2019年浙江专升本《高等数学》真题卷+答案

合集下载

2019年浙江专升本《高等数学》真题卷+答案

2019年浙江专升本《高等数学》真题卷+答案

浙江省2019年选拔优秀高职高专毕业生进入本科学习统一考试高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题号的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案的标号。

不能答在试卷上。

选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题:本大题共5小题,每小题4分,共20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设a x n n =∞→lim 则说法不正确的是()(A)对于正数2,一定存在正整数N ,使得当n>N 时,都有2X <-a n (B)对于任意给定的无论多么小的正数ε,总存在整数N ,使得当n>N 时,不等式ε<-a n X 成立(C)对于任意给定的a 的邻域()εε+-a a ,,总存在正整数N ,使得当n>N 时,所有的点n x 都落在()εε+-a a ,内,而只有有限个(至多只有N 个)在这个区间外(D)可以存在某个小的正数0ε,使得有无穷多个点0ε落在这个区间()00,εε+-a a 外2.设在点0x 的某领域内有定义,则在点0x 处可导的一个充分条件是()(A)hx f h x f h )()2(lim000-+→存在(B)hh x f x f h )()(lim 000---→存在(C)hh x f h x f h )()(lim000--+→存在(D)⎥⎦⎤⎢⎣⎡-++∞→)()1(lim 00x f h x f h h 存在3.⎥⎦⎤⎢⎣⎡+++++++∞→n n n n n x πππsin 1...2sin 1sin 11lim 等于()(A)dxx ⎰10sin π(B)dxx ⎰+1sin 1π(C)dxx ⎰+10sin 1(D)dxx ⎰+1sin 1π4.下列级数或广义积分发散的是().(A)∑∞=-+-11100n 1n n )((B)∑∞=12cos n n(C)dxx ⎰212-41(D)dx x ⎰+∞+12211)(5.微分方程044=+'-''y y y 的通解是()(A)x e c x c x y 221)(-+=(B)()x e x c c x y 221)(-+=(C)()xe x c c x y 221)(+=(D)()xxe x c c x y 221)(-+=非选择题部分二、填空题:本大题共10小题,每小题4分,共40分。

2019年普通高等学校招生全国统一考试数学(浙江卷)

2019年普通高等学校招生全国统一考试数学(浙江卷)

绝密 ★ 启用前2019年普通高等学校招生全国统一考试数学(浙江卷)选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019浙江,1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A )∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}U A={-1,3},则(∁U A )∩B={-1}.2.(2019浙江,2)渐近线方程为x ±y=0的双曲线的离心率是( )A.√22B.1C.√2D.2x ±y=0,所以a=b=1.所以c=√a 2+b 2=√2,双曲线的率心率e=ca =√2.3.(2019浙江,3)若实数x ,y 满足约束条件{x -3y +4≥0,3x -y -4≤0,x +y ≥0,则z=3x+2y 的最大值是( )A.-1B.1C.10D.12(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当直线z=3x+2y 经过平面区域内的点(2,2)时,z=3x+2y 取得最大值z max =3×2+2×2=10.4.(2019浙江,4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A.158B.162C.182D.324解析由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.5.(2019浙江,5)设a>0,b>0,则“a+b ≤4”是“ab ≤4”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件a>0,b>0时,a+b ≥2√ab ,若a+b ≤4,则2√ab ≤a+b ≤4,所以ab ≤4,充分性成立;当a=1,b=4时,满足ab ≤4,但此时a+b=5>4,必要性不成立.综上所述,“a+b ≤4”是“ab ≤4”的充分不必要条件.6.(2019浙江,6)在同一直角坐标系中,函数y=1a x ,y=log a x+12(a>0,且a≠1)的图象可能是()解析当0<a<1时,函数y=a x的图象过定点(0,1)且单调递减,则函数y=1a x的图象过定点(0,1)且单调递增,函数y=log a x+12的图象过定点12,0且单调递减,D选项符合;当a>1时,函数y=a x的图象过定点(0,1)且单调递增,则函数y=1a x 的图象过定点(0,1)且单调递减,函数y=log a x+12的图象过定点12,0且单调递增,各选项均不符合.故选D.7.(2019浙江,7)设0<a<1.随机变量X的分布列是则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大解析由分布列得E(X)=1+a3,则D(X)=1+a3-02×13+1+a3-a2×13+1+a3-12×13=29a-122+16,所以当a在(0,1)内增大时,D(X)先减小后增大.8.(2019浙江,8)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<βG 为AC 中点,点V 在底面ABC 上的投影为点O ,则点P 在底面ABC 上的投影点D 在线段AO 上,过点D 作DE 垂直AE ,易得PE ∥VG ,过点P 作PF ∥AC 交VG 于点F ,过点D 作DH ∥AC ,交BG 于点H ,则α=∠BPF ,β=∠PBD ,γ=∠PED ,所以cos α=PFPB =EGPB =DHPB <BDPB =cos β,所以α>β,因为tan γ=PDED >PDBD=tan β,所以γ>β.故选B .9.(2019浙江,9)设a ,b ∈R ,函数f (x )={x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y=f (x )-ax-b 恰有3个零点,则( ) A.a<-1,b<0 B.a<-1,b>0 C.a>-1,b<0D.a>-1,b>0解析当x<0时,由x=ax+b ,得x=b1-a,最多一个零点取决于x=b 1-a 与0的大小,所以关键研究当x ≥0时,方程13x 3-12(a+1)x 2+ax=ax+b 的解的个数,令b=13x 3-12(a+1)x 2=13x 2x-32(a+1)=g (x ).画出三次函数g (x )的图象如图所示,可以发现分类讨论的依据是32(a+1)与0的大小关系.①若32(a+1)<0,即a<-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,显然在x ≥0时g (x )单调递增,故与y=b 最多只能有一个交点,不符合题意.②若32(a+1)=0,即a=-1,0处为3次零点穿过,也不符合题意.③若32(a+1)>0,即a>-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,当b<0时g (x )与y=b 可以有两个交点,且此时要求x=b1-a <0,故-1<a<1,b<0,选C .10.(2019浙江,10)设a ,b ∈R ,数列{a n }满足a 1=a ,a n+1=a n 2+b ,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10C.当b=-2时,a 10>10D.当b=-4时,a 10>10解析当b=12时,a 2=a 12+12≥12,a 3=a 22+12≥34,a 4=a 32+12≥1716≥1,当n ≥4时,a n+1=a n 2+12≥a n 2≥1,则lo g 1716a n+1>2lo g 1716a n ⇒lo g 1716a n+1>2n-1,则a n+1≥1716 2n -1(n ≥4),则a 10≥1716 26=1+11664=1+6416+64×632×1162+…>1+4+7>10,故选A .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2019浙江,11)复数z=11+i (i 为虚数单位),则|z|= .|z|=1|1+i |=√2=√22.12.(2019浙江,12)已知圆C 的圆心坐标是(0,m ),半径长是r.若直线2x-y+3=0与圆C 相切于点A (-2,-1),则m= ,r= .k AC =-12⇒AC :y+1=-12(x+2),把(0,m )代入得m=-2,此时r=|AC|=√4+1=√5.2 √513.(2019浙江,13)在二项式(√2+x )9的展开式中,常数项是 ,系数为有理数的项的个数是 .√2+x )9的通项为T r+1=C 9r(√2)9-r x r (r=0,1,2,…,9),可得常数项为T 1=C 90(√2)9=16√2.因为系数为有理数,所以r=1,3,5,7,9,即T 2,T 4,T 6,T 8,T 10的系数为有理数,共5个.√2 514.(2019浙江,14)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则BD= ,cos ∠ABD= .,设CD=x ,∠DBC=α,则AD=5-x ,∠ABD=π2-α,在△BDC 中,由正弦定理得3sin π4=x sinα=3√2⇒sin α=3√2.在△ABD 中,由正弦定理得5-x sin(π2-α)=4sin3π4=4√2⇒cos α=4√2.由sin 2α+cos 2α=x218+(5-x )232=1,解得x 1=-35(舍去),x 2=215⇒BD=12√25.在△ABD 中,由正弦定理得0.8sin∠ABD =4sin(π-π4)⇒sin ∠ABD=√210⇒cos ∠ABD=7√210.7√21015.(2019浙江,15)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是 .,设PF 的中点为M ,椭圆的右焦点为F 1.由题意可知|OF|=|OM|=c=2,由中位线定理可得|PF 1|=2|OM|=4,设P (x ,y )可得(x-2)2+y 2=16,与椭圆方程x 29+y 25=1联立,解得x=-32,x=212(舍),因为点P在椭圆上且在x 轴的上方,所以P-32,√152,所以k PF =√15212=√15.√1516.(2019浙江,16)已知a ∈R ,函数f (x )=ax 3-x.若存在t ∈R ,使得|f (t+2)-f (t )|≤23,则实数a 的最大值是 .解析由题意知,|f (t+2)-f (t )|=|a (6t 2+12t+8)-2|≤23有解,即-23≤a (6t 2+12t+8)-2≤23有解,所以43(6t 2+12t+8)≤a ≤83(6t 2+12t+8)有解,因为6t 2+12t+8∈[2,+∞),所以43(6t 2+12t+8)∈0,23,83(6t 2+12t+8)∈0,43,所以只需要0<a ≤43,即a max =43.17.(2019浙江,17)已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 .基向量处理)λ1AB⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6)AB ⃗⃗⃗⃗⃗ +(λ2-λ4+λ5+λ6)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗⃗ |的最小,只需要|λ1-λ3+λ5-λ6|=|λ2-λ4+λ5+λ6|=0,此时只需要取λ1=1,λ2=-1,λ3=1,λ4=1,λ5=1,λ6=1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |min =0,由于λ5AC⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ =±2AB ⃗⃗⃗⃗⃗ 或±2AD ⃗⃗⃗⃗⃗ ,取其中的一种λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ =2AB ⃗⃗⃗⃗⃗ 讨论(其他三种类同),此时λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ =(λ1-λ3+2)AB ⃗⃗⃗⃗⃗ +(λ2-λ4)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |的最大,只需要使|λ1-λ3+2|,|λ2-λ4|最大,取λ1=1,λ2=1,λ3=-1,λ4=-1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |=|4AB ⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗ |=2√5,综合几种情况可得|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |max =2√5.2√5三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)(2019浙江,18)设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x+θ)是偶函数,求θ的值;(2)求函数y=f x+π122+f x+π42的值域.因为f (x+θ)=sin(x+θ)是偶函数,所以,对任意实数x 都有sin(x+θ)=sin(-x+θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0, 所以cos θ=0.又θ∈[0,2π),因此θ=π2或3π2. (2)y=f x+π122+f x+π42=sin 2x+π12+sin 2x+π4=1-cos(2x+π6)2+1-cos(2x+π2)2=1-12√32cos 2x-32sin 2x =1-√32cos 2x+π3.因此,函数的值域是1-√32,1+√32.,同时考查运算求解能力. 19.(本题满分15分)(2019浙江,19)如图,已知三棱柱ABC-A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC=90°,∠BAC=30°,A 1A=A 1C=AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点, 所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=2√3,EG=√3.由于O为A1G的中点,故EO=OG=A1G2=√152,所以cos∠EOG=EO 2+OG2-EG22EO·OG=35.因此,直线EF与平面A1BC所成角的余弦值是35.方法二:(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A 1E ⊥平面ABC.如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A 1(0,0,2√3),B (√3,1,0),B 1(√3,3,2√3),F √32,32,2√3,C (0,2,0).因此,EF ⃗⃗⃗⃗⃗ =√32,32,2√3,BC⃗⃗⃗⃗⃗ =(-√3,1,0). 由EF⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0得EF ⊥BC. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0.2,-2√3).设平面A 1BC 的法向量为n =(x ,y ,z ).由{BC ⃗⃗⃗⃗⃗ ·n =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·n =0,得{-√3x +y =0,y -√3z =0. 取n =(1,√3,1),故sin θ=|cos <EF ⃗⃗⃗⃗⃗ ·n >|=|EF ⃗⃗⃗⃗⃗⃗·n ||EF ⃗⃗⃗⃗⃗⃗ |·|n |=45. 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.20.(本题满分15分)(2019浙江,20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列.(1)求数列{a n },{b n }的通项公式;(2)记c n =√an 2b n ,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.设数列{a n }的公差为d ,由题意得a 1+2d=4,a 1+3d=3a 1+3d ,解得a 1=0,d=2.从而a n =2n-2,n ∈N *.所以S n =n 2-n ,n ∈N *.由S n +b n ,S n+1+b n ,S n+2+b n 成等比数列得(S n+1+b n )2=(S n +b n )(S n+2+b n ).解得b n =1d(S n+12-S n S n+2). 所以b n =n 2+n ,n ∈N *.(2)c n =√a n2b n =√2n -22n (n+1)=√n -1n (n+1),n ∈N *. 我们用数学归纳法证明.①当n=1时,c 1=0<2,不等式成立;②假设n=k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k .那么,当n=k+1时,c 1+c 2+…+c k +c k+1<2√k +√k (k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k =2√k +2(√k +1−√k )=2√k +1,即当n=k+1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.,同时考查运算求解能力和综合应用能力.21.(本题满分15分)(2019浙江,21)如图,已知点F (1,0)为抛物线y 2=2px (p>0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程;(2)求S1S 2的最小值及此时点G 的坐标.由题意得p 2=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ).令y A =2t ,t ≠0,则x A =t 2.由于直线AB 过F ,故直线AB 方程为x=t 2-12t y+1,代入y 2=4x ,得y 2-2(t 2-1)t y-4=0, 故2ty B =-4,即y B =-2t ,所以B 1t 2,-2t . 又由于x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t-2t +y C =0,得C 1t -t 2,21t -t ,G 2t 4-2t 2+23t 2,0.所以,直线AC 方程为y-2t=2t (x-t 2),得Q (t 2-1,0).由于Q 在焦点F 的右侧,故t 2>2.从而S 1S 2=12|FG |·|y A |12|QG |·|y C | =|2t 4-2t 2+23t 2-1|·|2t ||t 2-1-2t 4-2t 2+23t 2|·|2t -2t | =2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m=t 2-2,则m>0,S 1S 2=2-m m 2+4m+3=2-1m+3m+4≥2-2√m ·3m +4=1+√32. 当m=√3时,S 1S 2取得最小值1+√32,此时G (2,0).,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.22.(本题满分15分)(2019浙江,22)已知实数a ≠0,设函数f (x )=a ln x+√1+x ,x>0.(1)当a=-34时,求函数f (x )的单调区间;(2)对任意x ∈1e 2,+∞均有f (x )≤√x2a ,求a 的取值范围. 注:e =2.718 28…为自然对数的底数.当a=-34时,f (x )=-34ln x+√1+x ,x>0.f'(x )=-34x +2√1+x=√1+x -√1+x+14x √1+x, 所以,函数f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f (1)≤12a ,得0<a ≤√24. 当0<a ≤√24时,f (x )≤√x 2a 等价于√x a 2−2√1+x a -2ln x ≥0. 令t=1a ,则t ≥2√2.设g (t )=t 2√x -2t √1+x -2ln x ,t ≥2√2,则g (t )=√x t-√1+1x2-1+x √x -2ln x.①当x ∈17,+∞时,√1+1x ≤2√2,则 g (t )≥g (2√2)=8√x -4√2√1+x -2ln x.记p (x )=4√x -2√2√1+x -ln x ,x ≥17,则 p'(x )=√x √2√x+1−1x =√x √x+1-√2x √x+1x √x+1 =(x -1)[1+√x (√2x+2-1)]x √x+1(√x+1)(√x+1+√2x ). 故17,1 1- 0) p 17 单调递减所以,p (x )≥(1)=0.因此,g (t )≥g (2√2)=2p (x )≥0.②当x ∈1e 2,17时,g (t )≥g √1+1x =-2√xlnx -(x+1)2√x. 令q (x )=2√x ln x+(x+1),x ∈1e 2,17,则q'(x )=√x +1>0,故q(x)在1e2,17上单调递增,所以q(x)≤q17.由①得,q17=-2√77p17<-2√77p(1)=0.所以,q(x)<0.因此,g(t)≥g√1+1x =-q(x)2√x>0.由①②知对任意x∈1e2,+∞,t∈[2√2,+∞),g(t)≥0,即对任意x∈1e2,+∞,均有f(x)≤√x2a.综上所述,所求a的取值范围是0,√24.,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.。

2019浙江专升本高数真题及答案

2019浙江专升本高数真题及答案

浙江省2019年选拔优秀高职高专毕业生进入本科学习统一考试高等数学请考生按规定用笔将所有试题答案涂、写在答题卡上选择题部分注意事项:1.答题前,考生务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上在(都落成立设.....1δ<D X C B A n n ⎥⎦⎢⎣⎭⎝+∞→→→→00000.....2h D C B A h h h h ∞→→h D C h B A 改为反推改成解析:0dxx D dxx C dxx B dxx A n n n n n x ⎰⎰⎰⎰+++⎥⎦⎤⎢⎣⎡+++++++∞→11110sin 1.sin 1.sin 1.sin .sin 12sin 1sin 11lim .3ππππππ等于() D C B A n n ⎰.....4. (2)1⎰D C B A n x x x x xe x c c x y D e x c c x y C e x c c x y B e c x c x y A y y y 221221221221)()(.)()(.)()(.)(.04'4''.5---+=+=+=+==+-的通解为()微分方程xe x c c y r r r y y y C22122)(,0)2,044,04'4''+==-=+-=+-所以即(特征方程为由解析:非选择题部分注意事项:1.用黑色字迹的签字笔或钢笔写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔填写二、填空题(本大题共10小题,每小题4分,共40分)=+∞→n n n)1sin 1(lim .6极限nn 111.7解析:)('=t h 8.当解析:⎩⎨⎧.9y x 设解析:t ttt t dx y d t dx dy t dt dx t dt dy 3222sec cos sec cos )'tan (tan ,cos ,sin -=-=-=-==-==→=⎰n x x g x dt t x g n x是同阶无穷小,则与时,且当设)(0,sin )(.1002解析:3,21),0(lim sin lim sin lim )(lim 1201200200==-∞≠≠====-→-→→→⎰n n C nx x nx x xdt t x x g n x n x n xx n x ⎰=-121.11dx x 定积分解析:)(定积分几何意义210222124141411R dx x R dx x ∙=-=∙=-⎰⎰πππ12.y e e y x y x =++'13.在令'''<=x x y y y 14.=V x 15.设x y 23=,则()______________=n y .解析:nn x n x n x n x a a a 2)3)(ln 3()3(,))(ln ()()(2)(2)()(==所以三、计算题(本大题共8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分,计算题必须写出计算过程,只写答案不给分)16.极限()201ln lim xxx x -+→.解析:21)21(21)1(2)1(12111)1ln(lim lim lim lim 00020-=+-=++-=-+=-+→→→→x x x x x x x x x x x x x 17.设()xx x x y ++=)cos 2ln(π,求函数()x y 在1=x 处的微分.y y ===821121sin cos )(222222202πππππππ-+=+=+=≤≤⎰⎰x t t tdt tdt x p x xx 时,当20.一物体由静止考试以速度()13+=t tt ν(米/秒)作直线运动,其中t 表示运动的时间,求物体运动到8秒时离开出发点的距离.解析:令距离为S,则⎰+=813t t S 令1+=t u ,38,10,2,12=====-=u t u t udu dt u t 时,时,⎰⎰⎰=-=-=+=3123128040162)1(313du u udu uu t t S 21.问是否存在常数a 使得函数()⎨⎧≤+=0,2x a x x f 在0=x 处可导?若存在,求出常数a ,若不存在,),即0=a )0(='-f )0(='+f 故)(x f 22.)1,故由题意有→s ∴23.11=n n1211=⎭ ⎝⎛n n 解析:,11)()(.1lim lim1<=-=+∞→+∞→x n n x u x u xn n x n n n n 所以收敛区间为)1,1(-令,1)(11-∞=∑=n n x nx s 当0≠x 时,)0(11)(1≠=∑∞=x x n x x s nn∴0,1ln 1)11(1)(111)(00111≠-=-===⎰⎰∑∑∞=-∞=x x xdt t x dt t x x n x x s x x n n n n 当0=x 时,1)0(=s ∴⎪⎩⎪⎨⎧=⋃-∈-=0,1)1,0()0,1(),1ln(1)(x x x xx s 令21=x ∞24.设y =点B 为另一曲线BPM 是解析:即f ('∴)(x f 25.x 千件解析:值取得极大值,且为最大时,当时,舍去),令则设利润)(50)(',5,0)('505(1,0)(',30246)(')0)(2130122(60)()()(),(223x f x x f x x f x x x x f x x x f x x x x x x c x r x f x f =<>><≤=-==++-=≥++--=-=26.设()x f 在[]1,1-上具有二阶连续的导数,且()00=f .(1)写出()x f 的带拉格朗日型余项的一阶麦克劳林公式.(2)设m 、M 分别为()x f ''在[]1,1-上的最大值与最小值,证明:()3311Mdx x f m ≤≤⎰-(3)证明:在[]1,1-上至少存在一点η使得()()dx x f f ⎰-=''113η.解析:)0(!2)('')0('!2)('')0('0()(122x x f x f x f x f f x f <<+=++=ξξξ))()(2311m f ≤⎰-(3)。

2019年全国普通高等学校招生统一考试数学(浙江卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(浙江卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(浙江卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6.保持卡面清洁,不折叠,不破损。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、单选题1.已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2.双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4.复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5.函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6.已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8.已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9.已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10.已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如二、填空题11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2019年普通高等学校招生全国统一考试浙江卷数学(含答案)-(44188)

2019年普通高等学校招生全国统一考试浙江卷数学(含答案)-(44188)

满分150分。

考试用时120分钟。

考生注意:请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定 的位置上。

请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的■ J 1 ■ «A. I■作答一律无效。

参考公式:V 4 R 53其中R 表示球的半径绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

1.答题前,2.答题时, 若事件 若事件 P( AB )若事件 率是互斥,则P( A B) 相互独立,则 A 在一次试验中发生的概 独立重复试验中事件A 恰好发生P(A) P( B) P (A) P( B) p ,则n 次k 次的概率柱体的体积公式 V Sh 其中S 表示柱体的底面 积,h 表示柱体的 高芒p kP (k) (1 nnP)k(k 0,1,2, , n)1(S1S1S2 S2 )h3其中S 1 , S 2分别表示台体的上、 示台体的体积公式下底面积,1锥体的体积公式 V Sh3其中S 表示锥体的底面 积,球的表面积公式球的体积公式 h 表示锥体的 高台体的高每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题』1 1 n选择题部分(共40 分)1 .已知全集U1,0,1,2,3 ,集合A 0,1,2 , B 1,0,1 ,贝则(e u A) B =A. 1c. 1,2,3 B. 0,1D . 1,0,1,3、选择题:本大题共10小题,目要求的。

第1页共12页2A .B . 12C. 29A L AD . 2x 3y 4 03.若实数x ,y满足约束条件0,则z=3x+2y 的最大值3x y 4 是x y 0A . 1B . 1C. 10D. 124.祖暅是我国南北朝时代的伟大科学家,他提出的“幕势既同,贝y积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高. 若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A. 158C. 182A .充分不必要条件B .必要不充分条件5.若a>0 , b>0,贝厂’a+b w 4”是“ab w 4” 的6.C.充分必要条件在同一直角坐标系中,函数D .既不充分也不必要条件y=log a(x+ 1)(a>0,且a工1)的图象可能是2B. 162if 7.设0 v a v 1 ,L iJh f JIF T则随机变量. VIjHr1X的分布列是.1 jMr,Ik #jjK ™j 盘1——匾厂e第2页共12页则当a 在(0,1 )内增大时,B. D (X )减小C. D (X )先增大后减小D. &设三棱锥 V - ABC 的底面是正三角形,侧棱长均相 等,D (X )先减小后增大 P 是棱VA 上的点(不含端点).记直线AC 所成的角为a,直线A. B < Y,a < YPB 与平面ABC 所成的角为B,二面角 P - AC- B 的平面角为PB 与直线Y,则C. B < a,B.B < a, B < Y D. a < B,Y < Bx, x9.已知a, b R 数,函f ( x)1( a 21)x .若函数y f ( x) ax, x 0ax b恰有 3个零点,A . a< — 1,b<0 B. a< - 1, b>0 C. a> — 1, b<0 D .a> — 1, b>010 .设 a , b € R ,数列{ an} +b , b2满足 a1=a , an+1=anN ,则1时,a101时,a10A .当 b= 2 ?当b= — 2时,>10 >10 10B.当 b= 4。

2019年普通高等学校招生全国统一考试浙江卷(数学理)解析版

2019年普通高等学校招生全国统一考试浙江卷(数学理)解析版

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(C R B)=A.(1,4) B.(3,4) C.(1,3) D.(1,2) 【解析】A=(1,4),B=(-3,1),则A∩(C R B)=(1,4).【答案】A2.已知i是虚数单位,则3+i1i-=A.1-2i B.2-i C.2+i D.1+2i【解析】3+i1i-=()()3+i1+i2=2+4i2=1+2i.【答案】D3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:211aa=+,解之得:a=1 or a=﹣2.所以为充分不必要条件.【答案】A4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cosx +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案.【答案】B5.设a ,b 是两个非零向量.A .若|a +b|=|a|-|b|,则a ⊥bB .若a ⊥b ,则|a +b|=|a|-|b|C .若|a +b|=|a|-|b|,则存在实数λ,使得a =λ bD .若存在实数λ,使得a =λb ,则|a +b|=|a|-|b|【解析】利用排除法可得选项C 是正确的,∵|a +b|=|a|-|b|,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b|=|a|-|b|时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b|=|a|-|b|不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b|=|a|-|b|不成立. 【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种 【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有: 4个都是偶数:1种;2个偶数,2个奇数:225460C C =种; 4个都是奇数:455C =种. ∴不同的取法共有66种. 【答案】D7.设S n 是公差为d(d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是 A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意的n ∈N*,均有S n >0D .若对任意的n ∈N*,均有S n >0,则数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立. 【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是 ABC【解析】如图:|OB|=b ,|O F 1|=c .∴k PQ =b c ,k MN =﹣bc.直线PQ 为:y =b c (x +c),两条渐近线为:y =b a x .由()b y x c cb y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q(ac c a -,bc c a -);由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P(ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c (x -ac c a -+),令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e. 【答案】B9.设a >0,b >0. A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b【解析】若2223a b a b +=+,必有2222a ba b +>+.构造函数:()22x f x x =+,则()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.已知矩形ABCD ,AB =1,BC∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的.【答案】C绝密★考试结束前2018年普通高等学校招生全国同一考试(浙江卷)数 学(理科) 非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 二、填空题:本大题共7小题,每小题4分,共28分. 11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 形,右侧面也是一直角三角形.故体积等于11312123⨯⨯⨯⨯=. 【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________. 【解析】T ,i 关系如下图:【答案】12013.设公比为q(q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,q表示的式子. 即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 【解析】此题最适合的方法是特例法. 假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =ACcos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠= 【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2=2到直线l :y =x 的距离, 则实数a =______________.【解析】C 2:x 2+(y +4) 2=2,圆心(0,—4),圆心到直线l :y=x的距离为:d ==C 2到直线l :y =x的距离为d d r d '=-=另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),74d a '==⇒=. 【答案】7417.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 【解析】本题按照一般思路,则可分为一下两种情况:(A)2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B)2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P(0,1). 考查函数y 1=(a -1)x -1:令y =0,得M(11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M(11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:a =,舍去a =,得答案:a =【答案】a =三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cosA =23,sinB. (Ⅰ)求tanC 的值;(Ⅱ)若a∆ABC 的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。

2019年浙江省专升本高等数学真题参考答案

2019年浙江省专升本高等数学真题参考答案

2019年专升本<<高等数学>>真题答案解析一、选择题:本题共有5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项符合题目要求的.1.D【解析】极限精确定义,若存在a x n n =∞→lim ,则对于ε<->∃>∀a x N n a n ,,0.2.A【解析】B 应改为0→h ,C 是可导的必要条件,D 改为∞→h .3.B【解析】原式=⎰∑+=⋅+=∞→101sin 11sin1limdx x n n i ni n ππ4.B【解析】A.条件收敛B.0cos lim 2≠∞→n n 发散C.2=x 为瑕点,D.令t x tan =,则()20323arctan 442sin 2(22cos 1sec 11123arctan 23arctan 23arctan 2322+-=-=+==+⎰⎰⎰∞+ππππt t dt t dt tdx x 5.C 【解析】由044=+'-''y y y ,特征方程0442=+-r r ,即()022=-r ,所以()xe x c c y 221+=二、填空题:本大题共10小题,每小题4分,共40分.6.解:ee e e nn nnn nn n n n n n n n ====+=+∞→∞→⋅⋅⋅∞→∞→111sin lim1sin lim 1sin 1sin 1)1sin 1(lim 1sin 1(lim 7.解:10)5(,2)(-='-='h t t h 8.解:x e a e a x xe a x x x x x x x x 2lim )(21lim )()1ln(cos 1lim 032030-=-=-+-→→→极限存在且不等于0,且02lim 0=→x x ,1,01)(lim 0=∴=-=-∴→a a e a xx ,且212lim 0-=-→x e a x x .362122arcsin41212πππ=-==-⎰x dx x9.t t t t t t dtdx dt dx dy d dx y d ttt dx dy t dt dx t dt dy 33222cos 1sec cos sec cos )tan ((tan cos sin ,cos ,sin -=-=-='-==-=-==-=解:10.解:222011000sin ()sin lim lim lim lim (0,)xn n n n x x x x t dt g x x x C x xnx nx --→→→→====≠≠∞⎰所以12,3n n -==即.11.解:由定积分的几何意义可得,定积分为41圆的面积,211144ππ=⋅⋅=⎰.12.解:方程两边分别对x 求导得,(1)()0x yey y xy +''+-+=所以x yx y y e y e x ++-'=-,所以dy dx ++--==--x y x y y e y xy e x xy x.13.解:(),x ∈-∞+∞236,66,y x x y x '''=+=+令0,1y x ''==-解得当1,0x y ''<-<时;1,0x y ''>->时所以,拐点为(1,2)-.14.解:222221111322x V dx xdx x ππππ====⎰⎰.15.解:2()39,9(ln 9)9(2ln 3)====x x n x n x ny y 三、计算题:本大题共8小题,其中16—19小题每小题7分,20—23小题每小题8分,共60分.16.解:原式00011(1)11111lim lim lim 222(1)2x x x x x x x x x →→→-+--++====-+.17.解:()ln(2cos )x y x x x π=++=ln ln(2cos )xx x e π++ln ln(2cos )x xx e π=++ln sin (ln 1)2cos x x x y e x x πππ-'=+++sin (ln 1)2cos x xx x xπππ-=+++(1)1y '=1(1)x dyy dx dx ='==.18.解:2,,2t x t dx tdt===则sin 22(cos )2(cos cos )2(cos sin )+Ct tdt td t t t tdt t t t =⋅=-=--=--⎰⎰⎰原式sin C =-+.19.解:当02x π≤<时,000()()cos sin sin x x xp x f t dt tdt tx ====⎰⎰;当2x ππ≤<时,222000221()()cos sin 2x x p x f t dt tdt tdt tt πππππ==+=+⎰⎰⎰221128x π=+-;22sin ,[0,)2()()11,[,]282ππππ⎧∈⎪⎪∴==⎨⎪+-⎪⎩⎰xx x p x f t dt x 20.解:距离为8s =⎰2,1,2u t u dt udu ==-=则,当0,1;8,3t u t u ====时当时283320113313=26(1)16()403s udu u duu u u =⋅=-=-=⎰⎰⎰(u -1)物体运动到8秒时离开出发点的距离为40米.21.解:2lim ()lim ()x x f x x a a --→→=+=0lim ()lim (1)0ax x x f x e ++→→=-=若2,0()1,0axx a x f x e x ⎧+≤=⎨->⎩在0x =处可导,则它在0x =处一定连续,所以0lim ()x f x -→=0lim ()(0)x f x f +→=,所以(0)0f a ==200()(0)(0)lim lim 0x x f x f x f x x ---→→-'===00()(0)0(0)lim lim 0x x f x f f xx +++→→-'===所以当0a =时,(0)0f '=,也就是函数2,0()1,0axx a x f x e x ⎧+≤=⎨->⎩在0x =处可导.22.解:平面1π的法向量为(1,1,1)=-1n ,平面2π的法向量为2(1,0,1)=-n ,所求直线的方向向量为111211⨯=-=++-12i j ks =n n i j k 又已知所求直线过点(1,0,2)A ,所以,所求直线方程为12121x y z --==.22.解:11lim lim 11n n n n n nu x nx u n x +-→∞→∞=⋅=<+收敛区间为(-1,1)当1=x 时,级数11n n ∞=∑发散;当1-=x 时,级数11(1)n n n -∞=-∑收敛;所以,收敛域为)1,1[-令111()n n S x x n ∞-==∑,则11()nn x S x xn∞=⋅=∑111(())1n n x S x x x∞-='⋅==-∑0001()ln(1)1ln(1)0()0ln(1)(0)lim ()lim1ln(1),[1,0)(0,1)()1,0xx x x S x dt x tx x S x xx x S S x xx x S x xx →→∴⋅==-----∴≠==--===--⎧∈-⋃⎪=⎨⎪=⎩⎰当时,当时,由和函数在收敛域内连续可导得,综上,11111()2ln 222-∞=⎛⎫∴== ⎪⎝⎭∑n n S n 四、综合题:本大题共3小题,每小题10分,共30分.24.解:32(4)1,(),()263OBPMBPN xy x S x S f t dt y x +'=⋅==+⎰322()41()263()4()()22214()()x f x x x f t dt f x x x f x f x f x f x x x x+⋅+=++'+-='-=-⎰由题意,化简,即,1124()(())4((1))dxdx xxf x ex e dx c xx dx c x ---⎰⎰=-+=-+⎰⎰224()4(2)0,4()44=++=++=∴=-∴=-+ 又x x c xx cx f c f x x x 25.解:成本为32()2123021c x x x x =-++323222()60()()()60(2123021)2123021,(0)()624306(45)()0,51r x x y x r x c x x x x x x x x x y x x x x x x y x x x ==-=--++=-++-≥'=-++=---'===-收入为利润为令得:或(舍)x (0,5)5(5,+∞)()y x '+0-()y x 179所以,5x =是利润()y x 的极大值点,又因为5x =是()y x 的唯一驻点,所以5x =是利润()y x 的最大值点.(5)179=y .因此公司应生产5千件产品时,公司取得最大利润,并且最大利润为179万元.26.解:(1)2()()(0)(0),02f f x f f x x x ξξ'''=++<<(2)证明:()[1,1]f x M m ''- 在上有最大值和最小值,[][]2111211111()()1()(0)21,1()()()()(0)0233(),1,1()333()33m f x Mf f x f x x f f f f x dx f xdx x dx m f x M x m f M m Mf x dx ξξξξξ----''∴≤≤'''=+-'''''''=+=+=''≤≤∈-''∴≤≤∴≤≤⎰⎰⎰⎰而由()知对上式进行积分即而(3)证明:由(2)可知11()33m Mf x dx -≤≤⎰,所以113()m f x dx M-≤≤⎰[][]11()1,1()3(),1,1f x f f x dx ηη--''∴=∈-⎰ 在上只有二阶连续导数,由介值定理知,。

2019年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2019年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

成人高等学校专升本招生全国统一考试高等数学(一)。

答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.【解题指导】计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.【解题指导】28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。

2019年浙江专升本高等数学真题与答案解析(详细)

2019年浙江专升本高等数学真题与答案解析(详细)

浙江省2019年高职高专毕业生进入本科学习统一考试高等数学一、选择题(本大题共5小题,每小题4分,共20分) 1、设lim x→0x n =a 则说法不正确的是( )A 、对于正数2,一定存在正整数N ,使得当n >N 时,都有|x n −a |<2.B 、对于任意给定的无论多么小的正数ε,总存在整数N ,使得当n >N 时,不等于|x n −a |<ε成立.C 、对于任意给定的a 的邻域(a −ε,a +ε), 总存在整数N ,使得当n >N 时,所有的x n 都落在(a −ε,a +ε)内,而只有有限个(至多只有N 个)在这个区间外.D 、可以存在某个小的正数ε0,使得有无穷多个点ε0落在区间(a −ε0,a +ε0)外. 2、设在点x 0的某邻域内有定义,则在点x 0处可导的一个充分条件是( ) A 、lim ℎ→0f (x 0+2ℎ)−f(x 0)ℎ存在 B 、lim ℎ→0−f (x 0)−f(x 0−ℎ)ℎ存在C 、limℎ→0f (x 0+ℎ)−f(x 0−ℎ)ℎ存在 D 、lim ℎ→+∞ℎ[f (x 0+1ℎ)−f (x 0)]存在3、limx→+∞1n[√1+sin πn +√1+sin 2πn +⋯+√1+sinnπn]等于( )A 、∫√sin πx dx 10B 、∫√1+sin πx dx 10 C 、∫√1+sin x dx 10 D 、π∫√1+sin x dx 10 4、下列级数或广义积分发散的是( ) A 、∑(−1)n−1n+100∞n=1 B 、∑cos 2n ∞n=1 C 、∫√21D 、∫1(1+x 2)2dx +∞15、微分方程y ′′−4y ′+4y =0的通解为( ) A 、y =c 1x +c 2e −2x B 、y =(c 1+c 2x)e −2x C 、y =(c 1+c 2x)e 2x D 、y =(c 1+c 2x)xe −2x二、填空题(只要在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)6、极限lim x→∞(1+sin 1n )n =7、设一雪堆的高度ℎ与时间t 的关系为ℎ(t )=100−t 2,则雪堆的高度在时刻t =5时的变化率等于8、当a = 时,极限lim x→01−cos xln (1+x 3)(a −e x )存在且不等于0.9、设 ,则d 2ydx 2=10、设g (x )=∫sin t 2dx x0,且当x →0时,g (x )与x n 是同阶无穷小,则n = 11、定积分∫√1−x 2dx 10 =12、设函数y =y (x )由方程e x+y −xy =0确定,则dydx = 13、曲线y (x )=x 3+3x 2的拐点是14、由曲线y =√x ,x =1 ,x =2及x 轴围成的曲边梯形绕x 轴旋转一周而成的旋转体体积等于15、设y =32x ,则y (n)=三、计算题(本大题共8小题,其中16-19题每小题7分,20-23小题每小题8分,共60分) 16、求极限lim x→0ln (1+x )−xx 2.17、设y (x )=ln(2+cos πx)+x x ,求函数y (x )在x =1处的微分.18、求不定积分∫sin √x dx .19、设f (x )= ,求p (x )=∫f(t)xdt 在[0,π]上的表达式.x =sin t y =cos tcos x ,x ∈[0,π)x ,x ∈[π,π]20、一物体由静止到以速度v (t )=3t√t+1(m/s)作直线运动,其中t 表示运动的时间,求物体运动到8秒时离开出发点的距离。

2019年浙江省普通高校招生统一考试数学试卷答案

2019年浙江省普通高校招生统一考试数学试卷答案

2019年浙江省普通高校招生统一考试数学解析一、选择题:本题考查基本知识和基本运算。

每小题4分,满分40分。

1.A 2.C 3.C 4.B 5.A 6.D 7.D 8.B 9.C 10.A 二、填空题:本题考查基本知识和基本运算。

多空题每题6分,单空题每题4分,共36分。

11.2 12.2,5- 13.1625, 14.12272,15.4316.15 17.025,解析: 一、选择题 1.因为{1,3}UA -=,所以(){1}UA B -=.故,正确答案是A.2.渐近线是0x y ±=的双曲线可设为22(0)x y λλ-=≠, 若0λ>,则双曲线的标准方程是:221x y λλ-=,则,22a b λ==,那么,222c a b λ=+=,因此,双曲线的离心率2ce a==, 若0λ<,则双曲线的标准方程是:221y x λλ-=--,则,22a b λ==-,那么,222c a b λ=+=-,因此,双曲线的离心率2ce a==. 故,正确答案是C.3.首先由约束条件340,340,0,+x y x y x y -+≥⎧⎪--≤⎨⎪≥⎩确定平面区域(如图),再确定各端点的坐标(1,1)A -,(1,1)B -,(2,2)C .显然当目标函数过点(2,2)C 时最大,最大值是10.故,正确答案是C.4.由三视图可得柱体的形状特点是直五棱柱,根据祖暅原理,只需求出柱体的底面积和柱体的高,由三视图可得,直五棱柱底面积是27cm 2,高是6cm ,因此体积是162cm 3. 故,正确答案是B. 5. 由基本不等式2a b ab +≥知,4a b +≤可得4ab ≤,反之不正确.(第3题图)故,正确答案是A. 6.函数1x y a =过定点(0,1),函数1log ()2a y x =+过定点1(,0)2,那么选项A,C 不正确.当01a <<时,函数1x y a =单调递增,函数1log ()2a y x =+单调递减.故,正确答案是D.7. 由已知分布列及期望的定义可知:期望1()(1)3E X a =+,221()(1)3E X a =+ 那么,方差22()()()D X E X E X =-2211(1)(1)39a a =+-+211()926a =-+.在1(0,)2上()D X 单调递减,在1(,1)2上()D X 单调递增.故,正确答案是D.8.过点P 作PO ⊥底面ABC ,过O 作OE AB ⊥,连接,PE OB . PBO ∠是直线PB 与平面ABC 所成的角,则PBO β∠=PEO ∠是二面角P AB C --所成的平面角,由已知条件知,二面角P AC B --所成的平面角等于二面角P AB C --所成的平面角,则PEO γ∠=.在Rt POB 中,tan PO OB β=,在Rt POE 中tan POOEγ=, 在Rt OEB 中,OE OB <,那么tan tan PO POOE OBγβ=>=,即tan tan βγ<,而函数tan y x =在(0,)2π单调递增,所以βγ<.过点B 作AC 的平行线BF ,过O 作BF 的垂线,垂足为F ,连接OF .PBF ∠就是直线PB 与直线AC 所成的角,则PBF α∠=.在Rt PBF 中,cos FB PB α=,在Rt PBO 中,cos OBPBβ=, 在Rt PBF 中,FB OB <,那么cos cos OB FBPB PBβα=>=,即cos cos βα>,而函数cos y x =在(0,)2π单调递减,所以βα<.因此,正确答案是B.9.研究函数()y f x ax b =--的零点,就是研究()()g x f x ax =-和()h x b =交点的个数.从分段函数的结构来分析,当0x <时,函数()(1)g x a x =-的图像与()h x b =的图像A(第8题图2)至多一个零点,所以关键是研究0x ≥时的情况.函数3211()(1)32g x x a x =-+有两个零点1230,(1)2x x a ==+. 又因为,2()(1)((1))g x x a x x x a '=-+=-+,所以函数3211()(1)32g x x a x =-+有两个极值点340,1x x a ==+,它的图形可能的情况有两种(如图1).当10a +≤时,3211()(1)32g x x a x =-+在区间(0,)+∞上单调递增,和()h x b =至多一个交点,不合题意.当10a +>时,函数3211()(1)32g x x a x =-+在(0,1)a +单调递减,在(1,)a ++∞上单调递增.因此,3211(1)(1)032a a b +-+<<,即31(1)06a b -+<<. 而此时,若012a <-<,那么,在0x <时,()(1)g x a x =-和()h x b =必有一个交点.那么,当11a -<<且31(1)06a b -+<<时,函数()y f x ax b =--恰有3个零点.因此,正确答案是C.10.本题的特点是,数列给出了递推关系,但没有给出首项的值,所以问题要求对所有的首项结论恒成立。

2013-2019历年浙江专升本高等数学真题及解析

2013-2019历年浙江专升本高等数学真题及解析
一、选择题(本大题共 5 小题,每小题 4 分,共 20 分。在每小题给
出的四个选项中,只有一项是符合题目要求的)
1.设 f (x) sin(cos 2x), x R ,则此函数是( )
(A)有界函数 【答案】(A)。
(B)奇函数
(C)偶函数
(D)周期函数
【解析】由于1 sin(cos 2x) 1 ,故 f (x) 为有界函数,显然容易验证 f (x) 不是奇偶函数
【解析】对 y P(x) y Q(x) y 2 两边同时除以 y2 可得 y2 y P(x) y1 Q(x) ,令
z y1 ,原微分方程可化为一阶线性微分方程 z P(x)z Q(x) 进行求解,即 z P(x)z Q(x) ,由一阶微分线性方程的求解公式可求得
z e P(x)dx[
【解析】要使得 sin x 有意义,则 sin x 0 ,故 x [2kπ, (2k 1)π],k Z 。
8.已知 f (1) 1 , lim f (1 x) f (1 x)

x0
x
【答案】 2 。
【解析】将极限转化成导数的定义式
lim f (1 x) f (1 x) lim f (1 x) f (1) f (1) f (1 x)
非选择题部分
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。 2.在答题纸上作图,可先使用 2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。 二.填空题(本大题共 10 小题,每小题 4 分,共 40 分)
6.极限 lim x ln sin(x2)

x0
【答案】 0 。
16.设
f
(x)
ex
sin

2019年专升本高数真题答案解析(浙江)

2019年专升本高数真题答案解析(浙江)

17. 解: y ( x) ln( 2 cos x) x x ln( 2 cos x) e x ln x ,因此:
y
2
1 cos x
(2
cos x)
e x ln x (ln
x
1)
2
sin x cos x
x x (ln
x
1)
,故
y x1 1,所以 dy x1 dx
18. 解: 令 t x , x t 2 , dx 2tdt ,故:原式 sin t 2tdt 2 t sin tdt
24. 解:由题意可知: ( f (x) 4)x 2 f (t)dt 1 x3 1 ,初值条件为: f (2) 0
2
x
63
两边对 x 求导得: 1 xf (x) 1 f (x) 2 f (x) 1 x2 ,
2
2
2
整理得到: f (x) 1 f (x) x 4 ,故 P(x) 1 , Q(x) x 4 ,
x
x
x
x
故:
f
(x)
e
(
1 x
) dx
[

x
4
e
(
1 x
) dx
dx
C]
x[
x
1
4 x2
dx
C]
x
x
4 x
C
x2 4 Cx ,由于初值条件为: f (2) 0 ,因此 C 4 ,即: f (x) x2 4x 4 y
M
P
x
O
BN
25. 解:设利润为 f (x) ,由题意可得:
x0
x2 nxn1
A
此: n 1 2 ,故 n 3
(A 0, A ) ,因

浙江专升本高等数学习题详解-第5章_不定积分

浙江专升本高等数学习题详解-第5章_不定积分

1.写出下列函数的一个原函数:(1) 52x ; (2) cos x -;(3);(4)解:(1)651()23x x '=, ∴613x 是52x 的一个原函数.(2) (sin )cos x x '-=-,∴sin x -是cos x -的一个原函数.(3) '=∴的一个原函数.(4)(2arcsin )x '-=,∴2arcsin x -是2.根据不定积分的定义验证下列等式:(1) 2311d 2-=-+⎰x x C x ; (2)(sin cos )cos sin x x dx x x C +=-++⎰.解:(1) 因为2311()2x x -'-=,所以23112dx x C x -=-+⎰. (2) 因为(cos sin )sin cos x x x x '-+=+,所以(sin cos )cos sin x x dx x x C +=-++⎰.3.根据下列等式,求被积函数()f x .(1)()ln(f x dx x C =+⎰; (2)()f x dx C =+⎰.解:(1)等式两边求导得:()(ln(f x x x ''=+=+=+=(2)等式两边求导得:3223221()(1)22(1)x f x x x x -'==-+⋅=-+. 4.设曲线通过点(0,1),且其上任一点(,)x y 处的切线斜率为xe -,求此曲线方程. 解 设所求曲线方程为()yf x =,由题设有()xf x e -'=,()x x f x e dx e C --∴==-+⎰又曲线过点(0,1),故(0)1f =,代入上式得2C =,所以,所求曲线方程为:2x y e -=-+.1. 求下列不定积分:(1)24)x dx -;(2) 2; (3) 2xxe dx ⎰; (4) 23523x xxdx ⋅-⋅⎰; (5) 221(1)dx x x +⎰; (6) 421x dx x +⎰;(7) sec (sec tan )x x x dx -⎰; (8)11cos 2dx x +⎰; (9) 2cos 2sin x dx x ⎰; (10) 2sin 2x dx ⎰; (11) 22cos 2cos sin x dx x x⎰; (12) 2(tan cot )x x dx +⎰. 解:(1)5151732222222284)(4)473x dx x x dx x dx x dx x x C -=-=-=-+⎰⎰⎰.(2) 11322222(2)x x x dx -==-+⎰⎰ 1132222x dx x dx x dx -=-+⎰⎰⎰35224235x x C =++.(3) 122(2)(2)ln(2)1ln 2x x xxxxe e dx e dx e C C e ==+=++⎰⎰. (4) 235222[25()]25()333x x x xx dx dx dx dx ⋅-⋅=-⋅=-⎰⎰⎰⎰ 125225()223(ln 2ln 3)3ln()3xx x x C x C ⋅=-⋅+=-+-. (5) 22221111()arctan (1)1dx dx x C x x x x x =-=--+++⎰⎰. (6) 44232221111(1)arctan 1113x x dx dx x dx x x x C x x x -+==-+=-+++++⎰⎰⎰. (7) 2sec (sec tan )(sec sec tan )tan sec x x x dx x x x dx x x C -=-=-+⎰⎰. (8)221111sec tan 1cos 22cos 22dx dx xdx x C x x ===++⎰⎰⎰. (9) 2222cos 212sin 1(2)cot 2sin sin sin x x dx dx dx x x C x x x-==-=--+⎰⎰⎰.(10) 21cos 11sinsin 2222x x dx dx x x C -==-+⎰⎰. (11) 22222222cos 2cos sin (csc sec )cos sin cos sin x x x dx dx x x dx x x x x-==-⎰⎰⎰ 22csc sec cot tan xdx xdx x x C =-=--+⎰⎰.(12)22222(tan cot )(tan cot2)(sec csc )x x dx x x dx x x dx +=++=+⎰⎰⎰tan cot x x C =-+. 2. 解答下列各题:(1) 设3()1x xf e e '=+,且(0)1f =,求()f x ;(2) 设sin x 为()f x 的一个原函数,求'()f x dx ⎰;(3) 已知()f x 的导数是cos x ,求f (x )的一个原函数;(4) 某商品的需求量Q 是价格P 的函数,该商品的最大需求量为1000(即0P =时1000Q =),已知需求量的变化率(边际需求)为1()1000()ln 33P Q P '=-,求需求量与价格的函数关系.解 (1) 由33()11()xxx f e ee '=+=+,得3()1f x x '=+;所以341()(1)4f x x dx x x C =+=++⎰, 因为(0)1f =,代入上式得1C =,所以41()14f x x x =++. (2) 由题意有(sin )()x f x '=,即()cos f x x =,故()sin f x x '=-,所以()sin sin cos d d d f x x x x x x x C '=-=-=+⎰⎰⎰(3) 依题意有()cos f x x '=,所以1()cos sin f x xdx x C ==+⎰, 于是 112()(sin )cos f x dx x C dx x C x C =+=-++⎰⎰其中12,C C 为任意常数,取120C C ==,得()f x 的一个原函数为cos x -. (4) 由1()1000()ln 33PQ P '=-得111()[1000()ln 3]1000ln 3()1000().333P P P Q P dp dp C =-=-⋅=⋅+⎰⎰将0P =时, 1000Q =代入上式得0C =;所以需求量与价格的函数关系是1()1000()3PQ P =.习题5-31.在下列各式等号右端的空白处填入适当的系数,使等式成立:(1) dx = (51)d x -; (2) xdx = 2(2)d x -;(3) 3x dx = 4(32)d x + (4) 2xe dx -= 2()xd e-(5) 219dx x =+ (arctan 3)d x ; (6) 212dxx =+ )d ; (7) 2(32)x dx -= 3(2)d x x -; (8) dx x= (3ln )d x ;= (2arcsin )d x -; = . 解(1) 1(51)5,(51)5d x dx dx d x -=∴=-;(2) 221(2)2,(2)2d x xdx xdx d x -=-∴=--;(3) 43341(32)12,(32)12d x x dx x dx d x +=∴=+;(4) 22221()2,()2x x x x d e e dx e dx d e ----=-∴=-;(5)22311(arctan 3),(arctan 3)19193d x dx dx d x x x =∴=++;(6)22),)1212dx d dx x x =∴=++; (7) 3223(2)(32),(32)(2)d x x x dx x dx d x x -=--∴-=--(8) 311(3ln ),(3ln )3d x dx dx d x x x =∴=; (9)(2arcsin )(2arcsin )d x d x -==--(10)212)d x x dx -=-==-2.求下列不定积分:(1) 3xa dx ⎰; (2) 32(32)x dx -⎰;(3)12dxx-⎰; (4) 12xe dx x ⎰;(5)⎰; (6) ln dx x x ⎰;(7)1x x e dx e +⎰; (8) 11x dx e+⎰;(9)211x dx x --⎰; (10) tan ⎰(11)e e x xdx-+⎰; (12) ; (13) 3431x dx x-⎰; (14) 4cos xdx ⎰; (15); (16) 324x dx x +⎰; (17)26dx x x --⎰; (18) 245dx x x ++⎰;(19) 2cos ()x dx ωϕ+⎰; (20) 2cos ()sin()x x dx ωϕωϕ++⎰;(21); (22) ;(23) 4tan xdx ⎰; (24) 3tan sec x xdx ⎰.解 (1)33311(3)33ln xx x a dx a d x a C a==+⎰⎰; (2)33522211(32)(32)(32)(32)25x dx x d x x C -=---=--+⎰⎰;(3) 1(12)1ln 12122122dx d x x C x x -=-=--+--⎰⎰;(4) 11121xxx e dx e d e C x x=-=-+⎰⎰;(5) 2C==-⎰;(6)ln ln ln ln ln dx d xx C x x x ==+⎰⎰;(7) 1(1)ln(1)11x x x x x e dx d e e C e e=+=++++⎰⎰; (8) 11(1)ln(1)111x x x x x x xe e d e dx dx dx x e C e e e +-+==-=-+++++⎰⎰⎰⎰; (9) 211(1)ln 11(1)(1)1x x d x dx dx x C x x x x --+===++-+-+⎰⎰⎰;(10) 2==⎰⎰⎰ln C =-+(11) 22arctan 11+()x x xxx x x dx e dx de e C e e e e -===+++⎰⎰⎰;(12221126C ==-=;(13) 3444444333(1)3ln 1141414x dx d x dx x C x x x -==-=--+---⎰⎰⎰; (14) 4221cos 21cos ()(12cos 2cos 2)24x xdx dx x x dx +==++⎰⎰⎰1111cos 41111sin 2sin 2cos 4(4)444244832x x x dx x x x xd x +=++=+++⎰⎰311sin 2sin 48432x x x C =+++(15)22()1128d x =+=⎰⎰12arcsin()23x C =+ (16) 322222222221144112(4)4242424x x x dx dx dx dx d x x x x x+-===-+++++⎰⎰⎰⎰⎰ 2212ln(4)2x x C =-++;(17) 211113()ln 653252dx x dx C x x x x x -=-=+---++⎰⎰; (18)22(2)arctan(2)451(2)dx d x x C x x x +==++++++⎰⎰;(19)21cos(22)cos ()2x x dx dx ωϕωϕ+++=⎰⎰ 11cos(22)(22)24x x d x ωϕωϕω=+++⎰ 11sin(22)24x x C ωϕω=+++; (20) 221cos ()sin()cos ()cos()x x dx x d x ωϕωϕωϕωϕω++=-++⎰⎰31cos ()3x C ωϕω=-++;(21)22==⎰2C =+;(22)2arcsin 1(arcsin )arcsin d x C x x==-+⎰; (23) 42242tan (sec 1)(sec 2sec 1)xdx x dx x x dx =-=-+⎰⎰⎰2312tan (1tan )tan tan tan 3x x x d x x x x C =-++=-++⎰; (24) 32231tan sec tan sec (sec 1)sec sec sec 3x xdx xd x x d x x x C ==-=-+⎰⎰⎰. 3.求下列不定积分: (1)⎰; (2) ;(3)2,(0)a >; (4)(5); (6) ⎰;(7); (8)⎰;(9); (10) .解 (1) t =,则23,2t x dx tdt +==,所以 1(1)ln(1)11tdt dt t t C t t ==-=-++++⎰⎰1)C =+;(2) 令sin ()22x t t ππ=-<<,则cos dx tdt =,所以22cos csc cot sin cos tdt tdt t C C t t x ===-+=-+⋅⎰⎰; (3) 令sin ()22x a t t ππ=-<<,则cos dx a tdt =,所以222222sin 1cos 2cos sin 2cos 224a t t a a a tdt a dt t t C a t -===-+⎰⎰222sin cos arcsin 222a a a x t t t C C a =-+=-;2223sec cos sin sec tdt tdt t C C t ===+=+⎰⎰; (5) 令3sec (0)2x t t π=<<,则3sec tan dx t tdt =,所以,当3x >时,23tan 3sec tan 3(sec 1)3sec t t tdt t dt t=⋅=-⎰⎰⎰33(tan )3arccos t t C C x=-+=+;当3x <-时,同理可得:33arccos C x=+-⎰,综合起来,有:33arccos C x=+; (6) 令sin ()22x t t ππ=-<<,则cos dx tdt =,所以cos 1(sin cos )(sin cos )sin cos 2sin cos t t t t t dt dt t t t t+--==++⎰⎰ 1sin cos (sin cos )(1)2sin cos 2sin cos t t t d t t dt t t t t-+=-=+++⎰⎰11(ln sin cos )(arcsin ln 22t t t C x x C =+++=++;(7) 令sin ()22x t t ππ=-<<,则cos dx tdt =,所以2()cos 12(1)1cos 1cos cos 2td tdt dt t t t t ==-=-++⎰⎰⎰tan arcsin 2t t C x C =-+=+; (8) 令tan ()22x t t ππ=-<<,则2sec dx tdt =,所以234442sec cos 11()sin tan sec sin sin sin tdt tdt d t t t t t t ===-⎰⎰⎰3113sin sin C C t t =-++=+;222222cos 2cos (csc 1)cot 4sin t dx tdt t dt t t C xt =⋅=-=--+⎰⎰⎰arcsin 2xC x =--+;(10) t =,则222ln(1),1tdtx t dx t =+=+,所以 222212(1)22arctan 11t dt dt t t C t t ==-=-+++⎰⎰C =.习题5-41.求下列不定积分:(1) sin x xdx ⎰; (2) x xe dx -⎰;(3) arcsin xdx ⎰; (4) cos xexdx -⎰;(5) 2sin d 2xxex -⎰; (6) 2tan x xdx ⎰;(7) 2t te dt -⎰; (8)2(arcsin )x dx ⎰;(9)cos(ln )x dx ⎰; (10)2(1)sin 2xxdx -⎰;(11)ln(1)x x dx -⎰; (12)22cos2xx dx ⎰; (13)32ln xdx x ⎰; (14)sin cos x x xdx ⎰;(15) 23sin cos xdx x⎰; (16)2(1)x xe dx x +⎰. 解 (1) sin cos cos cos cos sin x xdx xd x x x xdx x x x C =-=-+=-++⎰⎰⎰.(2) xx x x x x xedx xde xe e dx xe e C ------=-=-+=--+⎰⎰⎰.(3) 21arcsin arcsin arcsin (1)2xdx x x x x x x =-=+-⎰⎰arcsin x x C =. (4) cos cos cos (sin )xx x x exdx xde e x e x dx ----=-=-+-⎰⎰⎰cos sin cos sin cos xx x x x ex xde e x e x e xdx -----=-+=-+-⎰⎰12cos (sin cos )xxx x x x C --∴=-+⎰e d e(sin cos )cos 2x xx x x x C ---∴=+⎰e e d . (5) 22221111sin sin sin cos 22222222xxx x x x x xe dx de e e dx ----=-=-+⋅⎰⎰⎰2211sin cos 2282x xx x e de --=--⎰2221111sin cos (sin )2282822x x x x x xe e e dx ---=--+-⎰222111sin cos sin 2282162x x x x x xe e e dx ---=---⎰ 22211711sin sin cos 1622282x x x x x xe dx e e C ---∴=--+⎰222sin (cos 4sin )21722xx x x x e dx e C --∴=-++⎰.(6) 22221tan (sec )sec 2x xdx x x x dx x xdx x =-=-⎰⎰⎰2211(tan )tan tan 22xd x x x x xdx x =-=--⎰⎰21tan ln cos 2x x x C x =+-+.(7) 2222221111122224t tt t t t te dt tde te e dt te e C ------=-=-+=--+⎰⎰⎰.(8) 22(arcsin )(arcsin )2arcsin x dx x x x x =-⋅⎰⎰2(arcsin )2arcsin x x =+⎰2(arcsin )2x x x =+-2(arcsin )2x x x dx =+-⎰2(arcsin )2x x x x C =+-+.(9) 1cos(ln )cos(ln )(sin(ln ))cos(ln )sin(ln )x dx x x x x dx x x x dx x=--⋅=+⎰⎰⎰ 1cos(ln )sin(ln )cos(ln )x x x x x x dx x=+-⋅⎰所以 cos(ln )[cos(ln )sin(ln )]2xx x x x C =++⎰d(10) 22(1)sin 2sin 2sin 2x xdx x xdx xdx -=-⎰⎰⎰211cos 2sin 2(2)22x d x xd x =--⎰⎰211cos 2cos 2cos 222x x x xdx x =-++⎰ 2111cos 2cos 2sin 2222x x x xd x =-++⎰2111cos 2cos 2sin 2sin 22222x x x x x xdx =-++-⎰2111cos 2cos 2sin 2cos 22224x x x x x x C =-++++213()cos 2sin 2222xx x x C =--++.(11) 2221ln(1)ln(1)()ln(1)2221x x x x x dx x d x dx x -=-=---⎰⎰⎰222111111ln(1)ln(1)(1)2212221x x x x dx x x x dx x x -+=--=--+---⎰⎰⎰d 22111ln(1)()ln 12222x x x x C x =--+-+- 22111(1)ln(1)242x x x x C =----+.(12) 222221cos 11cos cos 2222x x x dx x dx x dx x xdx +=⋅=+⎰⎰⎰⎰32321111sin sin sin 6262x x d x x x x x xdx =+=+-⎰⎰32321111sin cos sin cos cos 6262x x x xd x x x x x x xdx =++=++-⎰⎰ 3211sin cos sin 62x x x x x x C =++-+.(13) 333222ln 111ln ()ln 3ln x dx xd x xdx x x x x=-=-+⎰⎰⎰3232211131ln 3ln ()ln ln 6ln x xd x x xdx x x x x x =--=--+⎰⎰32131ln ln 6ln ()x x xd x x x =---⎰3221361ln ln ln 6x x x dx x x x x =---+⎰321366ln ln ln x x x C x x x x =----+321(ln 3ln 6ln 6)x x x C x=-++++.(14) 11sin cos sin 2cos 224x x xdx x xdx xd x ==-⎰⎰⎰ 11cos 2cos 2cos 2cos 2(2)4448x x x xdx x xd x =-+=-+⎰⎰1cos 2sin 248x x x C =-++.(15) 2233sin tan sec tan (sec )tan sec sec cos x dx x xdx xd x x x xdx x=⋅==-⎰⎰⎰⎰22233cos sin sin tan sec tan sec sec cos cos x x x x x dx x x xdx dx x x+=-=--⎰⎰⎰23sin tan sec ln sec tan cos xx x dx x x x=--+⎰ 于是 213sin 2tan sec ln sec tan cos xdx x x C x x x =-++⎰ 所以 23sin 11tan sec ln sec tan cos 22x dx x x C x x x =-++⎰. (16) 211()(1)111x x x x xe xe dx xe d d xe x x x x=-=-+++++⎰⎰⎰ 1(1)111x x xx xe xe x e dx e C x x x=-++=-+++++⎰. 复习题5(A )1、 求下列不定积分:(1)x xdxe e --⎰; (2)3(1)x dx x -⎰; (3)1cos sin x dx x x ++⎰; (4)4sin cos 1sin x x dx x +⎰;(5)(0)a>; (6); (7)6(4)dx x x +⎰; (8) 2sin cos dxx x ⎰; (9)21ln (ln )x dx x x +⎰; (10) sin cos x xe dx ⎰;(11); (12);(13)2252()dxa x -⎰; (14)⎰;(15) ;(16) arctan ⎰; (17) 2(1)x dxe +⎰; (18) sin(ln )x dx ⎰;(19) 2(sin )x x dx ⎰; (20) 2(1)xx xe dx e +⎰. 解 (1) 2211ln 1()121x x x x xx x x dx e dx de e C e e e e e --===+---+⎰⎰⎰. (2) 令1x t -=;则dx dt =-,所以3332221111111()(1)22(1)1x t dx dt dt C C x t t t t t x x-=-=--=-+=-+---⎰⎰⎰. (3)1cos (sin )ln sin sin sin x d x x dx x x C x x x x ++==++++⎰⎰.(4) 22444sin cos sin 1sin 1sin arctan(sin )1sin 1sin 21sin 2x x x d x dx d x x C x x x ===++++⎰⎰⎰.(5) 2212a ==-arcsin x a C a=.(6)2C ==+.(7) 56666666611111()ln (4)(4)644244dx x dx x dx C x x x x x x x ==-=+++++⎰⎰⎰. (8)22222cos sin sin cos sin cos sin (1sin )dx xdx d xx x x x x x ==-⎰⎰⎰2211111sin ()sin ln sin 1sin sin 21sin xd x C x x x x-=+=-++-+⎰. (9)221ln (ln )1(ln )(ln )ln x d x x dx C x x x x x x +==-+⎰⎰.(10) sin sin sin cos sin xx x xedx e d x e C ==+⎰⎰.(11)21arcsin arcsin arcsin 2xd x x C ==+⎰.(12)22==⎰2C =+(13) 令sin ()22x a t x ππ=-<<,则cos dx a tdt =,所以 4222525544cos 11sec (tan 1)tan ()cos dx a tdt tdt t d t a x a t a a===+-⎰⎰⎰⎰3344422324221211tan tan 33()()x x t t C C a a a a x a a x =++=++--. (14) 令1x t =,则21dx dt t=-,所以C C x=-==+. (15) 令tan ()22x a t x ππ=-<<,则2sec dx a tdt =,所以2222222sec sec sin tan sin cos sin (1sin )a t a tdt dt d tdx x a t t t t t ⋅===-⎰⎰⎰⎰ 22sin sin 111sin ln sin 1sin sin 21sin d t d t tC t t t t +=+=-++--⎰⎰ln(x C =+++.(16) t =,则2dx tdt =,所以22221arctan arctan 1tdt t t tdt t ==-+⎰⎰⎰ 2221arctan (1)arctan arctan 1t t dt t t t t C t=--=-+++⎰arctan x C =.(17) 令ln x t =,则222111(1)(1)1(1)x dx dt dt e t t t t t ⎡⎤==--⎢⎥++++⎣⎦⎰⎰⎰ 11ln ln(1)ln(1)11x xt t C x e C t e=-+++=-+++++. (18)1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⋅⎰⎰ 1sin(ln )cos(ln )(sin(ln ))x x x x x x dx x=-+⋅-⋅⎰12sin(ln )sin(ln )cos(ln )x dx x x x x C ∴=-+⎰11sin(ln )sin(ln )cos(ln )22x dx x x x x C ∴=-+⎰(19)22321cos 211(sin )sin 2264x x x dx x dx x x d x -=⋅=-⎰⎰⎰ 231sin 21sin 22644x x x x xdx =-+⋅⎰ 231sin 21cos 2644x x x xd x =--⎰ 231sin 2cos 21cos 26444x x x x x xdx =--+⎰ 231sin 2sin 21sin 26448x x x x x x C =--++. (20) 21(1)111x x x x x xe x dx dx xd e e e e =-=-+++++⎰⎰⎰ ln(1)111x xx x xx de x e C e e e--=--=--+++++⎰. (B) 1、填空题:(1) 若xe 是()f x 的一个原函数,则2(ln )x f x dx =⎰.(2) 设222(sin )cos tan ,(0)0f x x x f '=+=,则()f x = . (3) 设32()3f x x '=,则()f x = .(4) 若()f x 有原函数ln x x ,则()xf x dx ''=⎰. (5) 设()arcsin xf x dx x C =+⎰,则()dxf x =⎰. (6) 设()f x 的一个原函数为sin xx,则(2)xf x dx '=⎰ . (7) 若()1x f e x '=+,则()f x = .(8) 已知()f x 的一个原函数为(1sin )ln x x +,则()xf x dx '=⎰.解 (1) 因为xe 是()f x 的一个原函数,所以ln ()(),(ln )xxxf x e e f x ex '====,于是2341(ln )2x f x dx x dx x C ==+⎰⎰. (2) 由222222sin (sin )cos tan 1sin 1sin xf x x x x x'=+=-+-,得: 1()111x f x x x x x '=-+=-+--, 所以21()()ln 112x f x x dx x C x =-+=---+-⎰, 再由(0)0f =,得0C =,因此 2()ln 12x f x x =--- .(3)3232()33()f x x x '==, 23()3f x x '∴=,所以2539()35f x x dx x C ==+⎰.(4) ()()()()()()xf x dx xdf x xf x f x dx xf x f x C ''''''==-=-+⎰⎰⎰,而1()(ln )ln 1,()f x x x x f x x''==+=,所以1()ln 1ln xf x dx x x C x C x''=⋅--+=-+⎰(5) 由已知条件得:()(arcsin )xf x x ==1()f x =2232111(1)(1)()23dx x x C f x ==--=--+⎰⎰. (6)111(2)(2)(2)(2)222xf x dx xdf x xf x f x dx '===-⎰⎰⎰ 11sin 2(2)242xxf x C x =-⋅+,而2sin cos sin ()()x x x xf x x x-'==,所以 212cos 2sin 21sin 2(2)2(2)42x x x xxf x dx x C x x-'=⋅-⋅+⎰ 11cos 2sin 244x x C x=-+. (7) 由()11ln x xf e x e '=+=+,可得()1ln f x x '=+,所以()(1ln )ln f x x dx x x C =+=+⎰.(8) ()()()()()(1sin )ln xf x dx xdf x xf x f x dx xf x x x C '==-=-++⎰⎰⎰,而1sin ()((1sin )ln )cos ln xf x x x x x x+'=+=⋅+,所以 ()cos ln sin (1sin )ln f x x x x x x x C =+-++2、计算下列不定积分:(1) 22arctan 1x xdx x +⎰; (2) arctan xx e dx e ⎰;. (3) 2(arcsin )x dx ⎰; (4)'⎰; (5)2ln (1)xdx x -⎰; (6) 22arctan (1)xdx x x +⎰;(7)⎰;(8)x; (9) arctan 232(1)x xe dx x +⎰;(10) ; (11)sin ln(tan )x x dx ⎰;(12) ;(13) 881(1)x dx x x -+⎰; (14) sin 1cos x x dx x++⎰. 解 (1) 2221arctan (1)arctan arctan arctan arctan 11x xdx xdx xdx xd x x x=-=-++⎰⎰⎰⎰ 221arctan arctan 12x x x dx x x =--+⎰ 2211arctan ln(1)arctan 22x x x x C =-+-+.(2) arctan arctan arctan 1x x x x x x xx xe e dx e de e e e dx e e--=-=-+⋅+⎰⎰⎰ 1(1)arctan arctan 11x x x xxx xx xe e d e e e dx e e x e e --+-+=-+=-+-++⎰⎰arctan ln(1)xx x e e x e C -=-+-++.(3)22(arcsin )(arcsin )x dx x x =-⎰2(arcsin )2arcsin x x =+⎰2(arcsin )2x x x x C =+-+. (4)ln (ln )x x C ''===⎰.(5)2ln 1ln 11ln (1)111x x dx xd dx x x x x x==-⋅----⎰⎰⎰ ln 11ln ()ln 1111x x xdx C x x x x x=-+=-+----⎰. (6)2222arctan arctan arctan (1)1x x x dx dx dx x x x x =-++⎰⎰⎰1arctan arctan arctan xd xd x x =--⎰⎰22arctan 1arctan (1)2x dx x x x x =-+-+⎰ 2222arctan 1111()arctan 212x dx x x x x =-+--+⎰ 222arctan 11arctan ln 221x x x C x x =--+++. (7)t =,则2dx tdt =,所以222arcsin arcsin tdt t t ==-⎰⎰再令sin t u =,则22sin 1cos 2cos cos 2u uudu du u -==⎰⎰111sin 2arcsin 2422u u C t C =-+=-,所以1(2x C =-⎰. (8)t =,则222ln(1),1tdt x t dx t=+=+,所以2222(1)ln(1)22ln(1)1xt t tdt t dt t t ++=⋅=++⎰⎰ 22222ln(1)42ln(1)44arctan 1t t t dt t t t t C t=+-=+-+++⎰2C =.(9) 令tan x t =,则2arcsin ,sec x t dx tdt ==,所以arctan 22323tan sec sin (1)sec x t txe e t dx tdt e tdt x t ==+⎰⎰⎰,而sin sin sin cos sin cos tt tt tte tdt tde e t e tdt e t tde ==-=-⎰⎰⎰⎰sin cos sin ttte t e t e tdt =--⎰, 解得1sin (sin cos )2t t e tdt e t t C =-+⎰,所以arctan arctan 2321(1)2x x xe dx e C x =++⎰. (10) 令tan x t =,则2sec dx tdt =,于是222cos cos (2tan 1)2sin cos dt tdtt t t t==++⎰⎰2sin arctan(sin )1sin d t t C C t ==+=++⎰. (11)sin ln(tan )ln(tan )cos x x dx x d x =-⎰⎰21cos ln(tan )cos sec tan x x x xdx x=-+⋅⎰cos ln(tan )csc x x xdx =-+⎰cos ln(tan )ln csc cot x x x x C =-+-+.(12)ln(x =⎰x =+-⎰x x C =-+.(13) 87788881(1)(1)1x x x dx dx dx x x x x x-=-+++⎰⎰⎰ 888881111()8181dx dx x x x =--++⎰⎰ 81ln ln(1)2x x C =-++. (14) 2sin sin sin tan 1cos 1cos 21cos 2cos2x x xdx xdx x xdx dx xd x x x x +=+=-+++⎰⎰⎰⎰⎰tan tan tan 222x x xx dx dx =-+⎰⎰tan 2xx C =+.。

浙江省2019年专升本高等数学考试真题卷及参考答案

浙江省2019年专升本高等数学考试真题卷及参考答案

4
4
4
y exy 12ex y (x y)' (xy)' 0
即 ex y (1
y')
(y
xy' )
0 ,整理得
y'
y exy exy x

13、 (1,2) 解析: y'' 6x 6 0, 所以 x 1 ,当 x 1时, y'' 0 ,当 x 1 时,
(a
ex
)
lim
x0
1 x2 2 x3
(a
ex
)
lim
x0
(a
ex 2x
)
,因为极限存在且不
第 8 页 共 11 页
等于 0,且 lim 2x 0 ,所以 lim(a ex ) 0 ,解得 a 1。
x0
x0
9、 sec3 t
dy
解析:
dy dx
dt dx
sin t cos t
tan t ,
16、解:
lim
x0
ln(1 x) x2
x
lim
x0
1 1
x
1
2x
lim 1 (1 x0 2x(1
x) x)
lim
x0
1 2(1 2x)
1 2

17、解:
y(x)
ln(2
cos x)
e xln x
,则
y'
2
1 cos x
(2
cos x)'
e xln x
(x
ln
x)'
=
2
1 cos x
(- sin
x)
二、填空题(本大题共 10 小题,每小题 4 分,共 40 分)

2019专升本高数题库(含历年真题)

2019专升本高数题库(含历年真题)

2019专升本高数题库(含历年真题)章节练习极限、连续1、【单项选择】当x一0时,与3x2+2x3等价的无穷小量是( ).正确答案:B2、【单项选择】正确答案:B3、【单项选择】正确答案:B 4、【单项选择】ABCD正确答案:B 5、【单项选择】B 1C正确答案:D6、【单项选择】当 x一0时,kx是sinx的等价无穷小量,则k等于( )正确答案:B7、【单项选择】正确答案:A8、【单项选择】正确答案:C 9、【单项选择】正确答案:B 10、【单项选择】正确答案:A 11、【单项选择】正确答案:D 12、【单项选择】正确答案:D 13、【单项选择】ABCD正确答案:B1、【案例分析】正确答案:2、【案例分析】正确答案:所给极限为重要极限公式形式.可知3、【案例分析】正确答案:4、【案例分析】正确答案:5、【案例分析】正确答案:6、【案例分析】当x一0时f(x)与sin 2x是等价无穷小量,则正确答案:由等价无穷小量的定义可知【评析】判定等价无穷小量的问题,通常利用等价无穷小量的定义与极限的运算.7、【案例分析】正确答案:8、【案例分析】正确答案:9、【案例分析】正确答案:10、【案例分析】正确答案:11、【案例分析】正确答案:a=012、【案例分析】正确答案:13、【案例分析】正确答案:一元函数微分学1、【单项选择】正确答案:B2、【单项选择】设函数f(x)=COS 2x,则f′(x)=( ).正确答案:B3、【单项选择】设正确答案:B4、【单项选择】曲线Y=x-3在点(1,1)处的切线的斜率为( )正确答案:C5、【单项选择】设y=lnx,则y″等于( )正确答案:D6、【单项选择】设Y=e-3x,则dy等于( ).正确答案:C7、【单项选择】设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)正确答案:B8、【单项选择】设,y=COSx,则y′等于( )(1分)正确答案:A 9、【单项选择】正确答案:A 10、【单项选择】正确答案:B11、【单项选择】正确答案:B12、【单项选择】正确答案:D13、【单项选择】设,f(x)在点x0处取得极值,则( )ABCD正确答案:A14、【单项选择】设Y=e-5x,则dy=( )正确答案:A15、【单项选择】曲线y=x3+1在点(1,2)处的切线的斜率为( )正确答案:C16、【单项选择】曲线y=x3+1在点(1,2)处的切线的斜率为( )正确答案:C17、【单项选择】设 y=2^x,则dy等于( )正确答案:D18、【单项选择】正确答案:A19、【单项选择】正确答案:D20、【单项选择】设Y=sinx+COSx,则dy等于( ).(1分)正确答案:C1、【案例分析】求函数f(x)=x3-3x+1的单调区间和极值正确答案:注意函数的定义域为2、【案例分析】正确答案:3、【案例分析】设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为S(x).(1)写出S(x)的表达式;(2)求S(x)的最大值正确答案:4、【案例分析】求函数的极大值与极小值.正确答案:5、【案例分析】设Y=y((x)满足2y+sin(x+y)=0,求y ′正确答案:将2y+sin(x+y)=0两边对x求导,得6、【案例分析】求函数的单调区间和极值正确答案:函数的定义域为函数f(x)的单调减区间为(-∞,0],函数f(x)的单调增区间为[0,+∞);f(0)=2为极小值.7、【案例分析】证明:正确答案:【评析】8、【案例分析】求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.正确答案:【评析】求函数f(x)的单调区间,应先判定函数的定义域.求出函数的驻点,即y′=0的点;求出y的不可导的点,再找出y′>0时x的取值范围,这个范围可能是一个区间,也可能为几个区间求曲线在点(1,3)处的切线方程曲线方程为,点因此所求曲线方程为或写为设Y=2ex-1则y″=e-x正确答案:11、【案例分析】正确答案:12、【案例分析】设y=2x2+ax+3在点x=1取得极小值,则a=_____正确答案:设y=fx)可导,点a0=2为fx)的极小值点,且f2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.正确答案:由于y=f(x)可导,点x0=2为f(x)的极小值点,由极值的必要条件可知f′(2)=0.曲线y=fx)在点(2,3)处的切线方程为y-3=f′(2)(x-2)=0,即y=3为所求切线方程14、【案例分析】设Y=xsinx,求Y′正确答案:15、【案例分析】设Y=y((x)满足2y+sin(x+y)=0,求y ′正确答案:将2y+sin(x+y)=0两边对x求导,得16、【案例分析】求函数的单调区间和极值正确答案:函数的定义域为函数f(x)的单调减区间为(-∞,0],函数f(x)的单调增区间为[0,+∞);f(0)=2为极小值.17、【案例分析】正确答案:一元函数微分学1、【单项选择】正确答案:B 2、【单项选择】正确答案:B设正确答案:B正确答案:C5、【单项选择】设y=lnx,则y″等于( )正确答案:D正确答案:C7、【单项选择】设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)正确答案:B8、【单项选择】正确答案:A 9、【单项选择】正确答案:A 10、【单项选择】正确答案:B 11、【单项选择】正确答案:B 12、【单项选择】正确答案:D13、【单项选择】ABCD正确答案:A正确答案:A 15、【单项选择】正确答案:C 16、【单项选择】正确答案:C正确答案:D18、【单项选择】求函数f(x)=x3-3x+1的单调区间和极值正确答案:注意函数的定义域为【评析】判定f(x)的极值,如果x0为f(x)的驻点或不可导的点,可以考虑利用极值的第一充分条件判定.但是当驻点处二阶导数易求时,可以考虑利用极值的第二充分条件判定.2、【案例分析】正确答案:3、【案例分析】设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为S(x).(1)写出S(x)的表达式;(2)求S(x)的最大值正确答案:4、【案例分析】求函数的极大值与极小值.正确答案:5、【案例分析】设Y=y((x)满足2y+sin(x+y)=0,求y ′正确答案:将2y+sin(x+y)=0两边对x求导,得6、【案例分析】求函数的单调区间和极值正确答案:函数的定义域为函数f(x)的单调减区间为(-∞,0],函数f(x)的单调增区间为[0,+∞);f(0)=2为极小值.7、【案例分析】证明:正确答案:【评析】8、【案例分析】求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.正确答案:9、【案例分析】求曲线在点(1,3)处的切线方程曲线方程为,点因此所求曲线方程为或写为设Y=2ex-1则y″=e-x正确答案:11、【案例分析】正确答案:12、【案例分析】设y=2x2+ax+3在点x=1取得极小值,则a=_____正确答案:13、【案例分析】设y=fx)可导,点a0=2为fx)的极小值点,且f2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.正确答案:由于y=f(x)可导,点x0=2为f(x)的极小值点,由极值的必要条件可知f′(2)=0.曲线y=fx)在点(2,3)处的切线方程为y-3=f′(2)(x-2)=0,即y=3为所求切线方程14、【案例分析】设Y=xsinx,求Y′正确答案:一元函数积分学1、【单项选择】正确答案:C 2、【单项选择】ABCD正确答案:D 3、【单项选择】正确答案:A 4、【单项选择】正确答案:B 5、【单项选择】正确答案:A 6、【单项选择】ABCD正确答案:B 7、【单项选择】正确答案:A 8、【单项选择】正确答案:B9、【单项选择】BD正确答案:D 10、【单项选择】正确答案:C 11、【单项选择】正确答案:C 12、【单项选择】正确答案:D 13、【单项选择】正确答案:C 14、【单项选择】正确答案:D 15、【单项选择】正确答案:D 16、【单项选择】正确答案:B 17、【单项选择】正确答案:A 18、【单项选择】等于( )正确答案:D 19、【单项选择】正确答案:A 1、【案例分析】正确答案:2、【案例分析】正确答案:3、【案例分析】正确答案:4、【案例分析】正确答案:5、【案例分析】正确答案:6、【案例分析】正确答案:7、【案例分析】(1)求曲线Y=ex及直线x=1,x=O,y=0所围成的平面图形(如图3—3所示)的面积A.(2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx(1分)正确答案:8、【案例分析】【评析】定积分的分部积分运算u,u'的选取原则,与不定积分相同.只需注意不要忘记积分限.如果被积函数中含有根式,需先换元,再利用分部积分.正确答案:。

浙江数学专升本试题及答案

浙江数学专升本试题及答案

浙江数学专升本试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 + 4x + 3 = 0的解?A. x = -1B. x = -3C. x = 1D. x = 32. 函数f(x) = 2x^3 - 5x^2 + 7x - 1在x=2处的导数值是:A. 2B. 5C. 8D. 103. 已知数列{an}满足a1 = 2,an+1 = an + n,求a5的值是:A. 10B. 15C. 20D. 254. 一个圆的半径为5,其面积为:A. 25πB. 50πC. 75πD. 100π5. 已知集合A={1, 2, 3},B={2, 3, 4},求A∩B的结果是:A. {1}B. {2, 3}C. {2, 3, 4}D. {1, 2, 3}6. 根据题目所给的几何图形,求其体积的计算公式是:A. V = πr^3B. V = 1/3πr^2hC. V = πr^2hD. V = 4/3πr^37. 已知向量a=(2, 3),b=(-1, 2),求向量a与b的点积是:A. -1B. 1C. 3D. 58. 一个函数f(x)在区间(a, b)内连续,且f(a) = f(b) = 0,根据罗尔定理,至少存在一点c∈(a, b)使得:A. f'(c) = 0B. f(c) = 0C. f'(c) = 1D. f(c) = 19. 根据题目所给的统计数据,求样本均值的公式是:A. μ = Σxi / nB. μ = Σxi / (n-1)C. σ = Σ(xi - μ)^2 / nD. σ = Σ(xi - μ)^2 / (n-1)10. 一个随机变量X服从二项分布B(n, p),其期望E(X)等于:A. npB. nC. pD. 2np答案:1. B2. D3. B4. B5. B6. B7. D8. A9. A10. A二、填空题(每题2分,共20分)11. 将分数1/3转换为小数是________。

2019年普通高等学校招生全国统一考试 数学(浙江卷)解析版

2019年普通高等学校招生全国统一考试 数学(浙江卷)解析版

2019年普通高等学校招生全国统一考试(浙江卷)数 学参考公式:h选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则U AB =ð( )A. {}1-B. {}0,1C. {}1,2,3-D. {}1,0,1,3-【答案】A 【解析】 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误.2.渐近线方程为0x y ±=的双曲线的离心率是( )A. B. 1C.D. 2【答案】C 【解析】 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b,则c =的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 32【答案】B 【解析】 【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算. 5.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( )A. B.C. D.【答案】D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a=过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】 【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A. ,βγαγ<<B. ,βαβγ<<C.,βαγα<<D.,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则c o s c o s P F E G D HB D P B P B P BP B α===<=,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin 33α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.9.已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >-> D. 1,0a b >-<【答案】D 【解析】 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想及数形结合思想的考查.研究函数方程的方法较为灵活,通常需要结合函数的图象加以分析. 【详解】原题可转化为()y f x =与y ax b =+,有三个交点.当BC AP λ=时,2()(1)()(1)f x x a x a x a x '=-++=--,且(0)0,(0)f f a ='=,则(1)当1a ≤-时,如图()y f x =与y ax b =+不可能有三个交点(实际上有一个),排除A ,B(2)当1a >-时,分三种情况,如图()y f x =与y ax b =+若有三个交点,则0b <,答案选D下面证明:1a >-时,BC AP λ=时3211()()(1)32F x f x ax b x a x b =--=-+-,2()(1)((1))F x x a x x x a '=-+=-+,则(0)0 ,(+1)<0F >Fa ,才能保证至少有两个零点,即310(1)6b a >>-+,若另一零点在0<【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..10.设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,b N *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B :不动点满足2211042x x x ⎛⎫-+=-= ⎪⎝⎭时,如图,若1110,,22n a a a ⎛⎫=∈< ⎪⎝⎭,排除如图,若a 为不动点12则12n a = 选项C :不动点满足22192024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为ax 12-,令2a =,则210n a =<,排除选项D :不动点满足221174024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为12x =±,令122a =±,则11022n a =±<,排除. 选项A :证明:当12b =时,2222132431113117,,12224216a a a a a a =+≥=+≥=+≥≥, 处理一:可依次迭代到10a ;处理二:当4n ≥时,221112n nn a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>⇒>则12117(4)16n n a n -+⎛⎫≥≥ ⎪⎝⎭,则626410217164646311114710161616216a ⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++> ⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.复数11z i=+(i 为虚数单位),则||z =________.【解析】 【分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】1|||1|2z i ===+. 【点睛】本题考查了复数模的运算,属于简单题.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】 (1). 2m =- (2). r =【解析】 【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===【点睛】:解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【答案】 (1). (2). 5 【解析】 【分析】本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.【详解】9)x 的通项为919(0,1,29)r r r r T C x r -+==可得常数项为0919T C ==因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确. 14.V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.【答案】 (1). (2). 【解析】 【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入CD x =,在BDC ∆、ABD ∆中应用正弦定理,建立方程,进而得解.. 【详解】在ABD ∆中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,AC 5==,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =cos cos()coscos sinsin 44ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【点睛】解答解三角形问题,要注意充分利用图形特征.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.【解析】 【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示考点圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁. 【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得32P ⎛- ⎝⎭,所以212PFk ==【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a = 【解析】 【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()()222(2)()2(2)(2))223642f t f t a t t t t a t t +-=∙++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤,由折线函数,如图只需113a -≤,即43a ≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】 (1). 0 (2). 【解析】 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()1234AB BC λ+λ+要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。

2019年浙江省专升本高数真题

2019年浙江省专升本高数真题
件产品?(注:利润等于收入减总成本)
26. 设 f (x) 在[1,1] 上具有二阶连续导数,且 f (0) 0.
(1)写出 f (x) 的带拉格朗日型余项的一阶麦克劳林公式.
(2)设 M , m 分别为 f (x) 在[1,1] 上的最大值与最小值,证明: m 1 f (x)dx M .
3 1
lim
x0
1 cos x ln(1 x3 )
(a
ex
)
存在且不等于
0.
9.
x

y
sin t cos t
,则
d2y dx2
________
.
10. 设 g(x) x sin t 2dt ,且当 x 0 时, g(x) 与 xn 是同阶无穷小,则 n __________ . 0
11. 定积分 1 1 x2 dx __________ . 0
12. 设函数 y y(x) 由方程 exy xy 0 确定,则 dy ________ . dx
13.曲线 y(x) x3 3x2 的拐点是
.
14.由曲线 y x , x 1, x 2 及 x 轴所围成的曲边梯形绕 x 轴旋转一周而成的旋转体体积
等于
.
15. 设 y 32x ,则 y(n) _________ .
18. 求不定积分 sin xdx .
19.

f
(x)
cos x, x, x
x [0, 2
2
,
) ,求
p(x)
x f (t)dt 在 0, 上的表达式.
0
20. 一物体由静止以速度 v(t) 3t ( 米 / 秒 )作直线运动,其中 t 表示运动的时间,求 t 1

2019年普通高等学校招生全国统一考试数学试题卷浙江卷(附带答案及详细解析)

2019年普通高等学校招生全国统一考试数学试题卷浙江卷(附带答案及详细解析)

绝密★启用前2019年普通高等学校招生全国统一考试浙江卷数学 试题卷本试卷共5页,23题(含选考题)。

全卷满分150分。

考试用时120 分钟。

★祝考试顺利★注意事项:1.答题前, 先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在 答题卡上的指定位置。

2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写 在试卷、草稿纸和答题卡上的非答题区域均无效。

3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。

写在试卷、草稿纸 和答题卡,上的非答题区域均无效。

4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答 题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。

.5.考试结束后, 请将本试卷和答题卡-并上交。

一、选择题:本大题共10小题,每小题4分,共40分。

(共10题;共40分) 1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则 ∁U A ∩B =( )A. {-1}B. {0,1}C. {-1,2,3}D. {-1,0,1,3} 2.渐近线方程为x±y=0的双曲线的离心率是( ) A. √22B. 1C. √2D. 2 3.若实数x ,y 满足约束条件 {x −3y +4≥03x −y −4≤0x +y ≥0,则z=3x+2y 的最大值是( ) A. -1 B. 1 C. 10 D. 124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=sh,其中s是柱体的底面积,h是柱体的高。

若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 325.若a>0,b>0,则“a+b≤4“是“ab≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在同一直角坐标系中,函数y= 1a ,y=log a(x+ 12),(a>0且a≠1)的图像可能是()A. B.C. D.7.设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点,(不含端点),记直线PB与直线AC所成角为α.直线PB与平面ABC所成角为β.二面角P-AC-B的平面角为γ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省2019年选拔优秀高职高专毕业生进入本科学习统一考试高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题号的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案的标号。

不能答在试卷上。

选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题:本大题共5小题,每小题4分,共20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设a x n n =∞→lim 则说法不正确的是()(A)对于正数2,一定存在正整数N ,使得当n>N 时,都有2X <-a n (B)对于任意给定的无论多么小的正数ε,总存在整数N ,使得当n>N 时,不等式ε<-a n X 成立(C)对于任意给定的a 的邻域()εε+-a a ,,总存在正整数N ,使得当n>N 时,所有的点n x 都落在()εε+-a a ,内,而只有有限个(至多只有N 个)在这个区间外(D)可以存在某个小的正数0ε,使得有无穷多个点0ε落在这个区间()00,εε+-a a 外2.设在点0x 的某领域内有定义,则在点0x 处可导的一个充分条件是()(A)hx f h x f h )()2(lim000-+→存在(B)hh x f x f h )()(lim 000---→存在(C)hh x f h x f h )()(lim000--+→存在(D)⎥⎦⎤⎢⎣⎡-++∞→)()1(lim 00x f h x f h h 存在3.⎥⎦⎤⎢⎣⎡+++++++∞→n n n n n x πππsin 1...2sin 1sin 11lim 等于()(A)dxx ⎰10sin π(B)dxx ⎰+1sin 1π(C)dxx ⎰+10sin 1(D)dxx ⎰+1sin 1π4.下列级数或广义积分发散的是().(A)∑∞=-+-11100n 1n n )((B)∑∞=12cos n n(C)dxx ⎰212-41(D)dx x ⎰+∞+12211)(5.微分方程044=+'-''y y y 的通解是()(A)x e c x c x y 221)(-+=(B)()x e x c c x y 221)(-+=(C)()xe x c c x y 221)(+=(D)()xxe x c c x y 221)(-+=非选择题部分二、填空题:本大题共10小题,每小题4分,共40分。

6.极限=⎪⎭⎫ ⎝⎛+∞→nn n 1sin 1lim _______________.7.设一堆雪的高度h 与时间t 的关系为()2100t t h -=,则雪堆的高度在时刻5=t 时的变化率等于___________.8.当=a ____时,极限)()1(ln cos 1lim30xx e a x x -+-→存在且不等于09.设⎩⎨⎧==t y tx cos sin ,则=22dx y d _______________.10.设dt t x g x⎰=02sin )(,且当0→x 时,)(x g 与n x 是同阶无穷小,则n=______.11.定积分=⎰dx x 12-1_________.12.设函数()x y y =由方程0=-+xy e y x 确定,则=dxdy___________.13.曲线233)(x x x y +=的拐点是_______________.14.由曲线2,1,===x x x y 及x 轴所围成曲边梯形绕x 轴旋转一周而成的旋转体体积等于_______________.15.设x y 23=,则=)(n y .三、计算题:本题共有8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分。

计算题必须写出必要的计算过程,只写答案的不给分。

16.极限20)1ln(limx x x x -+→17.设x x x x y ++=)cos 2ln()(π,求函数)(x y 在1=x 处的微分.18.求不定积分dx x sin ⎰.19.设⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡∈⎢⎣⎡∈=πππ,2,)2,0,cos )(x x x x x f ,求dt t f x p x ⎰=0)()(在[]π,0上的表达式.20.一物体由静止开始以速度13)(+=t tt v (米/秒)作直线运动,其中t 表示运动的时间,求物体运动到8秒时离开出发点的距离.21.问是否存在常数a 使得函数⎩⎨⎧>-≤+=0,10,)(2x e x a x x f ax在0=x 处可导?若存在,求出常数a,若不存在,请说明原因.22.求过点A(1,0,2)且与两平面0:,01:21=-=++-z x z y x ππ都平行的直线方程.23.求幂级数111-∞=∑n n x n 的收敛区间及和函数,并计算级数11)21(1-∞=∑n n n .四、综合题:本大题共3小题,每小题10分,共30分。

24.设)(x f y =是连续象限内连续点M (0,4),N (2,0)的第一段连续线段,P (x,y)为该曲线上任意一点,点B 为P 在x 轴上的投影,O 为坐标原点,若梯形OBPM 的面积与曲边三角形BPM 的面积之和等于另一曲线3244x x y +=在点324,(4xx x +处的切线斜率,求该曲线)(x f y =的方程(注:曲边三角形BPM 是指直线段BP ,x 轴以及直线段PN 所围成的封闭图形).25.假设某公司生产某产品x 千件的总成本是2130122)(23++-=x x x x c (万元),售出该产品x 千件的收入是x x r 60)(=(万元),为了使公司取得最大利润,问公司应生产多少千件产品?(注:利润等于收入减总成本)26.设)(x f 在[]1,1-上具有二阶连续导数,且0)0(=f ⑴写出)(x f 的带拉格朗日型余项的一阶麦克劳林公式.⑵设m M ,分别为)(x f '在[]1,1-上的最大值和最小值,证明:3)(311-Mdx x f m ≤≤⎰⑶证明:在[]1,1-上至少存在一点η使得dxx f f ⎰='11-)(3)(η2019年浙江省专升本《高等数学》参考答案一、选择题(本大题共5小题,每小题4分,共20分)1、D解析:极限精确定义,若a x n n =∞→lim ,则对于N a ∃>∀,0,当n>N 时,ε<-a n X 2、A解析:B 改为0→h C 反推D 改为∞→h 3、B 解析:dx x n n i ni n ⎰∑+=⋅+=∞→101sin 11sin 1lim ππ4、B解析:A.条件收敛B .0cos lim 2≠∞→n n 发散C .2=x 为瑕点36221arcsin 2arcsin lim 2arcsin -41221212πππ=-=-==→⎰xx dx x x D.4sec 1tan 11202022ππ==+⎰⎰∞+dt t t x dx x )(5、C解析:由044=+'-''y y y ,特征方程为0442=+-r r ,即()02-r 2=,所以()xex c c y 221+=二、填空题(本大题共10小题,每小题4分,共40分)6、解析:ee en n n n nn nn nx ===⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅∞→∞→→11sin 1sin 1sin 1lim n 1sin 1n 1sin 1lim lim 7、解析:tt h 2)(-='10)5(-='h 8、解析:xe a e a x xe a x x x x x x x x 2lim )(21lim )()1(lim cos 1lim 032030-=-=-+-→→→极限存在且不等于0,且02lim 0=→x x 原极限存在,则0lim 0=-→xx e a ,1=a9、解析:t dt dy sin -=,t dt dy cos =,t tt dt dy tan cos sin --==t tt t t dx y d 3222sec cos sec cos )tan (-=-='-=10、解析:321),0(lim sin lim sin lim )(lim 1201200200=⇒=-∴∞≠≠====-→-→→→⎰n n C nx x nx x x dt t x x g n x n x nxx n x 11、解析:4141-12102ππ=⋅=⎰dx x (定积分几何意义2R 022R 41-R π=⎰dx x )12、解析:方程0=-+xy e y x 两边同时求导,得:0)()(='-'++xy y x e y x 0)y ()1(='+-'++y x y e y x y x y x e y y x y e ++-='-'⋅xe e y y yx yx -='∴++-13、解析:x x y 632+=')1(666+=+=''x x y 令0=''y 得1-=x ,当1-<x 时,0<''y ;当1->x 时,0>''y ∴在1-=x 处取得拐点,拐点为)2,1-(14、解析:ππππ2312)21()(221221x v ====⎰⎰x dx x dx x 15、解析:n x n x a a a )(ln )()(⋅=所以nn x n x 2)3(ln 3)3(2)(2⋅⋅=三、计算题(本大题共8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分)16、解析:21)1(21lim )1(2)1(1lim 2111lim)1ln(lim 00020-=+-=++-=-+=-+→→→→x x x x x x x x x x x x x 17、解析:x x x e x x x y ln )cos 2ln()cos 2ln(++=++=ππ)1(ln )sin (cos 21)ln ()cos 2(cos 21ln ++-⋅+='+'+⋅+='x x x xx x e x x y x x x πππππdxdyy x x =∴='==11118、解析:令x t =,则tdtdx t x 2,2==∴原式tdcost2-sintdt 22tdt sint ⎰=⎰=⋅⎰=t C s +=⎰=)int -tcost (2-)costdt -tcost (2-Cx x x +-=)sin cos (2-19、解析:①当20π<≤x 时,x xt dt dt t f x p x x sin 0sin cost )()(00====⎰⎰②当ππ≤≤x 2时,222220*********sin t cost )(πππππ-+=+=+=⎰⎰x x t t dt dt x p x所以⎪⎪⎩⎪⎪⎨⎧≤≤+-<≤=ππππx x x x x p 2,182120,sin )(2220、解析:令距离为S,则dt t⎰+=801t 3S 令0,2,1,1t u 2==-=+=t udu dt u t 时,8,1==t u 时,3=u ⎰⎰=-=-=3123124016)1(3S du u udu uu 21、解析:假设)(x f 在0=x 处可导,则有:)(x f 在0=x 连续,故有)(lim )(lim 00x f x f x x +-→→=,即0=a 故此时⎩⎨⎧>≤=0,00,)(2x x x x f 00lim 0)0()(lim)0(0lim 0)0()(lim)0(00200==--='==--='-++-→→+→→-x x f x f f x x x f x f f x x x x 故)(x f 在0=x 可导0=∴a22、解析:设直线的方向量为S ,平面1π的法向量为)1,1,1(1-=n ,平面2π的法向量)1-,0,1(2=n 故由题意,有)1,2,1(,,2121=⨯=∴⊥⊥n n s n s n s ∴直线方程为122011-=-=-z y x 23、解析:11)()(11lim lim <=⋅+=-∞→+∞→x xn n x x u x u n n n n n n ,所以收敛区间为(-1,1)令111)(-∞=∑=n n x n x S ,当0≠x 时,)0(11)(1≠=∑∞=x n x x S n n ⎥⎦⎤⎢⎣⎡---=-===∴⎰⎰⎰∑∑∞=-∞=x x x n n n n t d t x dt t x t d t x x n x x S 000111)1(111)11(1)(111)(0,1ln 1)1ln (1)1(1110≠--=--=⎥⎦⎤⎢⎣⎡---=⎰x x x x xt d t x x 当0=x 时,1)0(=S ⎪⎩⎪⎨⎧=⋃-∈--=∴0,1)1,0()0,1(),1ln(1)(x x x x x S 令21=x ,则2ln 2211ln(2)21111=-⋅-=-∞=∑n n n 四、综合题(本题共有3小题,每小题10分,共30分)24、解析:由题意知:3161)()4)((2132+=+⋅+⎰x dt t f x x f x 两边同时对x 求导:221)()(21))(4(21x x f x f x x f =-'++即xx x f x x f 4)(1)(-=-'4)4()4()(211++=++=⎥⎦⎤⎢⎣⎡+⎰-⎰=∴⎰-Cx x C x x x C dx e x x e x f dx x dx x 由于44)(,40)2(2+-=∴-=∴=x x x f C f ,25、解析:设利润为)(x f ,则)0)(2130122(60)()()(23≥++--=-=x x x x x x c x r x f 则30246)(2++-='x x x f ,令0)(='x f 得11-=x (舍去),52=x 当50<≤x 时,0)(>'x f ;当5>x 时,0)(<'x f 当5=x 时,)(x f 取极大值且为最大值26、解析:⑴)0(2)()0(2)()0()0()(22x x f x f x f x f f x f <<''+'=''+'+=ξξξ⑵3)(2)()0()(211-11-ξξf dx x f x f dx x f ''=''+'=⎰⎰由于M f m ≤''≤)(ξ33)()(311-M f dx x f m ≤''=≤∴⎰ξ⑶由于3)(311-M dx x f m ≤≤⎰,故M dx x f m ≤≤⎰11-)(3由介值定理得:[]1,1-∈∃η,使dx x f f ⎰='11-)(3)(η。

相关文档
最新文档