答案】B【解析】【解答】解:根据无理数的定义可知:①无限小数都是无理数;说法错误;②无理数都是带根号的数;说法错误;③负数没有立方根;负数有立方根,故说法错误;=8的平方根是±,故说法错误;⑤无理数减去任意一个有理数仍为无理数.说法正确;正确说法有1个.故答案为:B.【分析】无限不循环小数叫做无理数,据此判断①②;每一个数都有立方根,据此判断③;根据平方根的概念可判断④;根据无理数的认识以及减法法则可判断⑤.6.【答案】C【解析】【解答】解:根据数轴得:a b <,a b >,故C 选项符合题意,A ,B ,D 选项不符合题意. 故答案为:C.【分析】根据数轴可得a<-2<0<1<b<2且|a|>|b|,据此判断.7.【答案】B【解析】【解答】解:根据题意得:3>>0>−3, 则实数−3,3,0, 中最大的数是3, 故答案为:B.【分析】利用实数的大小比较:正数都大于0和负数,观察可得答案.8.【答案】B【解析】【解答】解:66799=6.6799×104,精确到千位为46.710⨯.故答案为:B.【分析】利用科学记数法表示出此数,再利用四舍五入法将此数精确到千位.9.【答案】D【解析】【解答】∵35.29亿末尾数字9是百万位,∴35.29亿精确到百万位;故答案为:D .【分析】根据近似数的定义及四舍五入的方法求解即可。

八上数学每日一练:实数在数轴上的表示练习题及答案_2020年综合题版

八上数学每日一练:实数在数轴上的表示练习题及答案_2020年综合题版
根式的乘除法;二次根式的加减法;
答案解析
2. (2019兴隆.八上期中) (1) 如图①△ABC是一个边长为2的等腰直角三角形,它的面积是2.把它沿着斜边的高线剪开拼成如图②的正方形 ABCD,则这个正方形的面积也就等于三角形的面积,即为2,则这个正方形的边长就是,它是一个无理数.
(1) 比较a﹣b与a+b的大小; (2) 化简|b﹣a|+|a+b|. 考点: 实数在数轴上的表示;
4. (2019新蔡.八上期中) 如图1,这是由8个同样大小的立方体组成的魔方,体积为64.
答案解析 答案解析
(1) 求出这个魔方的棱长. (2) 图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长. (3) 把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,求D在数轴上表示的数.
(2) 如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点 O′,则OO′的长度就等于圆的周长,所以数轴上点O′代表的实数就是,它是一个无理数.
考点: 无理数的认识;实数在数轴上的表示;
3. (2019海伦.八上期中) 已知实数a、b在数轴上对应点的位置如图:
八上数学每日一练:实数在数轴上的表示练习题及答案_2020年综合题版
2020年 八 上 数 学 : 数 与 式 _无 理 数 与 实 数 _实 数 在 数 轴 上 的 表 示 练 习 题
1. (2019贵阳.八上期末) (1) 化简: (2) 如图,数轴上点A和点B表示的数分别是1和 .若点A是BC的中点。求点C所表示的数.
答案解析
2020年 八 上 数 学 : 数 与 式 _无 理 数 与 实 数 _实 数 在 数 轴 上 的 表 示 练 习 题 答 案

苏教版八年级数学上册实数与数轴课后练习二(2)

苏教版八年级数学上册实数与数轴课后练习二(2)

实数与数轴题一:如图,半径为12的圆周上有一点A 落在数轴上2点处,现将圆在数轴上向右滚动一周后点A 所处的位置在连续整数a 、b 之间,则a +b = .题二:比较大小:(1)3与33-;(2)284+与114; (3)87与78.题三:点A 在数轴上和原点相距7个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 的左边,则A ,B 两点之间的距离为__ __.题四:已知数轴上A ,B 两点对应数分别为2和4,P 为数轴上一动点,对应数为x .(1)若P 为线段AB 的三等分点,求P 点对应的数;(2)数轴上是否存在点P ,使P 点到A 点、B 点距离之和为10?若存在,求出x 的值;若不存在,请说明理由;(3)若点A 、点B 和点P (点P 在原点)同时向左运动,它们的速度分别为1个单位长度/分、2个单位长度/分和1个单位长度/分,则经过多长时间点P 为AB 的中点?题五:设a 是小于1的正数,且b a ,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .a ≥b题六:比较下列各组数的大小. (1)4427+与107;(2)267+与514+.题七:已知有理数m 、n 满足等式1+2m =3n +23m ,求m +3n 的值.实数与数轴课后练习参考答案题一: 3. 详解:∵圆的半径为12,∴圆的周长为π, ∵3<π<4,∴32<π2<42,即1<π2<2, ∴向右滚动一周后点A 所处的位置在1与2之间,即a =1,b =2,∴a +b =1+2=3.题二: (1)333>-;(2)281144+>;(3)8778>. 详解:(1)∵3(33)2331290--=-=->,∴333>-;(2)∵283<<,3114<<,∴4285<+<,∴1128<+,∴281144+>; (3)∵2(87)448=,2(78)392=,448392>,∴8778>.题三: 37±.详解:∵点A 在数轴上与原点相距7个单位,∴点A 的坐标为±7,∵点B 在数轴上和原点相距3个单位,且点B 在A 的左边,∴B 点坐标为3,∴A ,B 两点之间的距离为3+7或37.题四: 见详解. 详解:(1)因数轴上A 、B 两点对应的数分别是2和4,所以AB =6,又因P 为线段AB 的三等分点,所以 AP =6÷3=2或AP =6÷3×2=4,所以P 点对应的数为0或2;(2)若P 在A 点左侧,则2x +4x =10,解得x = 4,若P 在A 点、B 中间,因AB =6,所以不存在这样的点P ,若P 在B 点右侧,则x 4+x +2=10,解得x =6;(3)设第x 分钟时,P 为AB 的中点,则42x (2x )=2×[x (2x )],解得x =2,所以,第2分钟时,P 为AB 的中点.题五: B . 详解:∵0<a <1,∴a 可为12,13,14等, 当a =12时,b =12=22,则b a =212->0,即b >a , 依此类推,∴b >a .故答案为B .题六: (1)4421077+<;(2)267514+<+. 详解:(1)∵6447<<,∴84429<+<,∴44210+<,∴4421077+<; (2)∵8679<<,7518<<,∴26711+<,11514<+,∴267514+<+. 题七: 7.详解:∵1+2m =3n +23m ,∴2(m 3)+(m +13n )=0,又∵m 、n 为有理数,∴2(m 3),m +13n 为有理数, ∴m 3=0,m +13n =0,解得m =3,n =43, ∴m +3n =43373=+⨯.考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。

实数的数轴表示及化简(人教版)(含答案)

实数的数轴表示及化简(人教版)(含答案)

实数的数轴表示及化简(人教版)一、单选题(共10道,每道10分)1.如图,数轴上A,B两点表示的数分别是和,点B关于点A的对称点为C,则点C 所表示的数为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实数在数轴上的表示2.如图,在数轴上A,B两点表示的数分别是,,点C与点B关于点A对称,则点C表示的数是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实数在数轴上的表示3.如图,在数轴上A,B两点表示的数分别是,,点C也在数轴上,且点A与点B 关于点C对称,则点C表示的数为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数在数轴上的表示4.实数a在数轴上所对应的点的位置如图所示,则化简的结果是( )A.10B.-10C.2a-16D.无法确定答案:A解题思路:试题难度:三颗星知识点:二次根式的化简5.实数a,b,c在数轴上所对应的点的位置如图所示,则化简的结果是( )A.aB.1C.0D.-1答案:C解题思路:试题难度:三颗星知识点:二次根式的化简6.若,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二次根的性质与化简7.若,则化简的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次根式的化简8.化简的结果是( )A.-2B.-2-2xC.0D.2x答案:C解题思路:试题难度:三颗星知识点:二次根式的性质与化简9.化简的结果是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二次根式的性质与化简10.若化简的结果是2x-5,则x的取值范围是( )A.x为任意实数B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次根式的性质与化简。

初二实数测试题及答案

初二实数测试题及答案

初二实数测试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是实数的是()A. √2B. πC. 0.1010010001…D. √-1答案:A2. 两个负数比较大小,绝对值大的反而小,所以-5比-3大。

()A. 正确B. 错误答案:B3. 计算√16的结果是()A. 4B. -4C. ±4D. ±√4答案:A4. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:A5. 一个数的倒数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:B6. 计算√(-4)²的结果是()A. 4B. -4C. ±4D. ±√4答案:A7. 计算√9的结果是()A. 3B. -3C. ±3D. ±√3答案:A8. 计算√(-3)²的结果是()A. 3B. -3C. ±3D. ±√3答案:A9. 计算√(1/4)的结果是()A. 1/2B. -1/2C. ±1/2D. ±√1/2答案:A10. 计算√(1/9)的结果是()A. 1/3B. -1/3C. ±1/3D. ±√1/3答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数是 ±5 。

12. 一个数的相反数是-3,这个数是 3 。

13. 一个数的倒数是1/2,这个数是 2 。

14. 计算√(-2)²的结果是 2 。

15. 计算√(1/16)的结果是 1/4 。

16. 计算√(25)的结果是 5 。

17. 计算√(-5)²的结果是 5 。

18. 计算√(4/9)的结果是 2/3 。

19. 计算√(1/25)的结果是 1/5 。

20. 计算√(-3)²的结果是 3 。

三、解答题(每题10分,共40分)21. 计算√(-4)²×√(-9)²的值。

数轴练习题加答案

数轴练习题加答案

数轴练习题加答案数轴是一种数学工具,用于表示实数和它们的顺序。

它是一个直线,通常水平放置,标有等距的点,这些点代表整数。

数轴上每个点之间的距离代表一个单位长度。

以下是一些数轴练习题以及它们的答案。

练习题1:在数轴上标出以下数:-3, 0, 5, 7。

答案:在数轴上,从左到右依次标出-3, 0, 5, 7。

0位于数轴的中心,-3在0的左边,5和7在0的右边。

练习题2:如果点A在数轴上表示-2,点B表示3,求点A和点B之间的距离。

答案:点A和点B之间的距离是3 - (-2) = 5。

练习题3:在数轴上,如果点P表示一个数,且它与-1的距离是4个单位长度,求点P表示的数。

答案:如果点P在-1的右边,那么P表示的数是-1 + 4 = 3。

如果点P在-1的左边,那么P表示的数是-1 - 4 = -5。

练习题4:给定数轴上的点Q表示-4,点R表示6,求点Q和点R之间的中点。

答案:中点的值是(-4 + 6) / 2 = 1。

练习题5:在数轴上,点S表示-3,点T表示7。

如果点U表示一个数,使得点U与点S和点T的距离相等,求点U表示的数。

答案:点U表示的数是(-3 + 7) / 2 = 2。

练习题6:如果在数轴上有一个点V,它表示的数是-2,并且它与另一个点W的距离是3个单位长度,求点W表示的数。

答案:如果点W在点V的右边,那么W表示的数是-2 + 3 = 1。

如果点W在点V的左边,那么W表示的数是-2 - 3 = -5。

练习题7:在数轴上,点X表示一个数,并且与0的距离是5个单位长度,求点X表示的数。

答案:如果点X在0的右边,那么X表示的数是5。

如果点X在0的左边,那么X表示的数是-5。

练习题8:如果点Y表示一个数,并且它与点Z表示的数的和是10,而点Y和点Z在数轴上的距离是6个单位长度,求点Y和点Z各自表示的数。

答案:设点Y表示的数为y,点Z表示的数为z。

根据题意,我们有y + z = 10 和 |y - z| = 6。

苏科版数学八年级上册《实数与数轴》典型例题.doc

苏科版数学八年级上册《实数与数轴》典型例题.doc

实数与数轴
重难点易错点辨析 实数与数轴.
题一:如图,在数轴上点A 与点B 之间的整数是 __ . 72B A
实数比大小.
题二:比较大小: (1)12-与13-;(2)
1338-与18
;(3)57与75.
金题精讲 题一:点A 在数轴上和原点相距3个单位,点B 在数轴上和原点相距5个单位,则A 、B 两点之间的距离是__ __.
题二:数轴上表示1和2的对应点分别为A 、B ,点B 关于点A 的对称点是C ,O 为原点.
(1)线段长度:AB = ,AC = ,OC = .
(2)设C 点表示的数为x ,试求|x 2|+x 的值.
题三:设A 、B 均为实数,且A m B m 33,3=-=-,则A 、B 的大小关系是( )
A .A >
B B .A =B
C .A <B
D .A ≥B
题四:比较下列各组数的大小.
(1)
315-与15
;(2)233-+与447-.
思维拓展
题一:若有理数m 、n 满足m n 55100-+=,求m +n 的值.
实数与数轴
讲义参考答案
重难点易错点辨析
题一:2.题二:(1)>;(2)<;(3)<.
金题精讲 题一:53-或53+.题二:(1)21-,21-,22-;(2)2.题三:D .题四:(1)<;
(2)>.
思维拓展
题一:2.
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】。

初二数学实数试卷数轴题

初二数学实数试卷数轴题

一、选择题(每题3分,共15分)1. 在数轴上,点A表示的数是-3,点B表示的数是2,那么AB线段的长度是:A. 5B. 7C. 2D. 12. 在数轴上,点C表示的数是5,点D表示的数是-2,那么CD线段的中点表示的数是:A. 1B. 2C. 3D. 43. 在数轴上,点E表示的数是-4,点F表示的数是3,那么EF线段的长度是:A. 7B. 9C. 5D. 84. 在数轴上,点G表示的数是-1,点H表示的数是2,那么GH线段的长度是:A. 3B. 1C. 2D. 45. 在数轴上,点I表示的数是-3,点J表示的数是-6,那么I、J两点之间的距离是:A. 3B. 6C. 9D. 12二、填空题(每题5分,共25分)6. 在数轴上,点K表示的数是-5,那么点K的相反数表示的数是______。

7. 在数轴上,点L表示的数是4,那么点L到原点的距离是______。

8. 在数轴上,点M表示的数是-2,那么点M到点3的距离是______。

9. 在数轴上,点N表示的数是1,那么点N到点-4的距离是______。

10. 在数轴上,点O表示的数是-7,那么点O到原点的距离是______。

三、解答题(每题10分,共30分)11. 在数轴上,点P表示的数是-1,点Q表示的数是2,那么点P和点Q之间的距离是______。

12. 在数轴上,点R表示的数是-4,点S表示的数是3,那么点R和点S之间的距离是______。

13. 在数轴上,点T表示的数是-2,点U表示的数是5,那么点T和点U之间的距离是______。

四、应用题(15分)14. 小明在数轴上表示了以下信息:他的家在点A处,表示的数是-3;他所在学校在点B处,表示的数是5;他所在班级在点C处,表示的数是-1。

请根据这些信息,在数轴上表示出以下问题:(1)小明家到学校的距离是多少?(2)小明家到班级的距离是多少?(3)学校到班级的距离是多少?答案:一、选择题:1. A2. A3. A4. A5. B二、填空题:6. 57. 48. 59. 5 10. 7三、解答题:11. 3 12. 7 13. 7四、应用题:14. (1)小明家到学校的距离是8。

4.3实数(十大题型)(解析版) 八年级数学上学期

4.3实数(十大题型)(解析版) 八年级数学上学期

八年级上册数学《第4章实数》4.3实数◆1、实数的概念:有理数和无理数统称为实数.◆2、实数的分类:(1)按定义分类.(2)按性质分类.◆1、实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.◆2、与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.◆3、实数的大小比较①正实数大于零,负实数小于零,正实数大于负实数;②两个正实数,绝对值大的数较大;③两个负实数,绝对值大的数反而小.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.◆1、数a的相反数是-a,这里a表示任意一个实数.◆2、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a表示任意一个实数,则|a|=o>0)0(=0)−o<0)◆1、当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.◆2、实数的混合运算顺序与有理数的混合运算的顺序一样,实数运算过程中的运算顺序为:先算乘方、开方、再算乘法、除法,最后算加法、减法,同级运算按照自左向右的顺序进行,有括号先算括号里的.◆3、实数的运算律.①加法交换律:a+b=b+a;②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:ab=ba;④乘法结合律:(ab)c=a(bc)⑤分配律:a(b+c)=ab+ac.①被开方数一定是非负数,即a≥0.②一个非负数的算术平方根也是非负数,即a≥0.【例题1】(2022秋•丽水期中)把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③−13,④0.618,⑤−16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{……};分数集合:{……};无理数集合:{……}.【分析】利用整数、分数、无理数的定义分类填空.【解答】解:整数有:⑤−16=−4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③−13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1),故答案为:⑤⑥⑦⑧;①③④⑨;②2⑩.【点评】本题考查了实数的定义,解题的关键是掌握整数、分数、无理数的定义.【变式1-1】(2022秋•社旗县期末)实数−13,−6,0,﹣1中,为负整数的是()A.﹣1B.−6C.0D.−13【分析】根据实数的分类进行解答即可.【解答】解:这一组数中的负整数是﹣1.故选:A.【点评】本题考查的是实数,熟知实数的分类是解题的关键.【变式1-2】(2022秋•宁波期中)下列实数:2,39,1,2,−73,0.3⋅,分数有()A.2个B.3个C.4个D.5个【分析】根据实数的分类及分数的定义进行解答即可.−73,0.3⋅共3个.故选:B.【点评】本题考查的是实数,熟知所有的分数都是有理数是解题的关键.【变式1-3】(2022春•宜秀区校级月考)下列说法正确的是()A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数【分析】灵活掌握实数分类以及有理数和无理数概念,注意容易混淆的知识点.【解答】解:有理数和无理数统称为实数,0属于有理数,故A错误,有理数包括正有理数、负无理数和0,0既不是正数也不是负数,故B错误,无限不循环的小数是无理数,故C错误,实数分为有理数和无理数,故D正确.故选:D.【点评】考查了实数的概念,以及有理数和无理数概念及分类.【变式1-4】下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③2的算术平方根是2;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个【答案】B;【分析】直接利用有关实数的性质分别分析得出答案.【解答】解:①一个数的平方根等于它本身,这个数是0,故原题说法错误;②实数包括无理数和有理数,故原题说法正确;③2的算术平方根是2,故原题说法正确;④无理数是无限不循环小数,故原题说法错误,例如4=2是有理数.故选:B.【变式1-5】(2022春•夏津县期末)下列说法中错误的是()A.3−27是整数B.−1713是有理数C.33是分数D.9的立方根是无理数【分析】根据立方根,算术平方根,有理数,无理数的意义,即可解答.【解答】解:A、∵3−27=−3,∴3−27是整数,故A不符合题意;B、−1713是有理数,故B不符合题意;C、33是无理数,不是分数,故C符合题意;D、∵9=3,3的立方根是33,33是无理数,∴9的立方根是无理数,故D不符合题意;故选:C.【点评】本题考查了实数,熟练掌握有理数,无理数的意义是解题的关键.【变式1-6】(2022秋•黑山县期中)把下列各数分别填入相应的集合内:33,−4,−34,0,﹣0.2121121112…(相邻两个2之间的1的个数逐次加1)【分析】根据无理数以及正实数的定义,在给定实数中分别挑出无理数以及正实数,此题得解.【解答】解:如图所示:【点评】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【变式2-7】(2023秋•滨湖区期中)将下列各数的序号填入相应的括号内:①﹣2.5;②313;③0;④2;⑤﹣8;⑥10%;⑦−27;⑧﹣1.12121112…;⑨2;⑩−0.345⋅⋅.整数集合:{…};负分数集合:{…};正有理数集合:{…};无理数集合:{…}.【分析】根据实数的分类,即可解答.【解答】解:整数集合:{③⑤⑨…};负分数集合:{①⑦⑩…};正有理数集合:{②⑥⑨…};无理数集合:{④⑧…}.故答案为:③⑤⑨;①⑦⑩;②⑥⑨;④⑧.【点评】本题考查了实数,熟练掌握实数的分类是解题的关键.【例题2】(2022•海淀区校级模拟)实数a与b在数轴上对应点的位置如图所示,则正确的结论是()A.a<0B.a<b C.b+5>0D.|a|>|b|【分析】根据数轴可以发现b<a,且,由此即可判断以上选项正确与否.【解答】解:A.∵2<a<3,a>0,答案A不符合题意;B.∵2<a<3,﹣4<b<﹣3,∴a>b,∴答案B不符合题意;C.∵﹣4<b<﹣3,∴b+5>0,∴答案C符合题意;D.∵2<a<3,﹣4<b<﹣3,∴|a|<b|,∴答案D不符合题意.故选:C.【点评】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【变式2-1】(2022春•南岸区期中)实数a在数轴上对应点的位置如图所示,若实数b满足a<b<2,则b的值可以是()A.﹣2B.﹣1C.2D.3【分析】先判断b的范围,再确定符合条件的数即可.【解答】解:∵1<a<2,∴﹣2<﹣a<﹣1,∵﹣a<b<a,∴b只能是﹣1.故选:B.【点评】本题考查了数轴上的点和实数的对应关系,解决本题的关键是根据数轴上的点确定数的范围.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【变式2-2】(2023秋•昌黎县期中)如图,在数轴上,点A表示实数a,则a可能是()A.−12B.−10C.−8D.−3【分析】根据数轴可得−9<<−4,再逐一分析各选项的数据即可.【解答】解:∵﹣3<a<﹣2,∴−9<<−4,∵9<12,9<10,∴−12<−9,−10<−9,故A,B不符合题意;∵3<4,∴−3>−4,故D不符合题意;∵4<8<9,∴−9<−8<−4,即−3<−8<−2,故选:C.【点评】本题考查的是实数与数轴,实数的大小比较,掌握实数的大小比较的方法是解本题的关键.【变式2-3】(2023秋•新吴区校级期中)如图,正方形的边长为1,在正方形的4个顶点处标上字母A,B,C,D,先让正方形上的顶点A与数轴上的数﹣2所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合()A.字母A B.字母B C.字母C D.字母D【分析】正方形滚动一周的长度为4,从﹣2到2020共滚动2022,由2022÷4=505......2,即可作出判断.【解答】解:∵正方形的边长为1,∴正方形的周长为4,∴正方形滚动一周的长度为4,∵正方形的起点在﹣2处,∴2020﹣(﹣2)=2022,∵2022÷4=505......2,∴数轴上的数2020将与正方形上的点C重合,故选:C.【点评】本题考查了实数与数轴,根据正方形的特点找出滚动规律是解题的关键.【变式2-4】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:3,﹣(﹣1),﹣1.5,0,﹣|﹣4|,2.【分析】先计算﹣(﹣1)=1,﹣|﹣4|=﹣4,再利用数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.【解答】解:﹣(﹣1)=1,﹣|﹣4|=﹣4,用数轴表示为:,它们的大小关系为﹣|﹣4|<﹣1.5<0<﹣(﹣1)<2<3.【变式2-5】(2022春•海安市校级月考)7、如图:数轴上表示1、5的对应点分别为A、B,且点A为线段BC的中点,则点C表示的数是()A.5−1B.1−5C.5−2D.2−5【分析】设C点表示的数为x,再根据中点坐标公式求出x的值即可.【解答】解:设C点表示的数为x,则r52=1,解得x=2−5.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.【变式2-6】(2023•市南区一模)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.1<|a|<b B.1<﹣a<b C.|a|<1<|b|D.﹣b<a<﹣1【分析】根据相反数的意义,绝对值的性质,有理数的大小比较,可得答案.【解答】解:由题意,得1<|a|<b,1<﹣a<b,﹣b<a<﹣1,故C符合题意;故选:C.【点评】本题考查了实数与数轴,利用相反数的意义,绝对值的性质,数轴上的点右边的总比左边的大是解题关键.【变式2-7】(2023春•岳池县期末)如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为1.现以A为圆心,AB为半径画圆,和数轴交于点E(E在A的右侧),则点E表示的数为1+【分析】根据正方形的面积求出正方形的半径,即圆的半径为5,所以E点表示的数为OE的长度,即1+5.【解答】解:∵正方形的面积为5,∴AB为5;∵以A点为圆心,AB为半径,和数轴交于E点,∴AE=AB=5;∵A点表示的数为1,∴OE=OA+AE=1+5故答案为:1+5【点评】本题主要考查了实数与数轴的位置关系,结合正方形面积以及圆的半径考查.解题关键是求出OE的长度.【变式2-8】(2022秋•西安月考)如图,已知实数−5,﹣1,5,3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离;(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a﹣b的值.【分析】(1)根据数轴上两点间距离的计算方法进行计算即可得出答案;(2)先根据数轴上两点间距离的计算方法计算出a的值,再求a﹣b即可得出答案.【解答】解:(1)根据题意可得,点C与点D之间的距离为3−5;(2)根据题意可得,a=|﹣1+5|=5−1,b=3−5,a﹣b=5−1﹣(3−5)=25−4.【点评】本题主要考查了实数与数轴及数轴上两点间距离,熟练掌握实数与数轴上的点是一一对应关系及数轴上两点间距离的计算方法进行求解是解决本题的关键.【例题3】实数−3的绝对值是()A.3B.C.−3D.33【分析】直接利用绝对值的性质分析得出答案.【解答】解:实数−3的绝对值是:3.故选:A.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.【变式3-1】−2的相反数是()A.−2B.2CD.2【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得−2的相反数是:2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.【变式3-2】(2023春•潮南区期中)5−2的相反数是()A.﹣0.236B.5+2C.2−5D.﹣2+5【分析】根据相反数的定义即可得出结论.【解答】解:5−2的相反数是2−5.故选C.【点评】本题考查的是相反数,熟知只有符号不同的两个数叫互为相反数是解题的关键.【变式3-3】(2023春•京山市期中)下列各组数中互为相反数的是()A.﹣2与(−2)2B.﹣2与3−8C.﹣2与−12D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、(−2)2=2,﹣2与(−2)2是互为相反数,故本选项正确;B、3−8=−2,﹣2与3−8相等,不是互为相反数,故本选项错误;C、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.【变式3-4】(2023秋•秦都区校级月考)下列说法正确的是()A.2的绝对值是22B.2的倒数是22C.2的相反数是22D.4的平方根为±2【分析】根据绝对值的知识、二次根式的知识、平方根的知识、相反数的知识分别对四个选项进行分析.【解答】解:2的绝对值是2,所以A选项不正确;2的倒数是22,所以B选项正确;2的相反数是−2,所以C选项不正确;4的平方根是±2,所以D选项不正确.故选:B.【点评】本题主要考查了绝对值的知识、二次根式的知识、平方根的知识、相反数的知识.【变式3-5】填空:(1)5的相反数是,绝对值是;(2)3−1的相反数是,绝对值是;(3)若|x|=3,则x=.【分析】根据相反数和绝对值的定义即可得出答案.【解答】解:(1)5的相反数是−5,绝对值是5;(2)3−1的相反数是1−3,绝对值是3−1;(3)∵|x|=3,∴x=±3.故答案为:(1)−5,5;(2)1−3,3−1;(3)±3.【点评】本题考查了实数的性质,算术平方根,掌握绝对值等于3的数有2个是解题的关键.【变式3-6】(2022秋•余姚市校级期中)a是4的算术平方根,b是27的立方根,c是15的倒数.(1)填空:a=,b=,c=;(2)求o+p+2−的值.【分析】(1)直接利用算术平方根的概念以及立方根的概念、倒数的概念分别分析得出答案;(2)直接利用绝对值的性质、立方根的性质、算术的性质分析得出答案.【解答】解:(1)∵a是4的算术平方根,b是27的立方根,c是15的倒数,∴a=2,b=3,c=5;故答案为:2,3,5;(2)原式=2(3+5)+22−2×5=6+25+4−25=10.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.【变式3-7】(2022秋•芗城区校级月考)31−2与33−2互为相反数,求代数式6x﹣9y+5的值.【分析】由题意得方程1﹣2x+3y﹣2=0,求得2x﹣3y=﹣1,再将其代入求解即可.【解答】解:由题意得1﹣2x+3y﹣2=0,整理,得2x﹣3y=﹣1,∴6x﹣9y+5=3(2x﹣3y)+5=3×(﹣1)+5=﹣3+5=2.【点评】此题考查了运用立方根和相反数进行化简、求值的能力,关键是能准确理解并运用以上知识和整体思想.【变式3-8】(2022春•如皋市校级月考)已知|x|=5,y是11的平方根,且x>y,求x+y的值.【分析】直接利用绝对值的性质以及平方根的性质分类讨论得出答案.【解答】解:∵|x|=5,∴x=±5,∵y是11的平方根,∴y=±11,∵x>y,∴当x=5,则y=−11,故x+y=5−11,当x=−5,则y=−11,故x+y=−5−11,综上所述:x+y的值为5−11或−5−11.【点评】此题主要考查了实数的性质,正确分类讨论是解题关键.【例题4】(2023•潍坊)在实数1,﹣1,0,2中,最大的数是()A.1B.﹣1C.0D.2【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:∵﹣1<0<1<2,∴在实数1,﹣1,0,2中,最大的数是2,故选:D.【点评】本题主要考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.【变式4-1】(2022•沂源县一模)在3,−3,0,2这四个数中,最小的一个数是()A.3B.−3C.0D.2【分析】根据实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小即可求解.【解答】解:在3,−3,0,2这四个数中,最小的一个数是−3.故选:B.【点评】此题考查了实数大小比较,可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.【变式4-2】三个数﹣π,﹣3,−3的大小顺序是()A.﹣3<﹣π<−3B.﹣π<﹣3<−3C.﹣π<−3<−3D.﹣3<−3<−π【分析】先对无理数进行估算,再比较大小即可.【解答】解:﹣π≈﹣3.14,−3≈−1.732,因为3.14>3>1.732.所以﹣π<﹣3<−3.故选:B.【点评】本题考查了同学们对无理数大小的估算能力及比较两个负数大小的方法,即两个负数相比较,绝对值大的反而小.【变式4-3】(2023秋•农安县期中)将数“22,5,−2,0,﹣1.6”按从小到大的顺序排列,并用“<”连接起来是:.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵22=8>5,−2≈−1.57>﹣1.6,∴﹣1.6<−2<0<5<22,故答案为:﹣1.6<−2<0<5<22.【点评】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数比较时绝对值大的反而小.【变式4-4】设a为实数且0<a<1,则在a2,a,,1这四个数中()A.1>>>2B.2>>>1C.>>1>2D.1>>>2【分析】根据正数比较大小的法则进行解答即可.【解答】解:∵0<a<1,∴0<a2<a<<1,1>1,∴1>>a>a2.故选:D.【点评】本题考查的是实数的大小比较,熟知正数比较大小的法则是解答此题的关键.【变式4-5】比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.5<37<2D.37<2<5【分析】把2转化为4,38,即可比较大小.【解答】解:∵2=4,∴5>2,∵2=38,∴2>37,∴5>2>37,即37<2<5,故选:D.【点评】本题考查了实数大小的比较,解决本题的关键是把2转化为4,38.【变式4-6】比较大小:− 1.5.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:(−3)2=3,(﹣1.5)2=2.25,∵3>2.25,∴−3<−1.5.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个负数平方大的反而小.【例题5】已知:x<21<y(x,y是两个连续整数),则x,y的值为()A.x=2,y=3B.x=3,y=4C.x=4,y=5D.x=5,y=6【分析】根据16<21<25,即可得出x、y的值.【解答】解:∵16<21<25,∴x=4,y=5;故选:C.【点评】本题考查了估算算术平方根的大小,解题的关键是用有理数逼近算术平方根.【变式5-1】(2023秋•郁南县期中)估算57的值应在()A.6~7之间B.7~8之间C.8~9之间D.不能确定【分析】利用无理数的估算即可求得答案.【解答】解:∵49<57<64,∴7<57<8,即57的值在7~8之间,故选:B.【点评】本题考查无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.【变式5-2】(2022春•香洲区期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【解答】解:∵用边长为3的两个小正方形拼成一个大正方形,∴大正方形的面积为:9+9=18,则大正方形的边长为:18,∵16<18< 4.52,∴4<18<4.5,∴大正方形的边长最接近的整数是4.故选:A.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题的关键.【变式5-3】(2022春•江津区校级月考)若x、y为两个连续的整数,且x<39<y,则x+y=.【分析】通过36<39<49求解.【解答】解:∵36<39<49,∴6<39<7,∴x=6,y=7,∴x+y=13.故答案为:13.【点评】本题考查了估算算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-4】(2023秋•青龙县期中)估算2+14的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间【分析】先估算出14的取值范围,进而可得出结论.【解答】解:∵9<14<16,∴3<14<4,∴5<2+14<6.故选:B.【点评】本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解题的关键.【变式5-5】(2023秋•秦都区期中)估计23−2的值在()A.2到3之间B.1到2之间C.3到4之间D.4到5之间【分析】先估算出23的大小,进而估算23−2的范围.【解答】解:∵16<23<25,∴4<23<5,∴2<23−2<3,∴23−2的值在2和3之间.故选:A.【点评】本题考查了估算无理数的大小,估算无理数大小要用逼近法.【变式5-6】(2022•南关区校级开学)已知x,y为两个连续的整数,且x<20<y,则5x+y的值为.【分析】先求出20的范围,求出x、y的值,求出5x+y的值,根据平方根的定义求出即可.【解答】解:∵4<20<5,∴x=4,y=5,∴5x+y=5×4+5=25,∴5x+y的平方根是±5,故答案为:±5.【点评】本题考查了算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-7】(2023秋•二七区校级月考)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2−1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将2减去其整数部分,差就是2的小数部分.请解答:(1)23的整数部分是,小数部分是;(2)如果7+1的小数部分为,9−17的整数部分为b,求+−7的平方根;(3)已知10+7=+,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)根据算术平方根的定义,估算无理数23的大小即可;(2)根据算术平方根的定义估算无理数7+1,9−17的大小即可确定a、b的值,再代入计算即可;(3)根据算术平方根的定义估算无理数10+7的大小确定整数部分x,小数部分是y,再求出x﹣y的相反数即可.【解答】解:(1)42=16,52=25,而16<23<25,∴4<23<5,∴23的整数部分是4,小数部分为23−4,故答案为:4,23−4;(2)∵22=4,32=9,而4<7<9,∴2<7<3,∴3<7+1<4,∴7+1的整数部分是3,小数部分为7+1﹣3=7−2,即a=7−2;∵4<17<5,∴﹣5<−17<−4,∴4<9−17<5,∴9−17的整数部分是4,即b=4,∴a+b−7=7−2+4−7=2,∴+−7的平方根是±2;(3)∵2<7<3,∴12<10+7<13,∴10+7的整数部分是12,小数部分是10+7−12=7−2,又∵10+7=+,其中x是整数,且0<y<1,∴x=12,y=7−2,∴x﹣y的相反数是y﹣x=7−14.【点评】本题考查估算无理数的大小,掌握算术平方根、平方根的定义是正确解答的前提.【例题6】通过估算,比较下列各组数的大小:(1)6(2(3)5−121;(4)3+12112.【分析】(1)利用平方运算,比较大小即可解答;(2)根据算术平方根的意义,比较大小即可解答;(3)先估算出5的值的范围,再估算出5−1的值的范围,进行计算即可解答;(4)先估算出3的值的范围,再估算出3+1的值的范围,进行计算即可解答.【解答】解:(1)∵62=36,(35)2=35,∴36>35,∴6>35,故答案为:>;(2)∵8<10,∴8<10,故答案为:<;(3)∵4<5<9,∴2<5<3,∴1<5−1<2,∴12<5−12<1,故答案为:<;(4)∵1<3<4,∴1<3<2,∴2<3+1<3,∴132,故答案为:<.【点评】本题考查了数的大小比较,熟练掌握估算算术平方根的值的大小是解题的关键.【变式6-1】(2023春•西城区校级期中)比较大小:(1;(2)5−11.【分析】(1)先把4写成算术平方根的形式,然后根据算术平方根的被开方数越大,那个数就越大进行解答;(2)先估算5的大小,然后进行判断即可.【解答】解:(1)∵4=16,17>16,∴17>4;(2)∵2<5<3,∴5−1>1,故答案为:(1)>;(2)>.【点评】本题主要考查了实数的大小比较,解题关键是能够正确的估算无理数的大小.【变式6-2】(2022秋•新津县校级月考)比较大小:3−1212,23.【分析】(1)比较出两个数的差的正负,即可判断出它们的大小关系.(2)首先比较出两个数的平方的大小关系;然后根据:两个正实数,平方大的,这个数也大,判断出原来的两个数的大小关系即可.【解答】解:(1)∵3−12−12=32−1<0,∴3−12<12.(2)(32)2=18,(23)2=12,∵18>12,∴32>23.故答案为:<、>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个正实数,平方大的,这个数也大.【变式6-3】(2023春•前进区月考)比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.37<2<5D.37<5<2【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【解答】解:∵26=64,(5)6=[(5)2]3=125,(37)6=[(37)3]2=49,而49<64<125,∴(37)6<(5)6<26,∴37<2<5.故选:C.【点评】此题考查的是实数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.【变式6-4】比较下列各组数的大小:(1)120与11.(2)5+12与2.【分析】(1)根据11=121,即可进行比较;(2)先通分,可得2=42,再比较分子5+1与4的大小即可求解.【解答】解:(1)∵11=121,120<121,∴120<11.(2)∵2=42,5+1<4,∴5+12<2.【点评】此题主要考查了算术平方根的估算能力,两个正数的算术平方根的比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的式子的值就大.【变式6-5】比较下列各组数的大小(1)8与10;(2)65与8;(3)5−12与0.5;(4)5−12与1.【分析】(1)根据8<10,即可解答;(2)根据8=64,即可进行比较;(3)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可;(4)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可.【解答】解:(1)∵8<10,∴8<10;(2)∵64=8,64<65,∴65>64,∴65>8;(3)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12>12.(4)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12<1.【点评】本题考查了数的大小比较的应用,主要考查学生能否选择适当的方法比较两个数的大小.【例题7】(2022秋•大竹县校级期末)实数a、b在数轴上对应点的位置如图,则|a﹣b|−2的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用算术平方根与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|−2=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、算术平方根与绝对值的性质.此题难度适中,注意2=|a|.【变式7-1】实数a、b在数轴上所对应的点如图所示,则|3−b|+|a+3|+2的值.【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【解答】解:由数轴可得:a<−3,0<b<3,故|3−b|+|a+3|+2=3−b﹣(a+3)﹣a=3−b﹣a−3−a=﹣2a﹣b.故答案为:﹣2a﹣b.【点评】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.【变式7-2】实数a、b、c在数轴上的位置如图,化简(−p2−|a+c|+(−p2−|b|【分析】利用数轴首先得出各式的符号,进而化简得出答案.【解答】解:如图所示:a﹣b<0,a+c<0,c﹣b<0,b>0,则原式=b﹣a+a+c+b﹣c﹣b=b.【点评】此题主要考查了实数与数轴,正确判断出各式的符号是解题关键.【变式7-3】(2021春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:2+|a+b|+3(+p3−|b﹣c|.【分析】直接利用数轴得出c>0,a+b<0,b﹣c<0,再化简求解.【解答】解:由数轴可得:c>0,a+b<0,b﹣c<0,原式=c﹣a﹣b+(a+b)+(b﹣c)=b.【点评】此题主要考查了实数运算以及实数与数轴,正确化简各式是解题关键.【变式7-4】实数a,b,c表示在数轴上如图所示,完成下列问题,试化简:(−p2−|−U+3(−p3.【分析】根据题意可得:b<0<a<c,从而可得a﹣c<0,b﹣a<0,然后利用二次根式的性质,绝对值,立方根的意义进行化简计算,即可解答.【解答】解:由题意得:b<0<a<c,∴a﹣c<0,b﹣a<0,∴(−p2−|−U+3(−p3=c﹣a﹣(a﹣b)+b﹣c=c﹣a﹣a+b+b﹣c=2b﹣2a.【点评】本题考查了整式的加减,实数与数轴,准确熟练地进行计算是解题的关键.【变式7-5】(2022秋•保定月考)如图,一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,点B 表示3,设点A所表示的数为m.(1)实数m的值是;(2)求(m+2)2+|m+1|的值.【分析】(1)根据实数与数轴上的点是一一对应关系进行计算即可得出答案;(2)把(1)中m的值代入进行计算即可得出答案.【解答】解:(1)根据题意可得,m=3−2;故答案为:3−2;(2)m+1=3−2+1=3−1,∵1<3<2,∴0<3−1<1,(m+2)2+|m+1|=(3−2+2)2+|3−1|=(3)2+3−1=3+3−1=2+3.故答案为:2+3.【点评】本题主要考查了实数与数轴及绝对值,熟练掌握实数与数轴上的点是一一对应关系及绝对值的性质进行求解是解决本题的关键.【变式7-6】(2022秋•青龙县月考)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A 表示−2,设点B所表示的数为m.(1)实数m的值是;(2)求(m+1)(1﹣m)的值;(3)在数轴上还有C,D两点分别表示实数c和d,且|c+3|与−5互为相反数,求c+3d的平方根.【分析】(1)根据点A沿数轴向右爬了2个单位长度到达点B,即可得到m的值;(2)根据(1)的结果求值即可;(3)根据非负数的性质得到c,d的值,代入代数式求值,再求平方根即可得出答案.【解答】解:(1)∵一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示−2,∴m=−2+2,故答案为:−2+2;(2)(m+1)(1﹣m)=1﹣m2=1﹣(−2+2)2=1+42−6=42−5;(3)∵|c+3|与−5互为相反数,∴|c+3|+−5=0,∵|c+3|≥0,−5≥0,∴c+3=0,d﹣5=0,∴c=﹣3,d=5,∴c+3d=(﹣3)+3×5=﹣3+15。

初二实数基础测试题及答案

初二实数基础测试题及答案

初二实数基础测试题及答案实数是数学中最基本的数集,包括有理数和无理数。

本次初二实数基础测试题旨在帮助学生巩固对实数概念的理解,掌握实数的运算规则。

以下是测试题及答案。

一、选择题(每题2分,共20分)1. 实数包括以下哪些数?A. 有理数B. 无理数C. 有理数和无理数D. 只有有理数答案:C2. 下列哪个数不是实数?A. πB. -3C. √2D. 1/3答案:无(所有选项都是实数)3. 实数a和b的和为正数,那么a和b必须满足以下哪个条件?A. 都是正数B. 都是负数C. 至少有一个是正数D. 至少有一个是负数答案:C4. 以下哪个数是有理数?A. πB. √3C. 0.33333(无限循环)D. √2答案:C5. 实数的绝对值总是:A. 正数B. 零C. 负数D. 非负数答案:D6. 如果a > b,且a和b都是实数,那么|a - b|等于:A. a - bB. b - aC. a + bD. 0答案:A7. 实数的相反数是:A. 它的平方B. 它的倒数C. 它的绝对值D. 它的负数答案:D8. 以下哪个运算不能在实数范围内完成?A. 加法B. 减法C. 乘法D. 除法(除数为0)答案:D9. 实数的平方总是:A. 正数B. 零C. 负数D. 非负数答案:D10. 实数的幂运算中,指数为分数时,结果可能是:A. 有理数B. 无理数C. 有理数或无理数D. 都不是答案:C二、填空题(每题2分,共20分)11. √9 = ______答案:312. -√4 = ______答案:-213. |-5| = ______答案:514. 1/2 的倒数是 ______答案:215. 2π 的相反数是 ______答案:-2π16. 如果a = -3,那么a的绝对值是 ______答案:317. 3 + 4i 是一个 ______答案:复数18. √16的两个解是 ______答案:4 和 -419. √(-1)^2 = ______答案:120. 如果x^2 = 9,那么x的两个解是 ______答案:3 和 -3三、解答题(每题10分,共30分)21. 计算下列表达式的值:(3 + √5)^2答案:[(3 + √5) + (3 - √5)] * [(3 + √5) - (3 - √5)] = (6) * (2√5) = 12√522. 解方程:2x^2 - 5x + 2 = 0答案:使用求根公式,x = [5 ± √(5^2 - 4*2*2)] / (2*2) = [5 ± √17] / 423. 证明:对于任何实数a和b,(a + b)^2 = a^2 + b^2 + 2ab答案:(a + b)^2 = a^2 + 2ab + b^2(根据平方差公式)四、简答题(每题10分,共30分)24. 描述实数的分类。

八年级数学实数与数轴练习题

八年级数学实数与数轴练习题

12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有 个,有理数有 个,负数有 个,整数有 个.2、33-的相反数是 ,|33-|=57-的相反数是 ,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a| |b|;大于17小于35的整数是 ;比较大小:3 55、下列说法中,正确的是( )A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例: 设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根分析:先将已知式子变形,再结合有理数的意义,可找到解决问题的突破口.解:∵ 2522-=++b b a∴ 02)5(2=+++b b a∵ a 、b 是有理数∴ a+2b 、b+5都为有理数要使b a 2+与2)5(+b 的和为0. 只有a+2b=0 ,b+5=0时才成立∴ a=10 b=-5∴b a 2+的平方根是5±,即52±=+±b a◆课下作业●拓展提高一、选择1、 如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为 ( )A.2-1 B .1-2 C .2-2 D .2-22、设a 是实数,则|a|-a 的值( )A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =三、解答题5、比较下列实数的大小(1)|8-| 和3 (2)52- 和9.0- (3)215-和87 6、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.● 体验中考1.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .2-B .1-C .2-+D .1+答案:A2.(2011年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a - C A 0 B(第46题图)3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b < 答案D4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A. 2-B. 2C.12 D. 12- 答案:D参考答案:随堂检测:1、2,6,4,22、33-,33- ,75-,12-3、35-4、>,5,>,<5、D拓展提高:1、C2、B 点拨:分情况讨论:①当0≥a 时,|a|-a=a-a=0②当0<a 时,|a|-a=-a-a=-2a ,因为0<a ,所以-2a>0, 故|a|-a 不可能是负数3、10,π等不惟一4、34 点拨:由题意知m=4 n=3 所以n m =345、(1) |8-| <3 点拨:|8-| =8=8.222≈ (2) 52- >9.0- 点拨:8.052-≈-,而|-0.8| <|-0.9|,所以-0.8>-0.9 (3) 215-<87 点拨:236.115≈-,故215-=0.618,故215-<87=0.875 0 (第8题图)6、解:因为16139<< 所以4133<<,故m=3,n=313-所以m-n=3-(313-)=136-。

(精编)八年级数学实数测试题(含答案)

(精编)八年级数学实数测试题(含答案)

八年级数学实数测试题(含答案)一、选择题(每题 5分,共 40分。

每题只有一个正确答案,请将正确答案 的代号填在下面 的表 格中) 31 32,中无理数有(27 11.下列实数,π,3.14159, 8,)72 A.个 3B.个 4 C.个 5D.个2.下列运算正确 的是( )A. 93B.3 3 C.93 D.3293.下列各组数中互为相反数 的是() 1 ( 2) 2 B.-2与 3 A.-2与8C.-2与D.2 与 224.实数 a,b 在数轴上 的位置如图所示,则下列结论正确 的是()a b 0a b 0A.B. 1 a 0 1 ba C. ab 0D .b5.有如下命题:①负数没有立方根;②一个实数 的立方根不是正数就是负数;③一个正数或 负数 的立方根与这个数同号;④如果一个数 的立方根是这个数本身,那么这个数是 1或 0。

其中错误 的是() A .①②③B.①②④C.②③④D .①③④6.若 a 为实数,则下列式子中一定是负数 的是()A . a 2 (a 1)2a 2B .C .D . ( a 1)a 2a ,则实数 a 在数轴上 的对应点一定在()7.若A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧22121=11;因为 111 =12321,所8.请你观察、思考下列计算过程: 以 12321 111 ;⋯⋯,由此猜想因为 11 =121,所以12345678987654321 = ()A .111111B .1111111C .11111111D .111111111二、解答题1.( 15分)将下列各数填入相应的集合内。

11 ,12. ., 0.23 , 3.14 3 3- 2 , - 4 , 0, - 0.4 , 8 ,-4①有理数集合{②无理数集合{③负实数集合{⋯}⋯}⋯}三.计算: (15分)1-6(1) 2 +3 2— 5 2 (2) 6 ( 6 )( 2) 2(3) | 3 2 | + | 3 2 | +四、解方程:a2 b 2a 2b 21.(15分)已知a、b互为相反数,c、d互为倒数,求- cd 的值 .2.(15分)已知 a、b满足2a 10 b 5 0,解关于x的方程 a 4 x b 2 a 1。

数轴练习题

数轴练习题

数轴练习题1. 问题描述在数学中,数轴是用于表示实数的一种图形表示方法。

它通常是一条直线,上面标有一些特定位置的数,可以用于比较实数的大小关系和计算实数之间的距离。

本文将提供一些数轴练习题,帮助你加深对数轴的理解。

2. 练习题2.1 简单题题目一在数轴上标记出以下实数的位置:{-1, 0, 2, 3}。

题目二在数轴上标记出以下实数的位置:{5, -3, 0, -2}。

2.2 比较大小题目三给定两个实数a和b,判断它们的大小关系,并在数轴上标出它们的位置。

例如:a = -2,b = 3在数轴上标记出a和b的位置,并确定它们的大小关系。

题目四给定三个实数a,b和c,判断它们的大小关系,并在数轴上标出它们的位置。

例如:a = 0,b = -1,c = 2在数轴上标记出a、b和c的位置,并确定它们的大小关系。

2.3 距离计算题目五已知在数轴上有以下取值范围:[0, 5],计算以下实数之间的距离:a.2和0的距离b.4和3的距离c.1和5的距离2.4 取值范围题目六给定以下实数的取值范围:[-3, 3],判断以下实数是否在该范围内,并在数轴上标出它们的位置:a.0b.-5c. 22.5 问题解答题目七问题:在数轴上标记出以下实数的位置:{-2, 1, 3}。

回答:将数轴上的标尺平分为一定数量的单位长度,然后根据给定的实数,从原点开始,依次向左或向右移动相应的单位长度,将实数标记在数轴上。

答案:在数轴上标记出的位置分别为:-2, 1, 3。

3. 答案与解析题目一答案:在数轴上标记出的位置分别为:-1, 0, 2, 3。

题目二答案:在数轴上标记出的位置分别为:-3, -2, 0, 5。

题目三解析:根据实数a和b的大小关系,标记出它们在数轴的位置。

例如:a = -2,b = 3在数轴上标记出的位置分别为:-2, 3。

根据数轴上的标记,可以得出结论:-2 < 3。

题目四解析:根据实数a、b和c的大小关系,标记出它们在数轴的位置。

八年级数学实数与数轴同步练习华东师大版.docx

八年级数学实数与数轴同步练习华东师大版.docx

初二数学华东师大版实数与数轴同步练习(答题时间:30分钟)(一)填空题1. 计算()13125- =____________________________。

2. -216000的立方根是________。

3. 383的立方根是_______。

4. (-33)2的立方根是__________________________。

5. 已知,08,0362532=+=-y x 则y x +的值是____________.6. 当642=a 时, .___________3=a7. 在实数137,4,-6,0.444…,1.414,π中有______个无理数。

8. 在实数34,302.0,2020020002.2,0,5,64,7222,3.0-----•• π中,有理数有______;无理数有___________正实数有___________.(二)选择题1. 和数轴上的点是一一对应的数为 ( )(A )整数 (B )有理数 (C )无理数 (D )实数2. 在下列条件中不能保证n a 是实数的是 ( )(A )n 为正整数,a 为实数 (B ) n 为正整数,a 为非负数(C )n 为奇数,a 为实数 (D ) n 为偶数,a 为非负数3. 下面有4个判断:(1)两个实数之间,有无限多个实数 ;(2)两个有理数之间,有无限多个有理数 (3)两个无理数之间,有无限多个无理数;(4)两个整数之间,有无限个整数。

其中错误的判断有 ( )(A )0个 (B )1个 (C )2个 (D )3个4. 若2x是有理数,则x 是( ) (A )有理数 (B )整数 (C )非负数 (D )实数(三)33532+π-(精确到0.01) (四)计算)2(8.12453-⨯-+(结果保留三个有效数字) (五)比较大小:320-,36.7-【试题答案】(一) 1. 51 2.-60 3. 211 4. 3 5. 54-或516- 6. 2± 7. 2 8. 0.3,64, 0, ;302.0,722⋅⋅- ,2π-;4,2020020002.2,53-- 34,020020002.2,0,5,64,3.0-- (二)1. D 2. A 3. B 4. A (三)4.28(四)5.24(五)<。

初二实数典型练习题

初二实数典型练习题

初二实数典型练习题1. 在数轴上,有一点A和一点B,已知点A的坐标为-5,点B的坐标为3,请计算点A和点B之间的距离。

解析:由于A和B之间的距离为正数,所以不考虑坐标的正负。

可以使用绝对值来计算两点之间的距离。

解答:点A和点B之间的距离为|3 - (-5)| = |8| = 8。

2. 设实数x满足条件|x - 3| > 5,请写出x可能的取值范围。

解析:对于绝对值不等式,可以将其拆分成两个条件,并分别解得解集,再根据条件的关系进行合并。

解答:对于条件|x - 3| > 5,可以拆分成x - 3 > 5或者x - 3 < -5。

解这两个不等式得到x > 8或者x < -2。

合并解集可得x < -2或者x > 8。

3. 若实数x满足|x + 2| + |3 - x| = 2,请写出x可能的取值范围。

解析:针对绝对值方程,可以根据绝对值的定义进行分类讨论求解。

解答:对于方程|x + 2| + |3 - x| = 2,可以拆分成四种情况并求解:- 当x + 2 ≥ 0 且 3 - x ≥ 0 时,方程简化为x + 2 + 3 - x = 2,解得x = 1。

但是该解不满足初始条件x + 2 ≥ 0,所以此情况无解。

- 当x + 2 ≥ 0 且 3 - x < 0 时,方程简化为x + 2 - (3 - x) = 2,解得x= 2。

该解满足初始条件,所以x = 2是一个解。

- 当x + 2 < 0 且 3 - x ≥ 0 时,方程简化为-(x + 2) + 3 - x = 2,解得x = -1。

该解满足初始条件,所以x = -1是一个解。

- 当x + 2 < 0 且 3 - x < 0 时,方程简化为-(x + 2) - (3 - x) = 2,解得x = -6。

但是该解不满足初始条件x + 2 < 0,所以此情况无解。

综上所述,x = 2或者x = -1是方程的解。

《实数与数轴》习题精选及参考答案

《实数与数轴》习题精选及参考答案

《实数与数轴》习题精选及参考答案习题一一、选择题(1)下列各式正确的是()A. B. C. D.(2)实数是()A.整数 B.分数 C.有理数 D.无理数(3)不是()A.分数 B.小数 C.无理数 D.实数(4)在数轴上,原点和原点左边的所有点表示的数是()A.负有理数 B.负实数 C.零和负有理数 D.零和负实数(5)a、b是两个实数,在数轴上的位置如图所示,下面结论正确的是()A.a、b互为相反数 B. C. D.(6)和数轴上的点一一对应的数是()A.整数 B.有理数 C.无理数 D.实数(7)若是有理数,则a是()A.有理数 B.负的实数 C.完全平方数 D.完全平方数的相反数(8)下列式子正确的是()A. B. C. D.(9)若a与它的绝对值之和为0,则的值是()A.-1 B.1 C. D.(10)已知为实数,那么下列结论中正确的是()A.若,则 B.,则C.若,则 D.若,则二、填空题(1)绝对值最小的实数是______________.(2)的绝对值是___________,相反数是___________.(3)若实数a满足,则a是_________.(4)当时,在实数范围内有意义.(5)在数轴上表示的点与原点的距离是__________.(6)若,则.(7)比小且比大的整数为________.(8).(9)若,则的取值范围是_________.(10)当时,有最大值是_______.三、解答题1.化简(1);(2);(3);(4).2.若实数a满足,化简.3.已知,求的值.4.已知,求x的值.5.已知实数在数轴上的位置如图所示,且.化简.6.如果,求的值.7.当时,求代数式的值.8.已知,求的值.参考答案:一、(1)B;(2)D;(3)A;(4)D;(5)D;(6)D;(7)D;(8)C;(9)B;(10)B.二、(1)0;(2),;(3)负数;(4);(5);(6);(7)2;(8)9;(9);(10)0,3.三、1.(1)1;(2);(3);(4).2.因为,所以.所以.3.因为,所以有所以所以.4.因为,所以,即.所以.5.由已知可知,且,所以.6.由已知可知所以.当时,,所以.7.因为,所以当时,.8.因为,所以,所以.设,则.所以.所以.习题二一、选择题:1.下列说法中正确的是()A.带根号的数是无理数B.无限小数是无理数C.不能写成分数形式的数是无理数D.不能在数轴上表示的数是无理数说明:有理数也可写成带根号的形式,比如2 =,则不是无理数,A错;循环小数也是无限小数,但循环小数是有理数,不是无理数,B错;C正确;无理数与有理数都是实数,实数都可以在数轴上表示,D错;答案为C.2.下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④−是17的平方根;其中正确的个数有( )A.0个 B.1个 C.2个 D.3个答案:B说明:实数与数轴上的点一一对应,故①错;不带根号的数不一定是有理数,比如,π等,则②错;任一实数都有一个立方根,③错;17的平方根为±,−是17的一个平方根,故④正确;答案为B.3.在−1.732,,π,3.,2+,3.212212221…,3.14这些数中,无理数的个数为( )A.5 B. 2 C.3 D.4答案:D说明:这其中的无理数有,π,2+,3.212212221…,一共4个,答案为D.4.如图所示,数轴上表示1、的对应点分别为A、B,点B关于点A的对称点为C,则点C所表示的数是( )A.−1 B.1− C.2− D.−2答案:C说明:设点C表示的数为x;因为点C为点B关于点A的对称点,所以AC的长度与AB的长度相等,从图中不难看出AB的长度为−1,而AC的长度为1−x,所以−1 = 1−x,可以解出x = 2−,答案为C.二、把下列各数的序号填入相应的集合中:①3.14;②−;③−;④;⑤0;⑥1.212212221…;⑦,⑧0.15有理数集合:{ }正数集合:{ }无理数集合:{ }负数集合:{ }答案:①,⑤,⑧,…;①,④,⑥,⑦,⑧,…;②,③,④,⑥,⑦,…;②,③,…三、判断下列说法是否正确:①无理数一定是无限小数;正确;无理数是无限不循环小数,当然是无限小数②实数不是有理数就是无理数;正确;实数分为有理数和无理数两类③π是无理数,3.14是有理数;正确;π是无限不循环小数,是无理数;3.14是有限小数,是有理数④数轴上的任何一点都可表示为一个实数;正确;数轴上的点与实数是一一对应的⑤等于1.732;不正确;是无限不循环小数,是无理数,1.732是有限小数,它是的近似值⑥无理数没有平方根.不正确;正无理数的平方根有两个,是互为相反数的两个无理数四、解答题:1.已知x、y均为实数,且(x−y)2与互为相反数,求2(x2+y2)的算术平方根.解:因为(x−y)2与互为相反数所以(x−y)2+= 0因为(x−y)2≥0,≥0所以x−y = 0且5x−3y−16 = 0,所以x = 8,y = 8则=== 16即2(x2+y2)的算术平方根是16.2.已知实数a、b、c满足|a−b|++−c+c2 = 0,求a(b+c)的值.解:因为|a−b|++−c+c2 = 0,而|a−b|≥0,≥0,−c+c2 = (−c)2≥0所以a−b = 0,2b+c = 0,−c = 0所以a = −,b = −,c =所以a(b+c) = −×(−+) = −.。

八年级数学_实数习题(含答案),推荐文档

八年级数学_实数习题(含答案),推荐文档

21、 2、 3. 4、 实数单元测试题、填空题:(本题共10小题,每小题2分,共20 分) 2 6的算术平方根是 14.下列说法错误的是( A . a 0时,a 一定是实数 B.无理数与无理数的和一定是无理数在数轴上,到2距离为.5的点表示的数是 实数a , b , c 在数轴上的对应点如图所示 化简a 5.要使 1 有意义,则x 的取值范围是 x 1 6、若 ,m 1 (n 2)2 = 0,则 rn= 7、若 2 、a 8.观察下列各式: 1,•…请你将发现的规律用含自然数n ( n 》1)的等式表示出9、观察思考下列计算过程: 11 2=121,二,121 =11;同样: •/ 111 2 =12321 ,••• 12321 =111;…由此猜想:.1234567898 7654321 = ________________________________________ 10•若n 为自然数,那么(1)2n ( 1)2n 1 = _________________________ . 选择题:(本题共10小题,每小题2分,共20分) — 冲痢才、,2 彳 -匚 y ,(m 1) 2 3 ; 3 中一定是正数的有( )° 1 1、 ‘丨3杯八 >« |, *入,A 1个B 、2个C、3个D、4个 12、若 v3x 7有意义,则 x 的取值范围是( )°7 7 7 7A x >B 、x >C 、 x > —D 、x 》一3 3 3 313、若 x ,y 都是实数,且 J2x 1 1 2x y 4,则xy 的值()°A 0 B1、C、2D、不能确定C. a, b 是两个数,若a b ,则#bD. 一个无理数不是正数就是负数15. 卜列说法中正确的是( )A. 实数 a 2是负数B.碍 |a C.a 一定是正数 D.实数 a 的绝对值是a3_16、已知(a 3)2,则E 的值是17、计算#2744 近的值是(、土 1 C18、有一个数的相反数、平方根、立方根都等于它本身,这个数是( A 、一 1B 、1C 、0D 、土 119、下列命题中,正确的是()°A 、无理数包括正无理数、 0和负无理数BC 无理数是带根号的数 D、无理数不是实数 、无理数是无限不循环小数20.右x — 6能开立方,则 x 为( )A x 》6B x = 6C x v 6D x 为任何数三、解答题:(本题共5小题,每小题5分,共25分)21、( 4分)求冷的平方根和算术平方根。

初二数学练习题实数

初二数学练习题实数

初二数学练习题实数初二数学练习题:实数一、选择题1. 下列数中,是有理数的是:A) √2 B) 1/3 C) -π D) e2. 下列数中,是无理数的是:A) 2/5 B) -3/4 C) √7 D) 0.53. 在数轴上,表示√5 的点所处的位置是:A) 在0的右边 B) 在0的左边 C) 在0的右边且离0更近 D) 在0的左边且离0更近4. 下列数中,是实数的是:A) 5+2i B) -√2 C) 9/4 D) 0.333...5. 以下哪个数是有理数?A) π B) e C) √11 D) 0.67二、填空题1. 若 x 是无理数,那么 x^2 是__________。

2. 在数轴上,0 和 -√5 之间的数是_____________。

3. 已知 p 是一个负有理数,那么 p 的绝对值是_____________。

4. √97 与 10 的和是_____________。

5. 1/3 的循环小数表示形式是_____________。

三、计算题1. 计算√196.2. 计算3√8 + 2√27.3. 计算 0.23 + 0.085 + 0.017.4. 计算(5 + √7)(5 - √7).5. 计算(8 - √3)².四、解答题1. 证明√2 是无理数。

2. 若 x 是有理数,y 是无理数,那么 x^2 + y^2 是有理数还是无理数?为什么?3. 将以下循环小数表示为分数形式:0.7171...4. 一个数与其相反数的积是多少?5. 现有两个数 a 和 b,已知 a 的平方是 16,b 的平方是 144,问 a +b 的平方是多少?五、应用题1. 家里一共有 126 个苹果,其中有 2/9 是有虫的,剩下的苹果都是好的。

问好苹果的个数是多少?2. 一根铁丝长约 2.5 米,想要将其切成 15 段等长的铁丝,每段铁丝的长度是多少?3. John 和 Tom 一起做一个数学测试,总分是 100 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.2实数与数轴
◆随堂检测
1、下列各数:23,722-,327-,414.1,3
π-,12122.3,9-,••9641.3中,无理数有 个,有理数有 个,负数有 个,整数有 个.
2、33-的相反数是 ,|33-|=
57-的相反数是 ,21-的绝对值=
3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为
4、若实数a<b<0,则|a| |b|;大于17小于35的整数是 ;
比较大小:3 5
5、下列说法中,正确的是( )
A .实数包括有理数,0和无理数
B .无限小数是无理数
C .有理数是有限小数
D .数轴上的点表示实数.
◆典例分析
例: 设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根
分析:先将已知式子变形,再结合有理数的意义,可找到解决问题的突破口.
解:∵ 2522-=++b b a
∴ 02)5(2=+++b b a
∵ a 、b 是有理数
∴ a+2b 、b+5都为有理数
要使b a 2+与2)5(+b 的和为0. 只有a+2b=0 ,b+5=0时才成立
∴ a=10 b=-5
∴b a 2+的平方根是5±,即52±=+±
b a
◆课下作业
●拓展提高
一、选择
1、 如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为 ( )
A
.2-1 B .1-2 C .2-2 D .2-2
2、设a 是实数,则|a|-a 的值( )
A .可以是负数
B .不可能是负数
C .必是正数
D .可以是整数也可以是负数
二、填空
3、写出一个3和4之间的无理数
4、下列实数1907,3
π-,0,49-,21,31-,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =
三、解答题
5、比较下列实数的大小
(1)|8-| 和3 (2)52- 和9.0- (3)215-和8
7 6、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.
● 体验中考
1.(2018年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-
点B 关于点A 的对称点为C ,则点C 所表示的数为( )
A .2-
B .1-
C .2-+
D .1+答案:A
2.(2018年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )
A .1
B .1-
C .12a -
D .21a - 3、(2018年江苏连云港)实数a b ,在数轴上对应点的位置如图所示,
C A 0 B
(第46题图)
则必有( )
A .0a b +>
B .0a b -<
C .0ab >
D .0a b
< 答案D 4、(2018年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )
A. 2-
B. 2
C.
12 D. 12- 答案:D
参考答案:
随堂检测:
1、2,6,4,2
2、33-,33- ,75-,12-
3、35-
4、>,5,>,<
5、D
拓展提高:
1、C
2、B 点拨:分情况讨论:①当0≥a 时,|a|-a=a-a=0
②当0<a 时,|a|-a=-a-a=-2a ,因为0<a ,所以-2a>0, 故|a|-a 不可能是负数
3、10,π等不惟一
4、34 点拨:由题意知m=4 n=3 所以n m =34
5、(1) |8-| <3 点拨:|8-| =8=8.222≈ (2) 52- >9.0- 点拨:8.052-≈-,而|-0.8| <|-0.9|,所以-0.8>-0.9 (3) 215-<87 点拨:236.115≈-,故215-=0.618,故215-<8
7=0.875 6、解:因为
16139<< 所以4133<<,故m=3,n=313-所
以0 (第8题图)
m-n=3-(313-)=136-。

相关文档
最新文档