北京市昌平区2018届高三上学期期末考试数学(理科)试题及答案

合集下载

高三试卷—北京2018昌平区高三(上)期末数学(文)试题及答案

高三试卷—北京2018昌平区高三(上)期末数学(文)试题及答案

3 / 10
18.(本小题满分 14 分) 如图,在四棱锥 P-ABCD 中,底面 ABCD 是菱形,∠ABC=60°, PAB 为正三角形,
且侧面 PAB⊥底面 ABCD. E,M 分别为线段 AB,PD 的中点. (I)求证:PE⊥平面 ABCD; (II)求证:PB//平面 ACM; (III)在棱 CD 上是否存在点 G, 使平面 GAM⊥平面 ABCD,请说明理由.
20.(本小题满分 13 分) 已知函数 f (x) ex(x2 2) , g(x) x .
e
(Ⅰ)求曲线 y = f (x) 在点 (0, f (0)) 处的切线方程;
(Ⅱ)求函数 h(x) f (x) g(x) 在区间[2, 0]上的最大值和最小值.
5 / 10
数学试题答案
一、选择题(共 8 小题,每小题 5 分,共 40 分.)
证明:(法一)连接 EC .
由(Ⅰ)得,PE⊥平面 ABCD, 所以 PE⊥CD, 因为 ABCD 是菱形,∠ ABC=60°,E 为 AB 的中点,
所以 ABC 是正三角形,EC⊥AB .
因为 CD // AB, 所以 EC⊥CD. 因为 PE∩EC=E, 所以 CD⊥平面 PEC, 所以 CD⊥PC. 因为 M,G 分别为 PD,CD 的中点, 所以 MG//PC, 所以 CD⊥MG. 因为 ABCD 是菱形,∠ADC=60°,
M
所以点 H 为 BD 的中点.
又因为 M 为 PD 的中点,
A
D
E
所以 MH // BP.
H
B
C
又因为 BP 平面 ACM, MH 平面 ACM.
所以 PB // 平面 ACM.
……………8 分

2018-2019学年北京市昌平区高三(上)期末数学试卷(文科)(解析版)

2018-2019学年北京市昌平区高三(上)期末数学试卷(文科)(解析版)

2018-2019学年北京市昌平区高三(上)期末数学试卷(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.若集合A={x|x2+2x≤0},B={﹣2,﹣1,0,1,2},则A∩B=()A.{﹣1}B.{1}C.{0,1,2}D.{﹣2,﹣1,0}2.已知数列{a n},a2=1,,则a1+a3的值为()A.4B.5C.6D.83.若x,y满足,则2x+y的最小值为()A.8B.C.2D.﹣14.如图是一个算法流程图,则输出的k的值为()A.2B.3C.4D.55.已知a,b∈R,则“a<b”是“log2a<log2b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知向量,满足||=1,||=2,||=,那么与的夹角为()A.B.C.D.7.《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:在屋内墙角处堆放米,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?已知米堆所形成的几何体的三视图如图所示,一斛米的体积约为1.62立方尺,由此估算出堆放的米约有()A.21斛B.34斛C.55斛D.63斛8.现有A1,A2,…,A5这5个球队进行单循环比赛(全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场).当比赛进行到一定阶段时,统计A1,A2,A3,A4这4个球队已经赛过的场数分别为:A1队4场,A2队3场,A3队2场,A4队1场,则A5队比赛过的场数为()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题5分,共30分)9.已知复数z满足(i是虚数单位),则复数z的共轭复数=.10.已知抛物线y2=4x上一点M到其焦点的距离为5,则点M到y轴的距离为.11.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为.12.在锐角△ABC中,AB=2,AC=3.若△ABC的面积为,则∠A=;BC=.13.能说明“若点M(a,b)与点N(5,5)在直线x+y﹣2=0的同侧,则a+b>4”是假命题的一个点M的坐标为.14.已知函数其中a>0,且a≠1.(i)当a=2时,若f(x)<4,则实数x的取值范围是;(ii)若存在实数m使得方程f(x)﹣m=0有两个实根,则实数a的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(13分)设{a n}是各项均为正数的等比数列,且a1=1,a2+a3=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)求lna1+lna2+…+lna n.16.(13分)已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若f(x)在区间上的最小值为﹣2,求m的最大值.17.(13分)某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.(Ⅰ)从III型号汽车的回访客户中随机选取1人,则这个客户不满意的概率为;(将结果直接填写在答题卡的相应位置上)(Ⅱ)从所有的客户中随机选取1个人,估计这个客户满意的概率;(Ⅲ)汽车公司拟改变投资策略,这将导致不同型号汽车的满意率发生变化.假设表格中只有两种型号汽车的满意率数据发生变化,那么哪种型号汽车的满意率增加0.1,哪种型号汽车的满意率减少0.1,使得获得满意的客户人数与样本中的客户总人数的比值达到最大?(只需写出结论)18.(14分)如图,在五面体ABCDEF中,四边形ABCD是边长为2的正方形,平面ADE⊥平面ABCD,.(Ⅰ)求证:CD∥&平面ABFE;(Ⅱ)求证:平面ABFE⊥平面CDEF;(Ⅲ)在线段CD上是否存在点N,使得FN⊥平面ABFE?说明理由.19.(13分)已知函数f(x)=.(Ⅰ)若a=,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若0<a<e,判断函数f(x)的零点个数,并说明理由.20.(14分)已知椭圆过点,且离心率为.设A,B为椭圆C的左、右顶点,P为椭圆上异于A,B的一点,直线AP,BP分别与直线l:x=4相交于M,N 两点,且直线MB与椭圆C交于另一点H.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求证:直线AP与BP的斜率之积为定值;(Ⅲ)判断三点A,H,N是否共线,并证明你的结论.2018-2019学年北京市昌平区高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.若集合A={x|x2+2x≤0},B={﹣2,﹣1,0,1,2},则A∩B=()A.{﹣1}B.{1}C.{0,1,2}D.{﹣2,﹣1,0}【分析】可解出集合A,然后进行交集的运算即可.【解答】解:A={x|﹣2≤x≤0};∴A∩B={﹣2,﹣1,0}.故选:D.【点评】考查描述法、列举法的定义,以及交集的运算.2.已知数列{a n},a2=1,,则a1+a3的值为()A.4B.5C.6D.8【分析】利用递推关系式,转化求解即可.【解答】解:数列{a n},a2=1,,可得a1+a2=2,a2+a3=4,解得a1=1,a3=3,a1+a3=4.故选:A.【点评】本题考查数列的递推关系式的应用,考查转化思想以及计算能力.3.若x,y满足,则2x+y的最小值为()A.8B.C.2D.﹣1【分析】作出不等式组对应的平面区域,利用z的几何意义即可得到结论.【解答】解:由z=2x+y,得y=﹣2x+z作出x,y满足,对应的平面区域如图:由图象可知当直线y=﹣2x+z过点A时,直线y=﹣2x+z的在y轴的截距最小,此时z最小,由,得A(0,2),此时z=2×0+2=2,故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.4.如图是一个算法流程图,则输出的k的值为()A.2B.3C.4D.5【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故选:B.【点评】本题给出程序框图,要我们求出最后输出值,着重考查了算法语句的理解和循环结构等知识,属于基础题.5.已知a,b∈R,则“a<b”是“log2a<log2b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据对数的基本运算和充分条件和必要条件的定义即可得到结论.【解答】解:∵log2a<log2b,∴0<a<b,∴“a<b”是“log2a<log2b”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,利用对数的基本运算性质是解决本题的关键,比较基础.6.已知向量,满足||=1,||=2,||=,那么与的夹角为()A.B.C.D.【分析】由向量的模的运算得:2+2+2=3,由向量的夹角公式得:2+2||||cosθ+2=3,即cosθ=﹣,又θ∈[0,π],所以θ=,得解.【解答】解:由||=,得:2+2+2=3,即2+2||||cosθ+2=3,又||=1,||=2,所以cosθ=﹣,又θ∈[0,π],所以θ=,故选:C.【点评】本题考查了向量的模的运算及向量的夹角,属简单题7.《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:在屋内墙角处堆放米,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?已知米堆所形成的几何体的三视图如图所示,一斛米的体积约为1.62立方尺,由此估算出堆放的米约有()A.21斛B.34斛C.55斛D.63斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5=,∵1斛米的体积约为1.62立方,∴÷1.62≈21,故选:A.【点评】本题主要考查锥体的体积的计算,比较基础.8.现有A1,A2,…,A5这5个球队进行单循环比赛(全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场).当比赛进行到一定阶段时,统计A1,A2,A3,A4这4个球队已经赛过的场数分别为:A1队4场,A2队3场,A3队2场,A4队1场,则A5队比赛过的场数为()A.1B.2C.3D.4【分析】根据题意,分析可得A1队必须和A2,A3,A4,A5这四个球队各赛一场,进而可得A2队只能和A3,A4,A5中的两个队比赛,又由A4队只赛过一场,分析可得A2队必须和A3、A5各赛1场,据此分析可得答案.【解答】解:根据题意,A1,A2,A3,A4,A5五支球队进行单循环比赛,已知A1队赛过4场,所以A1队必须和A2,A3,A4,A5这四个球队各赛一场,已知A2队赛过3场,A2队已和A1队赛过1场,那么A2队只能和A3,A4,A5中的两个队比赛,又知A4队只赛过一场(也就是和A1队赛过的一场),所以A2队必须和A3、A5各赛1场,这样满足A3队赛过2场,从而推断A5队赛过2场.故选:B.【点评】此题主要考合情推理的应用,利用A1队比赛场数得出A2队、A4队比赛过的对应球队是解题关键.二、填空题(本大题共6小题,每小题5分,共30分)9.已知复数z满足(i是虚数单位),则复数z的共轭复数=﹣1﹣i.【分析】直接由复数代数形式的乘除运算化简得答案.【解答】解:∵=,∴.故答案为:﹣1﹣i.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10.已知抛物线y2=4x上一点M到其焦点的距离为5,则点M到y轴的距离为4.【分析】求出抛物线的焦点坐标,利用抛物线的定义,转化求解即可.【解答】解:抛物线y2=4x的焦点坐标(1,0),抛物线y2=4x上的一点M到该抛物线的焦点F 的距离|MF|=5,则M到准线的距离为5,则点M到y轴的距离为:4.故答案为:4.【点评】本题考查抛物线的简单性质的应用,是基础题.11.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为900.【分析】求出a的值,根据[70,80)的概率求出在此区间的人数即可.【解答】解:由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3,故a=0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900,故答案为:900.【点评】本题考查了直方图问题,考查概率问题,是一道常规题.12.在锐角△ABC中,AB=2,AC=3.若△ABC的面积为,则∠A=60°;BC=.【分析】由已知利用三角形的面积公式可求sin A,结合A为锐角可求A的值,根据余弦定理可求BC 的值.【解答】解:∵AB=2,AC=3.若△ABC的面积为=AB•AC•sin A=,∴解得:sin A=,∵A为锐角,∴A=60°,∴BC===.故答案为:60°,.【点评】本题主要考查了三角形面积公式,余弦定理在解三角形中的应用,属于基础题.13.能说明“若点M(a,b)与点N(5,5)在直线x+y﹣2=0的同侧,则a+b>4”是假命题的一个点M的坐标为(2,1)[或(1,2),(0,3),(3,0)](答案不唯一).【分析】由题意知(a+b﹣2)(5+5﹣2)>0,举例说明a+b>2且a+b≤4即可.【解答】解:点M(a,b)与点N(5,5)在直线x+y﹣2=0的同侧,则(a+b﹣2)(5+5﹣2)>0,∴a+b>2,不能得出a+b>4,当点M的坐标为(2,1)时,a+b>4是假命题.故答案为:(2,1)[或(1,2),(0,3),(3,0)](答案不唯一).【点评】本题考查了命题真假的判断问题,是开放性题目.14.已知函数其中a>0,且a≠1.(i)当a=2时,若f(x)<4,则实数x的取值范围是(﹣∞,2);(ii)若存在实数m使得方程f(x)﹣m=0有两个实根,则实数a的取值范围是(0,1)∪(1,2).【分析】(i)由分段函数或,解得即可,(ii)分类讨论,结合图象,利用函数单调性即可求出.【解答】解:(i)当a=2时,或,解得x<2,故f(x)<4,则实数x的取值范围是(﹣∞,2);(ii)当0<a<1时,函数f(x)的大致图象为:当x>1时,函数f(x)=a x为减函数,则0<f(x)<f(1)=a,当x≤1时,函数f(x)=x+为增函数,则f(x)<f(1)=1+,此时存在实数m使得方程f(x)﹣m=0有两个实根,当a>1时,当x>1时,函数f(x)=a x为增函数,则f(x)>f(1)=a,当x≤1时,函数f(x)=x+为增函数,则f(x)<f(1)=1+,如图所示:若存在实数m使得方程f(x)﹣m=0有两个实根,则需要满足1+>a,解得1<a<2,综上所述a的取值范围为(0,1)∪(1,2)故答案为:(﹣∞,2),(0,1)∪(1,2)【点评】本题考查不等式的解法,方程的根的个数,考查数形结合的思想方法,注意转化思想,转化为函数的图象的交点个数问题,属于中档题.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(13分)设{a n}是各项均为正数的等比数列,且a1=1,a2+a3=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)求lna1+lna2+…+lna n.【分析】(Ⅰ)设等比数列{a n}的公比为q,利用通项公式,然后求解即可.(Ⅱ)由(I)知,lna1=0,通过lna1+lna2+…+lna n=.转化求解即可.【解答】(本小题满分13分)解:(Ⅰ)设等比数列{a n}的公比为q,因为a2+a3=6,所以,又a1=1,所以q2+q=6.即q=2或q=﹣3(舍).所以.……(Ⅱ)由(I)知,lna1=0,因为,所以{lna n}是以0为首项,公差为ln2的等差数列.所以lna1+lna2+…+lna n=.所以(n∈N*).……(13分)【点评】本题考查数列的递推关系式的应用,考查转化思想以及计算能力.16.(13分)已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若f(x)在区间上的最小值为﹣2,求m的最大值.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性求出f(x)的单调递增区间;(Ⅱ)利用正弦函数的定义域和值域,求得m的最大值.【解答】解:(Ⅰ)==sin2x+cos2x=2sin(2x+).由2kπ﹣≤2x+≤2kπ+,求得.所以f(x)的单调递增区间是.(Ⅱ)在区间上,∴2x+∈[2m+,].要使得f(x)在区间上的最小值为﹣2,2sin(2x+)在区间上的最小值为﹣1,∴2m+≤﹣,∴m≤﹣,即m的最大值为﹣.【点评】本题主要考查三角恒等变换,正弦函数的单调性,定义域和值域,属于中档题.17.(13分)某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.(Ⅰ)从III型号汽车的回访客户中随机选取1人,则这个客户不满意的概率为0.4;(将结果直接填写在答题卡的相应位置上)(Ⅱ)从所有的客户中随机选取1个人,估计这个客户满意的概率;(Ⅲ)汽车公司拟改变投资策略,这将导致不同型号汽车的满意率发生变化.假设表格中只有两种型号汽车的满意率数据发生变化,那么哪种型号汽车的满意率增加0.1,哪种型号汽车的满意率减少0.1,使得获得满意的客户人数与样本中的客户总人数的比值达到最大?(只需写出结论)【分析】(Ⅰ)从III型号汽车的回访客户中随机选取1人,利用对立事件概率计算公式能求出这个客户不满意的概率.(Ⅱ)先求出样本中的回访客户的总数和样本中满意的客户人数,由此能估计这个客户满意的概率.(Ⅲ)增加IV型号汽车的满意率,减少II型号汽车的满意率.【解答】(本小题满分13分)解:(Ⅰ)从III型号汽车的回访客户中随机选取1人,则这个客户不满意的概率为p=1﹣0.6=0.4.故答案为:0.4.……(3分)(Ⅱ)由题意知,样本中的回访客户的总数是:250+100+200+700+350=1600,样本中满意的客户人数是:250×0.5+100×0.3+200×0.6+700×0.3+350×0.2=125+30+120+210+70=555,所以样本中客户的满意率为.所以从所有的客户中随机选取1个人,估计这个客户满意的概率为.……(11分)(Ⅲ)增加IV型号汽车的满意率,减少II型号汽车的满意率.…………(13分)【点评】本题考查概率的求法,考查对立事件概率计算公式、古典概型等基础知识,考查运算求解能力,是基础题.18.(14分)如图,在五面体ABCDEF中,四边形ABCD是边长为2的正方形,平面ADE⊥平面ABCD,.(Ⅰ)求证:CD∥&平面ABFE;(Ⅱ)求证:平面ABFE⊥平面CDEF;(Ⅲ)在线段CD上是否存在点N,使得FN⊥平面ABFE?说明理由.【分析】(Ⅰ)推导出AB∥CD.由此能证明CD∥平面ABFE.(Ⅱ)推导出AE⊥DE,AB⊥AD,从而AB⊥平面ADE,进而AB⊥DE,由此能证明DE⊥平面ABFE,从而平面ABFE⊥平面CDEF.(Ⅲ)取CD的中点N,连接FN,推导出四边形EDNF是平行四边形,从而FN∥DE,由DE⊥平面ABFE,能证明FN⊥平面ABFE.【解答】(本小题满分14分)证明:(Ⅰ)在五面体ABCDEF中,因为四边形ABCD是正方形,所以AB∥CD.因为CD⊄平面ABFE,AB⊂平面ABFE,所以CD∥平面ABFE.……(4分)(Ⅱ)因为,AD=2,所以AE2+DE2=AD2,所以∠AED=90°,即AE⊥DE.因为四边形ABCD是正方形,所以AB⊥AD.因为平面ADE⊥平面ABCD,平面ADE∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面ADE.因为DE⊂平面ADE,所以AB⊥DE.因为AB∩AE=A,所以DE⊥平面ABFE.因为DE⊂平面CDEF,所以平面ABFE⊥平面CDEF.……(9分)(Ⅲ)在线段CD上存在点N,使得FN⊥平面ABFE.证明如下:取CD的中点N,连接FN.由(Ⅰ)知,CD∥&平面ABFE,又CD⊂平面CDEF,平面ABFE∩平面CDEF=EF,所以CD∥EF.因为,所以EF=DN.所以四边形EDNF是平行四边形.所以FN∥DE.由(Ⅱ)知,DE⊥平面ABFE,所以FN⊥平面ABFE.………………………(14分)【点评】本题考查线面平行、面面垂直的证明,考查满足线面垂直的点是不存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.(13分)已知函数f(x)=.(Ⅰ)若a=,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若0<a<e,判断函数f(x)的零点个数,并说明理由.【分析】(Ⅰ)把a=分别代入原函数及导函数解析式,求得f′(1)及f(1),利用直线方程的点斜式求解;(Ⅱ)求出导函数的零点,列关于x,f′(x),f(x)变化情况表,求得函数最小值f(a).然后分f(a)>0,f(a)=0,f(a)<0三类分析原函数的零点.【解答】解:函数f(x)的定义域为(0,+∞).f′(x)=.(Ⅰ)若a=,则f′(1)=3,且f(1)=2,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣2=3(x﹣1),即3x﹣y﹣1=0;(Ⅱ)令f′(x)=0,得x=a,或x=﹣a(舍).x,f′(x),f(x)变化情况如下表:f(x)min=f(a)=a﹣2alna=a(1﹣2lna).①当f(a)>0,即时,f(x)无零点.②当f(a)=0,即时,f(x)只有一个零点.③当f(a)<0,即时,∵f(1)=>0,f(a)<0,且f(x)在(0,a)上单调递减,∴f(x)在(1,a)上存在唯一零点;在(a,+∞)上,e2>a,.∵a<e,∴e2﹣2a>e2﹣2e=e(e﹣2)>0,即f(e2)>0.又f(a)<0,且f(x)在(a,+∞)上单调递增,∴f(x)在(a,e2)上存在唯一零点.∴当时,f(x)有两个零点.综上:时,f(x)无零点;时,f(x)只有一个零点;时,f(x)有两个零点.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查函数零点的判定,是中档题.20.(14分)已知椭圆过点,且离心率为.设A,B为椭圆C的左、右顶点,P为椭圆上异于A,B的一点,直线AP,BP分别与直线l:x=4相交于M,N 两点,且直线MB与椭圆C交于另一点H.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求证:直线AP与BP的斜率之积为定值;(Ⅲ)判断三点A,H,N是否共线,并证明你的结论.【分析】(Ⅰ)根据已知条件列有关a、b、c的方程组,求出a、b、c的值,可得出椭圆C的标准方程;(Ⅱ)设点P的坐标为(x0,y0),将点P的坐标代入椭圆C的方程可得出x0与y0之间的等量关系,然后利用斜率公式,结合等量关系可证出结论;(Ⅲ)设直线AP的方程为y=k(x﹣2)(k≠0),可得出直线BP的方程,与直线x=2联立,可分别求出点M、N的坐标,然后求出直线MN的斜率,写出直线HM的方程,并与椭圆方程联立,利用韦达定理可求出点H的坐标,再计算AH和AN的斜率,利用这两直线斜率相等来证明结论成立.【解答】解:(Ⅰ)根据题意可知解得所以椭圆C的方程;(Ⅱ)根据题意,直线AP,BP的斜率都存在且不为零.A(﹣2,0),B(2,0),设P(x0,y0),则(﹣2<x0<2).则,因为点P在椭圆上,则,所以,,所以,所以直线AP与BP的斜率之积为定值;(III)三点A、H、N共线.证明如下:设直线AP的方程为y=k(x+2)(k≠0),则直线BP的方程为,所以,M(4,6k),,,设直线HM:y=3k(x﹣2),联立方程组,消去y整理得,(1+12k2)x2﹣48k2x+48k2﹣4=0.设H(x1,y1),则,所以,.所以,因A(﹣2,0)、,,,所k AN=k AH,所以三点A,H,N共线.【点评】本题考查椭圆的性质,考查韦达定理在椭圆综合的应用,考查计算能力与推理能力,属于难题.。

北京昌平区第一中学2018-2019学年高三数学理期末试卷含解析

北京昌平区第一中学2018-2019学年高三数学理期末试卷含解析

北京昌平区第一中学2018-2019学年高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在中,若,,,则(▲ )A. B. C.D.参考答案:B2. “”是“直线和直线平行”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件参考答案:A略3. 在等差数列{a n}中,若,则()A.9 B.8 C.6 D.3参考答案:A设的公差为,由得,则.4. 设D为不等式组表示的平面区域,圆C:上的点与区域D上的点之间的距离的取值范围是A.[ -1, )B.[, ]C.[, ]D. [-1, -1]参考答案:B【考点】简单线性规划,点与圆位置关系首先求解平面区域的顶点,确定各顶点到圆心的距离最后求出最小距离减半径和最大距离加半径,即为所求范围【点评】:锁定目标函数,完成线性规划;本题属于中档题型5. 执行右图所给的程序框图,输出的S的值等于( )A.17B.25C.26D.37参考答案:C略6. 若直线与双曲线的右支交于不同的两点,则K的取值范围()A. B. C. D.参考答案:A略7. 已知,则函数的零点的个数为()A.1 B.2 C.3D.4参考答案:B8. 为了得到函数的图象,只需把函数的图象A. 向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位参考答案:D9. 设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()(A)(B)(C)(D)参考答案:D题目中表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选D。

10. 从某地高中男生中随机抽取100名同学,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).由图中数据可知体重的平均值为()A.64.5 B.59.5 C.69.5 D.50参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 设S为复数集C的非空子集.若对任意,都有,则称S为封闭集。

2018北京昌平区高三数学(理)第二次统一练习

2018北京昌平区高三数学(理)第二次统一练习

② 若函数 f x 的最大值为 1,则 a

2 / 11
b
a ;
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.
15.(本小题 13 分)
已知函数 f ( x) 2sin( π x)cos( π x)
4
4
( I )求函数 f ( x) 的最小正周期;
3sin 2x .
3
B
.第二象限
C
.第三象限 D .第四象限
3.已知等比数列 { an} 中, a1 = 27,a4 = a3a5 ,则 a7 =
1
A.
27
4.设 a
1
B

9
0.2
1 ,b 2
log 2 3 , c
C
2
0.3
,则
1

3
A. b c a
B . a b c C .b a c
D
.3
D .a c b
5.若满足条件
( II )求函数
f
( x)
在区间
[0,
π ]
上的最值及相应的
2
16. (本小题 13 分)
x 值.
为评估大气污染防治效果,调查区域空气质量状况,某调研机构从
A,B 两地区一年的数据中随机抽取了相同
20 天的观测数据,得到 A, B 两地区的空气质量指数( AQI )如下图所示:
B地区 (AQI)
250
2018 北京昌平区高三数
学 ( 理) 第二次统一练习
2018.5
本试卷共 5 页,共 150 分.考试时长 120 分钟.考生务必将答案作答在答题卡上,在试卷上作答无效.

北京市昌平区2019届高三理科数学第一学期期末试题及答案解析

北京市昌平区2019届高三理科数学第一学期期末试题及答案解析

2018-2019学年北京市昌平区高三上学期期末数学试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.若集合A={x|x2+2x<0},B={x||x|>1},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|1<x<2}2.设x,y满足,那么2x﹣y的最大值为()A.﹣3B.﹣1C.0D.13.如图是一个算法流程图,则输出的k的值为()A.2B.3C.4D.54.设是单位向量,是非零向量,则“⊥”是“•(+)=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设P,Q分别为直线(t为参数)和曲线C:(θ为参数)上的点,则|PQ|的最小值为()A.B.C.D.6.数列{a n}是等差数列,{b n}是各项均为正数的等比数列,公比q>1,且a5=b5,则()A.a3+a7>b4+b6B.a3+a7≥b4+b6C.a3+a7<b4+b6D.a3+a7=b4+b67.《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:在屋内墙角处堆放米,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?已知米堆所形成的几何体的三视图如图所示,一斛米的体积约为1.62立方尺,由此估算出堆放的米约有()A.21斛B.34斛C.55斛D.63斛8.设点F1,F2分别为椭圆的左、右焦点,点P是椭圆C上任意一点,若使得成立的点恰好是4个,则实数m的值可以是()A.B.3C.5D.8二、填空题(本大题共6小题,每小题5分,共30分)9.已知复数z满足(1﹣i)z=2i(i是虚数单位),则复数z的共轭复数=.10.已知点F为抛物线y2=8x的焦点,则点F坐标为;若双曲线(a>0)的一个焦点与点F重合,则该双曲线的渐近线方程是.11.已知展开式中x5的系数为21,则实数a的值为.12.能说明“若点M(a,b)与点N(3,﹣1)在直线x+y﹣1=0的同侧,则a2+b2>2”是假命题的一个点M的坐标为.13.已知函数f(x)=sin x若对任意的实数,都存在唯一的实数β∈(0,m),使f(α)+f(β)=0,则实数m的最大值是.14.已知函数其中a>0,且a≠1.(i)当a=2时,若f(x)<f(2),则实数x的取值范围是;(ii)若存在实数m使得方程f(x)﹣m=0有两个实根,则实数a的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(13分)若△ABC的面积为,,且∠A为锐角.(Ⅰ)求cos A的值;(Ⅱ)求的值.16.(14分)如图,在五面体ABCDEF中,四边形ABCD是矩形,平面ADE⊥平面ABCD,.(Ⅰ)求证:AB∥EF;(Ⅱ)求直线BF与平面ADE所成角的正弦值;(Ⅲ)求平面BCF与平面ADE所成锐二面角的余弦值.17.(13分)某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如,表:满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.假设客户是否满意互相独立,且每种型号汽车客户对于此型号汽车满意的概率与表格中该型号汽车的满意率相等.(Ⅰ)从所有的回访客户中随机抽取1人,求这个客户满意的概率;(Ⅱ)从I型号和V型号汽车的所有客户中各随机抽取1人,设其中满意的人数为ξ,求ξ的分布列和期望;(Ⅲ)用“η1=1”,“η2=1”,“η3=1”,“η4=1”,“η5=1”分别表示I,II,III,IV,V型号汽车让客户满意,“η1=0”,“η2=0”,“η3=0”,“η4=0”,“η5=0”分别表示I,II,III,IV,V型号汽车让客户不满意.写出方差Dη1,Dη2,Dη3,Dη4,Dη5的大小关系.18.(13分)已知椭圆过点,离心率为.记椭圆C的右焦点为F,过点F且斜率为k的直线交椭圆于P,Q两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若线段PQ的垂直平分线与x轴交于点M(x0,0),求x0的取值范围.19.(13分)已知函数f(x)=lnx﹣ax2+2ax.(Ⅰ)若a=﹣1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)≤x恒成立,求实数a的取值范围.20.(14分)已知集合A={x|x=2n+1,n∈N*},B={x|x=2n﹣1,n∈N*},C=A∪B.对于数列{a n},a1=1,且对于任意n≥2,n∈N*,有a n=min{x∈C|x>a n﹣1}.记S n为数列{a n}的前n项和.(Ⅰ)写出a7,a8的值;(Ⅱ)数列{a n}中,对于任意n∈N*,存在k n∈N*,使a=2n﹣1,求数列{k n}的通项公式;(Ⅲ)数列{a n}中,对于任意n∈N*,存在k∈N*,有a k+1=2n+1.求使得S k+1>27a k+1成立的k的最小值.2018-2019学年北京市昌平区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.若集合A={x|x2+2x<0},B={x||x|>1},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|1<x<2}【分析】可解出集合A,B,然后进行交集的运算即可.【解答】解:A={x|﹣2<x<0},B={x|x<﹣1,或x>1};∴A∩B={x|﹣2<x<﹣1}.故选:A.【点评】考查描述法的定义,一元二次不等式和绝对值不等式的解法,以及交集的运算.2.设x,y满足,那么2x﹣y的最大值为()A.﹣3B.﹣1C.0D.1【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图看出直线y=2x﹣z过可行域内C点时z有最大值,把C点坐标代入目标函数得答案.【解答】解:由约束条件作可行域如图,由z=2x﹣y,得y=2x﹣z,要使z最大,则直线y=2x﹣z在y轴上的截距最小,由图可知,当直线y=2x﹣z过可行域内的点C(0,﹣1)时直线y=2x﹣z在y轴上的截距最小.∴z=2x﹣y的最大值为2×0﹣(﹣1)=1.故选:D.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.3.如图是一个算法流程图,则输出的k的值为()A.2B.3C.4D.5【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故选:B.【点评】本题给出程序框图,要我们求出最后输出值,着重考查了算法语句的理解和循环结构等知识,属于基础题.4.设是单位向量,是非零向量,则“⊥”是“•(+)=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由向量数量积运算可得:•(+)=1⇔2+=1⇔=0⇔⊥,得解.【解答】解:是单位向量,是非零向量,则•(+)=1⇔2+=1⇔=0⇔⊥,故“⊥”是“•(+)=1”的充分必要条件,故选:C.【点评】本题考查了向量数量积运算及充分必要条件,属简单题.5.设P,Q分别为直线(t为参数)和曲线C:(θ为参数)上的点,则|PQ|的最小值为()A.B.C.D.【分析】直线的普通方程为2x+y﹣15=0,曲线C的普通方程为(x﹣1)2+(y+2)2=5,曲线C是以C(1,﹣2)为圆心,以r=为半径的圆,由此能求出圆心C(1,﹣2)到直线的距离.【解答】解:∵P,Q分别为直线(t为参数)和曲线C:(θ为参数)上的点,∴直线的普通方程为2x+y﹣15=0,曲线C的普通方程为(x﹣1)2+(y+2)2=5,曲线C是以C(1,﹣2)为圆心,以r=为半径的圆,圆心C(1,﹣2)到直线的距离d==3,∴|PQ|的最小值为:d=r=3=2.故选:B.【点评】本题考查两点间距离的最小值的求法,考查参数方程、直角坐标方程的互化、点到直线的距离公式等基础知识,考查运算求解能力,是基础题.6.数列{a n}是等差数列,{b n}是各项均为正数的等比数列,公比q>1,且a5=b5,则()A.a3+a7>b4+b6B.a3+a7≥b4+b6C.a3+a7<b4+b6D.a3+a7=b4+b6【分析】分别运用等差数列和等比数列中项性质,以及基本不等式,即可得到所求结论.【解答】解:数列{a n}是等差数列,{b n}是各项均为正数的等比数列,公比q>1,由a3+a7=2a5=2b5,b4+b6≥2=2b5,a3+a7≤b4+b6,由于q>1可得a3+a7<b4+b6,故选:C.【点评】本题考查等差数列和等比数列的中项性质、基本不等式的运用,考查运算能力和推理能力,属于基础题.7.《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:在屋内墙角处堆放米,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?已知米堆所形成的几何体的三视图如图所示,一斛米的体积约为1.62立方尺,由此估算出堆放的米约有()A.21斛B.34斛C.55斛D.63斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5=,∵1斛米的体积约为1.62立方,∴÷1.62≈21,故选:A.【点评】本题主要考查锥体的体积的计算,比较基础.8.设点F1,F2分别为椭圆的左、右焦点,点P是椭圆C上任意一点,若使得成立的点恰好是4个,则实数m的值可以是()A.B.3C.5D.8【分析】设P(x0,y0),则,=(2﹣x0,﹣y0),由及点P 椭圆上,可得关于x0,y0的方程组,联立得.再由0<<9求解m的范围,则答案可求.【解答】解:由椭圆,得a2=9,b2=5,则c=2.∴F1(﹣2,0),F2(2,0),设P(x0,y0),则,=(2﹣x0,﹣y0),由,得(﹣2﹣x0,﹣y0)•(2﹣x0,﹣y0)=m,即①,又点P在椭圆上,∴②,联立①②,得.要使成立的点恰好是4个,则0<<9.则1<m<5.∴实数m的值可以是3.故选:B.【点评】本题考查平面向量数量积的运算、椭圆的简单性质,考查方程思想,属中档题.二、填空题(本大题共6小题,每小题5分,共30分)9.已知复数z满足(1﹣i)z=2i(i是虚数单位),则复数z的共轭复数=﹣1﹣i.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由(1﹣i)z=2i,得z=,∴.故答案为:﹣1﹣i.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10.已知点F为抛物线y2=8x的焦点,则点F坐标为(2,0);若双曲线(a>0)的一个焦点与点F重合,则该双曲线的渐近线方程是y=±x.【分析】由开口向右的抛物线的焦点坐标可得所求焦点F;由题意可得a=,由焦点在x轴上的渐近线方程可得所求方程.【解答】解:点F为抛物线y2=8x的焦点,2p=8,即p=4,由焦点坐标(,0),即有F(2,0),双曲线(a>0)的一个焦点与点F(2,0)重合,可得a2+2=4,可得a=,即有双曲线的方程为x2﹣y2=2,可得渐近线方程为y=±x.故答案为:(2,0),y=±x.【点评】本题考查抛物线和双曲线的方程和性质,考查方程思想和运算能力,属于基础题.11.已知展开式中x5的系数为21,则实数a的值为﹣3.【分析】利用通项公式即可得出.【解答】解:展开式中的通项公式T r+1==(﹣a)r x7﹣2r,令7﹣2r=5,解得r=1.∴﹣a•=21,解得a=﹣3.故答案为:﹣3.【点评】本题考查了二项式的展开式的通项公式,考查了推理能力与计算能力,属于基础题.12.能说明“若点M(a,b)与点N(3,﹣1)在直线x+y﹣1=0的同侧,则a2+b2>2”是假命题的一个点M的坐标为(答案不唯一).【分析】由题意知(a+b﹣1)(3﹣1﹣1)>0,写出满足a+b>1且a2+b2≤2的对应数对即可(答案不唯一).【解答】解:点M(a,b)与点N(3,﹣1)在直线x+y﹣1=0的同侧,则(a+b﹣1)(3﹣1﹣1)>0,∴a+b>1,不能得出a2+b2>2,当点M的坐标为(1,1)时,a2+b2>2是假命题.故答案为:(1,1)[或(,0),(0,),(,)](答案不唯一).【点评】本题考查了命题真假的判断问题,是开放性题目.13.已知函数f(x)=sin x若对任意的实数,都存在唯一的实数β∈(0,m),使f(α)+f(β)=0,则实数m的最大值是.【分析】由任意性和存在性原命题可转化为即f(β)=k,k∈(,)有且仅有一个解,即作函数图象y=f(β)与直线x=k,k∈(,),只有一个交点,作图观察即可【解答】解:由f(x)=sinα,则f(α)∈(﹣,),存在唯一的实数β∈(0,m),使f(α)+f(β)=0即f(β)=k,k∈(,)有且仅有一个解,作函数图象y=f(β)与直线x=k,k∈(,),当两图象只有一个交点时,由图知,<m,故实数m的最大值是,故答案为:.【点评】本题考查了任意性和存在性,三角函数的图象,属中档题.14.已知函数其中a>0,且a≠1.(i)当a=2时,若f(x)<f(2),则实数x的取值范围是(﹣∞,2);(ii)若存在实数m使得方程f(x)﹣m=0有两个实根,则实数a的取值范围是(0,1)∪(1,2).【分析】(1)由分段函数,分别讨论①当x>1时,②当x≤1时,解不等式即可,(2)分别讨论①当0<a<1时,②当a≥1时,作图象观察即可【解答】解:(1)当a=2时,f(x)=,则f(2)=22=4,①当x>1时,解不等式2x<4,解得:1<x<2,②当x≤1时,解不等式x+1<4,解得:x≤1,综合①②得:实数x的取值范围是:(﹣∞,2),(2)①当0<a<1时,由图一知,存在直线y=m与y=f(x)有两个交点,即0<a<1满足题意,②当a≥1时,由图二知,当a时,存在直线y=m与y=f(x)有两个交点,即a即1<a<2综合①②得:实数a的取值范围是为:0<a<1或1<a<2,故答案为:(﹣∞,2),(0,1)∪(1,2)【点评】本题考查了分段函数及数形结合的思想方法,属难度较大的题型.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(13分)若△ABC的面积为,,且∠A为锐角.(Ⅰ)求cos A的值;(Ⅱ)求的值.【分析】(Ⅰ)由已知利用三角形面积公式可求sin A的值,根据同角三角函数基本关系式可求cos A.(II)在△ABC中,由余弦定理可求a,由正弦定理可得.根据二倍角公式即可计算得解.【解答】解:(Ⅰ)因为△ABC的面积为,,所以,所以.因为△ABC中,∠A为锐角,所以.…………(6分)(II)在△ABC中,由余弦定理,,所以.由正弦定理,所以.所以.……(13分)【点评】本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理,正弦定理,二倍角公式在解三角形中的综合应用,考查了转化思想,属于基础题.16.(14分)如图,在五面体ABCDEF中,四边形ABCD是矩形,平面ADE⊥平面ABCD,.(Ⅰ)求证:AB∥EF;(Ⅱ)求直线BF与平面ADE所成角的正弦值;(Ⅲ)求平面BCF与平面ADE所成锐二面角的余弦值.【分析】(Ⅰ)证明AB∥CD.推出AB∥平面CDEF.然后证明AB∥EF.(Ⅱ)取AD的中点O,BC的中点M,连接OE,OM.推出OM⊥AD.OE⊥AD,即可证明平面ADE ⊥平面ABCD,推出OE⊥平面ABCD.建立空间直角坐标系O﹣xyz,求出平面ADE的法向量,然后求解直线BF与平面ADE所成角.(Ⅲ)求出平面BCF的法向量,平面ADE的法向量,利用空间向量的数量积求解平面BCF与平面ADE所成锐二面角的余弦值.【解答】(本小题满分14分)证明:(Ⅰ)在五面体ABCDEF中,因为四边形ABCD是矩形,所以AB∥CD.因为AB⊄平面CDEF,CD⊂平面CDEF,所以AB∥平面CDEF.因为AB⊂平面ABFE,平面ABFE∩平面CDEF=EF,所以AB∥EF.………(4分)(Ⅱ)取AD的中点O,BC的中点M,连接OE,OM.因为四边形ABCD是矩形,所以OM⊥AD.因为,O是AD的中点,所以OE⊥AD,且OE=1.因为平面ADE⊥平面ABCD,平面ADE∩平面ABCD=AD,OE⊂平面ADE,所以OE⊥平面ABCD.如图,建立空间直角坐标系O﹣xyz,依题意得O(0,0,0),B(1,4,0),F(0,2,1).所以,平面ADE的法向量为=(0,1,0).设直线BF与平面ADE所成角为α,则,所以直线BF与平面ADE所成角的正弦值为.………(9分)(Ⅲ)由C(﹣1,4,0),得.设平面BCF的法向量为=(x,y,z),则有即令y=1,则=(0,1,2).因为平面ADE的法向量为=(0,1,0),所以.所以平面BCF与平面ADE所成锐二面角的余弦值为.……(14分)【点评】本题考查直线与平面垂直的判断定理以及二面角的平面角的求法,考查空间想象能力以及计算能力.17.(13分)某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如,表:假设客户是否满意互相独立,且每种型号汽车客户对于此型号汽车满意的概率与表格中该型号汽车的满意率相等.(Ⅰ)从所有的回访客户中随机抽取1人,求这个客户满意的概率;(Ⅱ)从I型号和V型号汽车的所有客户中各随机抽取1人,设其中满意的人数为ξ,求ξ的分布列和期望;(Ⅲ)用“η1=1”,“η2=1”,“η3=1”,“η4=1”,“η5=1”分别表示I,II,III,IV,V型号汽车让客户满意,“η1=0”,“η2=0”,“η3=0”,“η4=0”,“η5=0”分别表示I,II,III,IV,V型号汽车让客户不满意.写出方差Dη1,Dη2,Dη3,Dη4,Dη5的大小关系.【分析】(Ⅰ)由题意知,样本中的回访客户的总数是1600,满意的客户人数是555,由此能求出所求概率.(Ⅱ)ξ=0,1,2.设事件A为“从I型号汽车所有客户中随机抽取的人满意”,事件B为“从V型号汽车所有客户中随机抽取的人满意”,且A、B为独立事件.根据题意,P(A)估计为0.5,P (B)估计为0.2.由此能求出ξ的分布列和期望.(Ⅲ)用“η1=1”,“η2=1”,“η3=1”,“η4=1”,“η5=1”分别表示I,II,III,IV,V型号汽车让客户满意,由此能写出方差Dη1,Dη2,Dη3,Dη4,Dη5的大小关系.【解答】(本小题满分13分)解:(Ⅰ)由题意知,样本中的回访客户的总数是250+100+200+700+350=1600,满意的客户人数250×0.5+100×0.3+200×0.6+700×0.3+350×0.2=555,故所求概率为.……(4分)(Ⅱ)ξ=0,1,2.设事件A为“从I型号汽车所有客户中随机抽取的人满意”,事件B为“从V型号汽车所有客户中随机抽取的人满意”,且A、B为独立事件.根据题意,P(A)估计为0.5,P(B)估计为0.2.则,=0.5×0.8+0.5×0.2=0.5,P(ξ=2)=P(AB)=P(A)P(B)=0.5×0.2=0.1.∴ξ的分布列为0.1=0.7.……(11分)(Ⅲ)用“η1=1”,“η2=1”,“η3=1”,“η4=1”,“η5=1”分别表示I,II,III,IV,V型号汽车让客户满意,“η1=0”,“η2=0”,“η3=0”,“η4=0”,“η5=0”分别表示I,II,III,IV,V型号汽车让客户不满意.∴方差Dη1,Dη2,Dη3,Dη4,Dη5的大小关系为:Dη1>Dη3>Dη2=Dη4>Dη5.……(13分)【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查方差的大小判断,考查古典概型、相互独立事件概率计算公式等基础知识,考查运算求解能力,是中档题.18.(13分)已知椭圆过点,离心率为.记椭圆C的右焦点为F,过点F且斜率为k的直线交椭圆于P,Q两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若线段PQ的垂直平分线与x轴交于点M(x0,0),求x0的取值范围.【分析】(Ⅰ)根据已知条件列有关a、b、c的方程,求出a、b、c的值,可求出椭圆C的标准方程;(Ⅱ)设直线PQ的方程为y=k(x﹣2),设点P(x1,y1)、Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,列出韦达定理,求出线段PQ的中点坐标,并求出线段PQ的中垂线的方程,于是可求出x0的表达式,利用函数性质可求出x0的取值范围.【解答】解:(Ⅰ)由题意可知解得故椭圆C的标准方程为;(Ⅱ)依题意,F(2,0),直线PQ的方程y=k(x﹣2).联立方程组消y并整理得(3k2+1)x2﹣12k2x+12k2﹣6=0,△=(﹣12k2)2﹣4(12k2﹣6)(3k2+1)=24(k2+1)>0,设P(x1,y1)、Q(x2,y2),故,,设PQ的中点为N,则.因为线段PQ的垂直平分线与x轴交于点M(x0,0),①当k=0时,那么x0=0;②当k≠0时,k MN•k=﹣1,即.解得.因为k2>0,所以,,即.综上,x0的取值范围为.【点评】本题考查椭圆性质的综合问题,考查韦达定理法在椭圆综合问题中的应用,考查计算能力与转化能力,属于难题.19.(13分)已知函数f(x)=lnx﹣ax2+2ax.(Ⅰ)若a=﹣1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)≤x恒成立,求实数a的取值范围.【分析】(I)函数f(x)的定义域为(0,+∞).当a=﹣1时,f(x)=lnx+x2﹣2x.利用导数的运算法则可得f′(0),而f(1)=﹣1.利用点斜式即可得出.(II)若f(x)≤x恒成立,即f(x)﹣x≤0恒成立.设g(x)=f(x)﹣x=lnx﹣ax2+(2a﹣1)x.只要g(x)max≤0即可;g′(x)=.对a分类讨论,利用导数研究函数的单调性极值最值即可得出.【解答】解:(I)函数f(x)的定义域为(0,+∞).当a=﹣1时,f(x)=lnx+x2﹣2x.∴,f′(0)=1,且f(1)=﹣1.所以曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(﹣1)=x﹣1,即x﹣y﹣2=0.(II)若f(x)≤x恒成立,即f(x)﹣x≤0恒成立.设g(x)=f(x)﹣x=lnx﹣ax2+(2a﹣1)x.只要g(x)max≤0即可;g′(x)==.①当a=0时,令g′(x)=0,得x=1.x,g′(x),g(x)变化情况如下表:max②当a>0时,令g′(x)=0,得x=﹣(舍),或x=1;x,g′(x),g(x)变化情况如下表:所以g(x)max=g(1)=a﹣1≤0,得0<a≤1.③当a<0时,存在,满足g(2﹣)=ln(2﹣)>0,所以f(x)<0不能恒成立,所以a<0不满足题意.综上,实数a的取值范围为[0,1].【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于难题.20.(14分)已知集合A={x|x=2n+1,n∈N*},B={x|x=2n﹣1,n∈N*},C=A∪B.对于数列{a n},a1=1,且对于任意n≥2,n∈N*,有a n=min{x∈C|x>a n﹣1}.记S n为数列{a n}的前n项和.(Ⅰ)写出a7,a8的值;(Ⅱ)数列{a n}中,对于任意n∈N*,存在k n∈N*,使a=2n﹣1,求数列{k n}的通项公式;(Ⅲ)数列{a n}中,对于任意n∈N*,存在k∈N*,有a k+1=2n+1.求使得S k+1>27a k+1成立的k的最小值.【分析】(I)运用列举法,分别写出A,B,C,由题意可得所求项;(II)首先判断数列{a n}为单调递增数列.由等比数列的通项公式和求和公式,即可得到所求通项;(III)由条件可令2m﹣1≤2n,m∈N*,求得m的最大值,运用等差数列的求和公式和分类讨论思想,可得k的最小值.【解答】解:(I)集合A={x|x=2n+1,n∈N*}={3,5,7,9,…,2n+1,…},B={x|x=2n﹣1,n∈N*}=1,2,4,8,16,…,2n﹣1,…},C=A∪B={1,2,3,4,5,7,8,9,11,13,15,16,…},因为a1=1,且对于任意n≥2,n∈N*,a n=min{x∈C|x>a n﹣1},所以a1=1,a2=2,a3=3,a4=4,a5=5,a6=7,a7=8,a8=9;(II)对于任意n≥2,n∈N*,有a n=min{x∈C|x>a n﹣1},所以对于任意n≥2,n∈N*,有a n>a n﹣1,即数列{a n}为单调递增数列.因为对于任意n∈N*,存在k n∈N*,使a=2n﹣1,所以k1<k2<k3<…<k n<…,因为a=2n﹣1,a=2n,所以对于任意n∈N*,有k1=1,k2=2,k3=4,所以当n≥2时,有k n+1﹣k n=+1=2n﹣2+1,即k3﹣k2=20+1,k4﹣k3=2+1,k5﹣k4=22+1,……,k n﹣k n﹣1=2n﹣3+1,所以当n≥3时,有k n﹣k2=20+21+22+…+2n﹣3+n﹣2=+n﹣2=2n﹣2+n﹣3(n≥3),所以k n=2n﹣2+n﹣1(n≥3).又k1=1,k2=2,数列{k n}的通项公式为k n=;(III)若任意n∈N*,存在k∈N*,有a k+1=2n+1,令2m﹣1≤2n,m∈N*,解得m﹣1≤log2(2n),即m≤log2n+2,得m max=[log2n+2]=[log2n]+2,其中[log2n+2]表示不超过log2n+2的最大整数,所以k+1=n+m max=n+([log2n]+2),k=n+([log2n]+1).S k+1=[3+5+7+...+(2n+1)]+[1+2+3+ (2)=n(n+2)+(2﹣1),依题意S k+1>27a k+1,n(n+2)+(2﹣1)>27(2n+1),即n2﹣52n﹣28+2>0,(n﹣26)2+4×2>704.当[log2n]=0时,即n=1时,(n﹣26)2+4×2=629<704,不合题意;当[log2n]=1时,即n=2,3时,,不合题意;当[log2n]=2时,即4≤n≤7时,,不合题意;当[log2n]=3时,即8≤n≤15时,,不合题意;当[log2n]=4时,即16≤n≤31时,,不合题意;当[log2n]=5时,即32≤n≤63时,由,此时(n﹣26)2>576.而n=50时,(n﹣26)2=576.所以n>50.又当n=51时,(51﹣26)2+4×2=753>704;所以k=n+[log2n]+1≥51+[log251]+1=51+5+1=57.综上所述,符合题意的k的最小值为k=57.【点评】本题考查数列的通项和求和,考查分类讨论思想和转化思想,化简整理的运算能力和推理能力,属于难题.。

北京市昌平区2018届高三上学期期末考试数学理 试题 Word版含答案

北京市昌平区2018届高三上学期期末考试数学理 试题 Word版含答案

2018届南昌铁一中高三第四次月考理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,有且只有一项符合题目要求。

把答案填写在答题卡上1.如果mi i+=-112(R m ∈,i 表示虚数单位),那么=m ( ) A .1 B .1- C .2 D .02若0.52a =,log 3b π=,22log sin 5c π=,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位4在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++ ,则k =( ) A .22 B .23 C .24 D .255.已知直线,l m ,平面,αβ,且,l m αβ⊥⊂,给出四个命题: ①若α∥β,则l m ⊥;②若l m ⊥,则α∥β;③若αβ⊥,则l ∥m ;④若l ∥m ,则αβ⊥.其中真命题的个数是( )A .4B .3C .2D .16已知||2||,||0a b b =≠ ,且关于x 的函数3211()||32f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( )A .06π⎡⎫⎪⎢⎣⎭, B. (,]3ππ C .2(,]33ππD . (,]6ππ7把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C ABD -的正视图与俯视图如下图所示,则侧视图的面积为 ( )A .12BCD 。

148.已知定义在R 上的函数()y f x =满足下列三个条件:①对任意的x R ∈都有(2)()f x f x +=-,②对于任意的1202x x ≤<≤,都有12()()f x f x <,③(2)y f x =+的图象关于y 轴对称,则下列结论中,正确的是 ( )A .(4.5)(6.5)(7)f f f <<B .(4.5)(7)(6.5)f f f <<C .(7)(4.5)(6.5)f f f <<D .(7)(6.5)(4.5)f f f <<9.函数1ln ||y y x==与 ( )A .①②B .③④C .①③D .②④二、填空题:本大题共5小题,每小题5分,共25分。

2018北京市昌平区高三(上)期末数学(文)

2018北京市昌平区高三(上)期末数学(文)

2018北京市昌平区高三(上)期末数 学(文) 2018.1第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 若集合{|21}A x x =-<<,{|(3)0}B x x x =->,则AB =A. {|13}x x x <>或B. {|21}x x -<<C.{|203}x x x -<<>或D. {|20}x x -<<2. 1+i||i= A. 2- B. 2 C. 1- D. 13. 若,x y 满足1,1,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则2x y +的最大值为A .4 B. 2 C. 1 D. 2-4.已知,a b 是实数,则“0a <,且0b <”是“()0ab a b ->”的 A .充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件5. 直线2y kx =+被圆2240x y y +-=所截得的弦长是A .2 B. 4 C. 26 D. 6 6. 某四棱锥的三视图如图所示,则该四棱锥的体积为 A. 2 B. 3 C. 4 D. 67. 《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”则可求得该女子第2天所织布的尺数为A.4031 B. 2031 C. 1031 D. 5318. 已知点A (-2,0),B (2,0),00P x y (,)是直线4y x =+上任意一点,以A B ,为焦点的椭圆过点P ,记椭圆离心率e 关于0x 的函数为0()e x ,那么下列结论正确的是A. e 与0x 一一对应B. 函数0()e x 是增函数C .函数0()e x 无最小值,有最大值 D. 函数0()e x 有最小值,无最大值2 主视图左视图俯视图1 1 2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某校高一(1)班有学生36人,高一(2)班有学生42人,现在要用分层抽样的方法从 两个班抽出13人参加军训表演,则高一(2)班被抽出的人数是 .10. 执行如图所示的程序框图, 输出的S 值为 .11. 已知函数()sin cos f x x x =,那么()f x 的最小正周期是 .12. 已知双曲线22221(0,0)x y a b a b-=>>的左焦点为抛物线212y x =-的焦点,双曲线的渐近线方程为2y x =±,则实数a = .13.已知Rt ABC ∆,1AB AC ==,点E 是AB 边上的动点,则CE AC ⋅uur uuu r的值为 ;CE CB ⋅uur uu r的最大值为 .14.若函数4,3,()log ,3a x x f x x x -+≤⎧=⎨>⎩ (0a >且1a ≠),函数()()g x f x k =-.① 若13a =,函数()g x 无零点,则实数k 的取值范围是 ; ② 若()f x 有最小值,则实数a 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题满分13分)已知等差数列{}n a 的公差d 为1,且134,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列52n a n b n+=+,求数列{}n b 的前n 项和n S .开始 否是1,18S n ==输出S S S n =+ 6n n =-0n >结束分钟/天m2m 3m 5m 6m 4m 6050403020频率/组距10O在ABC ∆中,3sin cos a C c A =. (Ⅰ)求角A 的大小;(Ⅱ)若3ABC S ∆=,223b c +=+,求a 的值.17. (本小题满分13分)随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某大学社团为调查大学生对于“中华诗词”的喜好,在该校随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :学习时间 t (分钟/天) 20t <2050t ≤<50t ≥等级一般爱好痴迷(Ⅰ) 求m 的值;(Ⅱ) 从该大学的学生中随机选出一人,试估计其“爱好”中华诗词的概率;(Ⅲ) 假设同组中的每个数据用该组区间的右端点值代替,试估计样本中40名学生每人每天学习“中华诗词”的时间.MPEDCBA 如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠ABC =60°,PAB ∆为正三角形, 且侧面P AB ⊥底面ABCD . E ,M 分别为线段AB ,PD 的中点. (I )求证:PE ⊥平面ABCD ; (II )求证:PB //平面ACM ; (III )在棱CD 上是否存在点G , 使平面GAM ⊥平面ABCD ,请说明理由.19.(本小题满分14分)已知椭圆C :2221(1)x y a a+=>,(,0),(0,1)A a B ,圆O :221x y +=的圆心到直线AB 的距离为32.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 与圆O 相切,且与椭圆C 相交于,P Q 两点,求PQ 的最大值.20.(本小题满分13分)已知函数2()e (2)x f x x =+,()ex g x =.(Ⅰ)求曲线y =()f x 在点(0,(0))f 处的切线方程;(Ⅱ)求函数()()()h x f x g x =-在区间[2,0]-上的最大值和最小值.数学试题答案一、选择题(共8小题,每小题5分,共40分.)题号 1 2 3 4 5 6 7 8 答案 DBBDBACC二、填空题(共6小题,每小题5分,共30分.)9. 7 10. 37 11. π 12. 3 13. 1- ; 2 14. [1,1)- ;(1,3]三、解答题(共6小题,共80分.) 15.(共13分)解:(Ⅰ)在等差数列{}n a 中,因为134,,a a a 成等比数列,所以 2314a a a =, 即 22111+2)3a d a a d =+(,解得2140a d d +=.因为1,d =所以14,a =-所以数列{}n a 的通项公式5n a n =-. ……………6分(Ⅱ)由(Ⅰ)知5n a n =-,所以522n a n n b n n +=+=+. 得123231(2222)(123)2(12)(1)=122(1)222n nn n n S b b b b n n n n n +=++++=+++++++++-++-+=+-……………13分16. (共13分)解:(I )因为3sin cos a C c A =,所以cos 0A ≠,由正弦定理a b c==,得3sin sin sin cos A C C A ⋅=⋅. 又因为 (0,)C ∈π,sin 0C ≠,所以 3tan 3A =. 又因为 (0,)A ∈π, 所以 6A π=. …………… 6分 (II )由11sin 324ABCS bc A bc ∆===,得43bc =, 由余弦定理2222cos a b c bc A =+-, 得2222cos6a b c bc π=+-, 即222()23()8312a b c bc bc b c =+--=+--,因为223b c +=+, 解得 24a =.因为 0a >,所以 2a =. ……………13分17. (共13分)解:(Ⅰ) 由图知,(23426)101+++⨯+⨯=m m m m m ,得0.005=m . ……3分(Ⅱ) 由图知,该大学随机选取的40名学生中,“爱好”中华诗词的频率为(0.0300.0200.015)1065%++⨯=, 所以从该大学中随机选出一人,“爱好”中华诗词的概率为0.65. ……………6分(Ⅲ) 由该大学学习“中华诗词”时间的频率分布直方图及题意,得该大学选取的40名学生学习“中华诗词”时间的数据分组与频率分布表:组号 1 2 3 4 5 6 分组 [0,10](10,20](20,30](30,40](40,50](50,60]频率0.1 0.2 0.3 0.2 0.15 0.05由题意可得,100.1200.2300.3400.2500.15600.0532.5⨯+⨯+⨯+⨯+⨯+⨯=(分钟)故估计样本中40名学生每人每天学习“中华诗词”的时间为32.5分钟. ………13分18. (共14分)(I )证明:因为PAB ∆为正三角形,E 为AB 的中点,所以PE ⊥AB ,又因为面P AB ⊥面ABCD ,面P AB ∩面ABCD=AB ,PE ⊂平面P AB.GMPE DCBA OG MPED CBA 所以PE ⊥平面ABCD . …………… 4分(II )证明:连接BD 交AC 于H 点,连接MH ,因为四边形ABCD 是菱形,所以点H 为BD 的中点. 又因为M 为PD 的中点, 所以MH // BP .又因为 BP ⊄平面ACM , MH ⊂平面ACM . 所以 PB // 平面ACM . ……………8分(III )在棱CD 上存在点G ,G 为CD 的中点时,平面GAM ⊥平面ABCD .…… 9分证明:(法一)连接EC .由(Ⅰ)得,PE ⊥平面ABCD , 所以PE ⊥CD ,因为ABCD 是菱形,∠ ABC =60°,E 为AB 的中点, 所以ABC ∆是正三角形,EC ⊥AB . 因为CD // AB , 所以EC ⊥CD . 因为PE ∩EC=E , 所以CD ⊥平面PEC , 所以CD ⊥PC .因为M ,G 分别为PD ,CD 的中点, 所以MG //PC , 所以CD ⊥MG .因为ABCD 是菱形,∠ADC =60°, 所以ADC ∆是正三角形. 又因为G 为CD 的中点,所以CD ⊥AG , 因为MG ∩AG=G , 所以CD ⊥平面MAG , 因为CD ⊂平面ABCD ,所以平面MAG ⊥平面ABCD . ……………14分(法二):连接ED ,AG 交于点O . 连接EG , MO . 因为E ,G 分别为AB ,CD 边的中点. 所以//AE DG 且AE DG =,即四边形AEGD 为平行四边形,O 为ED 的中点. 又因为M 为PD 的中点, 所以//MO PE .由(I )知PE ⊥平面ABCD . HMPEDCBA又因为MO ⊂平面GAM ,所以 平面GAM ⊥平面ABCD ……………14分19. (本小题满分14分)解:(Ⅰ)由已知得,直线AB 的方程为:1,0xy x ay a a+=+-=即:. 由1a >, 得点O 到直线AB 的距离为:23,21a a =+ 解得3a = 故椭圆C 的方程为 2213x y +=. ……………5分(Ⅱ)①当直线l 的斜率不存在时,直线l 的方程为1x =±,代入2213x y +=,得63y =±,此时263PQ =. ②当直线l 的斜率存在时,设直线l 的方程为y kx m =+, 因为直线l 与圆O 相切,所以2||1,1m k =+即221m k =+由2213x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y ,整理得222(13)63(1)0k x kmx m +++-= 所以22222223612(13)(1)12(13)24,k m k m k m k ∆=-+-=+-=由0,∆>得0k ≠,设点1122(,),(,)P x y Q x y ,则212122263(1),1313km m x x x x k k -+=-=++, 所以222222121222(1)224()()1=231313k k k PQ x x y y k k k+⋅-+-=+⨯⨯++||= 222(1)2223313k k k ++≤⨯=+, 当且仅当2212,k k +=即1k =±时,||PQ 有最大值为3.综上所述,||PQ 的最大值为3. …………… 14分20.(本小题满分13分)解:(Ⅰ)2()e (22)x f x x x '=++,(0)2f '=,又(0)2f = .故曲线y =()f x 在点(0,(0))f 处的切线方程为22y x =+ . …………… 4分(Ⅱ)2()()()e (2)e x x h x f x g x x =-=+-设21()()e (22)e x p x h x x x '==++-,则22()e (44)=e (2)0x x p x x x x '=+++≥,则p (x )在区间[2,0]-上单调递增,又(1)0p -=, 当[2,1]∈--x 时,()()0p x h x '=<; 当[1,0]∈-x 时,()()0p x h x '=>.所以函数()h x 在区间[2,1]--上单调递减,在区间[1,0]-上单调递增,又因为22262e 2e (2)2(0)e eh h +-=<==,所以min max 4()(1),()(0)2e h x h h x h =-=== . ……………13分 .。

昌平区高中2018-2019学年上学期高三数学期末模拟试卷含答案

昌平区高中2018-2019学年上学期高三数学期末模拟试卷含答案

昌平区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆C 22221x y a b-=0a >0b >C 被双曲线截得劣弧长为,则双曲线的离心率为( )C 23a πCA .BCD 652. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为()A .B .2C .D .33. 与向量=(1,﹣3,2)平行的一个向量的坐标是()A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)4. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .65. 已知函数,函数满足以下三点条件:①定义域为;②对任意,有⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f )(x g R R x ∈;③当时,则函数在区间上零1()(2)2g x g x =+]1,1[-∈x ()g x )()(x g x f y -=]4,4[-点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.6. 设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件7. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A .B .C .D . 9.已知,若圆:,圆:2->a 1O 01582222=---++a ay x y x 2O 恒有公共点,则的取值范围为( ).04422222=--+-++a a ay ax y x a A . B . C . D .),3[]1,2(+∞-- ),3()1,35(+∞-- ),3[]1,35[+∞-- ),3()1,2(+∞-- 10.已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( )A .B .2C .D .11.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?12.连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .二、填空题13.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .14.设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机()x xf x e=[0,3]0x ()f x ()00,()x f x k 事件“”的概率为_________.0k <15.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 . 16.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .17.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .18.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为 三、解答题19.已知矩阵M 所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.20.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.21.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD⊥BE;(Ⅱ)求多面体EF﹣ABCD体积的最大值.22.(本题满分15分)正项数列满足,.}{n a 121223+++=+n n n n a a a a 11=a (1)证明:对任意的,;*N n ∈12+≤n n a a (2)记数列的前项和为,证明:对任意的,.}{n a n n S *N n ∈32121<≤--n n S 【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.23.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.24.已知函数,且.(Ⅰ)求的解析式; (Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.昌平区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1.【答案】B考点:双曲线的性质.2.【答案】B【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,即AD•≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B.【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.3.【答案】C【解析】解:对于C中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.故选:C.【点评】本题考查了向量共线定理的应用,属于基础题.4.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.5.【答案】D第Ⅱ卷(共100分)[.Com]6.【答案】C【解析】解:设a、b是两个非零向量,“(a+b)2=|a|2+|b|2”⇒(a+b)2=|a|2+|b|2+2ab=|a|2+|b|2⇒a•b=0,即a⊥b;a⊥b⇒a•b=0即(a+b)2=|a|2+|b|2所以“(a+b)2=|a|2+|b|2”是“a⊥b”的充要条件.故选C.7. 【答案】A【解析】解:p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p :∃n ∈N *,a n+2﹣a n+1≠d ;¬q :数列 {a n }不是公差为d 的等差数列,由¬p ⇒¬q ,即a n+2﹣a n+1不是常数,则数列 {a n }就不是等差数列,若数列 {a n }不是公差为d 的等差数列,则不存在n ∈N *,使得a n+2﹣a n+1≠d ,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A .【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立. 8. 【答案】A【解析】解:因为底面半径为R 的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R ,长半轴为: =,∵a 2=b 2+c 2,∴c=,∴椭圆的离心率为:e==.故选:A .【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力. 9. 【答案】C【解析】由已知,圆的标准方程为,圆的标准方程为1O 222(1)()(4)x y a a ++-=+2O ,∵ ,要使两圆恒有公共点,则,即222()()(2)x a y a a ++-=+2->a 122||26O O a ≤≤+,解得或,故答案选C62|1|2+≤-≤a a 3≥a 135-≤≤-a 10.【答案】D【解析】解:设等比数列{a n }的公比为q ,则q >0,∵a 4•a 8=2a 52,∴a 62=2a 52,∴q 2=2,∴q=,∵a 2=1,∴a 1==.故选:D11.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.12.【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A.【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.二、填空题13.【答案】 9 .【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:914.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.,由得,,∴随机事件“”的概率为.0001()x x k f x e -'==0()0f x '<01x >0k <2315.【答案】 [5,+∞) .【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得 f (x )=x 3,再由条件可得m ≥x 2 在区间[,]上恒成立,求得x 2在区间[,]上的最大值,可得m 的范围.【解答】解:由题意可得 f (x )=x 6=x 3.由f (x )≤mx 在区间[,]上恒成立,可得m ≥x 2 在区间[,]上恒成立,由于x 2在区间[,]上的最大值为 5,故m ≥5,即m 的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.16.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.17.【答案】 (3,1) .【解析】解:由(2m+1)x+(m+1)y ﹣7m ﹣4=0,得即(2x+y ﹣7)m+(x+y ﹣4)=0,∴2x+y ﹣7=0,①且x+y ﹣4=0,②∴一次函数(2m+1)x+(m+1)y ﹣7m ﹣4=0的图象就和m 无关,恒过一定点.由①②,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)18.【答案】 5 【解析】解:由z=x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,﹣1).代入目标函数z=x﹣3y,得z=2﹣3×(﹣1)=2+3=5,故答案为:5.三、解答题19.【答案】【解析】解:依题意,由M=得|M|=1,故M﹣1=从而由=得═=故A(2,﹣3)为所求.【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础. 20.【答案】【解析】解:若p为真,则△=4﹣4m<0,即m>1 …若q为真,则,即m≤﹣2 …∵p∧q为假命题,p∨q为真命题,则p,q一真一假若p真q假,则,解得:m>1 …若p假q真,则,解得:m≤﹣2 …综上所述:m≤﹣2,或m>1 …21.【答案】【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,∵直线AE是圆O所在平面的垂线,∴AD⊥AE,∵AB∩AE=A,∴AD⊥平面ABE,∴AD⊥BE;(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.∵直线AE,CF是圆O所在平面的两条垂线,∴AE∥CF,∥AE⊥AC,AF⊥AC.∵AE=CF=,∴AEFC为矩形,∵AC=2,∴S AEFC=2,作BM⊥AC交AC于点M,则BM⊥平面AEFC,∴V=2V B﹣AEFC=2×≤=.∴多面体EF﹣ABCD体积的最大值为.【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等. 22.【答案】(1)详见解析;(2)详见解析.23.【答案】【解析】解:(1)当p=时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,B⊆A;令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;当p≤4时,应满足,解得p不存在;综上,实数p的取值范围p>4.24.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.。

2018-2019学年北京市昌平区高三(上)期末数学试卷(理科)

2018-2019学年北京市昌平区高三(上)期末数学试卷(理科)

2018-2019学年北京市昌平区高三(上)期末数学试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(★)若集合A={x|x 2+2x<0},B={x||x|>1},则A∩B=()A.{x|-2<x<-1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|1<x<2}2.(★)设x,y满足,那么2x-y的最大值为()A.-3B.-1C.0D.13.(★)如图是一个算法流程图,则输出的k的值为()A.2B.3C.4D.54.(★)设是单位向量,是非零向量,则“⊥”是“•(+ )=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(★★)设P,Q分别为直线(t为参数)和曲线C:(θ为参数)上的点,则|PQ|的最小值为()A.B.C.D.6.(★★★)数列{a n}是等差数列,{b n}是各项均为正数的等比数列,公比q>1,且a 5=b 5,则()A.a3+a7>b4+b6B.a3+a7≥b4+b6C.a3+a7<b4+b6D.a3+a7=b4+b67.(★)《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:在屋内墙角处堆放米,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?已知米堆所形成的几何体的三视图如图所示,一斛米的体积约为1.62立方尺,由此估算出堆放的米约有()A.21斛B.34斛C.55斛D.63斛8.(★★★)设点F 1,F 2分别为椭圆的左、右焦点,点P是椭圆C上任意一点,若使得成立的点恰好是4个,则实数m的值可以是()A.B.3C.5D.8二、填空题(本大题共6小题,每小题5分,共30分)9.(★)已知复数z满足(1-i)z=2i(i是虚数单位),则复数z的共轭复数= .10.(★)已知点F为抛物线y 2=8x的焦点,则点F坐标为;若双曲线(a>0)的一个焦点与点F重合,则该双曲线的渐近线方程是.11.(★★)已知展开式中x 5的系数为21,则实数a的值为.12.(★★)能说明“若点M(a,b)与点N(3,-1)在直线x+y-1=0的同侧,则a 2+b 2>2”是假命题的一个点M的坐标为.13.(★★)已知函数f(x)=sinx若对任意的实数,都存在唯一的实数β∈(0,m),使f(α)+f(β)=0,则实数m的最大值是.14.(★★★)已知函数其中a>0,且a≠1.(i)当a=2时,若f(x)<f(2),则实数x的取值范围是;(ii)若存在实数m使得方程f(x)-m=0有两个实根,则实数a的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(★★)若△ABC的面积为,,且∠A为锐角.(Ⅰ)求cosA的值;(Ⅱ)求的值.16.(★★)如图,在五面体ABCDEF中,四边形ABCD是矩形,平面ADE⊥平面ABCD,.(Ⅰ)求证:AB∥EF;(Ⅱ)求直线BF与平面ADE所成角的正弦值;(Ⅲ)求平面BCF与平面ADE所成锐二面角的余弦值.17.(★★★)某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如,表:满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.假设客户是否满意互相独立,且每种型号汽车客户对于此型号汽车满意的概率与表格中该型号汽车的满意率相等.(Ⅰ)从所有的回访客户中随机抽取1人,求这个客户满意的概率;(Ⅱ)从I型号和V型号汽车的所有客户中各随机抽取1人,设其中满意的人数为ξ,求ξ的分布列和期望;(Ⅲ)用“η1=1”,“η2=1”,“η3=1”,“η4=1”,“η5=1”分别表示I,II,III,IV,V型号汽车让客户满意,“η1=0”,“η2=0”,“η3=0”,“η4=0”,“η5=0”分别表示I,II,III,IV,V型号η1η2,Dη3,Dη4,Dη5的大小关系.18.(★★★★)已知椭圆过点,离心率为.记椭圆C的右焦点为F,过点F且斜率为k的直线交椭圆于P,Q两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若线段PQ的垂直平分线与x轴交于点M(x 0,0),求x 0的取值范围.19.(★★★★)已知函数f(x)=lnx-ax 2+2ax.(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)≤x恒成立,求实数a的取值范围.20.(★★★★)已知集合A={x|x=2n+1,n∈N*},B={x|x=2 n-1,n∈N*},C=A∪B.对于数列{a n},a 1=1,且对于任意n≥2,n∈N*,有a n=min{x∈C|x>a n-1}.记S n为数列{a n}的前n 项和.(Ⅰ)写出a 7,a 8的值;(Ⅱ)数列{a n}中,对于任意n∈N*,存在k n∈N*,使a =2 n-1,求数列{k n}的通项公式;(Ⅲ)数列{a n}中,对于任意n∈N*,存在k∈N *,有a k+1=2n+1.求使得S k+1>27a k+1成立的k的最小值.。

最新-北京市昌平区2018届高三上学期期末质量抽测理科

最新-北京市昌平区2018届高三上学期期末质量抽测理科

昌平区2018-2018学年第一学期高三年级期末质量抽测 数学试卷(理科)(满分150分,考试时间 120分钟)2018.1考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分.2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写.3.答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔.请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分.4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液.保持答题卡整洁,不要折叠、折皱、破损.不得在答题卡上做任何标记.5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)若集合{}2,1,0,1,2Α=--,{}2|1Βx x =>,则=ΑΒA .{|11}x x x <->或B .{}2,2-C .{}2D .{0}【考点】集合的运算【试题解析】所以【答案】B(2) 下列函数中,在区间(0,)+∞上为增函数的是A .y = B. 1y x =C. 1()2xy = D. 12log y x = 【考点】函数的单调性与最值【试题解析】结合函数的图像与单调性易知:只有在区间上为增函数。

【答案】A(3) 已知两点(0,0),(2,0)O A -,以线段OA 为直径的圆的方程是俯视图侧(左)视图正(主)视图 A .22(1)4x y -+= B .22(1)4x y ++= C .22(1)1x y -+= D .22(1)1x y ++= 【考点】圆的标准方程与一般方程 【试题解析】 以线段为直径的圆的圆心为OA 的中点(-1,0),半径为故所求圆的方程为:。

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

北京市昌平区2018届高三上学期期末考试试卷(数学理)word版

北京市昌平区2018届高三上学期期末考试试卷(数学理)word版

昌平区2018-2018学年第一学期高三年级期末质量抽测数 学 试 卷<理科) 2018 .1考生注意事项:1.本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,考试时间 120分钟.2.答题前,考生务必将学校、班级、姓名、考试编号填写清楚.答题卡上第一部分(选择题>必须用2B 铅笔作答,第二部分(非选择题>必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔.b5E2RGbCAP3.修改时,选择题用塑料橡皮擦干净,不得使用涂改液.请保持卡面整洁,不要折叠、折皱、破损.不得在答题卡上作任何标记.p1EanqFDPw4.请按照题号顺序在各题目的答题区域内作答,未在对应的答题区域作答或超出答题区域的作答均不得分. 第Ⅰ卷<选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.>DXDiTa9E3d 1.已知集合,等于A .B .C .D .2. 已知两条直线,且,则=A. B . C . -3 D .33.设,则 A. B .C .D .4. 若某空间几何体的三视图如图所示,则该几何体的体积是 A .12 B .8C .6D .45.从甲、乙等6名同学中挑选3人参加某公益活动,要求甲、乙至少有1人参加,不同的挑选方法共有A .16种B .20 种C . 24 种D .120种RTCrpUDGiT 6.已知、是两个不同平面,、是两条不同直线,下列命题中假命题是 A.若∥,,则B.若∥,,则∥ C .若,, 则∥ D .若,,则7. 某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元. 用同样工时,可以生产最低主视左视图俯视档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是5PCzVD7HxAA.第7档次 B.第8档次 C.第9档次D.第10档次jLBHrnAILg8.已知定义在上的函数满足= 1,为的导函数.已知的图象如图所示,若两个正数满足,则的取值范围是xHAQX74J0XA.( B .C .D .第Ⅱ卷<非选择题共110分)填空题<本大题共6小题,每小题5分,共30分).9.已知函数y= 的最小正周期是,那么正数.LD AYtRyKfE10. 已知向量,,若向量,那么.11.已知过点的直线与圆C :相交的弦长为,则圆C 的圆心坐标是___________ , 直线的斜率为.Zzz6ZB2Ltk 12. 某程序框图如图所示,则输出的.13.已知的展开式中,则;.14. 设函数的定义域为,若存在与无关的正常数,使对一切实数均成立,则称为有界泛函.在函数①,②,③,④,⑤中,属于有界泛函的有__________(填上所有正确的序号> .dvzfvkwMI1三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.> 15.<本小题满分13分) 在中,.<I )求角的大小;<II )若,,求.16.(每小题满分13分>某人进行射击训练,击中目标的概率是,且各次射击的结果互不影响.<Ⅰ)假设该人射击5次,求恰有2次击中目标的概率;<Ⅱ)假设该人每射击5发子弹为一组,一旦命中就停止,并进入下一组练习,否则一直打完5发子弹才能进入下一组练习,求:rqyn14ZNXI①在完成连续两组练习后,恰好共使用了4发子弹的概率;②一组练习中所使用子弹数的分布列,并求的期望.17.<本小题满分14分)如图在四棱锥中,底面是正方形,,垂足为点,,点,分别是,的中点.<I)求证:;<II)求证:平面;<III)若 ,求平面与平面所成二面角的余弦值.18.<本小题满分13分)已知数列是等差数列,,数列的前n项和是,且.<I)求数列的通项公式;<II)求证:数列是等比数列;<III)记,求证:.19.<本小题满分13分)已知函数<).<I)当时,求函数的单调区间;<II)若不等式对恒成立,求a的取值范围.20. (本小题满分14分>已知函数是奇函数,函数与的图象关于直线对称,当时, (为常数>.<I)求的解读式;<II)已知当时,取得极值,求证:对任意恒成立;<III)若是上的单调函数,且当时,有,求证:.昌平区2018-2018学年第一学期高三年级期末质量抽测数学(理科>试卷参考答案及评分标准 2018.1EmxvxOtOco一、选择题(本大题共8小题,每小题5分,共40分.>二、填空题(本大题共6小题,每小题5分,共30分.>9.2 10. 11.<-2,0);SixE2yXPq512. 26 13. 1 ; 1 14.①③⑤6ewMyirQFL三、解答题(本大题共6小题,共80分>15.<本小题满分13分)解:<I)由已知得:,……2分……4分,…………6分<II)由可得:………7分…………8分………10分解得:………11分. ……13分16.<本小题满分13分)解:<I)设射击5次,恰有2次击中目标的事件为.……4分<Ⅱ)①完成两组练习后,恰好共耗用4发子弹的事件为,则. ……8分kavU42VRUs②可能取值为1,2,3,4,5. …… 9分y6v3ALoS89;……11分. ……13分17<本小题满分14分)证明:<I)连接. …… 4分(II>,又…… 7分在,点,分别是,的中点.. (9)分<III),以为原点,建立空间直角坐标系由可得设平面MNF的法向量为 n平面ABCD的法向量为…… 11分xyz可得:解得:令 n …… 13分……14分18.<本小题满分13分)解:<1)由已知解得………………4分<2)由于,①令=1,得解得,当时,②-②得,又,∴数列是以为首项,为公比的等比数列 (9)分<3)由<2)可得……9分……10分,故……………………13分19.<本小题13分)解: 对函数求导得:……………2分(Ⅰ>当时,令解得或解得所以, 单调增区间为和,单调减区间为(-2 ,1> . ……………5分(Ⅱ> 令,即,解得或 6分当时,列表得:↗↗……………8分对于时,因为,所以,∴>0 ……… 10 分对于时,由表可知函数在时取得最小值所以,当时,…… 11分由题意,不等式对恒成立,所以得,解得……………13分20.<本小题满分14分)解:(Ⅰ> 当时,必有,则而若点在的图象上,则关于的对称点必在的图象上,即当时,由于是奇函数,则任取有且又当时,由必有综上,当时. ……5分<Ⅱ)若时取到极值,则必有当时,即又由知,当时,,为减函数,. ……9分<Ⅲ)若在为减函数,则对任意皆成立,这样的实数不存在若为增函数,则可令 .由于在上为增函数,可令,即当时,在上为增函数由,设,则与所设矛盾若则与所设矛盾故必有……14分申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

【数学】北京市昌平区2018届高三(上)期末试卷(理)(word附答案解析版)

【数学】北京市昌平区2018届高三(上)期末试卷(理)(word附答案解析版)

北京市昌平区2018届高三(上)期末数学试卷(理科)一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|﹣2<x<1},B={x|x(x﹣3)>0},则A∩B=()A.{x|x<1或x>3} B.{x|﹣2<x<1}C.{x|﹣2<x<0或x>3} D.{x|﹣2<x<0}2.(5分)||=()A.B.C.﹣1 D.13.(5分)执行如图所示的程序框图,输出的S值为()A.43 B.55 C.61 D.814.(5分)设x,y满足,则z=2x+2y的最大值为()A.B.2 C.4 D.165.(5分)某四棱锥的三视图如图所示,则该四棱锥的四个侧面中,面积的最小值为()A.1 B.C.2 D.26.(5分)已知函数f(x)=e x+e﹣x,则函数f(x)()A.是偶函数,且在(﹣∞,0)上是增函数B.是奇函数,且在(﹣∞,0)上是增函数C.是偶函数,且在(﹣∞,0)上是减函数D.是奇函数,且在(﹣∞,0)上是减函数7.(5分)设,则“cos x<x2”是“cos x<x”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)四个足球队进行单循环比赛(每两队比赛一场),每场比赛胜者得3分,负者得0分,平局双方各得1分.比赛结束后发现没有足球队全胜,且四队得分各不相同,则所有比赛中可能出现的最少平局场数是()A.0 B.1 C.2 D.3二、填空题:共6小题,每小题5分,共30分.9.(5分)(1+x)7的二项展开式中x2的系数为.10.(5分)已知曲线C的极坐标方程为ρ=2sinθ,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,那么曲线C的直角坐标方程为.11.(5分)已知直线l:4x+3y+5=0,点P是圆(x﹣1)2+(y﹣2)2=1上的点,那么点P到直线l的距离的最小值是.12.(5分)已知Rt△ABC,AB=AC=1,点E是AB边上的动点,则的值为;的最大值为.13.(5分)某商业街的同侧有4块广告牌,牌的底色可选用红、蓝两种颜色,若要求任意相邻两块牌的底色不都为红色,则不同的配色方案有种.14.(5分)若函数f(x)=(a>0且a≠1),函数g(x)=f(x)﹣k.①若a=,函数g(x)无零点,则实数k的取值范围为;②若f(x)有最小值,则实数a的取值范围是.三、解答题:共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(13分)已知等差数列{a n}的公差d为1,且a1,a3,a4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列b n=2+n,求数列{b n}的前n项和S n.16.(13分)在△ABC中,.(Ⅰ)求角A的大小;(Ⅱ)若,,求a的值.17.(13分)随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级:(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;(Ⅱ)从两组“痴迷”的同学中随机选出2人,记ξ为选出的两人中甲大学的人数,求ξ的分布列和数学期望E(ξ);(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值与的大小,及方差S2甲与S2乙的大小.(只需写出结论)18.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,△P AB为正三角形,且侧面P AB⊥底面ABCD,E为线段AB的中点,M在线段PD上.(I)当M是线段PD的中点时,求证:PB∥平面ACM;(II)求证:PE⊥AC;(III)是否存在点M,使二面角M﹣EC﹣D的大小为60°,若存在,求出的值;若不存在,请说明理由.19.(14分)已知函数f(x)=ax﹣ln(x+1),a∈R.(I)当a=2时,求曲线y=f(x)在点(0,f(0))处的切线方程;(II)求函数f(x)在区间[0,e﹣1]上的最小值.20.(13分)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.设该数列的前n 项和为S n,规定:若∃m∈N*,使得(p∈N),则称m为该数列的“佳幂数”.(Ⅰ)将该数列的“佳幂数”从小到大排列,直接写出前3个“佳幂数”;(Ⅱ)试判断50是否为“佳幂数”,并说明理由;(III)(i)求满足m>70的最小的“佳幂数”m;(ii)证明:该数列的“佳幂数”有无数个.【参考答案】一、选择题1.D【解析】∵集合A={x|﹣2<x<1},B={x|x(x﹣3)>0}={x|x<0或x>3},∴A∩B={x|﹣2<x<0}.故选:D.2.B【解析】||=||=|1﹣i|=.故选:B.3.C【解析】当n=24时,满足进行循环的条件,S=25,n=18;当n=18时,满足进行循环的条件,S=43,n=12;当n=12时,满足进行循环的条件,S=55,n=6;当n=6时,满足进行循环的条件,S=61,n=0;当n=0时,不满足进行循环的条件,故输出的S值为61,故选:C.4.C【解析】作出x,y满足,表示的平面区域:其中A(0,1),设F(x,y)=x+2y,将直线l:0=x+2y进行平移,观察直线在y轴上的截距变化,可得当l经点A时,目标函数z达到最大值,∴F(x,y)最大值=F(0,1)=2.z=2x+2y的最大值为:4.故选:C5.B【解析】根据三视图可知几何体是一个四棱锥,底面是一个直角梯形,AD⊥AB、AD∥BC,AD=AB=2、BC=1,P A⊥底面ABCD,且P A=2,∴S△P AD==2,S△P AB==2,=,S△PCD===2,∴该四棱锥的四个侧面中,面积的最小值为.故选:B.6.C【解析】函数的定义域是R,关于原点对称,f(﹣x)=e﹣x+e x=f(x),故函数f(x)是偶函数,x<0时,f′(x)=e x﹣e﹣x<0,故f(x)在(﹣∞,0)递减,故选:C.7.A【解析】由x2=x得x=0或x=1,作出函数y=cos x和y=x2和y=x的图象如图,则由图象可知当cos x<x2时,x B<x<,当cos x<x时,x A<x<,∵x A<x B,∴“cos x<x2”是“cos x<x”的充分不必要条件,故选:A8.B【解析】四支足球队进行单循环比赛(每两队比赛一场),共比赛6场;每场比赛胜者得3分,负者得0分,平局双方各得1分;即每场比赛若不平局,则共产生3×6=18分,每场比赛都平局,则共产生2×6=12分;比赛结束后发现没有足球队全胜,且四队得分各不相同,则各队得分分别为:2,3,4,5;或3,4,5,6.如果是3,4,5,6,则每场产生=3分,没有平局产生,但是不可能产生4,5分,与题意矛盾,舍去;因此各队得分分别为:2,3,4,5.第一名得分5:5=3+1+1,为一胜两平;第二名得分4:4=3+1+0,为一胜一平一负;第三名得分3:根据胜场等于负场,只能为三平;第四名得分2:2=1+1+0,为两平一负.则所有比赛中可能出现的最少平局场数是1.故选:B.二、填空题9.21【解析】二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.10.x2+(y﹣1)2=1【解析】曲线C的极坐标方程为ρ=2sinθ,整理得:ρ2=2ρsinθ,转化为:x2+(y﹣1)2=1.故答案为:x2+(y﹣1)2=1.11.2【解析】直线l:4x+3y+5=0,点P是圆(x﹣1)2+(y﹣2)2=1上的点,圆心(1,2)到直线l:4x+3y+5=0的距离d==3,∵圆半径r=1,∴点P到直线l的距离的最小值为:3﹣1=2.故答案为:2.12.﹣1 2【解析】以A点为原点,以AB为x轴,以AC为y轴,建立如图所示的坐标系,∵Rt△ABC,AB=AC=1,∴A(0,0),B(1,0),C(0,1),∵点E是AB边上的动点,∴不妨设E的坐标为(x,0),0≤x≤1,∴=(x,﹣1),=(0,1),=(1,﹣1),∴=﹣1,=x+1≤1+1=2,故答案为:﹣1;2.13.8【解析】根据题意,底色为红色的最多有2块,则分3种情况讨论:①4块广告牌中全部选蓝色为底色,有1种情况,②4块广告牌中有1块底色选红色,其他选蓝色,有C41=4种情况,③4块广告牌中有2块底色选红色,2块底色选蓝色,先排好2块蓝色的,排好后有3个空位,在3个空位中任选2个,安排红色的,有C32=3种情况,则相邻两块牌的底色不都为红色的排法有1+4+3=8种;故答案为:8.14.①[﹣1,1)②(1,3]【解析】①a=时,画出函数f(x)的图象,如图所示:若函数g(x)无零点,则y=k和y=f(x)无交点,结合图象,﹣1≤k<1;②若0<a<1,显然f(x)无最小值,故a>1,结合log a3=1,解得:a=3,故a∈(1,3];故答案为:[﹣1,1),(1,3].三、解答题15.解:(Ⅰ)在等差数列{a n}中,因为a1,a3,a4成等比数,所以,即,解得.因为d=1,所以a1=﹣4,所以数列{a n}的通项公式a n=n﹣5.(Ⅱ)由(Ⅰ)知:a n=n﹣5,所以b n=2+n=2n+n,得S n=(2+22+…+2n)+(1+2+…+n)=+=2n+1﹣2+.16.解:(I)因为,所以cos A≠0,由正弦定理:==,得.又因为C∈(0,π),sin C≠0,所以.又因为A∈(0,π),所以.(II)由,得,由余弦定理a2=b2+c2﹣2bc cos A,得,即,因为,解得a2=4.因为a>0,所以a=2.17.解:(Ⅰ)由图知,甲大学随机选取的40名学生中,“爱好”中华诗词的频率为(0.030+0.020+0.015)×10=0.65,所以从甲大学中随机选出一名学生,“爱好”中华诗词的概率为0.65.(Ⅱ)甲大学随机选取的40名学生中“痴迷”的学生有40×0.005×10=2人,乙大学随机选取的40名学生中“痴迷”的学生有40×0.015×10=6人,所以,随机变量ξ的取值为ξ=0,1,2.所以P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.所以ξ的分布列为:∴ξ的数学期望为E(ξ=0)==.(Ⅲ),S2甲>S2乙.18.证明:(I)连接BD交AC于H点,连接MH,因为四边形ABCD是菱形,所以点H为BD的中点.又因为M为PD的中点,所以MH∥BP.又因为BP⊄平面ACM,MH⊂平面ACM.所以PB∥平面ACM.(II)因为△P AB为正三角形,E为AB的中点,所以PE⊥AB.因为平面P AB⊥平面ABCD,平面P AB∩平面ABCD=AB,PE⊂平面P AB,所以PE⊥平面ABCD.又因为AC⊂平面ABCD,所以PE⊥AC.解:(Ⅲ)因为ABCD是菱形,∠ABC=60°,E是AB的中点,所以CE⊥AB.又因为PE⊥平面ABCD,以E为原点,分别以EB,EC,EP为x,y,z轴,建立空间直角坐标系E﹣xyz,则E(0,0,0),B(1,0,0),,,.假设棱PD上存在点M,设点M坐标为(x,y,z),,则,所以,所以,,设平面CEM的法向量为n=(x,y,z),则,解得.令z=2λ,则,得.因为PE⊥平面ABCD,所以平面ABCD的法向量m=(0,0,1),所以===.因为二面角M﹣EC﹣D的大小为60°,所以,即3λ2+2λ﹣1=0,解得,或λ=﹣1(舍去)所以在棱PD上存在点M,当时,二面角M﹣EC﹣D的大小为60°.19.解:(I)f(x)的定义域为(﹣1,+∞),因为f′(x)=a﹣,a=2,所以f′(0)=2﹣1=1,f(0)=0.所以函数f(x)在点(0,f(0))处的切线方程是y=x.(II)由题意可得:f′(x)=a﹣,(1)当a≤0时,f′(x)<0,所以f(x)在(﹣1,+∞)上为减函数,所以在区间[0,e﹣1]上,f(x)min=f(e﹣1)=a(e﹣1)﹣1.(2)当a>0时,令f′(x)=a﹣=0,则x=﹣1>﹣1,①当﹣1≤0,即a≥1时,对于x∈(0,e﹣1),f′(x)>0,所以f(x)在(0,e﹣1)上为增函数,所以f(x)min=f(0)=0.②当,即时,对于x∈(0,e﹣1),f′(x)<0,所以f(x)在(0,e﹣1)上为减函数,所以f(x)min=f(e﹣1)=a(e﹣1)﹣1.③当,即时,当x变化时,f(x),f′(x)的变化情况如下表:(0,﹣1)﹣1所以f(x)min=f(﹣1)=a(﹣1)﹣ln=1﹣a+ln a,综上,当时,f(x)min=a(e﹣1)﹣1;当时,f(x)min=1﹣a+ln a;当a≥1时,f(x)min=0.20.解:(Ⅰ)由前3个数为1,1,2,则S1=20=1,S2=21=1+1=2,S3=22=1+1+2=4,故前3个“佳幂数为,1,2,3;(Ⅱ)由题意可得,数列如下:第1组:1,第2组:1,2;第3组:1,2,4;…第k组:1,2,4,…,2k﹣1.则该数列的前项的和为:,①当时,k≤9,则,由于210<210+20<211,对∀p∈N,,故50不是“佳幂数”.(III)(i)在①中,要使,有k≥12,此时,所以k+2是第k+1组等比数列1,2,4,…,2k的部分项的和,设k+2=1+2+…+2t﹣1=2t﹣1,t∈N*.所以k=2t﹣3≥12,则t≥4,此时k=24﹣3=13,所以对应满足条件的最小“佳幂数”.(ii)由(i)知:k+2=1+2+…+2t﹣1=2t﹣1,t∈N*.当t≥2,且取任意整数时,可得“佳幂数”,所以,该数列的“佳幂数”有无数个.。

北京市区届高三上学期期末数学(理)试题分类汇编:平面向量

北京市区届高三上学期期末数学(理)试题分类汇编:平面向量

北京市2018届高三上学期期末数学试卷分类汇编平面向量一、填空.选择题1.【北京市昌平区2018届高三上学期期末理】在RtAABC 中,ZC = 90,,内任一点•则AD EP 的取值范闱是【答案】2o [-9,9]tun uni mm ur mini mm ur mm i uii 、 i【解读】(AB — AC)・ AD = CB&AC + CD) = CB<D = -CB* =-x22 = 2・2 2将直角三角形放入直角坐标系中,则A(0,4),B(2,0),E(l,2),D(l,0),设P(x, y),则301 UUL17— ZAD-EP = (l,-4)gx-l 、y-2)= x-4y+7 ,令 z= x-4y+7 > 贝ij y= —x+ ------------------------ » 做4 4直线y=2_x,平移直线y = ^x,由图象可知当直线y=Zx+ — 经过点A 时,直线的4 4 4 4截距最大,但此时zAi 小,当直线 经过点B 时,直线的截距最小,此时zMAo 即Z 的瑕LU.UU UULLU.UU IIULAC = 4,BC = 2D 是BC 的中点l&UU LU.M1 IU.UU那么(AB-AC)* AD = AB 的中点,P 是卜值为z = —4x4+7 = —9 •绘人值为z = 2+7 = 9,即一9< AD-EP <9 0 ADEP 的2.【北京市朝阳区2018届高三上学期期末理】在直角三角形ABC中,ZACB = 90° ,AC = BC = 2,点P是斜边AB上的一个三等分点,则目• CB + CP CA=【答案】4B【解读】■由题意知三角形为等腰直角三角形。

因为P是斜边AB上的一个二等分点,所以AP= -AB,所以CP = C A+ AP = C A+ - AB , 3 3CPLC^~CA+- AB CA4 丄x2>/2 x2 cos 135 兰 ,3 3 3CPTB = CACB + iAB CB = -x2^2 x2cos45° =- 3 3 3—————8 4CP・ CB + CP ・CA=— + — = 4 。

2018届北京市昌平区高三(上)期末数学试卷(理科)(含答案)

2018届北京市昌平区高三(上)期末数学试卷(理科)(含答案)

2018届北京市昌平区高三(上)期末数学试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知全集U=R,集合A={x|x2>1},那么∁U A=()A.[﹣1,1] B.[1,+∞)C.(﹣∞,1] D.(﹣∞,﹣1]∪[1,+∞)2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=e x B.y=sinx C.D.y=x33.执行如图所示的程序框图,若输入的x值为1,则输出的k值为()A.3 B.4 C.5 D.64.设,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c5.一个几何体的三视图如图所示,则这个几何体的直观图为()A.B.C.D.6.已知函数的图象如图所示,则函数f(x)的解析式的值为()A.B.C.D.7.在焦距为2c的椭圆中,F1,F2是椭圆的两个焦点,则“b<c”是“椭圆M上至少存在一点P,使得PF1⊥PF2”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.若函数f(x)满足:集合A={f(n)|n∈N*}中至少存在三个不同的数构成等差数列,则称函数f(x)是等差源函数.判断下列函数:①y=log2x;②y=2x;③y=中,所有的等差源函数的序号是()A.①B.①② C.②③ D.①③二、填空题(本大题共6小题,每小题5分,共30分.)9.设 a∈R,若i(1+ai)=2+i,则a= .10.已知正项等比数列{a n}中,S n为其前n项和,a1=2,a2+a3=12,则S5= .11.若x,y满足则2x+y的最大值为.12.已知角α的终边过点P(3,4),则cos2α= .13.在矩形ABCD中,AB=2,BC=1,那么= ;若E为线段AC上的动点,则的取值范围是.14.设函数①若a=1,则f(x)的零点个数为;②若f(x)恰有1个零点,则实数a的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)已知△ABC是等边三角形,D在BC的延长线上,且CD=2,.(Ⅰ)求AB的长;(Ⅱ)求sin∠CAD的值.16.(13分)A、B两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:(I)试估计B班的学生人数;(II)从A班和B班抽出的学生中,各随机选取一人,A班选出的人记为甲,B班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定:当甲的测试数据比乙的测试数据低时,记ξ=﹣1,当甲的测试数据与乙的测试数据相等时,记ξ=0,当甲的测试数据比乙的测试数据高时,记ξ=1.求随机变量ξ的分布列及期望.(III)再从A、B两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).17.(14分)如图1,四边形ABCD为正方形,延长DC至E,使得CE=2DC,将四边形ABCD 沿BC折起到A1BCD1的位置,使平面A1BCD1⊥平面BCE,如图2.(I)求证:CE⊥平面A1BCD1;(II)求异面直线BD1与A1E所成角的大小;(III)求平面BCE与平面A1ED1所成锐二面角的余弦值.18.(13分)设函数f(x)=ln(1+ax)+bx,g(x)=f(x)﹣bx2.(Ⅰ)若a=1,b=﹣1,求函数f(x)的单调区间;(Ⅱ)若曲线y=g(x)在点(1,ln3)处的切线与直线11x﹣3y=0平行.(i)求a,b的值;(ii)求实数k(k≤3)的取值范围,使得g(x)>k(x2﹣x)对x∈(0,+∞)恒成立.19.(14分)椭圆C的焦点为F1(﹣,0),,且点在椭圆C 上.过点P(0,1)的动直线l与椭圆相交于A,B两点,点B关于y轴的对称点为点D(不同于点A).(I)求椭圆C的标准方程;(II)证明:直线AD恒过定点,并求出定点坐标.20.(13分)已知Ω是集合{(x,y)|0≤x≤6,0≤y≤4}所表示图形边界上的整点(横、纵坐标都是整数的点)的集合,集合D={(6,0),(﹣6,0),(0,4),(0,﹣4),(4,﹣4),(﹣4,4),(2,﹣2),(﹣2,2)}.规定:(1)对于任意的a=(x1,y1)∈Ω,b=(x2,y2)∈D,a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2)(2)对于任意的k∈N*,序列a k,b k满足:①a k∈Ω,b k∈D②a1=(0,0),a k=a k﹣1+b k﹣1,k≥2,k∈N*(Ⅰ)求a2(Ⅱ)证明:∀k∈N*,a k≠(5,0)(Ⅲ)若a k=(6,2),写出满足条件的k的最小值及相应的a1,a2,…,a k.2016-2017学年北京市昌平区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知全集U=R,集合A={x|x2>1},那么∁U A=()A.[﹣1,1] B.[1,+∞)C.(﹣∞,1] D.(﹣∞,﹣1]∪[1,+∞)【考点】补集及其运算.【分析】根据全集R及A,求出A的补集即可.【解答】解:全集U=R,集合A={x|x2>1}=(﹣∞,﹣1)∪(1,+∞),∁U A=[﹣1,1],故选:A【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=e x B.y=sinx C.D.y=x3【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据函数奇偶性和单调性的定义和性质进行判断即可.【解答】解:A.y=e x是非奇非偶函数,不满足条件.B.y=sinx是奇函数,在定义域上不是单调函数,不满足条件.C.是非奇非偶函数,不满足条件.D.y=x3是奇函数,定义域上单调递增,满足条件.故选:D【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.3.执行如图所示的程序框图,若输入的x值为1,则输出的k值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】根据程序框图进行模拟计算即可得到结论.【解答】解:若输入x=1.则第一次,x=1+5=6,不满足条件,x>23,k=1,第二次,x=6+5=11,不满足条件,x>23,k=2,第三次,x=11+5=16,不满足条件,x>23,k=3,第四次,x=16+5=21,不满足条件,x>23,k=4,第五次,x=21+5=26,满足条件,x>23,程序终止,输出k=4,故选:B【点评】本题主要考查程序框图的计算,根据查询进行模拟计算是解决本题的关键.4.设,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵e﹣2∈(0,),>1,ln2∈(,1),∴>ln2>e﹣2.∴a<c<b.故选:C.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.一个几何体的三视图如图所示,则这个几何体的直观图为()A.B.C.D.【考点】由三视图求面积、体积.【分析】由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,而且有一侧棱垂直与底面,结合俯视图,可得结论.【解答】解:由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,而且有一侧棱垂直与底面,结合俯视图,可知B满足,故选B.【点评】本题考查三视图与直观图的转化,考查数形结合的数学思想,比较基础.6.已知函数的图象如图所示,则函数f(x)的解析式的值为()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据图象求出A,ω和φ,即可求函数f(x)的解析式;【解答】解:(1)由题设图象知,周期T=2×()=π,即.∵点(0,)在函数图象上,可得:2sin(2×0+φ)=,得:sinφ=,∵|φ|<,∴φ=.故函数f(x)的解析式为f(x)=2sin(2x+).故选B.【点评】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.7.在焦距为2c的椭圆中,F1,F2是椭圆的两个焦点,则“b<c”是“椭圆M上至少存在一点P,使得PF1⊥PF2”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】求出椭圆M上至少存在一点P,使得PF1⊥PF2的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:若椭圆M上至少存在一点P,使得PF1⊥PF2,则椭圆与半径R=c的圆满足条件.R≥b,即b≤c,则b<c”是“椭圆M上至少存在一点P,使得PF1⊥PF2”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,利用椭圆的性质是解决本题的关键.8.若函数f(x)满足:集合A={f(n)|n∈N*}中至少存在三个不同的数构成等差数列,则称函数f(x)是等差源函数.判断下列函数:①y=log2x;②y=2x;③y=中,所有的等差源函数的序号是()A.①B.①② C.②③ D.①③【考点】等差数列的通项公式.【分析】利用等差源函数的定义、等差数列的定义即可判断出结论.【解答】解:①∵log21,log22,log24构成等差数列,∴y=log2x是等差源函数;②y=2x不是等差源函数,因为若是,则2×2p=2m+2n,则2p+1=2m+2n,∴2p+1﹣n=2m﹣n+1,左边是偶数,右边是奇数,故y=2x+1不是等差源函数;③假设a,b,c>0,,则2a=b+c,因此只要满足:a,b,c>0,2a=b+c,则y=是等差源函数.综上可得:只有①③正确.故选:D.【点评】本题考查了等差源函数的定义、等差数列的定义,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共6小题,每小题5分,共30分.)9.设 a∈R,若i(1+ai)=2+i,则a= ﹣2 .【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵i(1+ai)=2+i,∴i﹣a=i+2,∴﹣a=2,解得a=﹣2.故答案为:﹣2.【点评】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题.10.已知正项等比数列{a n}中,S n为其前n项和,a1=2,a2+a3=12,则S5= 32 .【考点】等比数列的前n项和.【分析】根据等比数列的通项公式结合求和公式进行计算即可.【解答】解:设等比数列的公比为q,则q>0,由a1=2,a2+a3=12得2q+2q2=12,即q2+q﹣6=0得q=2或q=﹣3,(舍),则S5===62,故答案为:62.【点评】本题主要考查等比数列的应用,根据等比数列的通项公式和前n项和公式是解决本题的关键.11.若x,y满足则2x+y的最大值为 6 .【考点】简单线性规划.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).设z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大,而A(3,0),代入目标函数z=2x+y得z=3×2+0=6.即目标函数z=2x+y的最大值为6.故答案为:6.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.12.已知角α的终边过点P(3,4),则cos2α= .【考点】二倍角的余弦;任意角的三角函数的定义.【分析】先利用三角函数的定义,求出cosα,sinα的值,再利用二倍角的余弦公式,即可求得结论.【解答】解:由题意,∵角α的终边过点P(3,4),∴cosα=,sinα=∴cos2α=cos2α﹣sin2α==故答案为:【点评】本题重点考查三角函数的定义,考查二倍角的余弦公式,正确运用公式是解题的关键.13.在矩形ABCD中,AB=2,BC=1,那么= 4 ;若E为线段AC上的动点,则的取值范围是[﹣4,1] .【考点】平面向量数量积的运算.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,求得=•(﹣)=﹣4,求得•的范围,可得的取值范围.【解答】解:在矩形ABCD中,AB=2,BC=1,则cos∠CAB=,那么=AC•AB•cos∠CAB=•2•=4;若E为线段AC上的动点,则=•(﹣)=•﹣=﹣4;当点E和点A重合时,取得最小值为0,当点E和点C重合时,取得最大值为=5,故的取值范围是[﹣4,1],故答案为:4;[﹣4,1].【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于基础题.14.设函数①若a=1,则f(x)的零点个数为 2 ;②若f(x)恰有1个零点,则实数a的取值范围是(﹣∞,﹣3).【考点】分段函数的应用.【分析】把函数y=﹣(x+3)(x﹣1),y=2x﹣2的图象画在同一直角坐标系中.直线x=a在平移过程中,可得到函数f(x)与x轴的不同交点个数.【解答】解:把函数y=﹣(x+3)(x﹣1),y=2x﹣2的图象画在同一直角坐标系中.如图所示:直线x=a在平移过程中,可得到函数f(x)与x轴的不同交点个数,①若a=1,则f(x)的零点个数为:2②若f(x)恰有1个零点,则实数a的取值范围是:a<﹣3.故答案为:2,(﹣∞,﹣3)【点评】题主要考查函数的图象的交点以及数形结合方法,数形结合是数学解题中常用的思想方法,属于基础题.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)(2016秋•昌平区期末)已知△ABC是等边三角形,D在BC的延长线上,且CD=2,.(Ⅰ)求AB的长;(Ⅱ)求sin∠CAD的值.【考点】余弦定理.【分析】(Ⅰ)设AB=x.由△ABC是等边三角形,可求∠ABC的值,利用三角形面积公式可得x2+2x﹣24=0,进而解得AB的值.(Ⅱ)由余弦定理可求AD的值,进而利用正弦定理可求sin∠CAD的值.【解答】(本小题满分13分)解:(Ⅰ)设AB=x.因为△ABC是等边三角形,所以.因为,所以.即x2+2x﹣24=0.所以x=4,x=﹣6(舍).所以AB=4.…(Ⅱ)因为AD2=AB2+BD2﹣2AB•BDcos∠ABC,所以.所以.在△ACD中,因为,所以.…(13分)【点评】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了转化思想和数形结合思想,属于基础题.16.(13分)(2016秋•昌平区期末)A、B两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:(I)试估计B班的学生人数;(II)从A班和B班抽出的学生中,各随机选取一人,A班选出的人记为甲,B班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定:当甲的测试数据比乙的测试数据低时,记ξ=﹣1,当甲的测试数据与乙的测试数据相等时,记ξ=0,当甲的测试数据比乙的测试数据高时,记ξ=1.求随机变量ξ的分布列及期望.(III)再从A、B两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).【考点】离散型随机变量及其分布列;茎叶图.【分析】(Ⅰ)由题意可知,抽出的13名学生中,来自B班的学生有7名.根据分层抽样方法,能求出B班的学生人数.(Ⅱ)由题意知ξ的可能取值为﹣1,0,1,分别求出相应的概率,由此能求出ξ的概率分布列及期望.(Ⅲ)利用数学期望的性质能求出μ1>μ0.【解答】(本小题满分13分)解:(Ⅰ)由题意可知,抽出的13名学生中,来自B班的学生有7名.根据分层抽样方法,B班的学生人数估计为(人).…(Ⅱ)由题意知ξ的可能取值为﹣1,0,1,,,,则ξ的概率分布列为:.…(11分)(Ⅲ)μ1>μ0.…(13分)【点评】本题考查分层抽样的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.17.(14分)(2016秋•昌平区期末)如图1,四边形ABCD为正方形,延长DC至E,使得CE=2DC,将四边形ABCD沿BC折起到A1BCD1的位置,使平面A1BCD1⊥平面BCE,如图2.(I)求证:CE⊥平面A1BCD1;(II)求异面直线BD1与A1E所成角的大小;(III)求平面BCE与平面A1ED1所成锐二面角的余弦值.【考点】二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的判定.【分析】(Ⅰ)推导出CE⊥BC,CE⊥平面A1BCD1.(Ⅱ)法一:连接A1C.推导出A1C⊥BD1,CE⊥BD1,从而BD1⊥A1E.由此能求出异面直线BD1与A1E所成的角.法二:以C为坐标原点,建立空间直角坐标系,利用向量法能求出异面直线BD1与A1E所成的角.(Ⅲ)求出平面BCE的法向量和平面A1D1E的法向量,利用向量法能求出平面BCE与平面A1ED1所成的锐二面角的余弦值.【解答】(本小题满分14分)证明:(Ⅰ)因为平面A1BCD1⊥平面BCE,且平面A1BCD1∩平面BCE=BC,四边形ABCD为正方形,E在DC的延长线上,所以CE⊥BC.因为CE⊂平面BCE,所以CE⊥平面A1BCD1.…解:(Ⅱ)法一:连接A1C.因为A1BCD1是正方形,所以A1C⊥BD1.因为CE⊥平面A1BCD1,所以CE⊥BD1.因为A1C∩CE=C,所以BD1⊥平面A1CE.所以BD1⊥A1E.所以异面直线BD1与A1E所成的角是90°.…(9分)法二:以C为坐标原点,建立空间直角坐标系如图所示.设CD=1,则CE=2.则C(0,0,0),B(1,0,0),E(0,2,0),D1(0,0,1),A1(1,0,1).所以.因为,所以.所以异面直线BD1与A1E所成的角是90°.…(9分)(Ⅲ)因为CD1⊥平面BCE,所以平面BCE的法向量.设平面A1D1E的法向量.因为,所以,即.设y=1,则z=2.所以.因为所以平面BCE与平面A1ED1所成的锐二面角的余弦值为.…(14分)【点评】本题考查线面垂直的证明,考查异面直线所成角的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.(13分)(2016秋•昌平区期末)设函数f(x)=ln(1+ax)+bx,g(x)=f(x)﹣bx2.(Ⅰ)若a=1,b=﹣1,求函数f(x)的单调区间;(Ⅱ)若曲线y=g(x)在点(1,ln3)处的切线与直线11x﹣3y=0平行.(i)求a,b的值;(ii)求实数k(k≤3)的取值范围,使得g(x)>k(x2﹣x)对x∈(0,+∞)恒成立.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,通过解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)(i)求出g(x)的导数,得到关于a,b的方程组,解出即可;(ii)问题转化为g(x)﹣k(x2﹣x)>0对x∈(0,+∞)恒成立.令F(x)=g(x)﹣k (x2﹣x),求出函数的导数,通过讨论k的范围,求出函数的单调区间,从而确定k的范围即可.【解答】解:(Ⅰ)当a=1,b=﹣1时,f(x)=ln(1+x)﹣x,(x>﹣1),则.当f'(x)>0时,﹣1<x<0;当f'(x)<0时,x>0;所以f(x)的单调增区间为(﹣1,0),单调减区间为(0,+∞).…(Ⅱ)( i)因为g(x)=f(x)﹣bx2=ln(1+ax)+b(x﹣x2),所以.依题设有即解得.…(8分)( ii))所以.g(x)>k(x2﹣x)对x∈(0,+∞)恒成立,即g(x)﹣k(x2﹣x)>0对x∈(0,+∞)恒成立.令F(x)=g(x)﹣k(x2﹣x).则有.①当1≤k≤3时,当x∈(0,+∞)时,F'(x)>0,所以F(x)在(0,+∞)上单调递增.所以F(x)>F(0)=0,即当x∈(0,+∞)时,g(x)>k(x2﹣x);②当k<1时,当时,F'(x)<0,所以F(x)在上单调递减,故当时,F(x)<F(0)=0,即当x∈(0,+∞)时,g(x)>k(x2﹣x)不恒成立.综上,k∈[1,3].…(13分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.19.(14分)(2016秋•昌平区期末)椭圆C的焦点为F1(﹣,0),,且点在椭圆C上.过点P(0,1)的动直线l与椭圆相交于A,B两点,点B关于y轴的对称点为点D(不同于点A).(I)求椭圆C的标准方程;(II)证明:直线AD恒过定点,并求出定点坐标.【考点】椭圆的简单性质.【分析】(Ⅰ)法一:由题意可得关于a,b,c的方程组,解得即可,法二:直接根据椭圆的定义求出a的值,以及c的值,问题得以解决,(Ⅱ)法一:直线方程与椭圆方程联立方程组,根据韦达定理,以及利用判断出存在定点Q 满足条件,则Q(0,2),再根据斜率的即可判断A,D,Q三点共线.即直线AD恒过定点,定点坐标为Q(0,2).法二:直线方程与椭圆方程联立方程组,根据韦达定理,求出直线AD的方程,再判断过定点.【解答】解:( I)法一设椭圆C的标准方程为.由已知得,解得.所以椭圆C的方程为+=1.法二设椭圆c的标准方程为.由已知得,.所以a=2,b2=a2﹣c2=2.所以椭圆c的方程为为+=1.( II)法一当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.由得(2k2+1)x2+4kx﹣2=0.设A(x1,y1),B(x2,y2).则特殊地,当A为(2,0)时,k=﹣,所以2x2=﹣,x2=﹣,y2=,即B(﹣,)所以点B关于y轴的对称点D(,),则直线AD的方程为y=﹣x+2.又因为当直线l斜率不存时,直线AD的方程为x=0,如果存在定点Q满足条件,则Q(0,2).所以K QA===k﹣,K QB==﹣k+,又因为,所以K QA=K QB,即A,D,Q三点共线.即直线AD恒过定点,定点坐标为Q(0,2).法二( II)①当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.由,可得(1+2k2)x2+4kx﹣2=0.设A(x1,y1),B(x2,y2),则D(﹣x2,y2).所以因为,所以直线AD的方程为:.所以,=,=,=,=,=,=.因为当x=0,y=2,所以直线MD恒过(0,2)点.②当k不存在时,直线AD的方程为x=0,过定点(0,2).综上所述,直线AD恒过定点,定点坐标为(0,2).【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查了推理能力与计算能力,属于中档题.20.(13分)(2016秋•昌平区期末)已知Ω是集合{(x,y)|0≤x≤6,0≤y≤4}所表示图形边界上的整点(横、纵坐标都是整数的点)的集合,集合D={(6,0),(﹣6,0),(0,4),(0,﹣4),(4,﹣4),(﹣4,4),(2,﹣2),(﹣2,2)}.规定:(1)对于任意的a=(x1,y1)∈Ω,b=(x2,y2)∈D,a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2)(2)对于任意的k∈N*,序列a k,b k满足:①a k∈Ω,b k∈D②a1=(0,0),a k=a k﹣1+b k﹣1,k≥2,k∈N*(Ⅰ)求a2(Ⅱ)证明:∀k∈N*,a k≠(5,0)(Ⅲ)若a k=(6,2),写出满足条件的k的最小值及相应的a1,a2,…,a k.【考点】数学归纳法.【分析】(Ⅰ)根据新定义即可求出a2=(6,0)或(0,4),(Ⅱ)利用反证法即可证明,(Ⅲ)由新定义可得k min=5,相应的a1,a2,…,a k.【解答】解:(Ⅰ)对于任意的b=(x2,y2)∈D,a1+b=(0,0)+(x2,y2)=(x2,y2)若(x2,y2)∈Ω,则(x2,y2)=(6,0),或(x2,y2)=(0,4),故a2=(6,0)或(0,4),(Ⅱ)证明:假设命题不成立,即∃k∈N*,使a k=(5,0)即∃b i∈D,i=1,2,…,k﹣1(k≥2),使a1+=a k,化简得=(5,0),所以存在m,n,p∈Z,且m+n+p=k﹣1,使6m+4n+2p=5.又因为6m+4n+2p=2(3m+2n+p)是偶数,而5是奇数,与6m+4n+2p=5矛盾,故假设不成立,即:∀k∈N*,a k≠(5,0),(Ⅲ)k min=5,a1=(0,0),a2=(0,4),a3=(4,0),a4=(4,4),a5=(6,2).【点评】本题考查了新定义的知识的应用,关键是读懂新定义,以及反证法,属于中档题.。

北京市区届高三上学期期末数学(理)试题分类汇编:三角函数

北京市区届高三上学期期末数学(理)试题分类汇编:三角函数

北京市2018届高三上学期期末数学试卷分类汇编三角函数一、选择、填空题1.【北京市昌平区2018届高三上学期期末理】在AABC中,若b=2V2 , c=l , tanB=M,贝ij a =.【答案】3【解读】由tanB = 2V2 >0, JUO <B < —,得sillB = , cosB = i ,由余弦定理可2 3 3得CO sB= a +c~~b~ =即犷+]_8 =丄整浬得3a2 — 2a —21 = 0 ,解得a = 3或2ac 3 2a 3 7a =—(舍去)。

32.【北京市东城区2018届高三上学期期末理】若sin a =--,且tail a > 0 ,则5cosa =___ •4【答案】一上5【解读】因为山10 = -^<0, tail a > 0所以a为第三象限,所以cosavO,即5L 4cosa = -Jl-(-—) = -- o3.【北京市房山区2018届高三上学期期末理】在AABC中,角AB,C所对的边分别为a,b,c, A=-,a = >/13,b = 3,则。

= _________ , △ABC3的面积等于—.【答案】4, 3x54.【北京市丰台区2018届高三上学期期末理】函数y = 2sin(ft«+ 0)在一个周期内的图象如图所示,则此函数的解读式町能是【答案】B【解读】由图象可知所以函数的周期T 二;r,又T = —= ,所以2 8 8 2 0)a )= 2 o 所以 y = 2sin (2x+0), 又 y= f (兰■) = 2sin (2x 彳■+©)= 2 , 所 以 8 8 sin (兰+0) = 1 , 即 —+(p= — + 2k7r,keZ , 所 以(p= —+21ar , 所 以 4 4 24 y = 2sin (2x+扌),选B.5. 【北京山•石景山区2018届高三上学期期末理】在AABC 中,若 a=2,ZB = 60°,b=>/7 •则BC 边上的高等于 _____________【答案】【解读】由余弦定理得b —356。

2018-2019学年北京市昌平区高三(上)期末数学试卷(文科)(解析版)

2018-2019学年北京市昌平区高三(上)期末数学试卷(文科)(解析版)

2018-2019学年北京市昌平区高三(上)期末数学试卷(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)若集合A={x|x2+2x≤0},B={﹣2,﹣1,0,1,2},则A∩B=()A.{﹣1}B.{1}C.{0,1,2}D.{﹣2,﹣1,0} 2.(5分)已知数列{a n},a2=1,,则a1+a3的值为()A.4B.5C.6D.83.(5分)若x,y满足,则2x+y的最小值为()A.8B.C.2D.﹣14.(5分)如图是一个算法流程图,则输出的k的值为()A.2B.3C.4D.55.(5分)已知a,b∈R,则“a<b”是“log2a<log2b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知向量,满足||=1,||=2,||=,那么与的夹角为()A.B.C.D.7.(5分)《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:在屋内墙角处堆放米,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?已知米堆所形成的几何体的三视图如图所示,一斛米的体积约为1.62立方尺,由此估算出堆放的米约有()A.21斛B.34斛C.55斛D.63斛8.(5分)现有A1,A2,…,A5这5个球队进行单循环比赛(全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场).当比赛进行到一定阶段时,统计A1,A2,A3,A4这4个球队已经赛过的场数分别为:A1队4场,A2队3场,A3队2场,A4队1场,则A5队比赛过的场数为()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)已知复数z满足(i是虚数单位),则复数z的共轭复数=.10.(5分)已知抛物线y2=4x上一点M到其焦点的距离为5,则点M到y轴的距离为.11.(5分)为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为.12.(5分)在锐角△ABC中,AB=2,AC=3.若△ABC的面积为,则∠A=;BC=.13.(5分)能说明“若点M(a,b)与点N(5,5)在直线x+y﹣2=0的同侧,则a+b>4”是假命题的一个点M的坐标为.14.(5分)已知函数其中a>0,且a≠1.(i)当a=2时,若f(x)<4,则实数x的取值范围是;(ii)若存在实数m使得方程f(x)﹣m=0有两个实根,则实数a的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(13分)设{a n}是各项均为正数的等比数列,且a1=1,a2+a3=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)求lna1+lna2+…+lna n.16.(13分)已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若f(x)在区间上的最小值为﹣2,求m的最大值.17.(13分)某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.(Ⅰ)从III型号汽车的回访客户中随机选取1人,则这个客户不满意的概率为;(将结果直接填写在答题卡的相应位置上)(Ⅱ)从所有的客户中随机选取1个人,估计这个客户满意的概率;(Ⅲ)汽车公司拟改变投资策略,这将导致不同型号汽车的满意率发生变化.假设表格中只有两种型号汽车的满意率数据发生变化,那么哪种型号汽车的满意率增加0.1,哪种型号汽车的满意率减少0.1,使得获得满意的客户人数与样本中的客户总人数的比值达到最大?(只需写出结论)18.(14分)如图,在五面体ABCDEF中,四边形ABCD是边长为2的正方形,平面ADE ⊥平面ABCD,.(Ⅰ)求证:CD∥&平面ABFE;(Ⅱ)求证:平面ABFE⊥平面CDEF;(Ⅲ)在线段CD上是否存在点N,使得FN⊥平面ABFE?说明理由.19.(13分)已知函数f(x)=.(Ⅰ)若a=,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若0<a<e,判断函数f(x)的零点个数,并说明理由.20.(14分)已知椭圆过点,且离心率为.设A,B 为椭圆C的左、右顶点,P为椭圆上异于A,B的一点,直线AP,BP分别与直线l:x =4相交于M,N两点,且直线MB与椭圆C交于另一点H.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求证:直线AP与BP的斜率之积为定值;(Ⅲ)判断三点A,H,N是否共线,并证明你的结论.2018-2019学年北京市昌平区高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.【解答】解:A={x|﹣2≤x≤0};∴A∩B={﹣2,﹣1,0}.故选:D.2.【解答】解:数列{a n},a2=1,,可得a1+a2=2,a2+a3=4,解得a1=1,a3=3,a1+a3=4.故选:A.3.【解答】解:由z=2x+y,得y=﹣2x+z作出x,y满足,对应的平面区域如图:由图象可知当直线y=﹣2x+z过点A时,直线y=﹣2x+z的在y轴的截距最小,此时z 最小,由,得A(0,2),此时z=2×0+2=2,故选:C.4.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故选:B.5.【解答】解:∵log2a<log2b,∴0<a<b,∴“a<b”是“log2a<log2b”的必要不充分条件,故选:B.6.【解答】解:由||=,得:2+2+2=3,即2+2||||cosθ+2=3,又||=1,||=2,所以cosθ=﹣,又θ∈[0,π],所以θ=,故选:C.7.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5=,∵1斛米的体积约为1.62立方,∴÷1.62≈21,故选:A.8.【解答】解:根据题意,A1,A2,A3,A4,A5五支球队进行单循环比赛,已知A1队赛过4场,所以A1队必须和A2,A3,A4,A5这四个球队各赛一场,已知A2队赛过3场,A2队已和A1队赛过1场,那么A2队只能和A3,A4,A5中的两个队比赛,又知A4队只赛过一场(也就是和A1队赛过的一场),所以A2队必须和A3、A5各赛1场,这样满足A3队赛过2场,从而推断A5队赛过2场.故选:B.二、填空题(本大题共6小题,每小题5分,共30分)9.【解答】解:∵=,∴.故答案为:﹣1﹣i.10.【解答】解:抛物线y2=4x的焦点坐标(1,0),抛物线y2=4x上的一点M到该抛物线的焦点F的距离|MF|=5,则M到准线的距离为5,则点M到y轴的距离为:4.故答案为:4.11.【解答】解:由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3,故a=0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900,故答案为:900.12.【解答】解:∵AB=2,AC=3.若△ABC的面积为=AB•AC•sin A=,∴解得:sin A=,∵A为锐角,∴A=60°,∴BC===.故答案为:60°,.13.【解答】解:点M(a,b)与点N(5,5)在直线x+y﹣2=0的同侧,则(a+b﹣2)(5+5﹣2)>0,∴a+b>2,不能得出a+b>4,当点M的坐标为(2,1)时,a+b>4是假命题.故答案为:(2,1)[或(1,2),(0,3),(3,0)](答案不唯一).14.【解答】解:(i)当a=2时,或,解得x<2,故f(x)<4,则实数x的取值范围是(﹣∞,2);(ii)当0<a<1时,函数f(x)的大致图象为:当x>1时,函数f(x)=a x为减函数,则0<f(x)<f(1)=a,当x≤1时,函数f(x)=x+为增函数,则f(x)<f(1)=1+,此时存在实数m使得方程f(x)﹣m=0有两个实根,当a>1时,当x>1时,函数f(x)=a x为增函数,则f(x)>f(1)=a,当x≤1时,函数f(x)=x+为增函数,则f(x)<f(1)=1+,如图所示:若存在实数m使得方程f(x)﹣m=0有两个实根,则需要满足1+>a,解得1<a<2,综上所述a的取值范围为(0,1)∪(1,2)故答案为:(﹣∞,2),(0,1)∪(1,2)三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.【解答】(本小题满分13分)解:(Ⅰ)设等比数列{a n}的公比为q,因为a2+a3=6,所以,又a1=1,所以q2+q=6.即q=2或q=﹣3(舍).所以.……(5分)(Ⅱ)由(I)知,lna1=0,因为,所以{lna n}是以0为首项,公差为ln2的等差数列.所以lna1+lna2+…+lna n=.所以(n∈N*).……(13分)16.【解答】解:(Ⅰ)==sin2x+cos2x=2sin(2x+).由2kπ﹣≤2x+≤2kπ+,求得.所以f(x)的单调递增区间是.(Ⅱ)在区间上,∴2x+∈[2m+,].要使得f(x)在区间上的最小值为﹣2,2sin(2x+)在区间上的最小值为﹣1,∴2m+≤﹣,∴m≤﹣,即m的最大值为﹣.17.【解答】(本小题满分13分)解:(Ⅰ)从III型号汽车的回访客户中随机选取1人,则这个客户不满意的概率为p=1﹣0.6=0.4.故答案为:0.4.……(3分)(Ⅱ)由题意知,样本中的回访客户的总数是:250+100+200+700+350=1600,样本中满意的客户人数是:250×0.5+100×0.3+200×0.6+700×0.3+350×0.2=125+30+120+210+70=555,所以样本中客户的满意率为.所以从所有的客户中随机选取1个人,估计这个客户满意的概率为.……(11分)(Ⅲ)增加IV型号汽车的满意率,减少II型号汽车的满意率.…………(13分)18.【解答】(本小题满分14分)证明:(Ⅰ)在五面体ABCDEF中,因为四边形ABCD是正方形,所以AB∥CD.因为CD⊄平面ABFE,AB⊂平面ABFE,所以CD∥平面ABFE.……(4分)(Ⅱ)因为,AD=2,所以AE2+DE2=AD2,所以∠AED=90°,即AE⊥DE.因为四边形ABCD是正方形,所以AB⊥AD.因为平面ADE⊥平面ABCD,平面ADE∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面ADE.因为DE⊂平面ADE,所以AB⊥DE.因为AB∩AE=A,所以DE⊥平面ABFE.因为DE⊂平面CDEF,所以平面ABFE⊥平面CDEF.……(9分)(Ⅲ)在线段CD上存在点N,使得FN⊥平面ABFE.证明如下:取CD的中点N,连接FN.由(Ⅰ)知,CD∥&平面ABFE,又CD⊂平面CDEF,平面ABFE∩平面CDEF=EF,所以CD∥EF.因为,所以EF=DN.所以四边形EDNF是平行四边形.所以FN∥DE.由(Ⅱ)知,DE⊥平面ABFE,所以FN⊥平面ABFE.………………………(14分)19.【解答】解:函数f(x)的定义域为(0,+∞).f′(x)=.(Ⅰ)若a=,则f′(1)=3,且f(1)=2,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣2=3(x﹣1),即3x﹣y﹣1=0;(Ⅱ)令f′(x)=0,得x=a,或x=﹣a(舍).x,f′(x),f(x)变化情况如下表:f(x)min=f(a)=a﹣2alna=a(1﹣2lna).①当f(a)>0,即时,f(x)无零点.②当f(a)=0,即时,f(x)只有一个零点.③当f(a)<0,即时,∵f(1)=>0,f(a)<0,且f(x)在(0,a)上单调递减,∴f(x)在(1,a)上存在唯一零点;在(a,+∞)上,e2>a,.∵a<e,∴e2﹣2a>e2﹣2e=e(e﹣2)>0,即f(e2)>0.又f(a)<0,且f(x)在(a,+∞)上单调递增,∴f(x)在(a,e2)上存在唯一零点.∴当时,f(x)有两个零点.综上:时,f(x)无零点;时,f(x)只有一个零点;时,f (x)有两个零点.20.【解答】解:(Ⅰ)根据题意可知解得所以椭圆C的方程;(Ⅱ)根据题意,直线AP,BP的斜率都存在且不为零.A(﹣2,0),B(2,0),设P(x0,y0),则(﹣2<x0<2).则,因为点P在椭圆上,则,所以,,所以,所以直线AP与BP的斜率之积为定值;(III)三点A、H、N共线.证明如下:设直线AP的方程为y=k(x+2)(k≠0),则直线BP的方程为,所以,M(4,6k),,,设直线HM:y=3k(x﹣2),联立方程组,消去y整理得,(1+12k2)x2﹣48k2x+48k2﹣4=0.设H(x1,y1),则,所以,.所以,因A(﹣2,0)、,,,所k AN=k AH,所以三点A,H,N共线.。

2019年1月北京市昌平区2018~2019学年度高三上学期理科数学试题及参考答案

2019年1月北京市昌平区2018~2019学年度高三上学期理科数学试题及参考答案

昌平区2018-2019学年第一学期高三年级期末质量抽测 数学试卷(理科) 2019.1本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡收回。

第一部分(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)(1)若集合{}2|20A x x x =+<,{}|||1B x x =>,则AB =A.{}|21x x -<<-B.{}|10x x -<<C.{}|01x x << D .{}|12x x <<(2)设,x y 满足10,10,10,x y x y y -+≥⎧⎪++≤⎨⎪+≥⎩那么2x y -的最大值为A.3-B.2-C.1-D.1 (3)右图是一个算法流程图,则输出的k 的值为A.2B.3C.4 D .5(4)设a 是单位向量,b 是非零向量,则“⊥a b ”是“()=1⋅+a a b ”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D .既不充分也不必要条件(5)设,P Q 分别为直线,152x t y t =⎧⎨=-⎩(t 为参数)和曲线C:1,2x y θθ⎧=⎪⎨=-⎪⎩(θ为参数)上的点,则||PQ 的最小值为B.C.D.(6)数列{}n a 是等差数列 ,{}n b 是各项均为正数的等比数列,公比1q >,且55a b =,则A.3746a a b b +>+B.3746a a b b +≥+C.3746a ab b +<+ D .3746a a b b +=+(7)《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:在屋内墙角处堆放米,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?已知米堆所形成的几何体的三视图如图所示,一斛米的体积约为1.62立方尺,由此估算出堆放的米约有A.21斛B.34斛C.55斛 D .63斛(8)设点12,F F 分别为椭圆22:195x y C +=的左、右焦点,点P 是椭圆C 上任意一点,若使得12PF PF m ⋅=成立的点恰好是4个,则实数m 的值可以是A.12B.3C.5 D .8 第二部分(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分)(9)已知复数z 满足(1i)2i z -=(i 是虚数单位),则复数z 的共轭复数z = _____.(10)已知点F 为抛物线28y x =的焦点,则点F 坐标为_________;若双曲线22212y x a -=(0a >)的一个焦点与点F 重合,则该双曲线的渐近线方程是 . (11)已知7()a x x-展开式中5x 的系数为21,则实数a 的值为 .(12)能说明“若点(,)M a b 与点(3,1)N -在直线10x y +-=的同侧,则222a b +>”是假命题的一个点M 的坐标为_____________.(13)已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是_____________.E FDCBA(14)已知函数,1,(),1,2x a x f x ax x ⎧>⎪=⎨+≤⎪⎩其中0,a >且 1.a ≠ (i)当2a =时,若()(2)f x f <,则实数x 的取值范围是___________;(ii) 若存在实数m 使得方程()0f x m -=有两个实根,则实数a 的取值范围是___. 三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤) (15)(本小题满分13分)若ABC △1,b c ==A ∠为锐角. (Ⅰ) 求cos A 的值; (Ⅱ) 求sin 2sin A C的值.(16)(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 是矩形,平面ADE ⊥平面ABCD ,224,AB AD EF AE DE ===== (Ⅰ) 求证:AB EF ∥;(Ⅱ) 求直线BF 与平面ADE 所成角的正弦值; (Ⅲ) 求平面BCF 与平面ADE 所成锐二面角的余弦值. (17)(本小题满分13分)某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.假设客户是否满意互相独立,且每种型号汽车客户对于此型号汽车满意的概率与表格中该型号汽车的满意率相等.(Ⅰ)从所有的回访客户中随机抽取1人,求这个客户满意的概率;(Ⅱ)从I 型号和V 型号汽车的所有客户中各随机抽取1人,设其中满意的人数为ξ,求ξ的分布列和期望;(Ⅲ)用 “11η=”, “21η=”, “31η=”, “41η=”, “51η=”分别表示I, II, III, IV, V 型号汽车让客户满意, “10η=”, “20η=”, “30η=”, “40η=”, “50η=” 分别表示I, II, III, IV, V 型号汽车让客户不满意.写出方差12345,,,,D D D D D ηηηηη的大小关系.(18)(本小题满分13分)已知椭圆()2222:10x y C a b a b +=>>过点 ,离心率为=e 记椭圆C 的右焦点为F ,过点F 且斜率为k 的直线交椭圆于P,Q 两点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若线段PQ 的垂直平分线与x 轴交于点0(,0)M x ,求0x 的取值范围.(19)(本小题满分13分)已知函数ax ax x x f 2ln )(2+-=.(Ⅰ)若1-=a ,求曲线()y f x =在点))1(,1(f 处的切线方程; (Ⅱ)若x x f ≤)(恒成立,求实数a 的取值范围.(20) (本小题满分14分)已知集合*{|21,}A x x n n ==+∈N ,1*{|2,}nB x x n -==∈N ,C A B =.对于数列{}n a ,11a =,且对于任意2≥n ,*N ∈n ,有1min{|}n n a x C x a -=∈>.记n S 为数列{}n a 的前n 项和.(Ⅰ)写出7a ,8a 的值;(Ⅱ)数列{}n a 中,对于任意*N ∈n ,存在*N ∈n k ,使12-=n n k a ,求数列{}n k 的通项公式; (Ⅲ)数列{}n a 中,对于任意*N ∈n ,存在*N k ∈,有121+=+k a n .求使得1127++>k k S a 成立的k 的最小值.昌平区2018-2019学年第一学期高三年级期末质量抽测 数学试卷参考答案及评分标准(理科) 2019.1一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)二、填空题(本大题共6小题,每小题5分,共30分)9. 1i -- 10.(2,0);y x =± 11. 3-12.(1,1)[或 (答案不唯一)13.43π 14.(,2)-∞;(0,1)(1,2)U三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)解:因为ABC △的面积为2,所以 11sin 1sin 22ABC S bc A A ==⨯=V ,所以sin 3A = . 因为 ABC △中,A ∠为锐角,所以cos A ==. …………6分 (II)在ABC △中,由余弦定理,222222cos 1213a b c bc A =+-=+-⨯=,所以a = 由正弦定理=sin sin a c A C, 所以sin =sin A a C c .所以sin22sin cos 2cos sin sin A A A a A C C c ⋅==⋅==. ……13分(16)(本小题满分14分)证明:(Ⅰ) 在五面体ABCDEF 中,因为四边形ABCD 是矩形,所以AB CD ∥.因为AB CDEF ⊄平面,CD CDEF ⊂平面, 所以AB CDEF 平面∥.因为,,AB ABFE ABFE CDEF EF ⊂=平面平面平面所以AB EF ∥.………4分(Ⅱ) 取AD 的中点O ,BC 的中点M ,连接,.OE OM 因为四边形ABCD 是矩形,所以OM AD ⊥.因为AE DE ==O 是AD 的中点,所以OE AD ⊥,且1OE =. 因为平面ADE ⊥平面ABCD ,平面ADE 平面ABCD AD =, ,OE ADE ⊂平面所以OE ⊥平面ABCD .如图,建立空间直角坐标系O xyz -,依题意得(0,0,0),(1,4,0),(0,2,1)O B F . 所以(1,2,1)BF =--,平面ADE 的法向量为(0,1,0)=m . 设直线BF 与平面ADE 所成角为α,则||sin |cos ,|||||6BFBF BF α⋅=<>===m m m , 所以直线BF 与平面ADE ………9分 (Ⅲ) 由 (1,4,0),C -得(2,0,0)BC =-. 设平面BCF 的法向量为(,,)x y z =n ,则有0,0,BC BF ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x x y z -=⎧⎨--+=⎩令1,y =则(0,1,2)=n .因为平面ADE 的法向量为(0,1,0)=m ,所以cos ,||||5⋅<>===n m n m n m所以平面BCF 与平面ADE所成锐二面角的余弦值为5……14分 (17)(本小题满分13分)解:(Ⅰ)由题意知,样本中的回访客户的总数是2501002007003501600++++=,满意的客户人数2500.51000.32000.67000.33500.2555⨯+⨯+⨯+⨯+⨯=, 故所求概率为5551111600320=. …… 4分 (Ⅱ)0,1,2ξ=.设事件A 为“从I 型号汽车所有客户中随机抽取的人满意”,事件B 为“从V 型号汽车所有客户中随机抽取的人满意”,且A 、B 为独立事件. 根据题意,()P A 估计为0.5,()P B 估计为0.2 .则(0)()(1())(1())0.50.80.4P P AB P A P B ξ===--=⨯=;(1)()()()()(1())(1())()P P AB AB P AB P AB P A P B P A P B ξ==+=+=-+-0.50.80.50.20.5=⨯+⨯=;(2)()()()0.50.20.1P P AB P A P B ξ====⨯= .ξ的分布列为ξ的期望()00.410.520.10.7E ξ=⨯+⨯+⨯= . …… 11分(Ⅲ)13245D D D D D ηηηηη>>=>. …… 13分 (18)(本小题满分13分)解:(Ⅰ)由题意可知222,b c e a a b c ⎧=⎪⎪==⎨⎪⎪=+⎩解得2226,2,4.a b c ⎧=⎪=⎨⎪=⎩ 故椭圆C 的标准方程为22162x y += . …… 5分 (Ⅱ)依题意,(2,0),F 直线PQ 的方程为()2y k x =-.联立方程组()221,622.x y y k x ⎧+=⎪⎨⎪=-⎩消去y 并整理得()222231121260k x k x k +-+-=. ()()()()22222124126312410k k k k ∆=---+=+>,设()11,P x y 、()22,Q x y ,故21221231k x x k +=+,121224()431k y y k x x k k -+=+-=+, 设PQ 的中点为N ,则22262(,)3131k kN k k -++. 因为线段PQ 的垂直平分线与x 轴交于点0(,0)M x , ① 当0k =时,那么00x =;② 当0k ≠时,1MN k k ⋅=-,即22022311631k k k kx k -+⋅=--+ . 解得202244.1313k x k k ==++ 因为20,k >所以2133k+>,2440133k<<+,即04(0,)3x ∈. 综上,0x 的取值范围为4[0,)3. …… 13分(19)(本小题满分13分)解:函数)(x f 的定义域为),0(+∞.(I)1-=a 时,x x x x f 2ln )(2-+=,1()22f x x x'=+-, 1)1(='f ,且1)1(-=f .所以曲线()y f x =在点))1(,1(f 处的切线方程为 1)1(-=--x y ,即02=--y x .…… 5分(II)若x x f ≤)(恒成立,即0)(≤-x x f 恒成立.设x a ax x x x f x g )12(ln )()(2-+-=-=,只要0)(max ≤x g 即可;xx a ax x g 1)12(2)(2+-+-='.①当0=a 时,令0)(='x g ,得1=x .)(),(,x g x g x '变化情况如下表:所以01)1()(max <-==g x g ,故满足题意. ②当0>a 时,令0)(='x g ,得ax 21-=(舍)或1=x ; )(),(,x g x g x '变化情况如下表:所以1)1()(max -==a g x g ,令01≤-a ,得10≤<a . ③当0<a 时,存在121,x a=->满足0)12ln()12(>-=-a a g ,所以0)(<x f 不能恒成立,所以0<a 不满足题意.综上,实数a 的取值范围为[0,1]. …… 13分 (20)(本小题满分14分)解:(I)*{|21,}{3,5,7,9,11,13,,21,},A x x n n n ==+∈=⋅⋅⋅+⋅⋅⋅N1*1{|2,}{1,2,4,8,16,32,,2,}n n B x x n --==∈=⋅⋅⋅⋅⋅⋅N , {1,2,3,4,5,7,8,9,11,13,15,16,}C AB ==⋅⋅⋅.因为11=a ,且对于任意*,N ∈≥2n n ,1min{|}-=∈>n n a x C x a ,所以123456781,2,3,4,5,7,8,9a a a a a a a a ========. …… 4分 (II)对于任意2≥n ,*N ∈n ,有1min{|}n n a x C x a -=∈>,所以对于任意2≥n ,*N ∈n ,有1->n n a a ,即数列{}n a 为单调递增数列. 因为对于任意*N ∈n ,存在*N ∈n k ,使12-=n n k a , 所以123<<<k k k ┅<<n k ┅.因为12-=n n k a ,12+=n n k a ,所以对于任意*n ∈N ,有11=k ,22=k ,34=k ,所以,当2≥n 时,有121221212--+--=+=+n n n n n k k , 即03221-=+k k ,14321-=+k k ,25421-=+k k ,…………3121---=+n n n k k ,所以当3≥n 时,有212322122222(2)(2)23(3)12-----=+++⋅⋅⋅++-=+-=+-≥-n n n n k k n n n n ,所以221(3)-=+-≥n n k n n . 又11=k ,22=k ,数列{}n k 的通项公式为:21,1,21,2-=⎧=⎨+-≥⎩n n n k n n . …… 10分(III)若*N ∀∈n ,*N ∃∈k ,有121+=+k a n ,令122-≤m n ,*m ∈N ,解得21log (2)-≤m n ,即2log 2+≤m n ,得max 22[log 2][log ]2++==m n n ,其中2[log 2]+n 表示不超过2log 2+n 的最大整数, 所以max 221([log ]2),([log ]1)k n m n n k n n +=+=++=++.2[log ]11[357(21)][122]n k S n ++=+++++++++……=2[log ]2(2)(21)n n n +++-,依题意1127++>k k S a ,2[log ]2(2)2127(21)n n n n +++->+,即2[log ]22522820n n n +--+>,2[log ]2(26)42704n n -+⨯>.当2[log ]0=n 时,即1=n 时,2[log ]2(26)42629704n n -+⨯=<,不合题意; 当2[log ]1=n 时,即2,3=n 时,2[log ]22(26)42248704n n -+⨯≤+<,不合题意;当2[log ]2=n 时,即47≤≤n 时,2[log ]22(26)422216704n n -+⨯≤+<,不合题意;11当2[log ]3=n 时,即815≤≤n 时,2[log ]22(26)421848704n n -+⨯≤+⨯<,不合题意; 当2[log ]4=n 时,即1631≤≤n 时,2[log ]22(26)4210416704n n -+⨯≤+⨯<,不合题意;当2[log ]5=n 时,即3263≤≤n 时,由2[log ]22(26)42374321497,1497704,n n -+⨯≤+⨯=>此时,2(26)576n ->.而50n =时,2(26)576n -=.所以50n >.又当51n =时,2[log 51]2(5126)42753704-+⨯=>;所以22[log ]151[log 51]1515157k n n =++≥++=++=.综上所述,符合题意的k 的最小值为57.k = …… 14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昌平区2017-2018学年第一学期高三年级期末质量抽测 数学试卷(理科) 2018.1本试卷共5页,共150分. 考试时长120分钟. 考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 若集合{|21}A x x =-<<,{|(3)0}B x x x =->,则AB =A. {|13}x x x <>或B. {|21}x x -<<C. {|203}x x x -<<>或D. {|20}x x -<<2.1+i||i=A.B. C. 1- D. 13. 执行如图所示的程序框图,输出的S 值为A .43 B. 55 C. 61 D. 814.设,x y 满足1,1,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则22x y z +=的最大值为A .14B. 2C. 4D. 165.某四棱锥的三视图如图所示,则该四棱锥的四个侧面中,面积的最小值为A. 1B.C. 2D.6.已知函数()e e ,xxf x -=+则函数()f xA .是偶函数,且在(,0)-∞上是增函数 B. 是奇函数,且在(,0)-∞上是增函数 C. 是偶函数,且在(,0)-∞上是减函数 D. 是奇函数,且在(,0)-∞上是减函数7. 设π02x <<,则“2cos x x <”是“cos x x <”的 A .充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件8. 四个足球队进行单循环比赛(每两队比赛一场),每场比赛胜者得3分,负者得0分,平局双方各得1分. 比赛结束后发现没有足球队全胜,且四队得分各不相同,则所有比赛中可能出现的最少平局场数是A .0 B. 1 C. 2 D. 3主视图左视图俯视图1 1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9. 7(1)x +的二项展开式中2x 的系数为 .10. 已知曲线C 的极坐标方程为θρsin 2=,以极点为原点,极轴为x 轴的正半轴,建立 平面直角坐标系,那么曲线C 的直角坐标方程为 .11. 已知直线:4350l x y ++=,点P 是圆22(1)(2)1x y -+-=上的点,那么点P 到直 线l 的距离的最小值是 .12. 已知Rt ABC ∆,1AB AC ==,点E 是AB 边上的动点,则CE AC ⋅的值为 ;CE CB ⋅的最大值为 .13. 某商业街的同侧有4块广告牌,牌的底色可选用红、蓝两种颜色,若要求任意相邻两块 牌的底色不都为红色,则不同的配色方案有 种.14.若函数4,3,()log ,3a x x f x x x -+≤⎧=⎨>⎩ (0a >且1a ≠),函数()()g x f x k =-.①若13a =,函数()g x 无零点,则实数k 的取值范围是 ; ②若()f x 有最小值,则实数a 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题13分)已知等差数列{}n a 的公差d 为1,且134,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列52n a n b n+=+,求数列{}n b 的前n 项和n S .分钟/天在ABC ∆sin cos C c A =. (Ⅰ)求角A 的大小;(Ⅱ)若ABC S ∆2b c +=+a 的值.17. (本小题13分)随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:图1:甲大学 图2:乙大学根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;(Ⅱ)从两组“痴迷”的同学中随机选出2人,记ξ为选出的两人中甲大学的人数,求ξ的分布列和数学期望()E ξ;(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值X 甲与X 乙的大小,及方差2S 甲与2S 乙的大小.(只需写出结论)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠ABC =60°,PAB ∆为正三角形,且侧面P AB ⊥底面ABCD ,E 为线段AB 的中点,M 在线段PD 上. (I )当M 是线段PD 的中点时,求证:PB // 平面ACM ; (II )求证:PE AC ⊥;(III )是否存在点M ,使二面角M EC D --的大小为60°,若存在,求出PM PD的值;若不存在,请说明理由.19.(本小题14分)已知函数()ln(1)f x ax x =-+,a R ∈.(I )当a = 2时,求曲线y =()f x 在点( 0,f (0) )处的切线方程; (II )求函数()f x 在区间[0 , e -1]上的最小值.20.(本小题13分)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推. 设该数列的前n 项和为n S ,规定:若m ∃∈*N ,使得2pm S =(p ∈N ),则称m 为该数列的“佳幂数”.(Ⅰ)将该数列的“佳幂数”从小到大排列,直接写出前3个“佳幂数”; (Ⅱ)试判断50是否为“佳幂数”,并说明理由; (III )(i )求满足m >70的最小的“佳幂数”m ;(ii )证明:该数列的“佳幂数”有无数个.MPE DCBA昌平区2017-2018学年第一学期高三年级期末质量抽测数学试卷(理科)参考答案一、选择题(共8小题,每小题5分,共40分)二、填空题(共6小题,每小题5分,共30分)9. 21 10. 22(1)1x y +-= 11. 212. 1- ; 2 13. 6 , 7 , 8 答对一个即可给满分 14. [1,1)- ;(1,3]三、解答题(共6小题,共80分) 15.(共13分)解:(Ⅰ)在等差数列{}n a 中,因为134,,a a a 成等比数列,所以 2314a a a =, 即 22111+2)3a d a a d =+(,解得2140a d d +=.因为1,d =所以14,a =-所以数列{}n a 的通项公式5n a n =-. ……………6分(Ⅱ)由(Ⅰ)知5n a n =-,所以522n a n n b n n +=+=+. 得123231(2222)(123)2(12)(1)=122(1)222n nn n n S b b b b n n n n n +=++++=+++++++++-++-+=+-……………13分16. (共13分)解:(Isin cos C c A =,所以cos 0A ≠,由正弦定理sin sin sin a b cA B C==,sin sin cos A C C A ⋅=⋅. 又因为 (0,)C ∈π,sin 0C ≠,所以tan 3A =. 又因为 (0,)A ∈π, 所以 6A π=. …………… 6分 (II)由11sin 24ABCS bc A bc ∆===bc = 由余弦定理2222cos a b c bc A =+-, 得2222cos6a b c bc π=+-,即222()2()12a b c bc b c =+-=+-,因为2b c +=+ 解得 24a =.因为 0a >,所以 2a =. ……………13分17. (共13分)解:(Ⅰ) 由图知,甲大学随机选取的40名学生中,“爱好”中华诗词的频率为(0.0300.0200.015)100.65++⨯=,所以从甲大学中随机选出一名学生,“爱好”中华诗词的概率为0.65. ………3分 (Ⅱ) 甲大学随机选取的40名学生中“痴迷”的学生有400.005102⨯⨯=人, 乙大学随机选取的40名学生中“痴迷”的学生有400.015106⨯⨯=人, 所以,随机变量ξ的取值为0,1,2=ξ. 所以,(0)==P ξ022628C C 1528C =,(1)==P ξ112628C C 123287C ==, (2)==P ξ202628C C 128C =. 所以ξ的分布列为ξ的数学期望为 15311()012287282=⨯+⨯+⨯=E ξ. ……………10分 (Ⅲ) X <甲X 乙;2s >2s . ……………13分18. (共14分)(I )证明:连接BD 交AC 于H 点,连接MH ,因为四边形ABCD 是菱形,所以点H 为BD 的中点. 又因为M 为PD 的中点, 所以MH // BP .又因为 BP ⊄平面ACM , MH ⊂平面ACM . 所以 PB // 平面ACM . ……………4分(II )证明:因为PAB ∆为正三角形,E 为AB 的中点,所以PE ⊥AB .因为平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD=AB ,PE ⊂平面P AB , 所以PE ⊥平面ABCD .又因为AC ⊂平面ABCD ,所以PE AC ⊥. ……………8分(Ⅲ) 因为ABCD 是菱形,∠ABC =60°,E 是AB 的中点, 所以CE ⊥AB .又因为PE ⊥平面ABCD ,以E 为原点,分别以,,EB EC EP 为,,x y z 轴, 建立空间直角坐标系E xyz -, 则()0,0,0E ,()1,0,0B ,HMPEDBA(P,()0C,()D -. ………10分假设棱PD 上存在点M ,设点M 坐标为(),,x y z ,()01PM PD λλ=≤≤,则((,,x y z λ-=-,所以()2,)M λλ--,所以()2,)EM λλ=--,()EC =,设平面CEM 的法向量为(),,x y z =n ,则2)030EM x y z EC y λλ⎧⋅=-++-=⎪⎨⋅==⎪⎩n n ,解得02)y x z λλ=⎧⎪⎨=-⎪⎩. 令2z λ=,则)x λ=-,得)),0,2λλ=-n .因为PE ⊥平面ABCD ,所以平面ABCD 的法向量()0,0,1=m ,所以cos |||⋅〈〉===⋅n m n,m n |m因为二面角M EC D --的大小为60°,12=, 即23210λλ+-=,解得13λ=,或1λ=-(舍去)所以在棱PD 上存在点M ,当13PM PD =时,二面角M EC D --的大小为60°. …………………14分19. (共14分)解:(I )f (x )的定义域为(1,)-+∞. ……………1分因为1'()1f x a x =-+,a = 2, 所以'(0)211f =-=,(0)0f =.所以 函数f (x )在点(0,(0))f 处的切线方程是 y x =. ……………4分 (II )由题意可得 1'()1f x a x =-+. (1)当0a ≤时,'()0f x <, 所以()f x 在(1,)-+∞上为减函数,所以在区间[0,e 1]-上,min ()(e 1)(e 1)1f x f a =-=--. ……………6分(2) 当0a >时, 令1'()01f x a x =-=+,则111x a=->-, ① 当110a-≤,即1a ≥时, 对于(0,e 1)x ∈-,'()0f x >,所以f (x )在(0,e 1)-上为增函数, 所以min ()(0)0f x f ==. ② 当11e 1,a -≥-,即10ea <≤时,对于(0,e 1)x ∈-,'()0f x <,所以f (x )在(0,e 1)-上为减函数, 所以min ()(e 1)(e 1)1f x f a =-=--. ③ 当101e 1,a<-<-即11ea <<时, 当x 变化时,()f x ,'()f x 的变化情况如下表:所以 min 111()(1)(1)ln 1ln f x f a a aa a a =-=--=-+. ………13分综上,当1e a ≤时,min ()(e 1)1f x a =--;当11ea <<时,min ()1ln f x a a =-+; 当1a ≥时,min ()0f x =. ……………14分1120. (共13分)(Ⅰ)1,2,3; ……………3分 (Ⅱ)由题意可得,数列如下:第1组:1,第2组:1,2;第3组:1,2,4;第k 组:11,2,42k -,,. 则该数列的前(1)122k k k ++++=项的和为: 11(1)21(12)(122)22k k k k S k -++=+++++++=--,① 当(1)502k k +≤时,9k ≤, 则 234101050451222221131220S S =+++++=-+=+,由于10101122202<+<,对p ∀∈N ,502p S ≠,故50不是“佳幂数”. ……………7分 (III )(i )在①中,要使(1)702+>k k ,有12≥k , 此时+1+11111+2+4++2=21=11112k k k k k k C C k ++--=++++->+(1+1), 所以2k +是第1k +组等比数列1,2,42k ,,的部分项的和,设1*212221,N .t t k t -+=+++=-∈所以2312=-≥t k ,则4≥t ,此时42313=-=k ,所以对应满足条件的最小“佳幂数”13144952m ⨯=+=. ……………11分 (ii )由(i )知:1*212221,N .t t k t -+=+++=-∈当2≥t ,且取任意整数时,可得“佳幂数”(1)2k k m t +=+, 所以,该数列的“佳幂数”有无数个. ……………13分。

相关文档
最新文档