通信原理课件第六章

合集下载

数据通信原理第6章

数据通信原理第6章


码型的频域特性 抗噪声能力 提取位定时信息 简单二元码 1B2B码 AMI码 HDB3码 2B1Q码
2. 二元码

每个码元上传送一位二进制信息
3. 三元码

4. 多元码

每个码元上传送一位多进制信息
28
2.简单二元码的功率谱

花瓣形状:主瓣,旁瓣 主瓣带宽:信号的近似带宽-----谱零点带宽

数字信息--------------->码型---------->数字信息
5
数字基带信号的码型设计原则
⑴ 码型应不含有直流,且低频成分小,尽量减少高频分量以节约 频率资源减少串音;
(2)码型中应含有定时信息,便于提取定时信息;
(3)码型变换设备要简单; (4)编码应具有一定的检错能力; (5)编码方案应对信息类型没有任何限制; (6)低误码率繁殖;
H ( ) GT ( )C( )GR ( )
假定输入基带信号的基本脉冲为单位冲击δ(t),这样发送 滤波器的输入信号可以表示为
d (t )
k
a (t kT )
k b

图 6 – 6 基带传输系统简化图
38
其中ak 是第k个码元,对于二进制数字信号,ak 的取值为0、 1(单极性信号)或-1、+1(双极性信号)。
(7) 高的编码效率;
6
7
8
1.单极性非归零(NRZ)码 单极性:1---高电平;0---0电平,码元持续期间电平不变 非归零:NRZ (nor-return to zero) 有直流且有固定0电平,多用于终端设备或近距离传输 (线路板内或线路板间);

特点:发送能量大,有利于提高收端信噪比;信道上占 用频带窄;有直流分量,导致信号失真;不能直接提取 位同步信息;判决门限不能稳定在最佳电平上,抗噪声 性能差;需一端接地。

通信原理(第六章 数字基带传输系统)图片公式

通信原理(第六章 数字基带传输系统)图片公式

七、什么是眼图?眼图模型、说明什么问题?
八、时域均衡:基本原理、解决什么问题?如何衡量均 衡效果?
一、数字基带系统和频带系统结构
一、数字基带信号(电波形)及其频谱特性(1)
二元码:幅度取值只有两种“1”、“0”或“1”、 “-1”

单极性非归零码:用高低电平分别表示“1”和“0”, 如图6-1(a) 。一般用于近距离之间的信号传输 双极性非归零码:用正负电平分别表示“1”和“0”, 如图6-1(b)。应用广泛,适应于在有线和电缆信道中 传输。 单极性归零码:有电脉冲宽度比码元宽度窄,每个脉 冲都回到零电位。如图6-1(c)。利于减小码元间波形 的干扰和同步时钟提取。但码元能量小,匹配接收时 输出信噪比低些
二、基带传输码的常用码型(4)
HDB3特点:保持AMI码的优点,三元码,无直流分量,主 要功率集中在码速率fb的1/2出附近(如图)。 位定时频率分量为零,通过极性交替规律得到检错能力。 增加了使连0串减少到 至多3个的优点,而不管 信息源的统计特性如何。
对于定时信号的恢复 是十分有利的。广泛应 用于基带传输与接口码。
Pv (w) = 2p å
¥ m =-
Cn d (w - mws )
2
Pv ( f ) = å
2
Cn d ( f - mf s )
2
故稳态波的双边功率谱密度
Pv ( f ) = å
¥ m =-
f s [ PG1 (mf s ) + (1 - P)G2 (mf s )] ? d ( f
mf s )..(6.1 - 14)
代入(6.1-26)得单极性非归零波形的双边功率谱密度
Ps (w) = Ts 2 1 Sa (p fTs ) + d ( f )..(6.1 - 30) 4 4

通信原理第六章 数字信号的频带传输

通信原理第六章 数字信号的频带传输

通信原理ICommunication Theory安建伟北京科技大学通信工程系第六章 数字信号的频带传输6.1 引言 6.2 二进制数字信号正弦型载波调制 6.3 四相移相键控 6.4 M进制数字调制 6.5 恒包络连续相位调制第6章数字信号的频带传输6.1 引言1.数字信号的正弦型载波调制数字信号 d(t) 调制 频带信号 带通信道s ( t ) = A c o s ( 2 π ft + ϕ ) = F ( d ( t ))用数字基带信号去控制正弦型载波的某参量: ¾ 控制载波的幅度,称为振幅键控(ASK); ¾ 控制载波的频率,称为频率键控(FSK); ¾ 控制载波的相位,称为相位键控(PSK)。

3北京科技大学通信系第6章数字信号的频带传输2. 数字信号的分类 (1)二进制及M进制(M>2); (2)按是否满足叠加原理分类: 线性调制及非线性调制; (3)按已调符号约束关系分类 无记忆调制及有记忆调制。

4北京科技大学通信系第6章数字信号的频带传输6.2 二进制数字信号的正弦载波调制1. 二进制通断键控(OOK或2ASK) 2. 二进制移频键控(2FSK) 3. 二进制移相键控(2PSK或BPSK) 4. 2PSK的载波同步 5. 差分移相键控(DPSK)5北京科技大学通信系第6章数字信号的频带传输 (OOK) 6.2.1 二进制通断键控二进制通断键控(OOK: On-Off Keying) 又名二进制振幅键(2ASK),它是以单极性 不归零码序列来控制正弦载波的导通与关 闭。

即正弦载波的幅度随数字基带信号而 变化。

6北京科技大学通信系第6章数字信号的频带传输1. OOK信号的产生a) 模拟法n = −∞∑+∞a nδ ( t − nTb )b (t ) =a n = 0 或1脉冲成形 滤波器 冲激响应 g T ( t )n = −∞∑+∞a n g T ( t − nTb )sO O K (t ) A cos(2π f c t )b) 键控法载波 cosωct开关电路1 0KSOOK(t)b(t)7北京科技大学通信系第6章数字信号的频带传输¾时域表示b( t ) =n = −∞∑a∞ngT ( t − nTb )其中b(t)为单极性矩形不归零脉冲序列。

通信原理第六章

通信原理第六章
图6-28 调相法产生B方式4PSK信号
《通信原理课件》
《通信原理课件》
图6-29 相位选择法产生4PSK信号
《通信原理课件》
《通信原理课件》
图6-30 B方式4PSK信号相干解调原理框图
《通信原理课件》
《通信原理课件》
2、多进制的相对移相(MDPSK)
以四进制相对相移信号4DPSK为例进行讨论。
《通信原理课件》
a b c d e f
图6-11 2FSK信号的过零检测法
《通信原理课件》
6.2.3 二进制相移键控(2PSK)和 二进制差分移相键控(2DPSK)
相移键控是利用载波相位的变化来传递 数字信息,通常可以分为绝对相移键控 (2PSK)和相对相移键控(2DPSK)两 种方式,下面分别讨论。
波)和相干解调,分别如图6-9和图6-10 所示,其原理和2ASK解调时相同,只是这 里使用两套电路。
《通信原理课件》
图6-9 2FSK包络检波方框图
《通信原理课件》
图6-10 2FSK相干解调方框图
《通信原理课件》
2FSK另外一种常用而简便的解调方法是过零 检波解调法,其解调原理框图及各点时间波形如 图6-11(a)和(b)所示。其基本原理是:二 进制移频键控信号的过零点数随载波频率不同而 异,通过检测过零点数从而得到频率的变化。在 图6-11中,输入信号经过限幅后产生矩形波,经 微分、整流、脉冲波形成形后得到与频率变化相 关的矩形脉冲波,再经低通滤波器滤除高次谐波, 便恢复出与原数字信号对应的数字基带信号。
(a)模拟调频法
(b)键控法
图6-7 2FSK信号的产生
《通信原理课件》
3、2FSK信号的功率谱及带宽
《通信原理课件》

通信原理讲义-第六章 数字信号的载波传输1二进制调制

通信原理讲义-第六章 数字信号的载波传输1二进制调制



数字信号的调制可以看成特殊调制信号 的模拟调制,类似模拟调制的情况,数 字调制也是用调制信号调制载波的三个 参数:振幅、频率、相位。 相应地称为:幅度键控、频率键控、相 位键控。
6.1 二进制数字调制



二进制数字调制是指调制信号为二进制 基带信号,这种调制信号仅有两种电平, 表示为“1”和“0”: 二进制数字调制又分为: 二进制幅度键控 二进制频率键控 二进制相位键控
数字基 带信号 二进制幅度键控s2ASK(t)
载波Acoswct
二进制幅度键控解调(非相干)
带通 滤波器
1 0.5 0 -0.5 -1 0 1 0.5 0 -0.5 -1 0 1 0.5 0 -0.5 -1 0 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
1 A1 0 0 0 1 ……


由调频理论,调制后信号的瞬时频率 w(t)=w0+KFMf(t) 而对单极性二元基带信号只有两种电平: f(t)=0或1, 故:w1= w0+KFM w2= w0。
二进制频率键控调制后的时域波形
1
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
二进制差分相位键控的调制方法
二元单 极性码 输入 相对码 差分编码 二进制差分相位 键控DPSK输出
Acos(wct)
载波发生器
差分编码原理:
后一位与新生成的前一位码做模2和得到新生成的码
绝对码:1 0 0 1 0 1 1 0 相对码:1 1 1 0 0 1 0 0
二进制差分相位键控的解调(相干)

通信原理第6章 模拟信号的数字传输

通信原理第6章 模拟信号的数字传输

可见:量化电平增加一倍,即编码位数每增加一位, 量化信噪比提高6分贝。
2020/1/25
第6章 模拟信号的数字传输
11
6.1.2 量化
对于正弦信号,大信号出现概率大,故量化信噪比近
似为

Sq Nq
dB

6k

2
(dB)
对于语音信号,小信号出现概率大,故量化信噪比近 似为
取样定理描述:一个频带限制在 0 ~ f H内的连续信

m(t ) ,如果取样速率
fs

2
f
,则可以由离散样值
H
序列ms (t)无失真地重建原模拟信号 m(t) 。
取样定理证明:
ms (t) m(t) Ts (t)
M s ( f ) M ( f ) Ts ( f )
Ts ( f )
第6章 模拟信号的数字传输
1、数字通信有许多优点:
抗干扰能力强,远距离传输时可消除噪声积累 差错可控,利用信道编码可使误码率降低。 易于和各种数字终端接口中; 易于集成化,使通信设备小型化和微型化 易于加密处理等。
2、实际中有待传输的许多信号是模拟信号
语音信号; 图像信号; 温度、压力等传感器的输出信号。
于前一个时刻的值上升一个台阶;每收到一个代码 “0”就下降一个台阶。 编码和译码器
2020/1/25
第6章 模拟信号的数字传输
25
6.2.2 △M系统中的噪声
采用△M实现模拟信号数字传输的系统称为△M系统
△M系统中引起输出与输入不同的主要原因是:量化 误差和数字通信系统误码引起的误码噪声。
2020/1/25
第6章 模拟信号的数字传输

《通信原理》(第3版)课件CH6

《通信原理》(第3版)课件CH6

P2FSK ( f
)=
1 4Ps1(源自f+f1) + Ps1 ( f

f1
)
+
1 4
Ps2
(
f
+
f2 ) + Ps2 ( f

f2 )
P=1/2
P2FSK (
f
)
=
Tb
16
sin ( (f
f + f1)Tb + f1)Tb
2
+
sin ( f − f1)Tb ( f − f1)Tb
2
+
Tb
16
6.2 二进制数字调制原理
◼ 6.2.1 2ASK(Amplitude shift-keying) ◼ 6.2.2 2FSK(Frequency shift-keying) ◼ 6.2.3 2PSK(Phase shift-keying)
6.2.1 二进制振幅键控(2ASK)
s(t)
1
0
1
1
0
0
6.2.3 2PSK:功率谱
P2PSK ( f )
0
解决方法:二进制差分相位键控(2DPSK) differential
6.2.3 2PSK:2DPSK定义
(前后相邻码元相位差)=
0,

表示数字信息“0” 表示数字信息“1”
相对移相:以前后相邻 码元的载波相位的相对 变化来表示数字信息的
绝对码an与相对码bn间的关系为: bk=akbk−1
ak=bkbk−1
2
条件:1、0等概
P2ASK (
f
)
= Tb 16
sin ( (f

通信原理PPT

通信原理PPT

2
上式为双边的功率谱密度表示式。如果写成单边的,则有
PS ( f ) f S P(1 P) G1 ( f ) G2 ( f ) f s2 PG1 (0) (1 P)G2 (0) ( f )
2
2
2f
2 S
PG1 (m fS ) (1 P)G2 (m fS ) ( f m fS ) , f 0
序列s(t)的统计平均分量,它取决于每个码元内出现 g1(t)和
g2(t) 的概率加权平均,因此可表示成
v(t )
n
[ Pg (t nT ) (1 P) g
1 s

2
(t nTs )]
n
v

n
(t )
由于v(t)在每个码元内的统计平均波形相同,故v(t)是以Ts为 周期的周期信号。
5
第6章 数字基带传输系统


单极性归零(RZ)波形:信号电压在一个码元终止时刻前总要 回到零电平。通常,归零波形使用半占空码,即占空比为 50%。从单极性RZ波形可以直接提取定时信息 。 与归零波形相对应,上面的单极性波形和双极性波形属 于非归零(NRZ)波形,其占空比等于100%。 双极性归零波形:兼有双极性和归零波形的特点。使得接收 端很容易识别出每个码元的起止时刻,便于同步。
0
fs
3 fs
f
20
第6章 数字基带传输系统

从以上两例可以看出:

二进制基带信号的带宽主要依赖单个码元波形的频谱函数
G1(f)和G2(f) 。时间波形的占空比越小,占用频带越宽。
若以谱的第1个零点计算, NRZ( = Ts)基带信号的带宽为 BS = 1/ = fs ;RZ( = Ts / 2)基带信号的带宽为BS = 1/ =

通信原理第六章

通信原理第六章

设fH=(n+k)B,其中n为整数,0k<1,则
mn
fs

2 fH m
2B1
k n
2020年2月
西南交通大学电气工程学院
15
6.2 脉冲编码调制
特例: 当fH=nB时,m=n,则 fs=2fH/m=2B。
2020年2月
西南交通大学电气工程学院
16
例:已知
6.2 脉冲编码调制
编码位数每增加一位,量化信噪比就增加6分贝。
2020年2月
西南交通大学电气工程学院
24
6.2 脉冲编码调制
说明: 1)以上结论是在假设信号抽样值在量化范围内等概 出现时得到的。 对正弦信号,取值较大的样值出现概率大,取值较 小的样值出现概率较小。 对语音信号,由于取值较小的样值出现概率大,而 取值大的样值出现概率反而小。 所以,对正弦信号和语音信理
一个频带限制在0~ fH范围内的模拟信号,若取样速 率大于等于2 fH,则可由样值序列无失真地重建原 始信号。否则取样信号将出现频谱混叠,不能从中 恢复原始信号。
fs=2fH为奈奎斯特速率,它是取样的最低速率; Ts=1/fs=1/(2fH)为奈奎斯特取样间隔,它是所允许的
1024
2020年2月
1472 1504
西南交通大学电气工程学院
64
2048
37
6.2 脉冲编码调制
➢编码 编码:将抽样量化后的离散信号电平值转换为二进 制码组来表示。 译码:将二进制码组再恢复为离散信号电平。
量化电平序号 编码 量化电平序号 编码
0
000
4
100
1
001
5
101
2
010

通信原理第六章ppt课件

通信原理第六章ppt课件
:
§6.2 抽样定理
• 如果想把时间连续的模拟信号变成0/1数字 串,必须先抽样
• 但是,很显然,抽样以后
• 的信号,与原来的信号是
• 不同的
• 能否从抽样信号中恢复原
t
• 信号呢?如果能,有什么条件?
:
§6.2.1 低通信号抽样定理
可以看作下面两 个信号的乘积
t
1
t
t
:
m(t)
t
T (t)
t
➢ 对 Y 的均匀量化,等效为对 X 的非均匀量化。
EY
0 EX
:
三. 编码
➢ 编码就是将量化后的多进制数字信号变换成 二进制数字代码〔逆过程为译码),这是一 种一一对应的变换关系,实为 M 进制与二 进制的转换。
➢ 要求:M ≤ 2N 或N ≥ log2M〔取整数) ➢ N 为二进制码组的码位数。
Hale Waihona Puke 2048 x1 1 8 1 16 1
32 16 8
4
11
128 64
1
第7段的
2
量化间隔 32
1
第 8段的量 2化 0 4 1间 8 0 2隔 64 4 16
16 32
第1、 2段的量化间隔
64
128
1 128
1 第3段的
1
64 量化间隔 232
1
第4段的量化间隔 4
16
可见最小11 1分 6 28辨 210:率 ,4计 8为 1为 个
m(t) 样 ms(t) 化 msq(t) 码 {an} 信道 {an} 码 msq(t) 通 m0(t)
A/D
D/A
➢ 编码——译码为一对变换关系;
➢ 抽样——低通为一对变换关系;

138_(精选)通信原理及System View仿真测试第6章 数字基带传输系统课件

138_(精选)通信原理及System View仿真测试第6章 数字基带传输系统课件

第6章 数字基带传输系统
(1) 码型中应不含直流分量, 且低频分量尽量少。 (2) 码型中高频分量尽量少, 以便节省传输频带和减小串 扰。 所谓串扰, 是指同一电缆内不同线对之间的相互干扰。 基带信号的高频分量越大, 对邻近线产生的干扰越严重。 (3) 信号的抗噪声能力要强。 产生误码时, 在译码中产 生误码扩散的影响越小越好。 (4) 码型中应包含定时信息, 这样有利于提取位同步信 号。 (5) 编码方案要能适用于信源变化, 与信源的统计特性 无关。
第6章 数字基带传输系统
图6-3 双极性和单极性波形的SystemView仿真模型
第6章 数字基带传输系统
图6-4 双极性不归零和归零信号的波形
第6章 数字基带传输系统
图6-5 单极性不归零和归零信号的波形
第6章 数字基带传输系统
6.2 基带传输的常用码型
6.2.1 传输码的码型选择原则
传输码又称为线路码, 它的结构将取决于实际信道的 特性和系统工作的条件。 由于不同的码型具有不同的特性, 因此在设计适合于给定信道传输特性的码型时, 通常需要 遵循以下原则:

同理, 可以分析出RZ的功率谱为
第6章 数字基带传输系统
第6章 数字基带传输系统
例6-2 求双极性波形矩形脉冲序列的功率谱。 解: 对BNRZ, 设 则由式(6-5)和式(6-8)知, 其功率谱密度为
第6章 数字基带传输系统
当P=0.5时 Ps(f)=fs|G(f)|2 其中, G(f)是g(t)的傅里叶变换, 经计算
第6章 数字基带传输系统
图6-6 AMI码图形
第6章 数字基带传输系统
AMI码为三元码, 伪三进制。 其优点有: (1) “0”、 “1”不等概率出现时也无直流。 (2) 零频附近的低频分量小。 因此, 对具有变压器或 者其他交流耦合的传输信道来说, 不易受隔直特性的影响。 (3) 整流后即为RZ码。 (4) 若接收端收到的码元极性与发送端的完全相反, 也 能正确判决。 AMI码的缺点是, 连0码多时, AMI整流后的RZ码连0 也多, 不利于提取位同步信号。

通信原理-第6章 课件PPT

通信原理-第6章 课件PPT
常用数据序列形式
=T
12
6.2.1
数字基带信号的基本码型
(3)有直流分量,将导致信号的失真与畸变;且由于直 流分量的存在,所以无法使用在交流耦合的线路和设备中;
(4)不能直接提取位同步定时信息; (5)抗噪性能差。接收单极性NRZ码的判决电平应取 “1”码电平的一半。由于信道衰减或特性随各种因素变化时, 接收波形的振幅和宽度容易变化,因而判决门限不能稳定在 最佳电平,使抗噪性能变坏;
2019/10/4
14
6.2.1
数字基带信号的基本码型
3.双极性不归零(Bip Polar Non-Return to Zero,BPNRZ) 码
在双极性不归零波形中,脉冲的正、负电平分别对应于二
进制代码“1”、或“0”。其波形如图(c)所示。用物理的正
电平表示“1”,用物理的负电平表示“0”,正负电平绝对值
《通课信程原名理称》课件
第1章 通信系统概述
第2章 信号分析 第3章 信道与噪声 第4章 模拟调制 第5章 模拟信号的数字传输 第6章 数字基带传输
第7章 数字调制 第8章 差错控制编码 第9章 同步原理
2019/10/4
1
2019/10/4
《通课信程原名理称》课件
第1章 通信系统概述
第2章 信号分析
2019/10/4
7
6.1
数字基带传输系统组成
4.取样判决和码元再生
在规定的时刻(由位定时信号控制)对接收滤 波器输出的信号进行取样,然后根据预先确定的判 决规则对取样值进行判决。码元再生将判决器判决 出的“1”码及“0”码变换成所需的数字基带信号 形式。
5.位定时提取
从接收滤波器输出的信号中提取用于控制取样 时刻的同频同相位定时信号。同频,即位定时的周 期等于码元周期(码元宽度),这样收发两端的码 元一一对应不会搞错。同相,就是位定时信号的脉 冲应对准接收信号的最佳取样判决时刻,使取样器 取到的样值最有利于正确的判决。

通信原理樊昌信版第6章数字基带传输系统3

通信原理樊昌信版第6章数字基带传输系统3
12
6.5.2 二进制单极性基带系统
f0 ( x )
f1( x )
-A 0 A
f0 ( x )
x
f1 ( x )
13
1、最佳判决门限
2 A P(0) n vd ln 2 A P(1)
(6.5-12)
A 当P(1)=P(0)=1/2时 v 2 2、误码率(设V*d=A/2)
d
眼图可以用来指示接收滤波器的调整,以减 小码间串扰,改善系统性能。
23
眼图的模型
最佳抽样时刻:“眼睛”张开最大的时刻; 判决门限电平:眼图中央的横轴位置对应于判 决门限电平; 对定时误差的灵敏度:眼图斜边的斜率决定了 系统对抽样定时误差的灵敏程度,斜率越大, 对定时误差越灵敏,即要求定时准确;
6.7.1部分响应系统
• 研究问题:基带传输中的有效性问题 • 研究目的:如何设计频带利用率高又可实 现的基带传输系统 • 研究方法:放宽对无码间串扰的要求以提 高有效性
30
问题的提出 由奈奎斯特第一准则知,基带系统的总特性 设计成理想低通特性, 能达到理论上的极限传 输速率,达到最高的频带利用率(2B/Hz)。理 想低通传输特性实现困难,且h(t)的尾巴振荡 幅度大、收敛慢,而对定时要求十分严格。 余弦滚降特性所需的频带加宽了,降低了系 统的频带利用率。 问题:能否找到频带利用率为2B/Hz,满足 “尾巴”衰减大、收敛快,又可实际实现的传 输特性?
34
•讨论g(t)的波形特点
4 cos t / TS g t 2 2 1 4t / TS Ts kTs g (0) 4 , g 1, g 0, k 3 , 5 , 2 2
除了在相邻的取样时刻 t=Ts/2 处 g(t)=1 外, 其余的取样时刻上,g(t) 具有等间隔零点。 g(t)波形的拖尾幅度与t 2成反比,说明g(t)波 形拖尾的衰减速度加快了。

通信原理 第六章 数字基带传输系统

通信原理 第六章 数字基带传输系统

来源: 来源: 计算机输出的二进制数据 模拟信号→ A/D →PCM码组 上述信号所占据的频谱是从直流或低频开始的,故称数 数 字基带信号。 字基带信号
2008.8 copyright 信息科学与技术学院通信原理教研组 3
基本概念
2、数字信号的传输
1)基带传输 基带传输——数字基带信号不加调制在某些 基带传输 具有低通特性的有线信道中传输,特别是传输距离 不太远的情况下; 2)频带传输 频带传输——数字基带信号对载波进行调制 频带传输 后再进入带通型信道中传输。
2008.8 copyright 信息科学与技术学院通信原理教研组 19
传输码结构设计的要求
码型变换或成形是数字信息转换为数字信号的过程, 码型变换或成形是数字信息转换为数字信号的过程,不 数字信息转换为数字信号的过程 同的码型将有不同的频谱结构,对信道有着不同的要求。 同的码型将有不同的频谱结构,对信道有着不同的要求。
1 2 3 4 5
引言 数字基带信号码波形 基带传输的常用码型 基带脉冲传输和码间干扰 无码间干扰的基带传输特性
2008.8
copyright 信息科学与技术学院通信原理教研组
18
6.3基带传输的常用码型 3
在实际的基带传输系统中, 在实际的基带传输系统中,并不是所有类 型的基带电波形都能在信道中传输。 型的基带电波形都能在信道中传输。 对传输用的基带信号有两个方面的要求: 对传输用的基带信号有两个方面的要求: ( 1 ) 对代码的要求 , 原始消息代码必须编 对代码的要求, 成适合于传输用的码型; 传输码型的选择) 成适合于传输用的码型;(传输码型的选择) 对所选码型的电波形要求, (2) 对所选码型的电波形要求,电波形应 适合于基带系统的传输。(基带脉冲的选择) 。(基带脉冲的选择 适合于基带系统的传输。(基带脉冲的选择)

通信原理第7版第6章PPT课件樊昌信版

通信原理第7版第6章PPT课件樊昌信版

— 改善系统性能的两个措施
课件制作:曹丽娜
引言
数字基带信号 - 未经调制的数字信号,它所占据的频谱是
从零频或很低频率开始的。
数字基带传输系统 -不经载波调制而直接传输数字基带信
号的系统,常用于传输距离不太远的情况。
数字带通传输系统 -包括调制和解调过程的传输系统
研究数字基带传输系统的意义:
近程数据通信系统中广泛采用
P(1 P),以概率 2 P(1 P)

E
(aman) P2 (1 P)2 (1 P)2 P2 2P(1 P)( P 1) P 0
西安电子科技大学 通信工程学院
课件制作:曹丽娜
2
E[ U T ( f ) ]
Pu ( f ) lim
N (2 N 1)T
0




课件制作:曹丽娜
§6.1
数字基带信号
及其
频谱特性
西安电子科技大学 通信工程学院
课件制作:曹丽娜
§6.1.1 数字基带信号
几种基本的基带信号波形
单个
序列
六种基本信号波形
西安电子科技大学 通信工程学院
课件制作:曹丽娜
西安电子科技大学 通信工程学院
课件制作:曹丽娜
归零
/ Ts 1
基带传输方式也有迅速发展的趋势
基带传输中包含带通传输的许多基本问题
任何一个采用线性调制的带通传输系统,可以等效为一
个基带传输系统来研究。
西安电子科技大学 通信工程学院
课件制作:曹丽娜

引言
基带传输系统组成:
基带脉冲
输入
发送
滤波器
信道

通信原理第7版第6章PPT课件(樊昌信版)

通信原理第7版第6章PPT课件(樊昌信版)

系统的传递函数
描述线性时不变系统的数 学模型,表示输入和输出 之间的关系。
03
CATALOGUE
模拟调制系统
调制的定义与分类
调制的定义
调制是一种将低频信号加载到高 频载波上的技术,以便通过信道 传输。
调制的分类
调制可以分为模拟调制和数字调 制两大类。模拟调制是指用连续 变化的模拟信号去调制载波的幅 度、频率或相位。
章节概述
本章将介绍数字调制的基本原理和技术,包括振幅调制、频 率调制和相位调制等。
通过学习本章,学生将能够了解数字调制的基本概念、原理 和技术,掌握数字调制系统的性能分析和设计方法,为进一 步学习通信系统的其他相关内容打下基础。
02
CATALOGUE
信号与系统
信号的分类与特性
01
02
ห้องสมุดไป่ตู้
03
周期信号
线性调制系统(AM、FM)
AM(调幅)调制
AM调制是通过改变载波的幅度来传 递信息的一种调制方式。在AM调制 中,低频信息信号叠加在载波上,并 通过信道传输。
FM(调频)调制
FM调制是通过改变载波的频率来传递 信息的一种调制方式。在FM调制中, 低频信息信号用来控制载波的频率变 化,从而实现信息的传输。
有效性
衡量通信系统传输有效信息的 能力,通常用传输速率或频谱
效率来表示。
可靠性
衡量通信系统传输信息的可靠 程度,通常用误码率(BER) 或信噪比(SNR)来表示。
实时性
衡量通信系统传输实时信号的 能力,通常用延迟时间来表示

安全性
衡量通信系统保护信息传输安 全的能力,通常用加密和认证
技术来表示。
误码率(BER)计算

通信原理

通信原理
距离不太远的情况下,数字基带信号可以直接传输, 称之为数字基带传输。而大多数信道,如各种无线信 道和光信道,数字基带信号必须经过载波调制,把频 谱搬移到高载处才能在信道中传输,这种传输称为数
字频带(调制或载波)传输。
3
基带传输系统是指不使用调制和解调装置而直接传输 数字基带信号的系统。即在发端,首先将源符号进行信源
第n个码元为 un(t) =sn(t) −vn(t)。于是有:
u (t )
n


un
n


a n [ g 1 ( t n T s ) g 2 ( t n T s )]
an

1 P P
以概率P
以概率1-P
显然,u(t)是随机脉冲序列 ,图(c) 给出了u(t)的一个实现。
g 2 (t )e
j 2 fst
可见,交变波的的功率谱 Pu( f) 是连续谱,它与g1(t)
和g2(t)的频谱以及出现概率P有关。
29
3.s(t)=u(t)+v(t)的功率谱密度PS(f )
Ps
f
m
Pu
f Pv f
2 2


| C m | ( f m f s ) f s P (1 P ) | G 1 ( f ) G 2 ( f ) |
+A 表示。 0 -A
+A (a) 0 传号反转编码(CMI码)与数字双相码类似,也是一 -A
0”和“11”两位码组表示,而“0”则固定地用“01”
(b)
1
1
0 1
0
0
1 0
+A 0 -A
(c)
15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
量化的基本方法:
➢ 将m(t)的取值范围mmin~mmax分成若干个(M个)间隔, 第i个间隔 ( mi-1+ mi ) / 2。
➢ 对模拟信号 m(t) 取样得到的 PAM 样值 ms(kTs) 进行判定: 若 mi-1≤ ms(kTs) ≤ mi ,则认为 ms(kTs) 落在第 i 个量化区间, 量化输出:msq(kTs)= qi.4Ts t。
3.非均匀量化
➢ 基本思想: ➢ ①. m(t) 有非均匀分布的取值概率密度时,可使取值概率
较大的区域量化间隔 △V 较小;取值概率较小的区域量化 间隔 △V 较大,从而获得较高的平均信号量化噪声功率比; ➢ ②. 在 m(t) 小的区域,取量化间隔 △V 小;在 m(t) 大的区 域,取量化间隔 △V 大,则量化噪声对大、小信号的影响 大致相同,从而改善小信号时的量化信噪比。
第六章 模拟信号的数字传输技术
➢问题是:模拟信号如何转化为数字信号?并且 在接收端能否由数字信号再变换回模拟信号?
➢ 模拟信号数字传输的方框如图:
模拟 信源
m (t)
抽样 量化 编码
数字码
数字通信
译码
系统
低通
数字码
m’ (t)
➢ 信源编码的一个方面的内容: A / D / A 变换。
1
基本内容: 6-1.脉冲编码调制(PCM)原理 6-2.简单增量(△M)调制原理 6-3. PCM与△M的系统性能
A/D
D/A
抽样应满足奈氏抽样定理:m(t) 最高频率 fm, 抽样速率 1/TS 应大于 2fm,则用低通(fc = fm) 就可由样值 ms(t) 滤除 m(t)。
样值信号 ms(t) 就为脉冲调幅信号(PAM)。
11
一.抽样—PAM信号的获得
➢ 如理想抽样:
m(t)
×
ms t mt Ts t
– 为将多个模拟样值对应成一个数字值,而将纵 轴划分的区间为量化区间,区间高度记为Δv
• 量化电平:
– 量化区间的中点,个数与量化区间数相同
• 量化误差△
– 由于实际样值并不一定恰巧就等于该区间的中 点电平,因此这二者的差,称为量化误差
– 量化误差不是由外来噪声引起的,而是量化过 程中内部产生的
– 由量化误差引起的噪声,称为“量化噪声”
• 通常将落在某一个纵轴区域内的样值对应1 个离散值
13
1、均匀量化
将纵轴均匀划 分成M个区间
落在某一区间 内的样值统统 量化成1个值
一般这个量化值取 这个区间的中点
这样,本来纵坐标的取值
是无限多个的模拟信号就 变成了多进制数字信号
m3 m4 m5 m6 m7 m6
14
均匀量化中的一些重要概念
• 量化区间:
A/D
D/A
➢ 编码——译码为一对变换关系;
➢ 抽样——低通为一对变换关系;
➢ 量化无逆过程(无一对变换关系)。
9
连续信号波形及其精 确采样值
量化采样
M 2n
单极性PCM波形 双极性PCM波形
10
一.抽样—PAM信号的获得



编码


m(t) 样 ms(t) 化 msq(t) 码 {an} 信道 {an} 码 msq(t) 通 m0(t)
➢ 则量化电平数:M =(b - a)/△V。
17
➢ 对于第 i 个区间( i = 1, 2 … M ):
➢ 起点 mi-1 = a + ( i -1) △V ; ➢ 终点 mi = a + i △V; ➢ 量化电平 qi = a + i △V - △V / 2;
➢ 若 mi-1=a+( i -1)△V≤ ms(kTs) ≤mi=a + i△V,
B
2B(1 fH
k )
n fL
n为fH除以B时,商的整数部分 , k为商的小数部分
这就是带通抽样定理
当n
1时,抽 k n
0, 抽样频率f s
2B
8
6-1.脉冲编码调制(PCM)原理
➢ 模拟信号与数字信号相互转换的原理过程为:



编码


m(t) 样 ms(t) 化 msq(t) 码 {an} 信道 {an} 码 msq(t) 通 m0(t)
则 ms(kTs) 位于第 i 个量化区间;
➢ 量化输出: msq(kTs) = qi;
➢ 瞬时量化误差: △ = | ms(kTs) – qi |; ➢ 最大量化误差: △max =△V/2。
18
量化噪声:
M
Nq pi
i 1
mi mi1
(
x
qi
)2
dx
V2 M
V2
12
piV
i 1
12
19
➢ 由于量化无逆过程,用 msq(kTs) = qi 来替代 ms(kTs) 肯定有 偏差,视 msq(kTs) = ms(kTs) + △ 。
➢ △ 为量化误差。 ➢ 分类:均匀量化与非均匀量化;
16
2. 均匀量化
➢ 是对 m(t) 的值域等距分间隔(即各量化区间长度 一致)的量化方法。
➢ 设 m(t) 值域 [a , b],量化间隔 ( 量化区间长度 ) △V。
卷积 T()
s
s
2
T
t
但是大家设想一下 ,如果s 2H 会怎样?
5
如果s 2H
M ()
H H
T()
卷积
信号频谱发生 混叠,无法提 取出纯净的 M(w)信号了
s
即采样频率至少
是基带信号最高
频率的2倍,这就
是低通抽样定理
不难看出,如果想通过低通滤波器 恢复原始信号
必须满足一个前提条件 : s H
mt t nTs
n
Ts t t nTs
n
Ms
1 2
M
Ts
1 2
M
2 Ts
T
n
ns
1 Ts
n
M
ns
➢ 收端低通可滤出 n = 0 的 Ms() 即为 M()。
12
§6.4.1 量化
• 什么是量化
– 以有限个离散的值来分别对应模拟信号抽样后 的不同的样值的过程
• 因为离散的值是有限的,而抽样的值有无 穷多种情况,因此需要多个样值对应1个离 散值
2
§6.2 抽样定理
• 如果想把时间连续的模拟信号变成0/1数字 串,必须先抽样
• 但是,很显然,抽样以后
的信号,与原来的信号是
不同的
• 能否从抽样信号中恢复原
t
信号呢?如果能,有什么条件?
3
§6.2.1 低通信号抽样定理
可以看作下面两 个信号的乘积
t
1
t
t
4
m(t)
t
T (t)
t
M ()
H H
6
§6.2.2 带通信号抽样定理
fH fL
fL fH
2 fH fH
fH
2 fH
如果以2 fH来抽样的话 ,是没有问题的 , 但这样很浪费带宽
能否降低抽样频率呢?
可见带通信号的采样频
率是可以低于
2
f

H
7
§6.2.2 带通信号抽样定理(续)
• 通过上面类似的画图法,可以证明,当
抽样频率fs 其中带宽
相关文档
最新文档