+微机继电保护原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 微机继电保护原理
随着计算机技术及网络技术的迅速发展,微机继电保护由于其具有比传统继电保护装置更显著的优势,在电力系统中得到了广泛的应用。目前,在新建电气化铁道供电系统中的牵引网馈线、牵引变压器、并联电容器补偿装置均采用了微机保护装置。本章讲述微机保护原理基础知识,主要包括硬件结构、数据采集、数字滤波、特征量和保护动作判据的算法、软件流程、抗干扰措施及微机保护的发展趋势等的内容。
4.1 概述
4.1.1 计算机在继电保护领域中的应用和发展概况
近几十年来电子计算机技术发展很快,其应用已广泛而深入地影响着科学技术、生产和生活等各个领域,使各行业的面貌发生了巨大的变化,继电保护技术也不例外。在继电保护技术领域,微机除了用作故障分析和保护动作性能分析外,20世纪60年代末期已经提出用计算机构成保护装置的倡议。到了20世纪70年代末期,出现了一批功能足够强的微型计算机,价格也大幅度降低,因而无论在技术性上还是经济性上,已具备用一台微型计算机来完成对一个电气设备建立保护功能的条件,从此掀起了新一代的继电保护——微机保护的研究热潮。
我国在微机保护方面的研究工作起步较晚,但进展速度却很快。1984年上半年,由华北电力学院研制的第一套以6809(CPU)为基础的微机距离保护样机投入试运行。1984年底在华中工学院召开了我国第一次计算机继电保护学术会议,这标志着我国计算机保护的开发开始进入了重要的发展阶段。经过20多年的研究、应用、推广与实践,现在微机保护产品已经成为新投入使用的继电保护设备的主体。
自从微型计算机引入继电保护以来,微机保护在利用故障分量方面取得了长足的进步,另一方面,结合了自适应理论的自适应式微机保护也得到较大发展,同时,计算机通信和网络技术的发展及其在系统中的广泛应用,使得变电站和发电厂的集成控制、综合自动化更易实现。未来几年内,微机保护将朝着高可靠性、简便性、通用性、灵活性和网络化、智能化、模块化等方向发展,并可以与电子式互感器、光学互感器实现连接;同时,充分利用计算机的计算速度、数据处理能力、通信能力和硬件集成度不断提高等各方面的优势,结合模糊理论、自适应原理、行波原理、小波技术等,设计出性能更优良和维护工作量更少的微机保护设备。
4.1.2 微机继电保护与传统装置的对比分析
继电保护的任务是判断电力系统有关电气设备是否发生故障而决定是否发出跳闸命令,使发生故障的电气设备尽量迅速地与电力系统隔离。为此,首先要取得与被保护电气设备有关的信息,根据这些信息,按不同的原理,进行综合和逻辑判断,最后做出抉择,并付诸执行。所以,继电保护的基本结构大致上可以分为三部分:信息获取与初步加工;信息的综合、分析与逻辑加工、抉断;抉断结果的执行。
信息要通过电压、电流传送,有时还通过一些开关量传递。早期,在机电型继电器中,电流电压直接加到继电器的测量机构,变换成机械力,然后在机械力的层次上进行比较判别,中间并不需设置其他的变换、隔离等环节。随着电子技术的引入,为了适应电子器件的弱信号的要求,在电流互感器、电压互感器与电子电路之间要求设置一些传变环节。通常使用所谓的电流变换器、电压变换器以及电抗变换器等等。在晶体管型继电保护、整流型继电保护以及集成电路型继电保护中都采用类似的变换环节,其间并没有本质的差别,这些环节,可以称为“信息预处理”环节。
由于计算机是数字电路,其工作电平比集成电路的工作电平还低,因此,计算机继电保护同样也需要设置信息预处理环节,需要隔离屏蔽、变换电平等等处理。在这个问题上计算机保护与原来的模拟式保护是一致的。换言之,在这个问题上,模拟式保护的一些经验也是
适用于计算机保护的。
继电保护的主要任务是操作、控制与被保护电气设备有关断路器,使发生故障的电气设备迅速与电力系统分隔离开来,最大限度地减轻故障对电力系统的影响,减轻故障设备的损坏程度。这种操作是通过控制跳闸线圈实现的,也就是给线圈通入电流实现的。电流可以由接点控制,也可以由无接点的半导体器件控制。出于可靠性的考虑,目前基本上仍是采用有接点的小型中间继电器,组成必要的出口逻辑。这个方面计算机继电保护与传统继电保护也是基本一致的。
计算机继电保护与传统继电保护的根本区别是在中间部分,即信息的综合、分析与逻辑加工、判断环节。区别主要是在于实现上述功能的手段不同。传统继电保护是靠模拟电路(或继电器元件)的构成来实现的,即用模拟电路实现各种电量的加、减、乘、除和延时与逻辑组合需求。而计算机保护,即数字式继电保护却是用数字技术进行数值(包括逻辑)运算来实现上述功能的。计算机上的数字和逻辑运算是通过软件进行的,即这些运算要通过预先按一定的规则(语言〉制定的计算程序进行的。这是与模拟式继电保护截然不同的工作模式。也就是说,计算机式继电保护是由“硬件”和“软件”两部分组成的,硬件是实现继电保护功能的基础,而继电保护原理是直接由软件,即由计算机程序实现的,程序的不同可以实现不同的原理,程序的好坏、正确与错误都直接影响继电保护性能的优劣、正确或错误。
因此,计算机式继电保护,也称微机保护,其实质就是以微型机、微控制器等器件作为核心部件构成的具有继电保护功能的自动化安全装置。
4.1.3 微机继电保护装置特点
4.1.3.1 调试维护方便
在微机保护应用之前,整流型或晶体管型继电保护装置的调试工作量很大,原因是这类保护装置都是布线逻辑的,保护的功能完全依赖硬件来实现。微机保护则不同,除了硬件外,各种复杂的功能均由相应的软件(程序)来实现。
4.1.3.2 高可靠性
微机保护可对其硬件和软件连续自检,有极强的综合分析和判断能力。它能够自动检测出其自身硬件的异常,并配合多重化措施,可以有效地防止拒动;同时,软件也具有自检功能,对输入的数据进行校错和纠错,即自动地识别和排除干扰,因此可靠性很高。目前,国内设计与制造的微机保护均按照国际标准的电磁兼容试验(EMC,Electromagnetic Compatibility)来考核,进一步保证了装置的可靠性。
4.1.3.3 易于获得附加功能
传统保护装置的功能单一,仅限于保护功能,而微机保护装置除了提供传统保护功能外,还可以提供一些附加功能。例如,保护动作时间和各部分的动作顺序记录,故障类型和相别及故障前后电压和电流的波形记录等。对于线路保护,还可以提供故障点的位置(测距),这将有助于运行部门对事故的分析和处理。
4.1.3.4 灵活性
由于微机保护的特性主要由软件决定,因此替换或改变软件就可以改变保护的特性和功能,且软件可实现自适应性,依靠运行状态自动改变整定值和特性,从而可灵活地适应电力系统运行方式的变化。
4.1.3.5 改善保护性能
由于微机的应用,可以采用一些新原理,解决一些传统保护难以解决的问题。例如,利用模糊识别原理判断振荡过程中的短路故障,对接地距离保护的允许过渡电阻的能力,大型变压器差动保护如何识别励磁涌流和内部故障,采用自适应原理改善保护的性能等。
4.1.3.6 简便化、网络化
微机保护装置本身消耗功率低,降低了对电流、电压互感器的要求,而正在研究的数字