动量守恒之滑块 子弹打木块模型
动量专题复习滑块子弹打木块模型
滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
一 模型理解质量为m 的子弹,以速度V 0水平射入光滑水平面上质量为M 的木块中未穿出。
子弹深入木块时所受的阻力大小恒为f符合规律:动量守恒定律:mV 。
=(M+m )V动能定理:子弹-f S m = mV 2/2-mV 02/2木块-f S M = MV 2/2-0功能关系:fd= mV 02/2-(M+m)V 2/2能量转化:子弹动能减少:f S m = mV 02/2- mV 2/2木块动能增加:f S M = MV 2/2系统机械能减少:f S m -f S M =mV 02/22内能增量:f S m -f S M = mV 02/2- 产生热量:f d=f S m -f S M =mV 02/2- 二 典型例题1 如图所示,质量为M 小铁块,小铁块与平板车之间的动摩擦因数为μ其获得大小为v 0的初速度而在小车上向右滑动,车上的滑行时间是多少?2如图所示,质量m=2kg 的物体,以水平速度小车,小车质量M=8kg 设小车足够长,求:(1)(2)物体相对小车滑行的时间距离是多少?(3)3.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系。
v 0A B v 0 AB v 0 l A 2v 0 v 0B C A v 05m B L v 0 m v ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向;⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。
高考物理 打木块模型之一
高考物理打木块模型之一高考物理打木块模型之一滑块和子弹击中木块的模型之一子弹打木块模型:包括一物块在木板上滑动等。
μns相=δek系统=q,q为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动:包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
示例:质量为M、长度为L的木块仍然位于光滑的水平面上。
有一颗质量为m的子弹,以水平初始速度V0进入木块,子弹射出时的速度为v。
计算子弹与木块相互作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f,突出时木块速度为v,位移为s,则子弹位移为(s+l)。
水平方向不受外力,由动量守恒定律得:mv0=mv+mv①112由动能定理,对子弹-f(s+l)=mv2?mv0②221对木块FS=MV2?0③2lv0vs由①式得v=将m1m2(V0?V)替换为③, 其中FS=m?2(V0?V)2④ M2M1111M22② + ④ 得到FL=MV0?mv2?mv2?mv0?{mv2?m[(v0?v)]2}222222m由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即q=fl,l为子弹现木块的相对位移。
结论:系统损失的机械能等于摩擦产生的内能、摩擦与两物体相对位移的乘积。
即q=δe系统=μns相分量公式为:q=F1s阶段1+F2s阶段2+…+FNS相位n=δE系统1.在光滑水平面上并排放两个相同的木板,长度均为l=1.00m,一质量与木板相同的金属块,以v0=2.00m/s的初速度向右滑上木板a,金属块与木板间动摩擦因数为μ=0.1,g取10m/s。
求两木板的最后速度。
2.如图所示,在光滑的水平面上放置一个质量为M、长度为L的矩形木块B,在其右端放置一个质量为M的小木块a。
现在,以地面为基准,给a和B一个大小相同、方向相反的初始速度(如图所示),这样a开始向左移动,B开始向右移动,但最终,a不会从板B上滑开。
动量守恒定理应用之滑块、子弹打木块模型
l v 0 v Sv 0 A Bv 0 A B v 0 l 动量守恒定理应用之滑块、子弹打木块模型子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -∙ ④ ②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
动量守恒中几种常见的模型
1、动力学规律:子弹和木块构成旳系统受到大小相等方 向相反旳一对相互作用力,故加速度旳大小和质量成反比, 方向相反。
2、运动学及热量计算:子弹穿过木块旳过程能够看作是 两个做匀变速直线运动旳物体间旳追及问题,在一段时间 内子弹射入木块旳深度,就是两者相对位移旳大小。而整 个过程产生旳热量等于滑动摩擦力和相对位移旳乘积。即 Q=Ff*s
代 根而入据f=数能μm据量g得守代:恒入定V=数律2m据得/解s:得fL: 12Lm=1v002m .12 M mv2
模型四:
带弹簧旳木板与滑块模型
如图所示,坡道顶端距水平面高度为h,质量为m1旳小物块 A从坡道顶端由静止滑下,进入水平面上旳滑道时无机械能 损失,为使A制动,将轻弹簧旳一端固定在水平滑道延长线 M处旳墙上,另一端与质量为m2旳档板B相连,弹簧处于原 长时,B恰位于滑道旳末端O点.A与B碰撞时间极短,碰后 结合在一起共同压缩弹簧,已知在OM段A、B与水平面间旳 动摩擦因数均为μ,其他各处旳摩擦不计,重力加速度为g, 求: (1)物块A在与挡板B碰撞前瞬间速度v旳大小; (2)弹簧最大压缩量为d时旳弹性势能Ep(设弹簧处于原长 时弹性势能为零).
μ
mgL
1 2
m0
m
v2 1
1 2
Mv 2
1 2
m0
m
M
v 2 2
③
由①②③解得v0=149.6m/s为最大值, 所以v0≤149.6m/s
解:(1)物块A从坡道顶端由静止滑至O点旳过程,
由机械能守恒定律,得:m1gh 1 m1v2
代入数据得:v 2gh
2
(2)A、B在碰撞过程中内力远不小于外力,系统动
量守恒,以向左为正方向,由动量守恒定律得:
第7单元动量专题九“子弹打木块”模型和“滑块—木板”模型-2025年物理新高考备考课件
的运动过程中,系统动量守恒,有 − = + +1 = 1,2,3, ⋯
解得+1 =
1
5
= 1,2,3, ⋯
设第一次碰撞后小车向左运动的最大距离为1 ,对小车,根据动能定理有
−1 = 0 −
解得1 = 0.6 m
1
2
1
2
热点题型探究
设第次碰撞后小车向左运动的最大距离为 ,对小车根据动能定理有
、碰撞时损失的机械能为
Δ =
1
2
0
2
−
1
2
2
+
1
2
2
= 12 J
热点题型探究
(3)要保证滑块不脱离长木板,长木板的最小长度.
[答案] 1.5 m
[解析] 在、碰撞后到、再次共速的过程中,、相互作用的时间为
=
0 −共
=1s
长木板的长度至少为 = − =
[答案] 12 J
[解析] 、碰撞瞬间,由动量守恒定律可得
0 = +
在、碰撞后到、再次共速的过程中,、组成的系统由动量守恒可得
+ 0 = + 共
根据题意有共 =
联立解得共 = = 3 m/s, = 2 m/s
A.3 J B.4 J C.6 J D.20 J
教师备用习题
[解析]设铁块与木板共速时速度大小为v,铁块相对木板向右运动的最大距离为L,
铁块与木板之间的摩擦力大小为Ff,铁块压缩弹簧使弹簧最短时,由能量守恒定
1
1
2
律得 m0 =FfL+ (M+m)v2+Ep,由动量守恒定律得mv0=(M+m)v,从铁块开始运动
动量守恒定理应用之滑块子弹打木块模型
动量守恒定理应用之滑块子弹打木块模型动量守恒定理应用之滑块、子弹打木块模型动量守恒定理应用的几种模型分析动量守恒定律中常常涉及这样几种模型:人船模型,子弹打木块模型,滑块模型,弹簧模型等1人船模型:这是一种通过平均动量守恒来解决的问题。
解决问题时,画一个物体位移关系的草图,找出物体之间的位移关系。
【例1】质量为m的小船长为l浮在静水中。
开始时质量为m的人站在船头,人和船均处于静止状态。
若此人从船头走到船尾,不计水的阻力,则船将前进的距离为a、 ml/(m+m)b、ml/(m+m)c、ml/(m-m)d、ml/(m-m)【解析】以人和船组成的系统为研究对象,由于人从船头走向船尾,系统在水平方向上不受外力作用,所以水平方向动量守恒,人起步前人和船均静止系统的总动量为零。
以河岸为参考系有0=mv船→岸+mv人→岸人走船走人停船停。
整个过程中,每一时刻系统都满足动量守恒定律,位移x=v平均t,所以0=ml船→岸+ml人→岸,根据位移关系可知l=l 船→岸+l人→岸,解得l船→岸=ml/(m+m)【答案】a人船模型通常涉及速度。
在求解对象时,我们必须分析它与哪个参考系有关。
如果给定的速度不是相同的参考系,则必须将其转换为相同的参考系。
2.子弹击中木块模型:这类问题以系统为研究对象,水平方向满足动量守恒条件。
然而,由于摩擦,系统的机械能不守恒,损失的机械能等于摩擦和相对位移的乘积。
解决问题时最好画一个运动草图,物体位移之间的关系非常直观。
【例题2】:质量为m、长为l的木块静止在光滑水平面上,现有一质量为m的子弹以水平初速v0射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。
【分析】:如图所示,子弹穿过木块的阻力为f,木块的速度为V,位移为为s,则子弹位移为(s+l)以子弹木块为系统,由动量守恒定律得:mv0=mv+mv(1)动能定理中的2L,对于子弹-f(s+L)=1mv2?1mv0(2)22v0vs对于木块FS=1mv2?0(3)2m2m2由①式得v=m(v0?v)代入③式有fs=1m?m2(v0?v)2④11111 M22② + ④ 得到FL=1mv0?mv2?mv2?mv0?{mv2?m[(v0?v)]2}222222m注意:这类问题存在临界条件,即子弹射出和留在滑块中。
子弹打木块(教学课件)
5.子弹相对于木块运动的位移? L= L2— L1
能量规律:
1.子弹的动能如何变化?变化了多少?
2.木块的动能如何变化?变化了多少? 3.系统动能减少了多少? v0
4.减少的动能哪去了?
f
摩擦生热,转化为内能
L L1
5.子弹和木块增加的内能是多少?
f
V
f L =f L2 - f L1 =mV02/2-(M+m)V2/2 L2
一、动量守恒的判断
木块静止在光滑的水平面上,子弹射击木块。 (1)子弹未射穿留在木块中,木块和子弹 的总动量是否守恒? (2)若子弹射穿木块,总动量是否守恒? (3)若水平面粗糙木块固定,木块和子弹 的总动量是否守恒?
v1
二、模型理解: (一)常见模型: 1.子弹打木块 v1
2.滑块在长木板上滑行
问题的提出
动量中三种模型: 碰撞
人船模型
动量守恒定律:
系统不受外力或者所受外力的矢量 和为零,这个系统的总动量保持不变.
m11 m22 m11/ m22/
动量守恒的条件:
1.系统不受外力 2.所受外力的矢量和为零 3.系统受外力,但外力远小于内力.(如爆炸) 4.在某个方向上满足以上的任意一点, 在该方向上 动量守恒.
结论:Q=FL f:滑动摩擦力 L:子弹相对木块 的位移(射入深度) Q =△EK 系统减少的动能等于系统增加的内能。
[例题] 质量为m的子弹以初速度v0射向 静止在光滑水平面上的质量为M的木块,设
木块对子弹的阻力恒为f,求: 1.木块至少多长子弹才不会穿出? 2.子弹在木块中运动了多长时间?
v0
质量为M的木块静止在光滑水平面上。质量 为m的子弹以速度V0水平射入中未穿出。子弹射 入木块时所受的摩擦力大小恒为f。
专题21子弹打木块模型和板块模型(精讲)
专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
子弹打木块模型(解析版)
子弹打木块模型答案解析1、【答案】 C 【解析】设发射子弹的数目为n ,n 颗子弹和木块M 组成的系统在水平方向上所受的合外力为零,满足动量守恒的条件.选子弹运动的方向为正方向,由动量守恒定律有nmv 2-Mv 1=0,得n =12Mv mv 所以C 正确;ABD 错误;故选C 。
2、【答案】 D 【解析】设子弹的质量为m ,沙袋质量为M ,则有M =100m ,取向右为正方向,第一个弹丸射入沙袋,由动量守恒定律得mv 1=101mv ,子弹和沙袋组成系统第一次返回时速度大小仍是v ,方向向左,第二个弹丸以水平速度v 2又击中沙袋的运动中,由动量守恒定律有mv 2−101mv =42mv ',设细绳长度为L ,第一个弹丸射入沙袋,子弹和沙袋共同摆动的运动中,由机械能守恒定律得()()()211cos302M m gL M m v +-=+解得)cos30v =,由上式可知,v 与系统的质量无关,因两次向上的最大摆角均为30°,因此v '=v ,联立解得12:101:203v v =,ABC 错误,D 正确。
故选D 。
3、【答案】 AD 【解析】B .由题知,子弹A 、B 从木块两侧同时射入木块,木块始终保持静止,分析可知,两子弹对木块的推力大小相等方向相反,子弹在木块中运动时间必定相等,否则木块就会运动。
设两子弹所受的阻力大小均为f ,根据动能定理,对A 子弹有kA 0A fd E -=-,得u A E fd =,对B 子弹有k 0B B fd E -=-,得kB B E fd =,由于A B d d >,则子弹入射时的初动能kA kB E E >故B 错误;C .两子弹和木块组成的系统动量守恒,因射入后系统的总动量为零,所以子弹A 的初动量大小等于子弹B 的初动量大小,故C 错误,D 正确;A.根据动量与动能的关系得mv =k kA B E E >,则得到A B m m <,根据动能的计算公式2k 12E mv =,得到初速度A B v v >,故A 正确。
动量守恒定律子弹打木块弹簧板块三模型
一、 子弹大木块【例2】如图所示,质量为M 的木块固定在光滑的水平面上,有一质量为m 的子弹以初速度v0水平射向木块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻力恒为f .若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即mv 0=(m +M )v对系统应用动能定理得fd =12mv 20-12(M +m )v 2由上面两式消去v 可得 fd =12mv 20-12(m +M )(mv 0m +M )2整理得12mv 20=m +M M fd即12mv 20=(1+m M)fd 据上式可知,E 0=12mv 20就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰能打穿木块所必须具有的初动能与子弹受到的平均阻力f 和木块的厚度d (或者说与f ·d )有关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能E 0必须大于(1+mM)f ·d .72、如图所示,静止在光滑水平面上的木块,质量为、长度为。
—颗质量为的子弹从木块的左端打进。
设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。
由动量守恒定律得:①要使子弹刚好从木块右端打出,则必须满足如下的临界条件:②根据功能关系得:③解以上三式得:二、 板块1、 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
动量守恒在“子弹打木块”模型和“板块”模型中的应用--高中物理第七章专项练习
第七章动量守恒定律动量守恒在“子弹打木块”模型和“板块”模型中的应用1.子弹射入静止在光滑的水平面上的木块,若最终一起运动,动量守恒,机械能减小;若穿出,系统动量仍守恒,系统损失的动能ΔE=F f L(L为木块的长度).2.“滑块—木板”模型:系统的动量守恒,当两者的速度相等时,相当于完全非弹性碰撞,系统机械能损失最大,损失的机械能转化为系统内能,ΔE=F f·L(L为滑块相对于木板滑行的位移).1.(2023·云南省第一次统测)如图所示,子弹以某一水平速度击中静止在光滑水平面上的木块并留在其中.对子弹射入木块的过程,下列说法正确的是()A.木块对子弹的冲量等于子弹对木块的冲量B.因子弹受到阻力的作用,故子弹和木块组成的系统动量不守恒C.子弹和木块组成的系统损失的机械能等于子弹损失的动能减去子弹对木块所做的功D.子弹克服木块阻力做的功等于子弹的动能减少量和摩擦产生的热量之和答案C解析木块对子弹的冲量与子弹对木块的冲量方向相反,不相等,A错误;因为水平面光滑,系统不受外力,子弹和木块组成的系统动量守恒,B错误;根据动能定理,子弹对木块所做的功等于木块获得的动能;根据能量守恒定律,子弹和木块组成的系统损失的机械能等于子弹损失的动能减去木块获得的动能,C正确;根据动能定理,子弹克服木块阻力做的功等于子弹的动能减少量,D错误.2.(多选)如图所示,光滑水平面上分别放着两块质量、形状相同的硬木和软木,两颗完全相同的子弹均以相同的初速度分别打进两种木头中,最终均留在木头内,已知软木对子弹的摩擦力较小,以下判断正确的是()A.子弹与硬木摩擦产生的内能较多B.两个系统产生的内能一样多C.子弹在软木中打入深度较大D.子弹在硬木中打入深度较大答案BC解析设子弹质量为m,木头质量为M,由于最终都达到共同速度,根据动量守恒定律m v0=(m +M )v 可知,共同速度v 相同,则根据ΔE =12m v 02-12(m +M )v 2=Q ,可知子弹与硬木和子弹与软木构成的系统机械能减少量相同,故两个系统产生的内能Q 一样多,故A 错误,B 正确;根据功能关系Q =F f ·d 可知产生的内能Q 相同时,摩擦力F f 越小,子弹打入深度d 越大,所以子弹在软木中打入深度较大,故C 正确,D 错误.3.如图所示,一砂袋用无弹性轻细绳悬于O 点.开始时砂袋处于静止状态,一弹丸以水平速度v 0击中砂袋后未穿出,二者共同摆动.若弹丸的质量为m ,砂袋的质量为5m ,弹丸和砂袋形状大小忽略不计,弹丸击中砂袋后漏出的砂子质量忽略不计,不计空气阻力,重力加速度为g .下列说法中正确的是()A .弹丸打入砂袋过程中,细绳所受拉力大小保持不变B .弹丸打入砂袋过程中,弹丸对砂袋的冲量大小大于砂袋对弹丸的冲量大小C .弹丸打入砂袋过程中所产生的热量为m v 0272D .砂袋和弹丸一起摆动所达到的最大高度为v 0272g答案D 解析弹丸打入砂袋的过程,由动量守恒定律得m v 0=(m +5m )v ,解得v =16v 0,弹丸打入砂袋后,总质量变大,且做圆周运动,根据F T =6mg +6m v 2L可知,细绳所受拉力变大,A 错误;弹丸打入砂袋过程中,弹丸对砂袋的作用力与砂袋对弹丸的作用力大小相等,则弹丸对砂袋的冲量大小等于砂袋对弹丸的冲量大小,B 错误;弹丸打入砂袋过程中所产生的热量Q =12m v 02-12×6m v 2=512m v 02,C 错误;由机械能守恒定律可得12×6m v 2=6mgh ,解得h =v 0272g,D 正确.4.(多选)如图所示,足够长的木板B 放在光滑的水平面上,木块A 放在木板B 最左端,A 和B 之间的接触面粗糙,且A 和B 质量相等.初始时刻木块A 速度大小为v ,方向向右.木板B 速度大小为2v ,方向向左.下列说法正确的是()A .A 和B 最终都静止B .A 和B 最终将一起向左做匀速直线运动C .当A 以v 2向右运动时,B 以3v 2向左运动D .A 和B 减少的动能转化为A 、B 之间产生的内能答案BCD 解析木块与木板组成的系统动量守恒,初始时刻木块A 速度大小为v ,方向向右,木板B 速度大小为2v ,方向向左.以向左为正方向,由动量守恒定律得2m v -m v =2m v ′,解得v ′=v 2,方向向左,故A 错误,B 正确;当A 以v 2向右运动时,以向左为正方向,有2m v -m v =-m ·v 2+m v B ,解得v B =32v ,故C 正确;根据能量守恒定律可知,A 和B 减少的动能转化为A 、B 之间因摩擦产生的内能,故D 正确.5.(2023·宁夏石嘴山市三中月考)如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,在A 的上方O 点用细线悬挂一小球C (可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度大小为2m/s.已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小;(2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 最小长度为多少?答案(1)30N (2)1.5m/s (3)0.375m 解析(1)设小球C 与物体A 碰撞前瞬间的速度大小为v 0,对小球C 的下摆过程,由机械能守恒定律得m C gL =12m C v 02解得v 0=4m/s设小球C 与物体A 碰撞前瞬间受到细线的拉力大小为F ,对小球由牛顿第二定律得F -m C g =m C v 02L解得F =30N(2)以v 0方向为正方向,设A 、C 碰撞后瞬间A 的速度大小为v A ,由动量守恒定律得m C v 0=-m C v C +m A v A解得v A =1.5m/s(3)当物体A 滑动到小车B 的最右端时恰好与小车B 达到共同速度v 时,小车B 的长度最小,设为x .由动量守恒定律得m A v A =(m A +m B )v解得v =0.5m/s由能量守恒定律得μm A gx =12m A v A 2-12(m A +m B )v 2解得x =0.375m.6.如图所示,平板小车A 放在光滑水平面上,长度L =1m ,质量m A =1.99kg ,其上表面距地面的高度h =0.8m .滑块B (可视为质点)质量m B =1kg ,静置在平板小车的右端,A 、B 间的动摩擦因数μ=0.1.现有m C =0.01kg 的子弹C 以v 0=400m/s 的速度向右击中小车A 并留在其中,且击中时间极短,g 取10m/s 2.则:(1)子弹C 击中平板小车A 后的瞬间,A 速度多大?(2)B 落地瞬间,平板小车左端与滑块B 的水平距离x 多大?答案(1)2m/s (2)0.4m 解析(1)子弹C 击中小车A 后并留在其中,则A 与C 共速,速度为v 1,以v 0的方向为正方向,根据动量守恒有m C v 0=(m C +m A )v 1解得v 1=2m/s(2)设A 与B 分离时的速度分别是v 2、v 3,对A 、B 、C 组成的系统,由动量守恒定律和能量守恒定律得(m A +m C )v 1=(m A +m C )v 2+m B v 3-μm B gL =12(m A +m C )v 22+12m B v 32-12(m A +m C )v 12解得v 2=53m/s ,v 3=23m/sB从A飞出以v3做平抛运动,则h=1gt22解得t=0.4sA以v2向右做匀速直线运动,则当B落地时,它们的相对位移x=(v2-v3)t=0.4m.。
2025版高考物理一轮复习课件 专题强化:动量守恒在子弹打木块模型和“滑块—木板”模型中的应用
第七章
动量守恒定律
第 4
专题强化:动量守恒在子弹打木块模 型和“滑块—木板”模型中的应用
课
时
目标 1.会用动量观点和能量观点分析计算子弹打木块模型。 要求 2.会用动量观点和能量观点分析计算“滑块—木板”模型。
内 容
考点一 子弹打木块模型
索
引
考点二 “滑块—木板”模型
考点二 “滑块—木板”模型
(3)从开始到共速,小车运动的位移大小x1; 答案 0.096 m
对小车,根据动能定理有 μm2gx1=12m1v2-0, 解得 x1=2mμm1v22g=0.096 m
考点二 “滑块—木板”模型
(4)从开始到共速,物块运动的位移大小x2; 答案 0.336 m
x2=v0+2 vt=2+20.8×0.24 m=0.336 m
考点一 子弹打木块模型
设子弹射入木块后与木块的共同速度为v,对子弹和木块组成的系统, 由动量守恒定律得mv0=(M+m)v,代入数据解得v=6 m/s 此过程系统所产生的内能 Q=12mv02-12(M+m)v2=882 J
考点一 子弹打木块模型
(2)若子弹是以大小为400 m/s的水平速度从同一方向水平射向该木块,则 在射中木块后能否射穿该木块? 答案 能
12345678
根据动能定理可知,子弹对滑块做的功等于滑 块动能的增加量,两滑块质量相同,初动能相 同,末动能相同,则子弹对滑块A做的功和对滑 块B做的功相等,故D正确。
12345678
2.如图所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已 知木板质量大于物块质量,t=0时两者从图中位置以相同的水平速度v0向 右运动,碰到右面的竖直挡板后木板以与原来等大反向的速度被反弹回 来,运动过程中物块一直未离开木板,则关于物 块运动的速度v随时间t变化的图像可能正确的是
模型6子弹打木块模型-动量守恒的九种模型解读
联立解得△E=220J
(2)设滑块A刚滑上滑块B时速度为vA',小滑块A冲上滑块B,并恰好能达到滑块B的最高点时系统速度相等,设为v,由动量守恒定律,mAv1’+(m0+mB)v2=(mA+m0+mB)v
由机械能守恒定律, mAv1’2+ (m0+mB)v22= (mA+m0+mB)v2+mAgR
A. B. C. D.
【答案】BC
【解析】设子弹在木块中运动的时间为 ,以子弹为对象,根据动量定理可得 ,解得 ,设子弹射出木块时,木块的速度为 ,根据系统动量守恒可得 ,解得
根据位移关系可得 ,解得 ,故选BC。 公众号高中物理学习研究
3. (2024安徽芜湖重点高中二模)如图所示,质量均为m的物块A、B放在光滑的水平面上,中间用轻弹簧相连,弹簧处于原长,一颗质量为 的子弹以水平速度 射入木块A并留在物块中(时间极短),则下列说法正确的是( )
解得:vB=4 m/s
子弹、A、B和弹簧所组成的系统动量守恒,弹簧弹性势能最大时A、B、子弹具有相同的速度v,由动量守恒定律:
mAvA+(m+mB)vB=(m+mA+mB)v
解得:v=5 m/s
由能量关系:Ep= mAvA2+ (m+mB)vB2- (m+mA+mB)v2
解得:Ep=6 J。
(3)从子弹射入B中到弹簧再次恢复原长,系统总动量守恒,总动能不变,则:
(1)子弹击中木块后的速度;
(2)木块在斜面上向上运动的时间和返回斜面底端时速度大小。
【解析】(1)从子弹射击木块到子弹和木块一起运动过程中,子弹和ห้องสมุดไป่ตู้块组成系统动量守恒,设共同运动速度为v1,v0方向为正方向,则mv0=(m+M)v1解得v1=2m/s
子弹打木块模型
类型二、一物块在木板上滑动,在这种情况下,系 统水平方向动量守恒,系统的能量守恒(机械能不 守恒),可对木块和子弹分别利用动能定理。
例2:一个长为L,质量为m1的木板静止在光滑的 水平面上。木板左端静止着一个质量为m2的木块 (可视为质点)木块于木板之间的动摩擦因数为u, 一颗质量为m0,速度为v0的子弹水平击中木块后 随木块一起在木板上滑动。问:木板的长度L至少 应为多少,木块才不至于从木板上滑出?
类型三、小球在置于光滑水平面上的竖直平面 内弧形光滑轨道上滑动
例3:如图所示,A为有光滑曲面的固定轨道,轨道底 端的切线方向是水平的.质量M=40kg的小车B静止于 轨道右侧,其上表面与轨道底端在同一水平面上.一个 质量m=20kg的物体C以2.0m/s的初速度从轨道顶端滑 下,冲上小车B后经一段时间与小车相对静止并一起运 动.若轨道顶端与底端的高度差h=1.6m.物体与小车 板面间的动摩擦因数μ=0.40,小车与水平面间的摩擦 忽略不计.(取g=10m/s2),求: (1)物体与小车保持相对静止时的速度v; (2)物体冲上小车后,与小车发生相对滑 动经历的时间t; (3)物体在小车上相对滑动的距离d.
5
解:对m2和子弹由动量守恒可得:m0v0=(m0+m2)v1 得v1=m0v0/(m0+m2) 最后三者共速,由动量守恒得:m0v0=(m0+m2+m1)v2 得v2=m0v0/(m0+m2+m1) 系统速度从v1变化为v2的过程中,摩擦力做负功将机械能转 化为热量且由木块不滑出,可知 u(m0+m2)gL≥1/2(m0+m2)v1² -1/2(m0+m2+m1)v2² 即L≥m1m0² v0² /2ug(m0+m2)² (m0+m2+m1) 则L至少为m1m0² v0² /2ug(m0+m2)² (m0+m2+m1)
【高考物理】模型构建:模型13、子弹打木块模型(解析版)Word(18页)
模型13、子弹打木块模型动量守恒定律、机械能守恒定律、动能定理等解决动力学问题的三大观点:力学观点:牛顿运动定律、运动学公式能量观点:动能定理、机械能守恒定律、能量守恒定律、功能关系动量观点:动量守恒定律(4nmgLn8nmgLn,对子弹射入木块后的上升过程,由机械能守恒定律得C.498m/s 【详解】第一粒弹丸射入木块中,根据动量守恒可得1()mv M m v=+.子弹射入沙箱的过程系统满足动量守恒、机械能守恒.子弹和沙箱合为一体的瞬间轻绳的拉力为()F m M g =++.子弹和沙箱合为一体后一起上升的最大高度与轻绳的长度有关.子弹和沙箱合为一体后一起上升的最大高度为2m v h =C.50J D C.5J Dv=.子弹打入木块后子弹和木块的共同速度为8m/s500J的过程中,两物块的动量守恒的过程中,子弹对物块A的冲量大小大于物块.子弹开始打物块到与物块共速,子弹、物块组成的系统动量守恒.子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统机械能守恒.子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统动量守恒.子弹物块以相同速度压弹簧的过程中,物块、子弹、弹簧组成的系统动量守恒【答案】A【详解】A.由于子弹和物块作用时间极短,则在打击过程中,内力远远大于外力,可知子弹开始打物块到与物块共速,子弹、物块组成的系统动量守恒,A正确;B.根据上述,子弹开始打物块到与物块共速过程类似完全非弹性碰撞,该过程有一部分动能转化为内能,则子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统机械能减小,不守恒,B错误;C.打击过程子弹与物块动量守恒,打击完成后,子弹与木块向右压缩弹簧,系统所受外力的合力不为0,该过程动量不守恒,可知子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统动量不守恒,C错误;D.根据上述可知,子弹物块以相同速度压弹簧的过程中,物块、子弹、弹簧组成的系统动量不守恒,D错误。
高中物理第1章动量守恒定律专题提升3子弹打木块模型和滑块_木板模型课件新人教版选择性必修第一册
正确,A、B、C 错误。
的上、下两层黏合在一起组成,将其放在光滑的水平面上,质量为m的子弹
以速度v水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚
好能射进一半厚度,如图所示,上述两种情况相比较( AC )
A.子弹对滑块做的功一样多
B.子弹对滑块做的功不一样多
C.系统产生的热量一样多
D.系统产生的热量不一样多
1 2 3 4 5
x<Δx,故选
项 C 正确。
方法二:由动量守恒定律,有 mv0=(m+m')v,由动能定理,对木板
1
2 1
弹-Ff(x+Δx)= mv - 0 2 ,联立解得
2
2
1 2 3 4 5
x=
Δx<Δx,故选项
+ '
1
Ffx=2m'v2,对子
C 正确。
2.(子弹打木块模型)(多选)(2024山东淄博高二月考)矩形滑块由不同材料
(2)明确研究过程,对多个过程进行合理划分,明确每个子过程遵循的规律
及相邻子过程之间的联系;也可把其看作一个整体应用能量和动量规律。
获取有效信息
对点演练
1.(2024山东东营一中高二期末)如图所示,质量为m'的木块静止于光滑的水
平面上,一质量为m、速度为v0的子弹水平射入木块且未穿出,设木块对子
块。如果将子弹与木块相互作用力大小F视为恒力。求:
(1)如果子弹没有打穿木块,系统产生的热量是多少?
(2)要使子弹能打穿木块,则子弹的初速度至少多大?
解析 (1)在光滑的水平地面上,系统所受合外力为0,动量守恒。如果子弹没
有打穿木块,则最终木块与子弹具有共同速度,设为v,根据动量守恒定律有
子弹、滑块模型课件
解.⑴A恰未滑离B板,则A达B最左端时具有相同速度v, 恰未滑离B 最左端时具有相同速度v 有 Mv0-mv0=(M+m)v ∴ M −m
v= M +m v0
v>0,即与 板原速同向。 即与B M>m, ∴ v>0,即与B板原速同向。 的速度减为零时,离出发点最远, 的初速为v ⑵A的速度减为零时,离出发点最远,设A的初速为v0,A 摩擦力为f 向左运动对地最远位移为S 、B摩擦力为f,向左运动对地最远位移为S,则 1 2 fS = mv 0 − 0 2 而v0最大应满足 Mv0-mv0=(M+m)v
2.如图示,一质量为M长为 的长方形木块 放在光滑 .如图示,一质量为 长为 的长方形木块B放在光滑 长为l的长方形木块 水平面上,在其右端放一质量为m的小木块 的小木块A, < , 水平面上,在其右端放一质量为 的小木块 ,m<M, 现以地面为参照物, 以大小相等、 现以地面为参照物,给A和B以大小相等、方向相反的 和 以大小相等 初速度 (如图 ,使A开始向左运动,B开始向右运动,但最后A刚 如图), 开始向左运动, 开始向右运动,但最后 刚 如图 开始向左运动 开始向右运动 好没有滑离B板 以地面为参照系。 好没有滑离 板。以地面为参照系。 若已知A和 的初速度大小为 的初速度大小为v ⑴若已知 和B的初速度大小为 0,求它们最后速度的大 小和方向; 小和方向; 若初速度的大小未知,求小木块A向左运动到最远处 向左运动到最远处( ⑵若初速度的大小未知,求小木块 向左运动到最远处 从地面上看)到出发点的距离。 从地面上看 到出发点的距离。 到出发点的距离
fl = 1 1 2 ( M + m) v 0 − ( M + m ) v 2 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lv 0 v S动量守恒定律的应用1—— 子弹打木块模型模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -• ④ ②+④得 f l =})]([2121{2121212120220222v v Mm M mv mv MV mv mv -+-=-- 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统= fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件?②作出作用过程中二者的速度-时间图像,你会有什么规律发现?例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A .)(2102v v v m - B.)(00v v mv - C.s vd v v m 2)(0- D.vd S v v m )(0-v 0A Bv 0 AB v 0 lA 2v 0 v 0B C滑块、子弹打木块模型练习1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系。
⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看) 到出发点的距离。
3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板C 两端相向水平地滑上长木板。
如图示。
设物块A 、B 与长木板C 间的动摩擦因数为μ,A 、B 、C 三者质量相等。
⑴若A 、B 两物块不发生碰撞,则由开始滑上C 到A 、B 都静止在C 上为止,B 通过的总路程多大?经历的时间多长?⑵为使A 、B 两物块不发生碰撞,长木板C 至少多长?L v 0 m vv 0A v 0 5mB4.在光滑水平面上静止放置一长木板B ,B 的质量为M=2㎏同,B 右端距竖直墙5m ,现有一小物块 A ,质量为m=1㎏,以v 0=6m/s 的速度从B 左端水平地滑上B 。
如图所示。
A 、B 间动摩擦因数为μ=0.4,B 与墙壁碰撞时间极短,且碰撞时无能量损失。
取g=10m/s 2。
求:要使物块A 最终不脱离B 木板,木板B 的最短长度是多少?5.如图所示,在光滑水平面上有一辆质量为M=4.00㎏的平板小车,车上放一质量为m=1.96㎏的木块,木块到平板小车左端的距离L=1.5m ,车与木块一起以v=0.4m/s 的速度向右行驶,一颗质量为m 0=0.04㎏的子弹以速度v 0从右方射入木块并留在木块内,已知子弹与木块作用时间很短,木块与小车平板间动摩擦因数μ=0.2,取g=10m/s 2。
问:若要让木块不从小车上滑出,子弹初速度应满足什么条件?6.一质量为m 、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m ,在小车正中放一质量为m 、长度为0.1m 的物块,物块与小车间动摩擦因数μ=0.15。
如图示。
现给物块一个水平向右的瞬时冲量,使物块获得v 0 =6m/s 的水平初速度。
物块与挡板碰撞时间极短且无能量损失。
求:⑴小车获得的最终速度; ⑵物块相对小车滑行的路程; ⑶物块与两挡板最多碰撞了多少次; ⑷物块最终停在小车上的位置。
参考答案 AC A :⎪⎩⎪⎨⎧+-=+=2200)(2121)(v m M mv Q v m M mv C :⎪⎩⎪⎨⎧⋅=-==df Q v m vmv Mv fS 202)(2121 1. 金属块在板上滑动过程中,统动量守恒。
金属块最终停在什么位置要进行判断。
假设金属块最终停在A 上。
三者有相同速度v ,相对位移为x ,则有⎪⎩⎪⎨⎧⋅-==2200321213mv mv mgx mv mv μ 解得:L m x φ34=,因此假定不合理,金属块一定会滑上B 。
设x 为金属块相对B 的位移,v 1、v 2表示A 、B 最后的速度,v 0′为金属块离开A 滑上B 瞬间的速度。
有:在A上⎪⎩⎪⎨⎧⋅-'-=+'=21201010022121212mv v m mv mgL mv v m mv μ 全过程⎪⎩⎪⎨⎧⋅--=++=2221202102212121)(2mv mv mv x L mg mv mv mv μ联立解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=='='=s m s m v s m v v s m s m v /65/21/34)(0/31/12001或或舍或 ∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧===m x s m v sm v 25.0/65/3121 *解中,整个物理过程可分为金属块分别在A 、B 上滑动两个子过程,对应的子系统为整体和金属块与B 。
可分开列式,也可采用子过程→全过程列式,实际上是整体→部分隔离法的一种变化。
2.⑴A 恰未滑离B 板,则A 达B 最左端时具有相同速度v ,有 Mv 0-mv 0=(M+m)v ∴ 0v mM mM v +-=M >m, ∴ v >0,即与B 板原速同向。
⑵A 的速度减为零时,离出发点最远,设A 的初速为v 0,A 、B 摩擦力为f ,向左运动对地最远位移为S ,则 02120-=mv fS 而v 0最大应满足 Mv 0-mv 0=(M+m)v 220)(21)(21v m M v m M fl +-+= 解得:l MmM s 4+=3.⑴由A 、B 、C 受力情况知,当B 从v 0减速到零的过程中,C 受力平衡而保持不动,此子过程中B 的位移S 1和运动时间t 1分别为:gvt g v S μμ01201,2== 。
然后B 、C 以μg 的加速度一起做加速运动。
A 继续减速,直到它们达到相同速度v 。
对全过程:m A ·2v 0-m B v 0=(m A +m B +m C )v ∴ v=v 0/3B 、C 的加速度 g m m gm a C B A μμ21=+= ,此子过程B 的位移 g v g v t g v g v S μμμ32292022022====运动时间∴ 总路程gvt t t g v S S S μμ35,181********=+==+=总时间 ⑵A 、B 不发生碰撞时长为L ,A 、B 在C 上相对C 的位移分别为L A 、LB ,则 L=L A +L Bgv L v m m m v m v m gL m gL m C B A B A B B A A μμμ37)(2121)2(212022020=++-+=+解得: *对多过程复杂问题,优先考虑钱过程方程,特别是ΔP=0和Q=fS 相=ΔE 系统。
全过程方程更简单。
4.A 滑上B 后到B 与墙碰撞前,系统动量守恒,碰前是否有相同速度v 需作以下判断:mv 0=(M+m)v, ①v=2m/s此时B 对地位移为S 1,则对B :2121Mv mgS =μ ②S=1m <5m,故在B 与墙相撞前与A 已达到相同速度v ,设此时A 在B 上滑行L 1距离,则 2201)(2121v m M mv mgL +-=μ ③ L 1=3m 【以上为第一子过程】此后A 、B 以v 匀速向右,直到B 与墙相碰(此子过程不用讨论),相碰后,B 的速度大小不变,方向变为反向,A 速度不变(此子过程由于碰撞时间极短且无能量损失,不用计算),即B 以v 向左、A 以v 向右运动,当A 、B 再次达到相同速度v ′时:Mv-mv=(M+m)v ′ ④ v ′=2/3 m/s 向左,即B 不会再与墙相碰,A 、B 以v ′向左匀速运动。
设此过程(子过程4)A 相对B 移动L 2,则 222)(21)(21v m M v m M mgL '+-+=μ ⑤ L 2=1、33m L=L 1+L 2=4.33m 为木板的最小长度。
*③+⑤得 220)(2121v m M mv mgL '+-=μ实际上是全过程方程。
与此类问题相对应的是:当P A 始终大于P B 时,系统最终停在墙角,末动能为零。
5.子弹射入木块时,可认为木块未动。
子弹与木块构成一个子系统,当此系统获共同速度v 1时,小车速度不变,有 m 0v 0-mv=(m 0+m)v 1 ① 此后木块(含子弹)以v 1向左滑,不滑出小车的条件是:到达小车左端与小车有共同速度v 2,则 (m 0+m)v 1-Mv=(m 0+m+M)v 2 ② 22022100)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ ③ 联立化简得: v 02+0.8v 0-22500=0 解得 v 0=149.6m/s 为最大值, ∴v 0≤149.6m/s6. ⑴当物块相对小车静止时,它们以共同速度v 做匀速运动,相互作用结束,v 即为小车最终速度mv 0=2mv v=v 0/2=3m/s ⑵22022121mv mv mgS ⋅-=μ S=6m ⑶次65.615.0==+--=dl S n ⑷物块最终仍停在小车正中。
*此解充分显示了全过程法的妙用。