(完整版)二次函数对称性的专题复习
专题05二次函数中的平移、旋转、对称(五大题型)解析版
专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
二次函数的图象和性质——对称性 专题训练卷(含答案详解)
1.2.8二次函数的图象和性质——对称性1.函数f(x)=x3+1的奇偶性为().A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数2.已知函数f(x)=(m-1)x2+2mx+3是偶函数,则f(x)在(-∞,0)上().A.递增B.递减C.先增后减D.先减后增3.函数f(x)=x2+2x+2,x∈(1,4]的值域是().A.(5,26] B.(4,26]C.(3,26] D.(2,26]4.f(x)是定义在R上的奇函数,下列结论中,不正确的是().A.f(-x)+f(x)=0B.f(-x)-f(x)=-2f(x)C.f(x)·f(-x)≤0D.()1 ()f xf x=--5.若偶函数f(x)在区间(-∞,-1]上是递增函数,则().A.f(-1)<f(-1.5)<f(2)B.f(-1.5)<f(-1)<f(2)C.f(2)<f(-1.5)<f(-1)D.f(2)<f(-1)<f(-1.5)6.若函数y=x(ax+1)是奇函数,则实数a=__________. 7.已知函数f(x)=x3+ax+1,f(1)=3,则f(-1)=__________.8.已知f(x)是偶函数,其定义域为R,且在[0,+∞)上是递增函数,则74f⎛⎫- ⎪⎝⎭与f(2)的大小关系为__________.9.已知二次函数f(x)=x2+ax+b(a,b为常数)满足f(0)=f(1),方程f(x)=x有两个相等的实数根.(1)求函数f(x)的解析式;(2)当x∈[0,4]时,求函数f(x)的值域.10.求函数f(x)=x2-2ax-1在闭区间[0,2]上的最大值和最小值.参考答案1.答案:D解析:函数定义域为R,且f(-x)=-x3+1,∴f(x)≠f(-x),且f(x)≠-f(-x).因此,此函数既不是奇函数也不是偶函数.2.答案:A解析:由f(x)是偶函数知2m=0,即m=0.此时f(x)=-x2+3,开口向下,对称轴为y轴,所以在(-∞,0)上单调递增.选A.3.答案:A解析:由于f(x)=(x+1)2+1,对称轴为直线x=-1,因此f(x)在(1,4]上是单调递增的,所以当x∈(1,4]时,f(1)<f(x)≤f(4),即5<f(x)≤26,故选A.4.答案:D解析:()1()f xf x=--当f(-x)=0时不成立,故选D.5.答案:C解析:f(x)是偶函数,且在(-∞,-1]上是递增函数.而f(2)=f(-2),且-2<-1.5<-1,所以f(-2)<f(-1.5)<f(-1).即f(2)<f(-1.5)<f(-1),故选C.6.答案:0解析:由于f(x)=x(ax+1)=ax2+x,又f(x)是奇函数,必有a=0.7.答案:-1解析:由f(x)=x3+ax+1得f(x)-1=x3+ax.∵f (x)-1为奇函数,∴f(1)-1=-[f(-1)-1],即f(-1)=-f(1)+2=-3+2=-1.8.答案:74f⎛⎫- ⎪⎝⎭<f(2)解析:∵f(x)是偶函数,且在[0,+∞)上是增函数,则7744f f⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,而724<,∴74f⎛⎫- ⎪⎝⎭<f(2).9.解:(1)∵f(x)=x有两个相等的实数根.∴x2+(a-1)x+b=0有两个相等的实数根,∴Δ=(a-1)2-4b=0.①又f(0)=f(1),∴a+b+1=b.②由①,②知a=-1,b=1,∴f(x)=x2-x+1.(2)∵213()24f x x⎛⎫=-+⎪⎝⎭,x∈[0,4],∴12x=时,f(x)有最小值34.又f(0)=1,f(4)=13,∴f(x)的最大值为13.∴f(x)的值域为3,13 4⎡⎤⎢⎥⎣⎦.10.解:∵f(x)=x2-2ax-1=(x-a)2-a2-1,∴f(x)的图象是开口向上,对称轴为x=a的抛物线,如下图所示.当a<0时〔如图(1)〕,f(x)的最大值为f(2)=3-4a,f(x)的最小值为f(0)=-1;当0≤a≤1时〔如图(2)〕,f(x)的最大值为f(2)=3-4a,f (x)的最小值为f(a)=-a2-1;当1<a<2时〔如图(3)〕,f(x)的最大值为f(0)=-1,f(x)的最小值为f(a)=-a2-1;当a≥2时〔如图(4)〕,f(x)的最大值为f(0)=-1,f(x)的最小值为f(2)=3-4a.。
二次函数的对称性
一、引入f x=x2的图像关于y 轴对称,为啥子呢?答案一: 折叠能重合.答案二:f x=x2关于y轴对称的点都在f x=x2上.(作y=x2图像)(线由点构成)讲:设(a,b)是f x=x2上任意一点,则b=f a=a2.而(a,b)关于y轴的对称点为(−a,b),则f−a=a2=b.∴(−a,b)在f x=x2图像上. ∴f x=x2关于 y轴对称.∴f−a=f(a). ﹡对函数f x来讲, 将﹡式用文字语言描述: 自变量互为相反数, 函数值相等, 称之为偶函数. 对所以图像关于轴对称的函数都有此性质吗? 用余弦函数图像说明混脸熟.二、新课1、如果对一切使F x有定义的x, F−x也有定义, 并且F−x=F x成立, 则称F x为偶函数。
类比:如果对一切使F x有定义的x,F−x也有定义, 并且F−x=−F x成立, 则称F x为奇函数.2、从函数三要素来分析奇函数、偶函数.①定义域:在数轴上关于原点对称.②解析式举例: 奇函数: x n(n为奇数),偶函数:x n(n为偶数).③值域:无限制。
例1. 判断下列函数的奇偶性。
(1)f x=|x+1|+|x−1|.(2)f x=1−x2x+1.(3)f x=12x2+1 x>0;−12x2−1 x<0.(4)f x=1−x2|x+2|.例2. 已知f x为R上奇函数. 当x>0时, f x=−2x2+3x+1.(1) 求f x解析式.(2) 做出函数f x的图像.小结:基本知识: 1.奇、偶、定义域特点.2.判断函数奇偶性的方法.数学习惯: 符号语言, 文字语言, 图形语言的转换.数学思想: 类比, 函数思想——用研究函数的方法研究函数(三要素、性质). 作业:一、复习引入回顾上节小结的内容(具体化).二、新课1、具有奇偶性的函数, 其单调性如何?举例:f x=x2,g x=1x.结论:奇函数在关于原点对称的区间上单调性相同.偶函数在关于原点对称的区间上单调性相反.2、二次函数f x=a(x−1)2+1a≠0的对称轴是x=1为什么?①图像上观察:1+t,a t2+1,(1−t,a t2+1)②解析式:f1+t=f1−t,t∈R成立.③将上式翻译成文字语言:对来说,自变量和为2,函数值相等.④一般化:f x=a(x−h)2+k关于x=h对称.f x= ax2+bx+c对称轴为x=−b2a.点: 对任意x∈R, f h+t=f h−t.自变量和为2h,则图像关于x=h对称.⑤更一般化:对其它(非二次函数). 若f a+x=f a−x, x∈R成立,则函数f x图像关于x=a对称.3、二次函数图像的分类y= ax2+bx+c a≠0①②③④⑤⑥课外思考题:从偶函数图像关于y轴对称,解析式满足f−x=f x可得出:一般函数图像关于x=a对称,其解析式满足f a+x=f a−x.用类比方法, 得出函数图像关于a,0对称, 其解析式满足的条件, 并翻译成文字语言.例1. 已知二次函数f x同时满足①f1+x=f1−x②f(x)的最大值为15 ③f x=0的两根立方和等于17, 求f x的解析式.优化方案P35, 随堂自测.(1)、(2)、(3)、(4)小结:(1)f(x)= ax2+bx+c a≠0的对称性.(2)f(x)对称轴x=a f a+x=f a−x对一切x∈R成立.数学思想:①特殊到一般②类比方法上类比结论上类比作业:。
二次函数专题训练2——二次函数对称性
B.-3 .x:: 1
D.X—3或x1
y
5、函数y=x -x+m(m为常数)的图象如图,如果x=a时,yv0;
那么x=a-1时,函数值( )
A.yv0
B.0vyvm
D.y=m
C.y>m
6、抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在 与x轴交点的坐标是(
A.(0.5,0)
C.(2 , 0)I
A、yW0或y_9B、0<y<9C 0WyW1D 1WyW9
21
15、小颖在二次函数y=2x+4x+5的图象上,依横坐标找到三点(-1,y1),(-,y2),
1
(—3 —,y3),则你认为y1,y2,y3的大小关系应为()
2
A. y1>y2>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y1
、选择
二次函数专题训练
1、 若二次函数|- ;〔’当x取;,二(:工二)时,函数值相等,则当x取;+二
时,函数值为()
(A)a+c(B)a-c
(C)-c
(D)c
2、 抛物线y=a(x1)22的一部分如图所示,该抛物线在y轴右
侧部分与x轴交点的坐标是
1
(A)(丄,0)
2
(B)(1,0)(C)(2,0)(D)
(3,
3、已知抛物线
二a(x-1)2h(a = 0)与x轴交于A(X1,0,
度为(
y
/
7
/
1
/
3 -
2 -
1O
1
>
3X
二次函数专题复习讲义
二次函数专题复习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是-2b a,244ac b a -.例1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,. 1求m 、c 的值;2求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3、二次函数的平移当k>0k<0时,抛物线y=ax 2+ka ≠0的图象可由抛物线y=ax 2向上或向下平移|k|个单位得到;当h>0h<0时,抛物线y=ax-h 2a ≠0的图象可由抛物线y=ax 2向右或向左平移|h|个单位得到. 例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是=3x+22=3x-22=3x 2+2 =3x 2-2 专题练习11.对于抛物线y=13-x 2+103x 163-,下列说法正确的是A.开口向下,顶点坐标为5,3B.开口向上,顶点坐标为5,3C.开口向下,顶点坐标为-5,3D.开口向上,顶点坐标为-5,3 2.若抛物线y=x 2-2x+c 与y 轴的交点为0,-3,则下列说法不正确的是 A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4 D.抛物线与x 轴交点为-1,0,3,03.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________. 4.小明从上图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.填序号专题复习二:二次函数表达式的确定图1图2本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1、如图1,用一段长为30米的篱笆围成一个一边靠墙墙的长度不限的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y 单位:米2与x 单位:米的函数关系式为 不要求写出自变量x 的取值范围.考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+ca ≠0;2.若已知抛物线的顶点坐标或最大小值及抛物线上另一个点的坐标,则可用顶点式:y=ax-h 2+ka ≠0; 3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=ax-x 1x-x 2a ≠0. 例2 已知抛物线的图象以A-1,4为顶点,且过点B2,-5,求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A-2,0、B1,0,且经过点C2,8.1求该抛物线的解析式; 2求该抛物线的顶点坐标.专项练习21.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为 =2ax-1 =2a1-x =a1-x 2=a1-x22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C,且tan∠ACO=12,CO=BO,AB=3,则这条抛物线的函数解析式是 . 3.对称轴平行于y 轴的抛物线与y 轴交于点0,-2,且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,.1求此二次函数的关系式; 2求此二次函数图象的顶点坐标;3填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题. 考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.ABC D图1菜园墙图2例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0a ≠0,a,b,c,为常数的一个解x 的范围是A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________. 考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是专项练习31.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:1写出方程20ax bx c ++=的两个根.2写出不等式20ax bx c ++>的解集.3写出y 随x 的增大而减小的自变量x 的取值范围.4若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图2专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:1理解问题;2分析问题中的变量和常量;3用函数表达式表示出它们之间的关系;4利用二次函数的有关性质进行求解;5检验结果的合理性,对问题加以拓展等.例1某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.1假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;不要求写自变量的取值范围2商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元3每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高最高利润是多少专题训练41.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S单位:平方米随矩形一边长x单位:米的变化而变化.1求S与x之间的函数关系式,并写出自变量x的取值范围;2当x是多少时,矩形场地面积S最大最大面积是多少2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高3.一座拱桥的轮廓是抛物线型如图1所示,拱高6m,跨度20m,相邻两支柱间的距离均为5m.1将抛物线放在所给的直角坐标系中如图2所示,求抛物线的解析式;2求支柱EF的长度;3拱桥下地平面是双向行车道正中间是一条宽2m的隔离带,其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车汽车间的间隔忽略不计请说明你的理由.x图1。
中考复习函数专题21 二次函数中对称轴与对称问题(学生版)
专题21 二次函数中对称轴与对称问题知识对接考点一、求二次函数图象的顶点坐标、对称轴的3种方法1. 公式法:二次函数c bx ax y ++=2(a≠0)的图象的顶点坐标是)44,2(2ab ac a b -- 2.配方法:将抛物线的解析式配方,化为y=a(x -h)2+k 的形式,得到顶点坐标为(h,k),对称轴为直线x=h. 3.运用抛物线的对称性:抛物线是轴对称图形,对称轴与抛物线的交点是顶点.若已知抛物线上两点(x 1,m),(x 2,m),则对称轴为直线x=221x x +,再将其代入抛物线的解析式,即可得顶点坐标. 专项训练一、单选题1.抛物线y =2(x +1)2﹣3的对称轴是( ) A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣32.已知抛物线2y ax bx =+经过点(3,3)A --,且该抛物线的对称轴经过点A ,则该抛物线的解析式为( )A .2123y x x =--B .2123y x x =-+C .2123yx xD .2123y x x =+3.抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;①()()2242a c b +<;①若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;①抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .14.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<5.已知关于x 的二次函数2y x bx c =++的图象关于直线2x =对称,则下列关系正确的是( ) A .4b = B .240b c -≤C .0x =的函数值一定大于3x =的函数值D .若0c <,则当2x =时,0y >6.点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上.则m ﹣n 的最大值等于( ) A .154B .4C .﹣154D .﹣1747.二次函数y =ax 2﹣4ax +2(a ≠0)的图象与y 轴交于点A ,且过点B (3,6)若点B 关于二次函数对称轴的对称点为点C ,那么tan①CBA 的值是( ) A .23B .43C .2D .348.已知二次函数y =(2﹣a )23a x -,在其图象对称轴的左侧,y 随x 的增大而减小,则a 的值为( )A B .C D .09.抛物线y=x 2﹣2x ﹣15,y=4x ﹣23,交于A 、B 点(A 在B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E 再到达x 轴上的某点F ,最后运动到点B .若使点P 动的总路径最短,则点P 运动的总路径的长为( )A.B .C .D .10.已知抛物线c :y=x 2+2x ﹣3,将抛物线c 平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )A .将抛物线c 沿x 轴向右平移52个单位得到抛物线c′ B .将抛物线c 沿x 轴向右平移4个单位得到抛物线c′C .将抛物线c 沿x 轴向右平移72个单位得到抛物线c′ D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c′二、填空题11.如图,在平面直角坐标系xOy 中,抛物线y =﹣x 2+6x +c 的对称轴与x 轴交于点A ,在直线AB :y =kx +3上取一点B ,使点B 在第四象限,且到两坐标轴的距离和为7,设P 是抛物线的对称轴上的一点,点Q 在抛物线上,若以点A ,B ,P ,Q 为顶点的四边形为正方形,则c 的值为________.12.已知在平面直角坐标系xOy 中,点A 的坐标为()3,4,M 是抛物线22(0)y ax bx a =++≠对称轴上的一个动点.小明经探究发现:当ba的值确定时,抛物线的对称轴上能使AOM 为直角三角形的点M 的个数也随之确定.若抛物线22(0)y ax bx a =++≠的对称轴上存在3个不同的点M ,使AOM 为直角三角形,则ba的值是____.13.如果一抛物线的对称轴为1x =,且经过点A (3,3),那么点A 关于对称轴的对称点B 的坐标为____________14.已知点A 、B 在二次函数y =ax 2+bx +c 的图像上(A 在B 右侧),且关于图像的对称轴直线x =2对称,若点A 的坐标为(m ,1),则点B 的坐标为_______.(用含有m 的代数式表示) 15.已知抛物线2441y ax ax a =-+-. (1)该抛物线的对称轴是x =________.(2)该抛物线与x 轴交于点A ,点B 与y 轴交于点C ,点A 的坐标为(1,0),若此抛物线的对称轴上的点P 满足APB ACB ∠<∠,则点P 的纵坐标n 的取值范围是________. 三、解答题16.已知抛物线()20y ax bx c a =++≠与x 轴只有一个公共点()30A -,且经过点12,4⎛⎫- ⎪⎝⎭. (1)求抛物线的函数解析式; (2)直线l :34y x m =+与抛物线2y ax bx c =++相交于B 、C 两点(B 点在C 点的左侧),与对称轴相交于点P ,且B ,C 分布在对称轴的两侧.若B 点到抛物线对称轴的距离为n ,且()23CP t BP t =⋅≤≤. ①试探求n 与t 的数量关系;①求线段BC 的最大值,以及当BC 取得最大值时对应m 的值. 17.如图,在平面直角坐标系中,已知抛物线213222y x x =+-交x 轴于点A 、B ,交y 轴于点C . (1)求线段BC 的长;(2)点P 为第三象限内抛物线上一点,连接BP ,过点C 作//CE BP 交x 轴于点E ,连接PE ,求BPE 面积的最大值及此时点P 的坐标;(3)在(2)的条件下,以y 轴为对称轴,将抛物线213222y x x =+-对称,对称后点P 的对应点为点P ',点M 为对称后的抛物线对称轴上一点,N 为平面内一点,是否存在以点A 、P '、M 、N 为顶点的四边形是菱形,若存在,直接写出点N 的坐标,若不存在,则请说明理由.18.已知一条抛物线顶点为(),2P m m -,且与x 轴交于点()2,0A m (0m >) (1)当2m =时; ①求二次函数解析式;①直线l :y kx b =+(0k >)过定点()3,4-与抛物线交于B 、C 两点(B 在C 右侧),连接BP 、CP ,若PBC S △,求直线l 的解析式;(2)若H 为对称轴右侧的二次函数图象上的一点,且OH 交对称轴于点M ,点N ,M 关于点P 对称,求证:N ,A ,H 三点共线.19.如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴分别交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D 与点C 关于对称轴对称,点P 在对称轴上,若①BPD =90°,求点P 的坐标; (3)点M 是抛物线上位于对称轴右侧的点,点N 在抛物线的对称轴上,当BMN 为等边三角形时,请直接写出点M 的坐标.20.如图,已知抛物线y =ax 2+bx +c 经过A (4,0),B (﹣2,0),C (0,﹣4)三点. (1)求抛物线解析式,并求出该抛物线对称轴及顶点坐标;(2)如图1,点M 是抛物线对称轴上的一点,求①MBC 周长的最小值;(3)如图2,P 是线段AB 上一动点(端点除外),过P 作PD //AC ,交BC 于点D ,连接CP ,求①PCD 面积的最大值,并判断当①PCD 的面积取最大值的时,以P A 、PD 为邻边的平行四边形是否为菱形.21.如图,抛物线2y x bx c =++与x 轴交于()1,0,A B -两点,与y 轴交于点(0,3)C -.。
2024年中考数学总复习第一部分中考考点探究微专题(三)二次函数的对称性、增减性问题
-4<a<1
.
类型三
对称轴已知,利用所给范围求参数的值或取值范围
典例6 已知二次函数y=ax2-2ax+3(a>0),当0≤x≤m时,3-
a≤y≤3,则m的取值范围是(
A. 0≤m≤1
B. 0≤m≤2
C. 1≤m≤2
D. m≥2
C )
典例7 已知二次函数y=x2-2x+2,当t≤x≤t+1时,函数的最小值为t,
y2,y3的大小关系为(
B )
A. y1>y2>y3
B. y2>y1>y3
C. y3>y1>y2
D. y2>y3>y1
典例3 已知二次函数y=ax 2 +bx+5,函数y与自变量x的部分对应值
如下表.
x
…
-1
…
2
…
y
…
10
…
1
…
设m≥2,且A(m,y1),B(m+1,y2)两点都在该函数的图象上,试
第一部分
福建中考考点探究
微专题(三)
三 函 数
二次函数的对称性、增减性问题
方法指导:将抛物线y=ax2+bx+c(a≠0)上任意一点到其对称轴的距
离记为d.结论:d相等,y的值相等;a>0时,d越大,y的值越大,d越
小,y的值越小;a<0时,d越大,y的值越小,d越小,y的值越大.
如图①②,当d2=d3时,点B,C关于抛物线的对称轴对称,yB=yC;如
y3)都在该抛物线上,则y1,y2,y3的大小关系是(
A. y3>y1>y2
B. y3<y2<y1
C. y3>y2>y1
D. y3<y1<y2
D
)
典例2 在抛物线y=ax2-2ax-3a(a≠0)上有A(-0.5,y1),B(2,
2023年中考数学专题复习:二次函数对称性的应用课件
X=1
(-1,0) A O
M
(0,-3) C
B (3,0)
x
数学学习知了识本:节课,你有什么收获? 1请.抛说物出线来对与称大点家的分纵享坐吧标!相同, 反之纵坐标相同的两个点是对称点。 (特:抛物线与x轴的交点是对称点). 2.若抛物线两对称点横坐标为x1,x2,
则抛物线的对称轴为 x x1 x2 2
B(x2,m)y=m (2)抛物线的对称轴为 _x __2ba .(用a,b表示) (3) x1,x2是方程_a_x2_+_bx_+c_=_m 的两个根。 b
x ( (45) ).由对根称与轴系X数=的 2关ba系与得x1x+1x+2x的2=关_系_为__a_x.__x_1;2.x2
总结抛物线的对称性性质:
练习:A(-2,y1),B(1,y2),C(2,y3)在抛物线y=-(x+1)2+a上的三点,
则y1,y2,y3的大小关系为( A ).
A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y3>y2>y1
四.利用抛物线的对称性解决问题
(三)求线段和最小值
例3:已知抛物线y=ax2+bx+c的对称轴为直线x=1, 且图象经过A(-1,0),C(0,-3)两点,与x轴交于另一点B. (1).求抛物线所对应的函数关系式; (2).在抛物线的对称轴x=1上求上点M,求MA+MC的最小值。
配方为:_y__a_(x_ _2ba_)2_ _4a_c4a_b_2 _____.
x b 2.图象为抛物线:对称轴为____2a__;
( b , 4ac b2 ) 顶点坐标__2_a __4_a ___.
二次函数顶点与轴对称知识点整理
二次函数顶点与轴对称知识点整理
二次函数是一个重要的数学概念,它的顶点和轴对称是我们在研究和应用二次函数时常常涉及到的重要知识点。
以下是关于二次函数顶点和轴对称的一些基本知识整理:
顶点
二次函数的标准形式为:y = ax^2 + bx + c,其中 a、b、c 是常数。
顶点是二次函数图像的最高点或最低点,它是二次函数图像的最重要的特征之一。
顶点坐标可以通过以下公式计算得到:
x坐标:x = -b / (2a)
y坐标:y = f(x),其中 f(x) 是二次函数的具体表达式
轴对称
二次函数的轴对称是指二次函数图像关于某条直线对称,这条直线称为轴线。
二次函数的轴对称是由顶点坐标决定的,其方程可以通过以下公式得到:ax = -b / (2a)。
二次函数图像的轴对称性质有助于我们更好地理解和应用二次函数。
在解题过程中,通过确定顶点和轴对称可以帮助我们画出二次函数的准确图像,并且可以简化计算过程。
希望以上对二次函数顶点和轴对称的知识点整理能帮助你更好地理解和应用二次函数。
当然,深入研究和实践才能真正掌握二次函数的相关知识,希望你能在研究过程中不断积累经验和应用。
参考文献:。
二次函数专项训练——“对称性'
x
巧用“对称性”
化繁为
简
3、比较函数值的大小
小颖在二次函数y=2x2+4x+5的图象上,依横坐 标找到三点(-1,y1),(0.5,y2 ),(-3.5,y3) 则你认为y1,y2,y3的大小关系应为( D )
A、y1>y2>y3 C、y3>y1>y2 B、y2>y3>y1 D、y3>y2>y1
致胜宝典: 巧用“对称性” 化线为 (1)求抛物线y=2x -4x-5关于x轴对称的抛物线。 点
2
(2)求抛物线y=2x2-4x-5关于y轴对称的抛物线。 (3)求抛物线y=2x2-4x-5关于原点成中心对称的抛物线。 (4)求抛物线y=2x2-4x-5绕着 顶点旋转180°得到的抛物线。
▲ 抛物线关于x轴对称:将解析式中的(x,y)换成它的对称点(x,-y) y=ax2+bx+c变为y=-ax2-bx-c. ▲ 抛物线关于y轴对称:将解析式中的(x,y)换成它的对称点(-x,y) y=ax2+bx+c变为y=ax2-bx+c. ▲ 抛物线关于原点对称:将解析式中的(x,y)换成它的对称点(-x, - y) y=ax2+bx+c变为y= - ax2+bx - c. ▲ 抛物线绕着 顶点旋转180°后得到的抛物线,顶点坐标不变,开口方向相反。 (1)设抛物线顶点为(m,n)则顶点式为y=a(x-m)²+n 抛物线绕顶点坐标旋转180后,解析式中a变为-a,其余不发生变化:y=-a(x-m)²+n (2)如果原解析式为y=ax²+bx+c,顶点纵坐标为n 则新解析式为y=2n-(ax²+bx+c)=-ax²-bx+2n-c
x 2
(完整word版)18—19初三培优数学专题五(二次函数类的对称性问题)
解题方法及提分突破训练:二次函数对称性与运动路径问题【点对称的规律】:),(P y x 关于x 轴对称的点的坐标是 。
),(P y x 关于y 轴对称的点的坐标是 。
),(P y x 关于原点对称的点的坐标是 。
【对称中的最值分析】:①已知:如图,A 、B 两点在直线l 的异侧,在直线l 求作一点P ,使得PA+PB 的值最小。
②已知:如图,A 、B 两点在直线l 的同侧,在直线l 求作一点P ,使得PA+PB 的值最小。
③已知:如图,A 、B 两点在直线l 的同侧,在直线l 求作一点P ,使得PB-PA 的值最大。
④已知:如图,A 、B 两点在直线l 的异侧,在直线l 求作一点P ,使得PB-PA 的值最大。
⑤在锐角∠AOB 中有一定点P ,试在OA 和OB 边上各取一点M 、N ,使得△PMN 的周长最短。
⑥在锐角∠AOB 中有两定点P 1、P 2,试在OA 和OB 边上各取一点M 、N ,使得P 1M+MN+P 2N 的值最小。
常见题型【例1】(1)将二次函数3)1(22+-=x y 的图象沿x 轴翻折,所得图象的函数表达式为 。
(2)将二次函数3)1(22+-=x y 的图象沿y 轴翻折,所得图象的函数表达式为 。
(3)将二次函数3)1(22+-=x y 的图象绕它的顶点旋转180°,所得抛物线的解析式是 。
(4)将二次函数3)1(22+-=x y 的图象绕原点旋转180°,所得抛物线的解析式是 。
● ● A B① ● ● AB ② ● ● AB ① ● ● A B ② A O B P● A BP 1 ● P 2 ● 第7题图 第8题图【例2】如图,抛物线23212--=x x y 与直线2-=x y 交于A 、B 两点(点A 在点B 的左侧)。
(1)在抛物线对称轴l 上找一点N ,使AN+CN 的值最小,并求出这个最小值;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MO|的值最大,并求出这个最大值;(3)动点P 从A 点出发,先到达抛物线的对称轴上的某点E ,再到达x 轴上的某点F ,最后运动到点B ,若使点P 运动的总路径最短,试求出点E 、点F 的坐标及点P 运动的总路径的长。
(完整版)二次函数对称性的专题复习.docx
(完整版)二次函数对称性的专题复习.docx二次函数图象对称性的应用一、几个重要结论:1、抛物线的对称轴是直线__________。
2、对于抛物线上两个不同点P1(对称的点,且这时抛物线的对称轴是直线),P2(),若有_____________ ;反之亦然。
,则P1,P2 两点是关于_________3、若抛物线与轴的两个交点是A (,0),B(,0),则抛物线的对称轴是__________ (此结论是第 2 条性质的特例,但在实际解题中经常用到)。
4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是的坐标可以用____表示出来(注:应由A 、B 两点处在对称轴的左右情况而定,,则另一个交点在应用时要把图画出)B。
5、若抛物线与轴的两个交点是 B (,0),C(,0),其顶点是点 A ,则 ?ABC 是____三角形,且 ? ABC 的外接圆与内切圆的圆心都在抛物线的_______上。
二、在解题中的应用:例 1 已知二次函数的图象经过 A (-1, 0)、 B( 3,0),且函数有最小值-8,试求二次函数的解析式。
例 2 已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足.( 1)求抛物线的解析式;( 2)设点 P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。
例 3 已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为 -8 的另一点的坐标是。
例 4 已知抛物线的顶点A在直线上。
( 1)求抛物线顶点的坐标;( 2)抛物线与轴交于B、C两点,求B、 C 两点的坐标;( 3)求 ? ABC 的外接圆的面积。
二次函数专题训练——对称性与增减性一、选择y1、若二次函数,当 x 取,(≠)时,函数值相等,则2当 x 取 + 时,函数值为()1( A ) a+c (B ) a-c( C ) -c( D ) c- 3 - 2 - 1 O1 2 3 x2yya( x1)22 的一部分如图所示,该抛物线在轴右- 1、抛物线- 2侧部分与 x 轴交点的坐标是( A )( 1, 0)( B )( 1, 0)(C )( 2, 0)( D )( 3, 0)23、已知抛物线 ya(x 1)2 h( a0) 与 x 轴交于 A( x 1,0), B(3,0) 两点,则线段 AB 的长度为()yA. 1B. 2C. 3 D. 434、抛物线 yx 2bxc 的部分图象如图所示,若y0 ,则的取值范围是()A. 4 x 1B. 3 x 1 – 1 O 1xC. x4 或 x 1D. x 3 或 x 15、函数 y=x 2-x+m(m 为常数 )的图象如图,如果 x=a 时, y <0;那么 x=a-1 时,函数值()A .y < 0B . 0< y < mC .y > mD . y=m6、抛物线y=ax 2+2ax+a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与 x 轴交点的坐标是 ()A . (0.5 , 0)B . (1 , 0)C . (2 , 0)D . (3 , 0)7、老师出示了小黑板上的题后 ( 如图 ) ,小华说:过点 (3 ,0) ;小彬说:过点 (4 , 3) ;小明说: a=1;小颖说:抛物线被x轴截得的线段长为 2.你认为四人的说法中,正确的有 ()A . 1 个B . 2 个C . 3 个D .4 个8、若二次函数 yax 2 c ,当 x 取 x 1 、 x 2 ( x 1 x 2 )时,函数值相等,则当x取 x 1 x 2 时,函数值为()A. acB. a cC.cD. c9、二次函数 y x 2bxc 的图象上有两点 (3,- 8) 和 (-5,- 8),则此拋物线的对称轴是()A . x= 4B. x = 3C. x=- 5D. x=- 1。
二次函数专题训练之对称性及增减性完整版资料
2小、颖抛说物:线抛y物=a线(x被+1x)2轴+截2的得部的分线图段像长如为图2.所你示认,为该四抛人物的线说在法y轴中右,半正部确分的与有x(轴的) 交点坐标是( )
(A.A)(2A,a.+-1c个3 )(BB)B..a2-(c2个,1() CC.)3C-c个.(2(,D3D)).c4个D.(3,2)
⑤当0<x1<x2<2时,y1>y2,你认为正确的个数是( )
02
A.2 B.3 C.4 D.5
5、 6、
7、
练:抛物线y=-x2+bx+c的部分图像如图所示,若y>0,则x的取值范围是 .
练A.、(已 2,知-一3元) 二次B方.程(2,ax12)+bx+Cc=.3的(2,一3个) 根是D2.,(且3,二2次) 函数y=ax2+bx+c的对称轴是直线x=2,则抛物线顶点坐标是( )
C.4
D.5
A练.2、(2,老-师3出)示了B小.黑(2板,上1)的题后C.(如(2图,),3)小华D说.:(3过,点2)(3,0);
3练小、2彬、抛说物老:线师过y出=点示ax(了42,+小b3x黑)+;c板与上x轴的的题交后点(如横图坐),标小是华-3说和:1,过则点抛(3物,线0)的;对称轴是 。
练A:.2、一 2老元师一出B次示.方了3程小y=黑a板x2上+b的x+题c的C后根.(如为4图x1),,x2小且华x说D1+:.x2过5=4点,(3点,A0();3,-8)在二次函数y=ax2+bx+c上,则点A关于抛物线的对称轴对称的点
的练(A练(坐2C.2A、 、))标 2老老a(为+师师2c,出出B80示示。(、.)了了B3)小小a黑黑-c(板 板D上上)((的的C3题题),C后后-0c.)((如如4图图())D,,)小小c华华说说D::.过过5 点点((33,,00));;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图象对称性的应用一、几个重要结论:1、抛物线的对称轴是直线__________。
2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。
3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。
4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。
5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则∆ABC是____三角形,且∆ABC的外接圆与内切圆的圆心都在抛物线的_______上。
二、在解题中的应用:例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。
例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足.(1)求抛物线的解析式;(2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。
例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。
例4已知抛物线的顶点A在直线上。
(1)求抛物线顶点的坐标;(2)抛物线与轴交于B、C两点,求B、C两点的坐标;(3)求∆ABC的外接圆的面积。
yOx-1 -2 12 -3 3 -112 -2二次函数专题训练——对称性与增减性一、选择 1、若二次函数,当x 取,(≠)时,函数值相等,则当x 取+时,函数值为( )(A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )(21,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB的长度为( ) A.1B.2C.3D.44、抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-xC. 4-<x 或1>xD.3-<x 或1>x5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0;那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m6、抛物线y=ax 2+2ax+a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( )A .(0.5,0)B .(1,0)C .(2,0)D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( )A .1个B .2个C .3个D .4个8、若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x取12x x +时,函数值为( )A.a c + B.a c - C.c - D.c9、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。
10、已知关于x 的方程32=++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2的对称轴直线是x =2,则抛物线的顶点坐标是( )A .(2,-3 )B .(2,1)C .(2,3)D .(3,2) 11、已知函数215322y x x =---,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2<x 3,则 对应的函数值的大小关系是( )y–1 13Oxy–1 3 3O xP1 A .y 3>y 2>y 1 B .y 1>y 3>y2 C .y 2<y 3<y 1 D .y 3<y 2<y 1 12、小明从右边的二次函数2y ax bx c =++图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >.你认为其中正确 的个数为( ) A.2B.3C.4D.513、若123135(,),(1,),(,)43A yB yC y --的为二次函数245y x x =--+的图像上的三点,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3<y 1<y 2D. y 2<y 1<y 314、从y=x 2的图象可看出,当-3≤x≤-1时,y的取值范围是 A 、y≤0或9≥y B 、0≤y≤9 C 、0≤y≤1 D 、1≤y≤915、小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为( ) A.y 1>y 2>y 3 B.y 2>y 3>y 1 C.y 3>y 1>y 2 D.y 3>y 2>y 1 16、下列四个函数中,y 随x 增大而减小的是( )A .y=2x B.y=-2x+5 C . D .y=-x 2+2x-117、下列四个函数:①y=2x ;②;③y=3-2x ;④y=2x 2+x(x≥0),其中,在自变量x 的允许取值范围内,y 随x 增大而增大的函数的个数为( ) A. 1 B. 2 C. 3 D. 418、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个19、已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.320、已知函数y=3x 2-6x+k(k 为常数)的图象过点A(0.85,y 1),B(1.1,y 2),C(2,y 3),则有( )(A) y 1<y 2<y 3 (B) y 1>y 2>y 3 (C) y 3>y 1>y 2 (D) y 1>y 3>y 221、已知二次函数682-+-=x x y ,设自变量x 分别为321,,x x x ,且3214x x x <<<,则对应的函数值321,,y y y 的大小关系是( )A. 321y y y <<B. 132y y y <<C. 123y y y <<D. 231y y y <<22、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为23-xyA. 0B. -1C. 1D. 2二、填空1、已知抛物线y=ax 2+bx+c 经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_________· 2、已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .3、二次函数2y ax bx c =++(0a ≠,a 、b 、c 是常数)中,自变量x 与函数y 的对应请你观察表中数据,并从不同角度描述该函数图象的特征是: 、 、 .(写出3条即可)4、一元二次方程20ax bx c ++=的两根为1x ,2x ,且214x x +=,点(38)A -,在抛物线2y ax bx c =++上,则点A 关于抛物线的对称轴对称的点的坐标为 . 5、抛物线c bx ax y ++=2的对称轴是x=2,且过点(3,0),则a+b+c= 6、y=a 2x +5与X 轴两交点分别为(x 1 ,0),(x 2 ,0) 则当x=x 1 +x 2时,y 值为____7、请写出一个b 的值,使函数22y x bx =+在第一象限内y 的值随着x 的值增大而增大,则b 可以 . 8、当22x -<<时,下列函数中,函数值随自变量增大而增大的是(只填写序号)①2y x =;②2y x =-;③2y x=-;④268y x x =++ 9、一个关于x 的函数同时满足如下三个条件 ①x 为任何实数,函数值y ≤2都能成立; ②当x <1时,函数值y 随x 的增大而增大; ③当x >1时,函数值y 随x 的增大而减小;符合条件的函数的解析式可以是 。
10、已知(-2,y 1),(-1,y 2),(3,y 3)是二次函数y=x 2-4x+m 上的点,则y 1,y 2,y 3从小到大用 “<”排列是 .11、一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量 x 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。