第七章 亲核加成反应
化学反应中的亲核加成反应机理研究
化学反应中的亲核加成反应机理研究化学反应是研究原子之间发生的转化和变化的科学领域。
亲核加成反应是一类常见的化学反应,其机理研究对于解释反应细节和优化化学合成具有重要意义。
本文将重点讨论亲核加成反应的机理研究,探究其在化学领域中的应用和意义。
一、亲核加成反应概述亲核加成反应是指亲核试剂通过共用电子对的方式与亲电试剂发生反应,形成新的化学键。
亲核试剂通常是具有孤对电子的化合物,如氨、醇、胺、卤素等,而亲电试剂则是带有正电荷或部分正电荷的分子,如卤代烃、酰卤等。
在亲核加成反应中,亲核试剂攻击亲电试剂的部分正电荷中心,形成一个新的共价键。
二、亲核加成反应的机理亲核加成反应的机理可以分为以下几个步骤:亲核试剂的攻击、亲电试剂的离去、质子转移和生成产物。
1. 亲核试剂的攻击亲核试剂通过其孤对电子攻击亲电试剂。
亲电试剂中的部分正电荷可以吸引亲核试剂,使其接近并进行反应。
这一步骤是亲核加成反应的关键环节。
2. 亲电试剂的离去亲核试剂攻击亲电试剂后,形成一个新的化学键。
在这个过程中,亲电试剂原来的化学键发生了断裂,从而产生一个具有正电荷的离去基团。
离去基团离开后,反应的原子间距离会有所变化。
3. 质子转移在亲核加成反应中,质子转移是常见的步骤之一。
它可以帮助调整反应物的电荷和立体结构,使反应进行得更加顺利。
质子的转移通常涉及到酸碱中心的变化。
4. 生成产物经过亲核试剂的攻击、亲电试剂的离去和质子转移等步骤后,最终会形成一个新的化学键,并生成产物。
产物的结构和性质取决于反应物的选择和反应条件的控制。
三、亲核加成反应的应用和意义亲核加成反应在化学合成中具有广泛的应用和意义。
1. 合成有机化合物亲核加成反应可以用于合成各种有机化合物,例如醇、酮、醛、酸等。
通过选择不同的反应物和反应条件,可以实现不同的合成目标,并得到具有特定结构和性质的化合物。
2. 研究反应机理亲核加成反应的机理研究有助于揭示反应发生的细节和规律,深入理解化学反应的本质。
亲核加成
二 炔烃的亲核加成
定义:亲核试剂进攻炔烃的不饱和键而引起的加成 反应称为炔烃的亲核加成。
常用的亲核试剂有: ROH(RO-)、HCN(-CN)、RCOOH(RCOO-)
碱,150-180oC
1. CHCH + HOC2H5
聚合,催化剂
[ CH2-CH]n
CH2=CHOC2H5 粘合剂
OC2H5
炔烃亲核加成的区域选择性:优先生成稳定的碳负离子。
第七章 亲核加成
(nucleophilic Addition)
反应类型:
烯烃的亲核加成反应 炔烃的亲核加成 羰基的亲核加成 羧酸衍生物与亲核试剂的反应 金属氢化物与羰基加成反应 α,β-不饱和羰基化合物的加成反应 碳-氮的亲核加成反应
一.烯烃的亲核加成反应
当烯烃连有吸电子基团时易发生亲核加成反应
产物中基团拥挤程度增大。
R 越大,妨碍Nu进攻C原子。
角张力缓解:
OH C N
O H C NK = 1 0 0 0 0
sp2杂化,键角应为120°, 实际为60°, 角张力较大; 反应中,键角由60°转化为109°28 ′, 角张力得 到缓解。
O + H C N
C O N HK = 1 0 0 0
O
O H
ACB O H
ACB+HN u O H
N uH
N u
ACBA ACB+H A
O H
O H
羰基质子化,可以提高羰基的反应活性,
羰基质子化后,氧上带有正电荷,很不稳定, π电子发生转移,使碳原子带有正电荷。
决定反应速率的一步,是Nu -进攻中心碳原子的 一步。
酸除了活化羰基外,还能与羰基形成氢键:
亲核加成
NO2
_ + CH3
H H H C C NO2 CH3 NO2
2
碳-碳双键的亲核加成反应
• 亲核试剂对碳-碳双键加成的反应历程: • 反应的第一步是亲核试剂带着一对电子进攻双键 上的一个碳原子,而电子则被集中到另一个双键 碳原子上形成碳负离子,这是慢的一步。第二步 是碳负离子与质子或带正电荷的物质结合形成产 物。
+ E+ C C Nu E C C Nu
3
C C
+ E Nu
• 一些常见得促进亲核加成反应的取代基有: CHO、 COR、COOR、 CN、NO2、 CONH2、SO2R等。 它们通过降低碳-碳双键碳原子上的p电子云密度 来促进亲核试剂的进攻,但更重要的是,这样的 取代基能使生成的碳负离子中间体的负电荷分散 而得到稳定。
C2H5O
-
H O C C C CH3
1)水解 2)加热
O
7
碳-碳三键的亲核加成反应
• 碳-碳三键通常比双键更容易被亲核试剂进攻,而较难被 亲电试剂进攻。这是因为碳-碳三键之间的距离较短,三 键中的电子被束缚的比双键中的紧,所以进攻的亲电试剂 夺取三键中的一个电子较困难。从杂化角度来考虑,三键 碳原子(sp杂化)比双键碳原子(sp2杂化)具有较多的s成分, 因此它与电子的结合力较强,表现出较强的亲电性。
O
NH2NH2
NNH2
NH2NHCONH2
NNCONH2
RSH
• 羰基化合物与醇的反应
• 醛(酮)能与一分子醇加成生成半缩醛(酮)。半缩醛(酮)不稳 定,容易分解成醛(酮)和醇或与另一分子醇进一步缩合, 生成缩醛(酮)。 • 由于缩醛(酮)生成后又可水解成原来的化合物,故可利用 缩醛(酮)生成还保护醛(酮)基。 • 环状缩醛(酮):最常见的是利用羰基化合物和乙二醇反应, 生成二氧戊环化合物,该化合物比烷基缩醛(酮)更加稳定, 可耐大多数碱性及中性的反应条件。
亲核加成反应机理
亲核加成反应机理一、介绍亲核加成反应是有机化学中一种重要的反应类型。
它通过亲核试剂攻击电荷不饱和的碳原子,形成新的碳-亲核键,并伴随有官能团的转换。
本文将对亲核加成反应的机理进行全面、详细、完整且深入地探讨。
二、亲核加成反应概述亲核加成反应是一类重要的有机化学反应,其主要特点是用亲核试剂攻击双键或三键上的电子,形成新的化学键。
亲核试剂可以是阴离子、中性分子或阳离子。
在亲核加成反应中,亲核试剂通常经历亲核进攻、负离子重排和质子化等阶段。
1. 亲核进攻亲核试剂在亲核加成反应中起到亲核进攻的作用。
通常情况下,亲核试剂具有可用的自由电子对,能与电子不足的碳原子形成新的化学键。
亲核进攻的速率和选择性受到亲核试剂的性质、反应条件和底物的结构等因素的影响。
2. 负离子重排在某些亲核加成反应中,亲核试剂的亲核进攻会导致反应过渡态产生负电荷,形成负离子。
负离子重排是亲核加成反应中的一个重要步骤,可以通过改变碳原子的排列顺序来稳定负离子。
3. 质子化质子化是亲核加成反应中的最后一个阶段,通过给亲核试剂或负离子成员质子化,使反应产物获得更稳定的结构。
质子化通常发生在负离子重排之后。
三、亲核加成反应的分类亲核加成反应可根据亲核试剂和底物的不同进行分类。
下面将对几种常见的亲核加成反应进行介绍。
1. 碱性条件下的亲核加成反应在碱性条件下,亲核试剂通常是醇、酚、胺等带有孤对电子的化合物。
这类亲核试剂能够与电荷不饱和的碳原子形成新的化学键。
碱性条件下的亲核加成反应常用于合成醇、酚、胺等化合物。
2. 酸性条件下的亲核加成反应在酸性条件下,亲核试剂通常是具有孤对电子的阴离子,如卤素离子、亚硫酸根离子等。
酸性条件下的亲核加成反应可以用于合成卤代烷、磺酸酯等化合物。
3. 中性条件下的亲核加成反应在中性条件下,亲核试剂通常是中性分子,如水、醛、酮等。
中性条件下的亲核加成反应常用于合成醇、酮等化合物。
四、亲核加成反应的机理解析1. 碱性条件下的亲核加成反应机理以醇作为亲核试剂为例,碱性条件下的亲核加成反应机理如下:1.酸性条件下,氧上的醇质子化生成质子化醇。
有机化学基础知识点整理醛和酮的亲核加成反应
有机化学基础知识点整理醛和酮的亲核加成反应有机化学基础知识点整理:醛和酮的亲核加成反应亲核加成反应是有机化学中常见的反应类型之一,醛和酮作为常见的碳酸酯化合物,也会参与到亲核加成反应当中。
本文将对醛和酮的亲核加成反应进行整理和归纳,以帮助读者更好地理解和掌握这一反应过程。
一、醛和酮的亲核加成反应基础概念亲核加成反应是指一个亲核试剂(如醇、胺等)的亲电中心攻击碳酰基(醛或酮)的羰基碳,形成一个新的共价键。
醛和酮的亲核加成反应一般可以分为醛酮亲核加成反应和酮酮亲核加成反应两类。
二、醛酮亲核加成反应1. 醛酮与缩合试剂的反应醛酮与缩合试剂(如水合肼和氨等)反应时,会经历酮缩反应,生成相应的醇和胺。
2. 醛酮与氰基试剂的反应醛酮与氰基试剂(如氢氰酸和氰化物等)反应时,会生成相应的羟基腈和氨基腈。
3. 醛酮与硫醇试剂的反应醛酮与硫醇试剂(如氢硫酸和硫化钠等)反应时,会生成相应的硫醇和亚硫酸盐。
三、酮酮亲核加成反应1. 酮酮与亲核试剂的反应酮酮与亲核试剂(如胺、醇等)反应时,会经历亲核加成反应,生成相应的醇和胺。
2. 酮酮与腈试剂的反应酮酮与腈试剂(如氰化物和亚氨基甲酸酯等)反应时,会生成相应的羟基腈。
3. 酮酮与水试剂的反应酮酮与水试剂反应时,会经历水解反应,生成相应的醇。
四、醛和酮的亲核加成反应机理醛和酮的亲核加成反应机理主要涉及亲核试剂的亲电攻击和质子迁移等步骤。
在醛酮亲核加成反应中,亲核试剂的亲电攻击会使羰基碳中的空本电子对与亲核试剂的亲电中心形成共价键。
此后,质子迁移会重新确定醛或酮中的羰基碳骨架。
在酮酮亲核加成反应中,亲核试剂的亲电攻击同样会使羰基碳中的空本电子对与亲核试剂的亲电中心形成共价键。
在这种情况下,质子迁移通常不会发生,因为酮中存在两个相邻的碳酰基。
五、总结醛和酮的亲核加成反应是有机化学中重要而常见的反应类型。
理解和掌握醛和酮的亲核加成反应对于有机化学的学习至关重要。
本文对醛酮和酮酮亲核加成反应进行了整理和概述,为读者提供了一定的参考和指导。
《亲核加成反应》课件
许多药物都是通过亲核加成反 应合成的,例如格列卫等,这 些药物对癌症等疾病的治疗具 有重要作用。
亲核加成反应还可以合成各种 农药,如杀虫剂、杀菌剂等, 这些农药对农业生产和植物保 护具有重要作用。
亲核加成反应与其他反应的串联
与氧化反应的串联
在亲核加成反应之后,往往需要进一步进行氧化反应以得到所需的产物。例 如,在合成己二酸二乙酯时,需要先进行亲核加成反应生成半酯,然后再进 行氧化反应得到己二酸二乙酯。
亲核加成反应的立体化学
区域选择性
在亲核加成反应中,进攻试剂首先与底物形成过渡态,然后 发生电子转移形成产物。由于过渡态的形状和能量与进攻试 剂和底物的立体结构有关,因此不同立体结构的进攻试剂和 底物在反应中具有不同的区域选择性。
对称性和立体化学
在双分子亲核加成反应中,进攻试剂和底物可以以两种不同 的方式相互结合,形成两种不同的过渡态。这两种过渡态具 有不同的能量和稳定性。因此,反应的立体化学性质取决于 进攻试剂和底物的对称性和立体结构。
如威尔金森催化剂、查尔酮催化 剂等,可以活化亲电试剂和亲核 试剂,促进亲核加成反应。
亲核加成反应的影响因素
电子效应
亲核试剂的电子云密度越高,越有利于亲核 加成反应。
空间效应
亲核试剂和亲电试剂的空间位阻会影响反应速率。
溶剂效应
溶剂的极性和介电常数会影响亲核加成反应 速率。
亲核加成反应的动力学模型
双分子亲核加成反应
亲核试剂和亲电试剂相互接近,形成过渡态,然后发生电子 转移,最后形成产物。
单分子亲核加成反应
亲核试剂首先与自身形成过渡态,然后发生电子转移,最后 形成产物。
04
亲核加成反应的应用与拓展
亲核加成反应在有机合成中的应用
有机化学基础知识点亲核加成反应的机理
有机化学基础知识点亲核加成反应的机理亲核加成反应是有机化学中一种重要的反应类型,常见于碳原子与亲核试剂之间的化学反应。
在亲核加成反应中,亲核试剂攻击电子不饱和化合物中的亲电中心,形成化学键。
本文将探讨亲核加成反应的机理,并介绍几种典型的亲核加成反应。
一、机理介绍亲核加成反应的机理通常分为两步:亲核试剂的攻击和中间物的转变。
1. 亲核试剂的攻击亲核试剂(Nu^-)攻击亲电中心(通常是碳原子)是亲核加成反应的第一步。
亲核试剂的正电荷亲密接触到亲电中心,形成一个新的化学键。
亲核试剂的反应活性基团(如氢、氧、卤素等)与亲电中心形成共价键。
2. 中间物的转变中间物的转变是亲核加成反应的第二步。
在中间物转变过程中,通常发生一系列的质子转移、断裂和重组步骤。
这些步骤可能涉及过渡态的形成和裂解,从而改变化合物的结构。
二、典型亲核加成反应案例以下是几种常见的亲核加成反应,以展示亲核加成反应的机理。
1. 酯的水解反应酯的水解反应是一种典型的亲核加成反应。
在碱性条件下,水分子作为亲核试剂攻击酯的羰基碳,在酸催化下进行酯的水解反应。
反应过程中,产生的中间物经过质子转移和断裂反应后,生成酸和醇。
2. 溴代烃的亲核取代反应在碱性条件下,亲核试剂(如氢氧化钠)攻击溴代烃中的溴原子,形成亲核取代产物。
此过程中,亲核试剂中的氧原子攻击溴原子,形成碳氧双键,然后其他基团进行重排,最终生成相应的取代产物。
3. 醛/酮的亲核加成反应醛和酮是常见的亲电中心,可以与亲核试剂发生亲核加成反应。
例如,醛和酮可以与氢氰酸反应形成氰醇化合物。
在这个过程中,氰离子作为亲核试剂攻击醛或酮的羰基碳,形成碳氮键,同时产生一个羟基。
4. 酸催化的醇与双键的加成反应在酸催化下,醇可以与烯烃中的双键发生亲核加成反应。
在反应过程中,醇中的氧原子攻击烯烃的亲电中心,形成一个新的碳氧键。
此外,酸催化也可促进醇与烯烃的异构化反应,产生具有不同结构的化合物。
总结:亲核加成反应是有机化学中常见的反应类型,可以用于合成新的有机分子。
有机化学中的亲核加成与消除反应
有机化学中的亲核加成与消除反应亲核加成和消除反应是有机化学中两种重要的反应类型,广泛应用于有机合成、药物化学、材料科学等领域。
本文将对亲核加成和消除反应的概念、机理和应用进行介绍。
一、亲核加成反应亲核加成反应是指亲核剂(也称为亲核物质)与电子不足的亲电试剂发生反应,亲核剂的亲电性中心攻击亲电试剂上的正电子中心,形成新的化学键。
常见的亲核加成反应有醇与卤代烃的反应、醛或酮与亲核试剂的反应等。
1. 醇与卤代烃的反应醇与卤代烃的反应是亲核加成反应中的一种常见类型。
在此反应中,醇中的氧原子攻击卤代烃中的卤原子,生成醚化合物。
例如,乙醇与溴甲烷反应可得到乙基溴化物。
2. 醛或酮与亲核试剂的反应醛或酮与亲核试剂的反应也是亲核加成反应的一种重要类型。
在这类反应中,亲核试剂的亲电性中心攻击醛或酮分子中的羰基碳原子,形成新的化学键。
例如,丁酮与甲胺反应可得到丁酮胺。
二、消除反应消除反应是指一个分子中两个基团之间的共价键发生断裂,形成另外两个分子。
消除反应可以分为酸性消除和碱性消除两种类型。
1. 酸性消除酸性消除是指在酸性条件下,分子中的负电荷离子与负电荷中心形成的碳阳离子相互消除。
酸性消除是有机化学中最常用的消除反应之一。
例如,酮中的α-碳上的氢可以被酸催化的消除剂(如氢气和铂催化剂)去除,生成烯烃。
2. 碱性消除碱性消除是指在碱性条件下,负电中心与负电荷离子形成的碳阴离子相互消除,产生另外两个分子。
例如,醇中的β-羟基在碱性条件下可以消除,生成烯烃。
三、应用亲核加成和消除反应在有机合成中有着广泛的应用。
它们可以用于构建碳-碳和碳-氧化学键,实现分子结构的定向调整和功能的引入。
通过选择不同的反应条件和催化剂,可以实现对化合物结构和立体化学的精确控制。
此外,亲核加成和消除反应还常用于药物化学和材料科学领域。
在药物合成中,这些反应可以用于构建具有特定生物活性的分子骨架。
而在材料科学中,亲核加成和消除反应则被应用于构建高分子聚合物和功能性材料的合成。
有机化学中的亲核加成反应反应机制和应用
有机化学中的亲核加成反应反应机制和应用亲核加成反应是有机化学中一种重要的反应类型,它在有机分子的构建和合成中具有广泛的应用。
亲核加成反应通常由一个亲核试剂和一个电荷亲和性较强的底物(通常是电子不足的烯烃或亚稳的阳离子)进行反应,最终形成一个新的化学键。
本文将介绍亲核加成反应的反应机制和一些常见的应用。
一、加成反应的机理亲核加成反应的机理可以分为两步:亲核试剂与底物的相互作用,以及生成产物。
1. 亲核试剂与底物的相互作用亲核试剂与底物发生相互作用的过程中,亲核试剂中的亲核性基团(通常是负离子或带有孤对电子的中性分子)攻击底物中的电子云不足的中心,形成较稳定的中间体。
2. 生成产物通过重新组合键,产生加成产物。
这个步骤的具体机理取决于试剂和底物的性质,可能包括质子转移、环闭合、重排等。
二、亲核加成反应的应用亲核加成反应在有机化学中有着广泛的应用,下面将介绍几个常见的应用领域。
1. 合成有机化合物亲核加成反应是有机合成中最常用的反应类型之一。
通过选择不同的亲核试剂和底物,可以合成各种结构和功能的有机化合物,如醇、醛、酮等。
例如,醇和酸酐之间的酯化反应就是一种亲核加成反应。
2. 制备药物亲核加成反应在合成药物中有着重要的应用。
许多药物的合成步骤中都包含亲核加成反应,用于构建药物分子的关键骨架和功能基团。
例如,合成乙酰水杨酸的反应中,苯酚与乙酰氯的亲核加成反应是一个关键步骤。
3. 制备橡胶和合成纤维亲核加成反应也被广泛用于生产橡胶和合成纤维。
例如,合成氨纶的过程中使用的底物与亲核试剂之间发生亲核加成反应,形成聚合物链的骨架,从而得到弹性优良的合成纤维。
4. 天然产物的合成亲核加成反应在天然产物合成领域也发挥着重要的作用。
通过亲核试剂与底物的反应,可以合成具有天然产物活性的复杂有机结构。
例如,弗里德尔-克拉夫茨反应是天然二萜类化合物合成中常用的亲核加成反应。
总结:亲核加成反应是有机化学中常见的反应类型,它通过亲核试剂与底物的相互作用,生成具有新化学键的产物。
亲核加成反应机理
亲核加成反应机理一、引言亲核加成反应是有机化学中最为基础和重要的反应之一。
它是指一种亲核试剂与一个电子缺陷的亲电试剂之间发生加成反应,形成一个新的化合物。
这个新化合物由于不稳定,往往会进一步发生消除、重排、氧化还原等反应,最终得到目标产物。
二、亲核试剂和亲电试剂1. 亲核试剂亲核试剂通常是带有孤对电子或负电荷的分子或离子,如氢氧根离子(OH-)、氨(NH3)、硫醇(SH-)等。
它们具有强大的亲核性,可以攻击含有正离子或部分正电荷的分子或离子,并与其形成共价键。
2. 亲电试剂亲电试剂通常是带有正离子或部分正电荷的分子或离子,如卤素(Cl2、Br2、I2)、羰基(CO)、烯丙基阳离子等。
它们具有强大的亲电性,在反应中可以吸引周围的电子密度,并与相邻原子形成新键。
三、机理1. 两种反应机理亲核加成反应可以分为两种不同的机理:S N 2和S N 1。
它们的区别在于反应物的电子密度和反应条件。
2. S N 2机理在S N 2机理中,亲核试剂直接进攻亲电试剂上的部分正电荷,形成一个过渡态,然后断裂原有键,形成新的共价键。
这个过程是单步反应,不需要中间体参与。
它适用于那些具有较高电子密度、不太稳定、易于受到亲核试剂攻击的亲电试剂。
3. S N 1机理在S N 1机理中,亲电试剂先失去一个离子(通常是卤素离子),形成一个带正电荷的中间体。
然后亲核试剂进攻这个中间体上的部分正电荷,形成新的共价键。
这个过程是两步反应,需要中间体参与。
它适用于那些具有较低电子密度、较稳定、难以受到亲核试剂攻击的亲电试剂。
四、影响因素1. 反应物结构反应物结构对亲核加成反应起着至关重要的作用。
一般来说,亲电试剂上的部分正电荷越大,反应越容易进行。
而亲核试剂上的孤对电子或负电荷越强,反应也越容易进行。
2. 溶剂效应溶剂对亲核加成反应也有一定的影响。
通常来说,极性较大、能够稳定离子的溶剂有利于S N 1机理的进行;而极性较小、不太稳定离子的溶剂则有利于S N 2机理的进行。
亲核加成反应
1. 重要的亲核加成反应(1) 加氰化氰 醛、脂肪族甲基酮和含8个碳以下的脂环酮都可以加氰化氢,生成氰醇(α-羟基腈)。
CO CHCNα-羟基腈实验证明碱对这个反应的影响颇大。
例如,丙酮和氰化氢作用,不加任何催化剂,3至4小时内只有50%的丙酮起反应;当加入一滴氢氧化钠溶液,反应在两分钟内完成。
若加入酸,反应速度减慢;加入较多的酸,放置几个星期也不反应;因为氢氰酸是弱酸,酸或碱的存在将直接影响它的电离平衡。
+H+--C O H HHNCN+加入碱,平衡向右移动,CN -的浓度增加;加入酸,平衡向左移动,CN -的浓度降低。
这些事实说明在丙酮与氰化氢的反应中起决定作用的是CN -本身的性质和浓度。
醛、酮加氰化氢的反应是可逆的,亲核试剂是CN -,其历程可以表示如下:反应分两步进行,第一步是CN -进攻羰基碳,生成氧负离子中间体。
这是个慢步骤,也是决定速度的步骤。
第二步是氧负离子中间体和质子结合,形成氰醇,这是个快步骤。
醛、酮和氰化氢直接加成反应的产率较好,但是氰化氧有剧毒,且挥发性大(沸点26.5℃)。
使用起来不安全。
为了避免反应中直接使用氰化氢,一般采用醛或酮与氰化钾(钠)的水溶液混合,然后加入无机酸,使氰化氢一旦生成立即和醛或酮作用。
.但在加酸时应控制溶液的pH 值,使之始终偏于碱性(pH ≌8),以利于反应的进行。
醛、酮加氰化氢在有机合成中很有实用价值。
它是增长碳链的一种方法;此外加成物含有双官能团,是一类较活泼的化合物,可进一步转化为多种其它化合物。
例如:CH 3CH 3CH 2CH 3CH 3CH3CH 333)2CCH 2NH 2CH 33CO H O H O+C H C O O HNCNCO CCHO C H +O,Δα-甲基丙烯酸甲酯(90%) α-甲基丙烯酸甲酯是合成有机玻璃——聚α-甲基丙烯酸甲酯的单体。
C R R R`δ+O H ()+--慢快C H H NCN +R`)H (-C R O CN R`)H ((2)加亚硫酸氢钠 大多数醛、脂肪族甲基酮和8个碳以下的脂环酮与亚硫酸氢钠饱和溶液(40%)加成,生成白色的α-羟基磺酸钠晶体。
《亲核加成反应》课件
总结词
未来,亲核加成反应的发展将更加注重绿色、高效、可 持续性。
详细描述
随着环保意识的不断提高和化学工业的发展,对亲核加 成反应的效率和环保性的要求也将越来越高。未来,需 要继续研究和开发新型催化剂和绿色合成方法,以推动 亲核加成反应的发展。同时,还需要解决反应过程中可 能出现的各种问题,如副反应、废物处理等,以满足可 持续发展的要求。
羧酸类底物在亲核加成反应中,与亲核试剂反应后生成酯类化合物 ,该类化合物具有较高的稳定性和较低的反应活性。
立体化学在亲核加成反应中的应用
立体化学
在亲核加成反应中,立体化学是一个重要的概念。它涉及到反应过程中空间构型 的变化以及反应速率与空间构型的关系。
手性
手性是立体化学中的一个重要概念。它是指一个物体不能与其镜像相重合的特性 。在亲核加成反应中,手性底物与手性亲核试剂的反应可以产生手性产物。
04
亲核加成反应的实验技术 与操作技巧
实验装置与操作流程
实验装置
包括反应器、温度计、搅拌器、冷凝器等 主要部件,以及必要的辅助设备和安全设 施。
VS
操作流程
包括反应物准备、反应器清洗、加料、反 应温度控制、产物分离和纯化等步骤。
反应条件的优化与控制
反应温度
温度对反应速率和产物质量有重要影响,需根据 反应物的性质和实验要求选择合适的反应温度。
亲核加成反应的催化剂与 促进剂
金属催化剂
01
02
03
铝催化剂
如AlCl3、AlBr3等,可通 过Friedel-Crafts反应引 发亲核加成反应。
锌催化剂
如ZnCl2、ZnBr2等,常 用于加成到烯烃或炔烃上 。
铁催化剂
如FeCl3、FeBr3等,可 促进碳碳双键的亲核加成 反应。
亲核加成反应影响因素
亲核加成反应影响因素以亲核加成反应影响因素为题,我们来讨论一下影响亲核加成反应速率的因素。
亲核加成反应是有机化学中一种常见的反应类型,它是指亲核试剂与电子不足的亲电试剂之间发生的反应。
亲核试剂通过给予电子形成键,而亲电试剂则通过接受电子形成键。
亲核加成反应速率的高低受到多种因素的影响。
化学反应速率与反应物浓度之间存在着关系。
亲核加成反应中,反应物的浓度越高,反应速率就越快。
这是因为反应物浓度的增加会增加反应物之间的碰撞频率,从而促进反应的进行。
温度也是影响亲核加成反应速率的重要因素之一。
一般来说,温度的升高会导致反应速率的增加。
这是因为温度的升高会增加反应物的动能,使得反应物之间的碰撞更加频繁和剧烈,从而增加反应速率。
溶剂的选择也会对亲核加成反应速率产生影响。
不同的溶剂对亲核试剂和亲电试剂的溶解度和反应物之间的相互作用有不同的影响。
有些溶剂具有良好的溶解性和稳定性,能够促进反应的进行,从而提高反应速率;而有些溶剂则可能对反应物产生不利影响,降低反应速率。
催化剂的加入也可以显著影响亲核加成反应速率。
催化剂是能够提供新的反应路径,降低反应活化能的物质。
通过催化剂的作用,亲核加成反应可以在较低的能量条件下进行,从而提高反应速率。
反应条件和反应物的结构也会对亲核加成反应速率产生影响。
例如,反应物的电子密度和反应中心的亲电性等因素都会影响反应速率。
另外,反应条件如pH值、氧气含量等也可能对反应速率产生影响。
亲核加成反应速率受到多种因素的影响,包括反应物浓度、温度、溶剂选择、催化剂的加入、反应条件和反应物的结构等。
在实际化学合成中,了解这些因素对反应速率的影响,可以帮助我们优化反应条件,提高反应效率。
亲核加成反应
+ HN
H H R3
H
H N R2 OH R3 H
- H2O
N R2 O R3
+
RHC R1
-H
RHC CH2 R3R2N R1 RHC CH2NR2R3 R1
如是碱催化,则由碱与活泼氢化合物作用生成碳负离子再和醛与胺形成的加成 产物作用。
O O
+ OH
R1 R1
+ H2O
Z=R,Ar,OH,HZAr,HNCONH2.......
ቤተ መጻሕፍቲ ባይዱ
在酸性条件下,质子加到羰基的氧原子上,增加了羰基碳原子上的正电荷,有 利于亲核加成,所以这些反应能被酸所催化。
O
+ H
C
OH
但质子又可以结合反应物H2N-Z,使之失去活性。所以此类反应有一最合适的 PH值,从而使相当一部分羰基化合物质子化,又能使游离的含氮化合物保持一 定的浓度。在这一最合适的PH值下,反应速率最大。
N N
+
N N N
-N2,
NH
N
N
N
N
N
+
N N N N N
N
-HCN,
NH
N
N
N
3)Mannich反应 含有活泼氢的化合物和甲醛(或其它醛)及胺类缩合,得到β-氨基(或取代氨 基)的羰基化合物。产物通常也称作Mannich碱。 R
2
O R R1
O
R2
+
H H
+
HN R R3 COR1
N R3
这是一个三级反应,酸或碱对它都有催化作用。反应第一步都是由胺和醛生成 加成产物。酸催化的反应历程可表示为:
高等有机化学 第7章 羰基化合物的反应
7.1.1 简单的加成反应
C O HNu C OH Nu
这类加成反应与前面讨论过的>C=C<双键加成的不同, 有两个重要方面。第一,前者是亲核加成反应;后者为亲电加 成反应,而只有在特别情况下,才能发生亲核加成反应。这就 不难理解为什么有些试剂容易与>C=C<双键发生加成反应, 而不能与>C=O双键发生加成反应了。第二,亲核试剂总是 加在羰基的碳上,质子是与氧结合,而没有加成的双重性方向 问题。
R C R'
OH SO3
R
R’
K
R
R’
K
H CH3 CH3
CH3 CH3 C2H5
800 200 40
CH3 CH3
i-C3H7 t -C4H9
8 1.6
(1) 立体因素的影响 从上面的平衡常数表中可以明显地看到,随着R、 R’成亲核试剂(Nu)体积的增大,平衡常数减小了。这是由于R和R’体 积增大,必然会使Nu难于接近羰基;另一方面,在反应物中R-C-R’键角 为120º(sp2-C),而生成物中的R-C-R’键角却接近于109º (sp3-C),这 就是说,在反应过程中羰基的碳从sp2-C杂化变为sp3-C杂化,不论是在 分子内的化学键之间还是R、R’与Nu之间的相互排斥都增加了,因而被 基上取代基和Nu的体积对平衡的位置有显著影响。大多数的R、R’取代 基立体因素和极性因素的影响是一致的。从苯甲醛和对甲基苯甲醛与HCN 加成的平衡常数也可清楚地看到极性因素的影响。芳环上一个甲基处在对 位和不带甲基的芳环相比,从立体因素来看几乎没有什么区别,但它的平 衡常数却比苯甲醛小了一半。这是由于甲基的供电子效应加强了过渡态中 氧原子上所出现的负电荷而变得更不稳定之故。反之可以预料,如芳环上 有吸电子基的话,则会使平衡常数增加。实际上就是如此。如间溴苯甲醛 与HCN的加成反应,平衡常数K为530,而对硝基苯甲醛与HCN反应的K 值则更大(1.4×103)。
《亲核加成反应》课件
要点二
产率
亲核加成反应的产率取决于反应条件和底物的性质。 优化反应条件可以提高产率,同时选择合适的底物也 可以提高产率。
04
亲核加成反应的应用
有机合成中的亲核加成
醛、酮的亲核加成反应
在有机合成中,亲核加成反应可用于制备醇、醛和酮等化合物, 例如与氢氰酸、醇钠等亲核试剂的反应。
合成有机硅化合物
亲核加成反应可用于合成有机硅化合物,例如氯硅烷与醇或胺的反 应,生成相应的硅氧烷或硅氮烷。
06
亲核加成反应的最新研 究进展
新反应与新应用
烯烃的加成
研究新的催化剂和反应条件,提高烯烃加成的选择性和 效率,探索其在有机合成和工业生产中的应用。
羰基化合物的加成
探索羰基化合物的亲核加成反应,开发新的反应类型和 合成策略,为药物分子和材料分子的合成提供新的途径 。
理论计算与模拟研究
反应机理研究
合成其它化合物
亲核加成反应还可用于合成其它化合物,例如与羧酸的反应生成羧 酸酯,与氨或胺的反应生成酰胺或氨基甲酸酯等。
生物学中的亲核加成
01
生物体内的化学反应
在生物体内,许多化学反应需要亲核催化,例如DNA和RNA的合成、
激素的合成、氨基酸的合成等。
02
酶的作用
酶在许多生物学过程中起着关键作用,包括亲核加成反应。例如,激酶
利用理论计算和模拟方法,研究亲核加成反应的微观 机理和动力学过程,揭示反应过程中的关键步骤和影 响因素。
反应活性预测
通过理论计算,预测不同底物的反应活性,为实验设 计和优化提供指导。
研究前景与展望
绿色合成方法
发展环境友好的催化剂和反应条件,降低亲核加成反应的能 耗和废弃物产生,为绿色化学的发展做出贡献。
亲核加成反应PPT课件
CH2 COOEt 2 CH3COCH2COOEt NCCH2COOEt RCH2NO2
催化剂:醇钠(钾)、氨基钠、吡啶、三乙胺、季铵碱
第7页/共147页
OO CH3-C-CH2-C-OC2H5 NaOC2H5
OO CH3-C-CH-C-OC2H5
- Na+
O ddC+ C C
1,4-加成
OC2H5 O C=O CH3C-CH C
d+
d-
C
d+
N
d-
(C22H55)。3CN,,7叔1%丁醇
CH3COCHCOCH3 CH2CH2CN
HC
C
d+
C
OC2H5 + CH3COCH2COOC2H5 C2H5ONa
H-C=CH-COOC2H5
d+ d- O
CH3COCHCOOC2H5
d-
第11页/共147页
Micheal反应的应用
OO + O2N
12.1 碳碳双键的亲核加成反应
反应机理:
CC
E Nu
CC
E
引入吸电子基团,降低电子云密度
Nu E
CC
E
CC
Nu
Nu
Y:
CHO COR COOR CONH2
CN NO2
第1页/共147页
SO2R
H C
Ph C
CN
Ph
CN
H
HH
Ph Ph C C
HCN
Ph C C Ph
CN CN
CN
CN CN
苯环分散了负电荷,而且CN的吸电子诱导 效应和共轭效应稳定了碳负离子
C H
羰基化合物的反应
O
O
O
O > RCCH3 > RCR' > ArCR
羰基具有平面结构,亲核剂可从平面的两边进攻羰基碳原子。如果羰基平面
两边的空间条件不同,进攻试剂将主要从空间阻碍较小的一边进攻。
樟脑分子中的桥环不能翻转,有碳桥的一边位阻很大。因此,负氢从位阻小
的碳桥对面进攻羰基碳。
O
1.NaBH4 2.H3O
H
OH +
OH H
(主)
若 Nu 体积很小时,3,5-位碳上直立氢的干扰趋于缓解,但加成过程中新生成的
C-O 单键与 2,6-位平伏 C-H 健之间产生的张力则转化为主要的影响因素。二者的
距离越接近,产生的张力越大。
b
HO
t-Bu
+ HBH3Na H
a
H3O a t-Bu
H3O t-Bu b
OH H
H (次) H
曼尼赫反应在合成上的重要性是由于曼尼赫碱受热立即分解生成 α、β-不饱和羰
NaOH
O CH
+ H2O
HCH=O + CH3CHO (过量 )
无 a-H 羰基活性大
OH
HCHO
(HOCH2)3C-CHO
C(CH2OH)4 + HCOOH
歧化反应
三次羟甲基化
季戊四醇
按碰撞理论,容易理解分子内的羟醛缩合进行得更快。特别重要的是鲁宾逊扩环 反应,它包括麦克尔加成和分子内的羟醛缩合两步:
C O + ROH
OH C
OR
ROH / H3O
半缩醛(酮)
缩羰在有机合成中是重要的保护基。例如(1):
OR C
OR
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等有机化学
第七章亲核加成反应食品学院应用化学系
郑福平杨绍祥
第七章亲核加成反应
一、碳-碳双键的亲核加成反应
二、碳-碳三键的亲核加成反应
三、羰基亲核加成反应
四、羧酸衍生物与亲核试剂的反应
五、金属氢化物与羰基的亲核加成反应
六、α,β-不饱和羰基化合物的亲核加成反应
七、碳-氮重键的亲核加成反应
八、分子内的自催化亲核加成反应
2
一、碳
吸电子取代基
(一)氰乙基化反应
(二)
Micheal
二、碳
C C
C正电荷处
于
p轨道属于
杂化碳电负性大,难以容纳正电荷。
叁键比双键易于亲核加成的原因
1. 碳原子杂化状态不同。
叁键碳sp杂化,双键碳sp2杂化。
叁键碳s轨道成分多,电子云更靠近原子核,不
易给出电子,易接受电子。
2. 亲核加成活性中间体稳定性不同。
决定性作用。
12
三、羰基亲核加成反应
15
(一)羰基的亲核加成反应历程
酸除了使羰基质子化外,还能与羰基形成氢键:
2
注意:
不论是酸还是碱催化的反应,控制反应速度
的一步都是亲核试剂进攻碳原子这一步,故它们
都是亲核加成。
19
(二)影响羰基亲核加成反应的因素
当
(2)
2.
(3)
(三)羰基加成反应中立体化学
(四)羰基化合物的亲核加成反应实例
1、杂原子亲核试剂的加成
除NaHSO
外,一般K<1。
3
许多羰基化合物与含杂原子亲核试剂发生不同程度的加成。
半缩醛(酮)天然产物中有重要作用。
链状K<1,环状K>1(葡萄糖,开链式占0.003%,主要以α和β-吡喃环式存在。
)
31
①
39
醛:
第一步负碳离子的生成为速控步骤,第二步为快反应,第一步不可逆。
酮:
速控步骤为第二步。
C -进攻酮比进攻醛羰基碳难得多。
碱催化利于有醛的缩合,而不利于酮的缩合。
②
四、羧酸衍生物与亲核试剂的反应
(二)结构与活性的关系
作为酰基化试剂,其活性为:
RCOCl>RCOSR'>(RCO)2O>RCOOR>RCONH2 X: 具有-I效应,C-Cl键的极性大。
酯中烷氧基具有+C效应,增大了酰基与烷氧基间的电子云密度,使酰氧键难于断裂。
酰胺中的NH
的+C、+I效应,使羰基的反应活
2
性降低。
酸酐中的酰基是吸电子基团,使酰氧键易于断裂,酸酐的反应活性比酯大。
42
(三)反应实例
反应历程:
碱催化(
含一个α
含。