MOSFET驱动电路设计参考

合集下载

MOSFET的驱动保护电路设计

MOSFET的驱动保护电路设计

MOSFET的驱动保护电路设计驱动保护电路的设计应考虑以下几个因素:驱动电流要足够大以确保MOSFET能够被充分驱动,驱动电压要适配MOSFET的闸极源极电压,稳定的驱动信号,以及针对MOSFET存在的故障及过温保护。

第一部分:驱动电流设计驱动电流是使MOSFET正常工作的关键,需要足够大以确保MOSFET能够迅速打开和关闭。

驱动电流过小会导致MOSFET开启和关闭速度慢,从而影响功率开关的效果。

一种常见的驱动电路设计是使用晶体管来放大控制信号的电流,从而提供足够的驱动电流。

此时,需要选择合适的晶体管,以确保其最大可承受电流大于所需驱动电流。

第二部分:驱动电压设计为了适应不同类型和不同厂家的MOSFET,可以使用电压放大器来提供适当的驱动电压。

电压放大器可以根据输入信号的大小和极性来放大并适应MOSFET的驱动电压要求。

第三部分:稳定的驱动信号为了确保MOSFET的正常工作,需要提供稳定的驱动信号。

这可以通过使用驱动信号滤波器来实现。

驱动信号滤波器可以滤除杂波和噪声,从而提供干净、稳定的驱动信号。

常用的驱动信号滤波器包括电容滤波器和低通滤波器。

第四部分:MOSFET的故障及过温保护一种常见的故障保护方式是将电流和电压传感器与MOSFET连接,监测MOSFET的工作状态。

当电流或电压超过设定的阈值时,故障保护电路将会迅速关闭MOSFET。

此外,还可以使用温度传感器来监测MOSFET的工作温度,当温度超过一定值时,故障保护电路同样会迅速关闭MOSFET。

总结:MOSFET的驱动保护电路设计需要考虑驱动电流的大小、驱动电压的适应性、稳定的驱动信号以及MOSFET的故障及过温保护等因素。

通过设计合适的驱动保护电路,可以确保MOSFET的正常工作,延长其寿命,提高电路的可靠性和稳定性。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全MOSFET是一种常用的功率开关器件,能够在低电压和高电流下工作。

为了实现最佳性能和保护MOSFET,经典的MOSFET驱动电路设计起着至关重要的作用。

下面将介绍几种常见的MOSFET管经典驱动电路设计。

1.单极性驱动电路单极性驱动电路是一种简单而可靠的MOSFET驱动电路。

这种电路使用一个单极性电源,通过电阻将电流限制在安全范围内,然后将电流输入至MOSFET的栅极。

这种电路简单易于实现,但存在驱动能力有限的问题。

在高功率应用中,单极性驱动电路可能无法提供足够的电流和电压来驱动MOSFET。

2.双极性驱动电路双极性驱动电路通过使用正、负两种极性的信号来驱动MOSFET,提供更可靠和高效的驱动。

正极性信号应用于MOSFET的栅极,而负极性信号应用于MOSFET的源极。

这种驱动电路能够提供更大的电流和电压来控制MOSFET,提高了MOSFET的响应速度和驱动能力。

3.共射极驱动电路共射极驱动电路是一种常用的MOSFET驱动电路,通过极高的驱动能力和电流增益来改善MOSFET的驱动性能。

共射极驱动电路将输入信号应用于普通信号变压器的一个绕组上,输出从第二个绕组采集。

这种电路能够提供很高的电流和电压,能够有效地驱动大功率MOSFET。

4.双极性驱动共射极电路双极性驱动共射极电路结合了双极性驱动和共射极驱动的特点,提供了高效和可靠的MOSFET驱动。

这种电路使用正、负两种极性的输入信号,通过普通信号变压器来转换信号,并且从第二个绕组采集信号。

双极性驱动共射极电路能够提供高电流和电压,驱动能力强,响应速度快,适用于高功率应用。

5.驱动IC和芯片驱动电路除了上述的基本电路设计,还有一些专用的MOSFET驱动IC和芯片驱动电路可供选择。

这些驱动器通常具有保护功能,可以保护MOSFET免受过电流、过温和短路等问题的损坏。

驱动IC和芯片驱动电路通常需要外部电源供电,并且能够根据需要提供不同的驱动能力和控制功能。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

—、MOS管驱动电踣综述在便用MOS管设计开关电源或者马达驱动电路的时候’大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

1、MOS管种类和结构MOSFET管是圧T的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS 管和増强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种増强型MOSg,比较常用的是NMOS。

原因是导通电阻小‘ 且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS o下面的介绍中,也多以NMOS 为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOSW中存在,在集成电路芯片内部通常是没有的。

2、MOS营导通特性导谨的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或T0V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是便用NM0S o3、MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

选择导通电阻小的MOS管会减小导通损耗。

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计MOSFET驱动电路是一种常用的电路设计,用于控制和驱动MOSFET器件的开关动作。

在本文中,将介绍两种常见的MOSFET驱动电路设计。

第一种常见的MOSFET驱动电路设计是单极性供电电路。

单极性供电电路使用只有正电压供应的电源,可以通过三种不同的方法来实现MOSFET的驱动。

第一种方法是电阻分压驱动,即使用电阻分压将输入信号转换为MOSFET所需的电压范围。

这种方法简单易行,但是由于使用了电阻分压,会导致功耗增加和响应时间变长。

第二种方法是金属-氧化物-半导体场效应管(MOSFET)驱动器,它使用开关电路和功率MOSFET来产生所需的电位差。

这种方法可以提供更好的性能和响应时间,但同时复杂度也较高。

第三种方法是放大器驱动器,它使用了放大器电路来驱动MOSFET,可以提供更高的驱动能力和更好的响应时间,但是也增加了电路的复杂度和成本。

第二种常见的MOSFET驱动电路设计是双极性供电电路。

双极性供电电路使用正、负电压供应的电源,可以更好地控制和驱动MOSFET器件。

双极性供电电路通常使用驱动电路芯片来实现,这些芯片集成了多种功能,如过压保护、过流保护和短路保护等。

双极性供电电路可以提供更好的性能和稳定性,但是也增加了设计和成本方面的挑战。

除了上述的两种常见MOSFET驱动电路设计,还有其他一些特殊的驱动电路,如全桥驱动电路和半桥驱动电路等。

全桥驱动电路可以用于控制两个MOSFET,实现双向电流的控制。

半桥驱动电路则可以用于控制一个MOSFET,实现单向电流的控制。

总结起来,MOSFET驱动电路设计有多种方法和技术。

选择适合的驱动电路设计取决于具体的应用需求和性能要求。

无论选择哪种设计,都需要考虑功耗、响应时间、效率和安全性等因素,并合理设计电路来满足这些要求。

MOSFET的驱动保护电路设计

MOSFET的驱动保护电路设计

摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。

分析了二极管器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。

该电路具有结构简单,实用性强,响应速度快等特点。

在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。

功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。

但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。

如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET 功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。

文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。

该设计使系统功率驱动部分的可靠性大大的提高。

1 功率MOSFET保护电路设计功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。

功率MOSFET保护电路主要有以下几个方面:1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt 而引起误导通。

为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计MOSFET是一种常见的功率开关器件,用于控制电流。

在驱动MOSFET 时,需要设计适当的电路来提供必要的电压和电流,确保MOSFET能够正确开关。

下面介绍两种常见的MOSFET驱动电路设计。

1.单极性MOSFET驱动电路:单极性MOSFET驱动电路使用一个单一的电源来驱动MOSFET。

这种电路的设计较为简单,适用于低功率或低频率应用。

一个常见的单极性MOSFET驱动电路是基于功率MOSFET的开关电源设计。

该设计使用一个辅助开关器件和一个变压器来提供所需的电压和电流。

首先,辅助开关器件通过周期性的开关操作驱动变压器的初级侧。

变压器的次级侧连接到MOSFET的门极,通过变压器来提供所需的驱动电压和电流。

辅助开关器件可以是一个负责的晶体管或MOSFET,通过控制辅助开关器件的开关操作,可以控制MOSFET的导通和截止。

另一个常见的单极性MOSFET驱动电路是基于MOSFET驱动芯片的设计。

这种电路使用专门的驱动芯片来提供所需的电压和电流。

驱动芯片通常具有输入和输出引脚,以及内置的保护电路和反馈回路。

驱动芯片通过控制输入信号,实现对MOSFET的驱动。

常见的驱动芯片有IR2110、TC4420等,它们能够提供合适的功率和速度,使MOSFET能够快速开关。

2.双极性MOSFET驱动电路:双极性MOSFET驱动电路使用两个对称的电源来驱动MOSFET。

这种电路设计适用于高功率或高频率应用。

一个常见的双极性MOSFET驱动电路是基于H桥拓扑结构的设计。

H 桥电路由四个开关器件组成,包括两个N型MOSFET和两个P型MOSFET。

这些开关器件交替开关,通过控制开关操作和输入信号,实现对MOSFET 的驱动。

H桥电路可以提供正负两种极性的电源,使MOSFET能够正常开关。

常见的H桥电路有L298N、L293D等,它们能够提供较高的功率和速度,适用于高功率驱动应用。

另一个常见的双极性MOSFET驱动电路是基于推挽结构的设计。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题。

DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电。

目前DC-DC转换器设计技术发展主要趋势有:(1)高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善。

小功率DC-DC转换器的开关频率将上升到兆赫级。

(2)低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求。

这些技术的发展对电源芯片电路的设计提出了更高的要求。

首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作。

其次,对于电池供电的便携式电子设备来说,电路的工作电压低(以锂电池为例,工作电压2.5~3.6V),因此,电源芯片的工作电压较低。

MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC 芯片中多采用MOS管作为功率开关。

但是由于MOS管的寄生电容大,一般情况下NMOS开关管的栅极电容高达几十皮法。

这对于设计高工作频率DC-DC 转换器开关管驱动电路的设计提出了更高的要求。

在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路。

这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹。

本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路。

电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压1.5V ,负载电容为60pF时,工作频率能够达到5MHz以上。

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计MOSFET(金属氧化物半导体场效应晶体管)是一种常用的功率开关器件,广泛应用于电子设备中。

为了实现对MOSFET管的正常工作和控制,需要设计一个合适的驱动电路。

本文将详细介绍MOSFET管驱动电路的设计步骤。

设计MOSFET管驱动电路的第一步是确定所需的功率和电压级别。

根据具体应用场景,可以确定所需的驱动电流和电压。

这些参数将决定所选用的驱动电路的设计。

其次,确定并选择所需的驱动器。

驱动器是将信号转换为所需的电流和电压级别的关键组件。

常见的驱动器有普通开关电路和能够提供逻辑电平的驱动器。

在选择驱动器时,需要考虑MOSFET管的输入容量和开关速度等因素。

接下来,确定驱动电路的输入信号。

输入信号通常来自于控制电路或微处理器。

确定输入信号的电平和频率将有助于后续驱动电路的设计与调试。

在设计驱动电路时,需要特别关注MOSFET的输入电容和输入电阻。

输入电容决定了驱动电路的开关速度,输入电阻则影响驱动电路的响应能力。

根据MOSFET管的参数手册,选择合适的驱动电路设计来匹配MOSFET 的输入容量和输入电阻。

在电路设计中,还需要考虑到保护电路的设计。

保护电路主要是为了防止MOSFET管在过电流、过温度或其他异常情况下受损。

常见的保护电路包括过电流保护、过温度保护和电压保护等。

在完成驱动电路的设计后,需要进行电路模拟和验证。

使用电路仿真软件,例如PSpice或LTSpice等,可以对驱动电路进行仿真,并通过调整电路参数和元件选型来优化电路的性能。

最后,进行实际的电路搭建和测试。

根据设计图纸,选择合适的元件进行电路的布局和焊接。

在测试过程中,需要注意输入信号的稳定性和驱动电路输出的准确性。

总结起来,设计MOSFET管驱动电路的步骤包括确定功率和电压级别、选择驱动器、确定输入信号、考虑MOSFET参数、设计保护电路、电路仿真和验证,以及实际电路搭建和测试。

通过这些步骤,设计出稳定可靠的MOSFET管驱动电路,可以满足各种应用场景的需求。

MOSFET驱动电路设计

MOSFET驱动电路设计

MOSFET驱动电路设计MOSFET驱动电路设计是用于驱动MOSFET的电路,其主要目的是提供足够的电流和电压来控制MOSFET的开关动作。

在设计MOSFET驱动电路时,需要考虑许多因素,例如驱动电流和电压的要求、响应时间、功耗以及电路的可靠性等。

首先,我们需要确定驱动电路所需的最大电流。

这可以通过MOSFET的输入电容和开关时间来确定。

一般来说,驱动电流应大于输入电容电流的峰值,以确保快速开关。

其次,我们需要确定驱动电压的要求。

MOSFET需要满足开启电压和关闭电压的要求,同时还要考虑电压过驱动带来的损伤。

因此,驱动电压应高于MOSFET的开启电压和闭合电压,以确保可靠的开关操作。

在设计电路时,我们可以选择使用恒流源或功率放大器来提供高电流驱动。

恒流源是一种提供恒定电流的电路,可以保持恒定的电流输出并提供稳定的驱动。

功率放大器则会将输入信号放大到足够的驱动电压。

此外,为了提高驱动电路的响应时间,可以采用互补驱动电路。

互补驱动电路使用两个MOSFET来控制MOSFET的开关,以提高电路的开关速度和效率。

驱动电路中还需要考虑保护电路的设计,以防止过电流、过温度和过压等问题。

过电流保护可以通过设计过电流保护装置来实现,例如使用电流传感器和比较器等。

过温度保护可以通过温度传感器来实现,一旦温度超过设定值,就会触发保护机制。

过压保护可以通过电压传感器和比较器来实现。

最后,为确保电路的可靠性和稳定性,驱动电路还应考虑到功耗的问题。

在设计中,应尽量降低功率损耗,以提高系统的效率和稳定性。

综上所述,MOSFET驱动电路设计需要考虑诸多因素,包括驱动电流和电压的要求、响应时间、功耗和保护电路等。

在设计过程中,需要充分考虑这些因素,并选择合适的电路结构和元器件来实现高效、稳定和可靠的驱动电路。

基于MOSFET的永磁同步电动机驱动电路设计

基于MOSFET的永磁同步电动机驱动电路设计

基于MOSFET的永磁同步电动机驱动电路设计永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)是一种被广泛应用于工业和消费电子领域的高性能电机。

为了实现对PMSM的精确控制,需要设计一种高效的驱动电路。

基于MOSFET的驱动电路是目前常见的PMSM驱动方案之一首先,需要理解MOSFET的工作原理。

MOSFET是一种三端器件,分别为栅极(Gate)、漏极(Drain)和源极(Source)。

通过控制栅极电压,可以调节MOSFET的导通和截止状态。

MOSFET在导通状态时能提供较低的导通电阻,从而能够实现高效的电机驱动。

设计基于MOSFET的PMSM驱动电路,首先需要将输入电源电压进行适当的转换和调节,以提供所需的直流电压。

通常,这可以通过使用整流和滤波电路来实现。

接下来,需要使用MOSFET来进行功率放大和开关控制。

为了实现对PMSM的正反转和调速控制,需要配备至少六个MOSFET,分别对应PMSM三相的A相、B相和C相。

这些MOSFET通常形成一个“桥”配置,通常称为功率电子桥。

在PMSM驱动过程中,需要根据电机的状态和所需的转速来控制MOSFET的开关状态。

为了精确控制,可以使用一种被称为PWM(Pulse Width Modulation,脉宽调制)技术。

PWM技术通过控制每个MOSFET的开关时间比例来实现对电机的精确控制。

最后,为了保护电机和驱动电路免受故障和过流的损害,通常还需要添加过流保护电路和温度保护电路。

过流保护电路可通过监测电流并在超过阈值时切断电源来实现。

温度保护电路则可监测电机或驱动电路的温度,并在温度超过一定阈值时采取相应的保护措施,例如减小电流或关闭电源。

总之,基于MOSFET的永磁同步电动机驱动电路设计是一项复杂的工程,需要根据实际需求和电机参数进行详细的设计和计算。

正确设计的驱动电路能够确保电机的稳定运行和高性能工作。

MOSFET驱动电路设计

MOSFET驱动电路设计

MOSFET驱动电路设计MOSFET(金属氧化物半导体场效应晶体管)是一种常用的功率开关器件,通常用于控制高功率负载的开关和调节。

为了确保MOSFET可以正常工作,必须设计一个合适的驱动电路,以便使MOSFET在高频率下稳定地进行开启和关闭。

本文将介绍如何设计一个简单且有效的MOSFET驱动电路。

MOSFET驱动电路的基本功能是提供足够的电流和电压来打开和关闭MOSFET,以便控制负载电流。

一个典型的MOSFET驱动电路由几个主要部分组成:输入电路、驱动电路、功率电源和输出电路。

以下是一个简单的MOSFET驱动电路设计:1.输入电路:输入电路通常包括一个电压源和一个信号源,用于提供输入信号给MOSFET驱动电路。

在设计输入电路时,需要考虑输入信号的幅度和频率,以确保MOSFET驱动电路可以正常工作。

2.驱动电路:驱动电路是MOSFET驱动电路的核心部分,用于提供足够的电流和电压给MOSFET。

一个常见的MOSFET驱动电路包括一个驱动IC 和若干外部元件,如电容和电阻。

驱动IC通常具有内置的MOSFET驱动器和保护功能,可提供稳定的输出信号给MOSFET。

3.功率电源:功率电源用于为MOSFET提供工作所需的电源电压和电流。

在设计功率电源时,需要考虑MOSFET的功率和工作条件,以确保功率电源能够为MOSFET提供足够的电源。

4.输出电路:输出电路用于连接MOSFET和负载,以控制负载电流。

输出电路通常包括一个负载电阻和一个电容,用于平滑输出信号并保护MOSFET。

在设计MOSFET驱动电路时,需要考虑以下几个关键因素:1.驱动电流和电压:MOSFET的门极需要足够的驱动电流和电压才能正常工作。

因此,驱动电路需要提供足够的电流和电压给MOSFET。

2.延迟时间:MOSFET的开启和关闭速度对于一些应用是非常重要的。

因此,驱动电路需要能够在短时间内响应输入信号,并提供快速的开启和关闭操作。

3.稳定性:MOSFET驱动电路需要具有稳定的性能,以确保MOSFET可以在各种工作条件下稳定地工作。

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计常见的MOSFET驱动电路设计有两种:高侧驱动电路和低侧驱动电路。

高侧驱动电路是将MOSFET的源极连接到地,而负载连接到漏极。

这种电路设计的优点是可以在高侧实现PWM调光控制,因为调光信号是接在负载一侧,而不会影响到驱动信号。

高侧驱动电路的实现需要解决负载和电源之间的电位差问题。

一种常见的设计是使用一个电隔离器件,如光耦合器,它可以将输入信号隔离开,并提供一个离地的电位供电MOSFET。

另一种方法是使用一个NPN晶体管来驱动MOSFET,该晶体管的基极通过一个电阻连接到正电源,而发射极连接到MOSFET的源极,并且信号输入到晶体管的基极。

低侧驱动电路是将MOSFET的漏极连接到地,而负载连接到源极。

这种电路设计的优点是相对简单,不需要解决电位差的问题。

低侧驱动电路中最常见的设计时使用一个NPN晶体管将MOSFET的源极与地连接起来。

信号输入到NPN晶体管的基极,晶体管的发射极与MOSFET的源极相连。

当输入信号为高电平时,晶体管导通,MOSFET的源极与地之间产生一个低电平,从而导通MOSFET。

当输入信号为低电平时,晶体管截止,MOSFET被断开。

在设计这两种驱动电路时,需要考虑一些关键参数和特性,以确保MOSFET能够正常工作。

其中一个关键参数是驱动电压的选取。

驱动电压应该足够高以确保MOSFET能够完全导通,同时应该在MOSFET的最大耐压范围内。

另一个关键参数是驱动电流的选取。

驱动电流应该足够大以确保MOSFET能够迅速地从导通到截止的状态切换。

此外,还需要考虑电源的稳定性和电流能力。

为了防止驱动电路的电压波动对MOSFET的工作产生不利影响,应当使用稳定的电源。

此外,驱动电路还应能够提供足够的电流以确保MOSFET迅速地从导通到截止的状态切换。

综上所述,高侧驱动电路和低侧驱动电路是常见的MOSFET驱动电路设计。

通过正确选择驱动电压和驱动电流,并考虑电源稳定性和电流能力,可以确保MOSFET能够正常工作。

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计驱动电路的设计目标是提供足够的电压和电流给MOSFET的栅极,使其能够快速开关,并且保证可靠性和稳定性。

以下是一个典型的MOSFET驱动电路的设计步骤:1.选取适当的驱动电源:根据MOSFET的规格书,确定所需的驱动电压和电流。

选择一个能够提供足够电压和电流的电源。

2.添加驱动器:为了提供足够的电流给MOSFET的栅极,需要添加一个驱动器。

驱动器可以是单晶体管、场效应管或者运算放大器等。

选择适当的驱动器并配置合适的电阻和电容以确保稳定性。

驱动器应具有足够的增益和带宽以实现所需的开关速度。

3.添加隔离电路:为了避免MOSFET的开关特性对驱动器产生负面影响,需要在驱动器和MOSFET之间添加隔离电路。

隔离电路可以是光电耦合器、变压器等。

它们能够提供电气隔离并消除共模干扰。

4. 考虑反击电压:当MOSFET关闭时,由于电感元件的自感性,会产生一个反击电压。

该电压可能损坏驱动器和其他电路。

为了避免这种情况,可以添加一个反击二极管或者Zener二极管来保护电路。

5.添加保护电路:为了保护MOSFET不受过电压和过电流的损害,可以添加保护电路,如过压保护电路和过流保护电路。

这些保护电路可以使MOSFET在异常情况下自动关闭。

6.电路模拟和验证:设计完成后,通过电路模拟软件进行仿真验证以确保电路的性能和稳定性。

根据仿真结果调整电路参数直到满足设计要求。

7.PCB设计:根据电路设计结果进行PCB布局和布线。

要注意保持良好的地平面和电源平面,并分离驱动器和MOSFET的高电流回路和敏感信号线路。

8.测试和调试:制造和组装PCB后,进行测试和调试以验证电路的性能。

这包括检查驱动电源、驱动器输出和MOSFET的开关响应。

总之,MOSFET驱动电路的设计需要仔细考虑各种因素,包括驱动电源、驱动器的选择、隔离电路、反击电压和保护电路等。

通过合理的设计和仿真验证,可以实现可靠、稳定和高效的MOSFET驱动电路。

高速MOSFET栅极驱动电路的设计与应用指南

高速MOSFET栅极驱动电路的设计与应用指南

高速MOSFEMOSFET T栅极驱动电路的设计与应用指南摘要本文将展示一个用来设计高速开关应用所需的高性能栅极驱动电路的系统性方案。

它综合了各方面的信息,可一次性解决一些最常见的设计问题。

因此,各个层面的电力电子工程师都值得一读。

文中分析了一些最流行的电路方案及其性能,包括寄生元件、瞬间和极端工作条件的影响。

首先,文章对MOSFET技术和开关操作进行了大致讨论,从简单问题逐渐转向复杂问题,并详细讲述了低端和高端栅极驱动电路以及交流耦合和变压器隔离式方案的设计程序。

另外,文章还专门用一个章节的内容来讨论同步整流器应用中MOSFET的栅极驱动要求。

最后,本文还提供了多个分步骤的设计案例。

简介MOSFET,全称为金属氧化物半导体场效应晶体管,是电子产品领域各种高频高效开关应用的关键元器件。

FET技术发明于1930年,比双极晶体管还要早大约20年,这一点令人感到意外。

最早的信号级FET晶体管出现在20世纪50年代末,而功率MOSFET则是在70年代中期问世的。

如今,数百万的MOSFET 晶体管被集成到了各种电子元器件中,从微控制器到“离散式”功率晶体管。

本话题的重点在于各种开关模式电源转换应用中功率MOSFET的栅极驱动要求。

Design And Application GuideFor High Speed MOSFET Gate Drive CircuitsBy Laszlo BaloghABSTRACTThe main purpose of this paper is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Thus it should be of interest to power electronics engineers at all levels of experience.The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special chapter deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications.Several, step-by-step numerical design examples complement the paper.INTRODUCTIONMOSFET – is an acronym for Metal Oxide Semiconductor Field Effect Transistor and it is the key component in high frequency, high efficiency switching applications across the electronics industry. It might be surprising, but FET technology was invented in 1930, some 20 years before the bipolar transistor. The first signal level FET transistors were built in the late 1950’s while power MOSFETs have been available from the mid 70’s. Today, millions of MOSFET transistors are integrated in modern electronic components, from microprocessors, through “discrete” power transistors.The focus of this topic is the gate drive requirements of the power MOSFET in various switch mode power conversion applications. MOSFET TECHNOLOGYThe bipolar and the MOSFET transistors exploit the same operating principle. Fundamentally, both type of transistors are charge controlled devices which means that their output current is proportional to the charge established in the semiconductor by the control electrode. When these devices are used as switches, both must be driven from a low impedance source capable of sourcing and sinking sufficient current to provide for fast insertion and extraction of the controlling charge. From this point of view, the MOSFETs have to be driven just as “hard” during turn-on and turn-off as a bipolar transistor to achieve comparable switching speeds. Theoretically, the switching speeds of the bipolar and MOSFET devices are close to identical, determined by the time required for the charge carriers to travel across the semiconductor region. Typical values in power devices are approximately 20 to 200 picoseconds depending on the size of the device. The popularity and proliferation of MOSFET technology for digital and power applications is driven by two of their major advantages over the bipolar junction transistors. One of these benefits is the ease of use of the MOSFET devices in high frequency switching applications. The MOSFET transistors are simpler to drive because their control electrode is isolated from the current conducting silicon, therefore a continuous ON current is not required. Once the MOSFET transistors are turned-on, their drive current is practically zero. Also, the controlling charge and accordingly the storage time in the MOSFET transistors is greatly reduced. This basically1eliminates the design trade-off between on state voltage drop – which is inversely proportional to excess control charge – and turn-off time. As a result, MOSFET technology promises to use much simpler and more efficient drive circuits with significant economic benefits compared to bipolar devices.Furthermore, it is important to highlight especially for power applications, that MOSFETs have a resistive nature. The voltage drop across the drain source terminals of a MOSFET is a linear function of the current flowing in the semiconductor. This linear relationship is characterized by the R DS(on) of the MOSFET and known as the on-resistance. On-resistance is constant for a given gate-to-source voltage and temperature of the device. As opposed to the -2.2mV/°C temperature coefficient of a p-n junction, the MOSFETs exhibit a positive temperature coefficient of approximately 0.7%/°C to 1%/°C. This positive temperature coefficient of the MOSFET makes it an ideal candidate for parallel operation in higher power applications where using a single device would not be practical or possible. Due to the positive TC of the channel resistance, parallel connected MOSFETs tend to share the current evenly among themselves. This current sharing works automatically in MOSFETs since the positive TC acts as a slow negative feedback system. The device carrying a higher current will heat up more – don’t forget that the drain to source voltages are equal – and the higher temperature will increase its R DS(on) value. The increasing resistance will cause the current to decrease, therefore the temperature to drop. Eventually, an equilibrium is reached where the parallel connected devices carry similar current levels. Initial tolerance in R DS(on) values and different junction to ambient thermal resistances can cause significant – up to 30% – error in current distribution.Device typesAlmost all manufacturers have got their unique twist on how to manufacture the best power MOSFETs, but all of these devices on the market can be categorized into three basic device types. These are illustrated in Figure 1.Figure 1. Power MOSFET device types Double-diffused MOS transistors were introduced in the 1970’s for power applications and evolved continuously during the years. Using polycrystalline silicon gate structures and self-aligning processes, higher density integration and rapid reduction in capacitances became possible. The next significant advancement was offered by the V-groove or trench technology to further increase cell density in power MOSFET devices. The better performance and denser integration don’t come free however, as trench MOS devices are more difficult to manufacture.The third device type to be mentioned here is the lateral power MOSFETs. This device type is constrained in voltage and current rating due to its inefficient utilization of the chip geometry. Nevertheless, they can provide significant benefits in low voltage applications, like in microprocessor power supplies or as synchronous rectifiers in isolated converters.2The lateral power MOSFETs have significantly lower capacitances, therefore they can switch much faster and they require much less gate drive power.MOSFET ModelsThere are numerous models available to illustrate how the MOSFET works, nevertheless finding the right representation might be difficult. Mostof the MOSFET manufacturers provide Spice and/or Saber models for their devices, but these models say very little about the application traps designers have to face in practice. They provide even fewer clues how to solve the most common design challenges.A really useful MOSFET model which would describe all important properties of the device from an application point of view would be very complicated. On the other hand, very simple and meaningful models can be derived of the MOSFET transistor if we limit the applicabilityof the model to certain problem areas.The first model in Figure 2 is based on the actual structure of the MOSFET device and can be used mainly for DC analysis. The MOSFET symbol in Figure 2a represents the channel resistance and the JFET corresponds to the resistance of the epitaxial layer. The length, thus the resistance of the epi layer is a function of the voltage rating of the device as high voltage MOSFETs require thicker epitaxial layer.Figure 2b can be used very effectively to model the dv/dt induced breakdown characteristic of a MOSFET. It shows both main breakdown mechanisms, namely the dv/dt induced turn-on of the parasitic bipolar transistor - present in all power MOSFETs - and the dv/dt induced turn-onof the channel as a function of the gate terminating impedance. Modern power MOSFETs are practically immune to dv/dt triggering of the parasitic npn transistor due to manufacturing improvements to reduce the resistance between the base and emitter regions.It must be mentioned also that the parasitic bipolar transistor plays another important role. Its base – collector junction is the famous body diode of the MOSFET.Figure 2. Power MOSFET models34Figure 2c is the switching model of the MOSFET. The most important parasitic components influencing switching performance are shown in this model. Their respective roles will be discussed in the next chapter which is dedicated to the switching procedure of the device.MOSFET Critical ParametersWhen switch mode operation of the MOSFET is considered, the goal is to switch between the lowest and highest resistance states of the device in the shortest possible time. Since the practical switching times of the MOSFETs (~10ns to 60ns) is at least two to three orders of magnitude longer than the theoretical switching time (~50ps to 200ps), it seems important to understand the discrepancy. Referring back to the MOSFET models in Figure 2, note that all models include three capacitors connected between the three terminals of the device. Ultimately, the switching performance of the MOSFET transistor is determined by how quickly the voltages can be changed across these capacitors.Therefore, in high speed switching applications, the most important parameters are the parasitic capacitances of the device. Two of these capacitors, the C GS and C GD capacitors correspond to the actual geometry of the device while the C DS capacitor is the capacitance of the base collector diode of the parasitic bipolar transistor (body diode).The C GS capacitor is formed by the overlap of the source and channel region by the gate electrode. Its value is defined by the actual geometry of the regions and stays constant (linear) under different operating conditions.The C GD capacitor is the result of two effects. Part of it is the overlap of the JFET region and the gate electrode in addition to the capacitance of the depletion region which is non-linear. The equivalent C GD capacitance is a function of the drain source voltage of the device approximated by the following formula:DS1GD,0GD V K 1C C ⋅+≈The C DS capacitor is also non-linear since it is the junction capacitance of the body diode. Its voltage dependence can be described as:DS 2DS,0DS V K C C ⋅≈Unfortunately, non of the above mentioned capacitance values are defined directly in the transistor data sheets. Their values are given indirectly by the C ISS , C RSS , and C OSS capacitor values and must be calculated as: RSSOSS DS RSS ISS GS RSSGD C C C C C C C C −=−== Further complication is caused by the C GD capacitor in switching applications because it is placed in the feedback path between the input and output of the device. Accordingly, its effective value in switching applications can be much larger depending on the drain source voltage of the MOSFET. This phenomenon is called the “Miller” effect and it can be expressed as:()GD L fs eqv GD,C R g 1C ⋅⋅+=Since the C GD and C DS capacitors are voltage dependent, the data sheet numbers are valid only at the test conditions listed. The relevant average capacitances for a certain application have to be calculated based on the required charge to establish the actual voltage change across the capacitors. For most power MOSFETs the following approximations can be useful: offDS,spec DS,spec OSS,ave OSS,off DS,spec DS,spec RSS,ave GD,V V C 2C V V C 2C ⋅⋅=⋅⋅=The next important parameter to mention is the gate mesh resistance, R G,I . This parasitic resistance describes the resistance associated by the gate signal distribution within the device. Its importance is very significant in high speed switching applications because it is in between the driver and the input capacitor of the device, directly impeding the switching times and the5dv/dt immunity of the MOSFET. This effect is recognized in the industry, where real high speed devices like RF MOSFET transistors use metal gate electrodes instead of the higher resistance polysilicon gate mesh for gate signal distribution. The R G,I resistance is not specified in the data sheets, but in certain applications it can be a very important characteristic of the device. In the back of this paper, Appendix A4 shows a typical measurement setup to determine the internal gate resistor value with an impedance bridge.Obviously, the gate threshold voltage is also a critical characteristic. It is important to note that the data sheet V TH value is defined at 25°C and at a very low current, typically at 250μA. Therefore, it is not equal to the Miller plateau region of the commonly known gate switching waveform. Another rarely mentioned fact about V TH is its approximately –7mV/°C temperature coefficient. It has particular significance in gate drive circuits designed for logic level MOSFET where V TH is already low under the usual test conditions. Since MOSFETs usually operate at elevated temperatures, proper gate drive design must account for the lower V TH when turn-off time, and dv/dt immunity is calculated as shown in Appendix A and F.The transconductance of the MOSFET is its small signal gain in the linear region of its operation. It is important to point out that every time the MOSFET is turned-on or turned-off, it must go through its linear operating mode where the current is determined by the gate-to-source voltage. The transconductance, g fs , is the small signal relationship between drain current and gate-to-source voltage:GSD fs dV dI g =Accordingly, the maximum current of the MOSFET in the linear region is given by: ()fs th GS D g V V I ⋅−=Rearranging this equation for V GS yields the approximate value of the Miller plateau as a function of the drain current.fs D th Miller GS,g IV V +=Other important parameters like the source inductance (L S ) and drain inductance (L D ) exhibit significant restrictions in switching performance. Typical L S and L D values are listed in the data sheets, and they are mainly dependant on the package type of the transistor. Their effects can be investigated together with the external parasitic components usually associated with layout and with accompanying external circuit elements like leakage inductance, a current sense resistor, etc.For completeness, the external series gate resistor and the MOSFET driver’s output impedance must be mentioned as determining factors in high performance gate drive designs as they have a profound effect on switching speeds and consequently on switching losses.SWITCHING APPLICATIONSNow, that all the players are identified, let’s investigate the actual switching behavior of the MOSFET transistors. To gain a better understanding of the fundamental procedure, the parasitic inductances of the circuit will be neglected. Later their respective effects on the basic operation will be analyzed individually. Furthermore, the following descriptions relate to clamped inductive switching because most MOSFET transistors and high speed gate drive circuits used in switch mode power supplies work in that operating mode.Figure 3. Simplified clamped inductive switchingmodelThe simplest model of clamped inductive switching is shown in Figure 3, where the DC current source represents the inductor. Its current can be considered constant during the short switching interval. The diode provides a path for the current during the off time of the MOSFET and clamps the drain terminal of the device to the output voltage symbolized by the battery.Turn-On procedureThe turn-on event of the MOSFET transistor can be divided into four intervals as depicted in Figure 4.Figure 4. MOSFET turn-on time intervalsIn the first step the input capacitance of the device is charged from 0V to V TH. During this interval most of the gate current is charging the C GS capacitor. A small current is flowing through the C GD capacitor too. As the voltage increases at the gate terminal and the C GD capacitor’s voltage has to be slightly reduced. This period is called the turn-on delay, because both the drain current and the drain voltage of the device remain unchanged.Once the gate is charged to the threshold level, the MOSFET is ready to carry current. In the second interval the gate is rising from V TH to the Miller plateau level, V GS,Miller. This is the linear operation of the device when current is proportional to the gate voltage. On the gate side, current is flowing into the C GS and C GD capacitors just like in the first time interval and the V GS voltage is increasing. On the output side of the device, the drain current is increasing, while the drain-to-source voltage stays at the previous level (V DS,OFF). This can be understood looking at the schematic in Figure 3. Until all the current is transferred into the MOSFET and the diode is turned-off completely to be able to block reverse voltage across its pn junction, the drain voltage must stay at the output voltage level. Entering into the third period of the turn-on procedure the gate is already charged to the sufficient voltage (V GS,Miller) to carry the entire load current and the rectifier diode is turned off. That now allows the drain voltage to fall. While the drain voltage falls across the device, the gate-to-source voltage stays steady. This is the Miller plateau region in the gate voltage waveform. All the gate current available from the driver is diverted to discharge the C GD capacitor to facilitate the rapid voltage change across the drain-to-source terminals. The drain current of the device stays constant since it is now limited by the external circuitry, i.e. the DC current source.The last step of the turn-on is to fully enhance the conducting channel of the MOSFET by applying a higher gate drive voltage. The final amplitude of V GS determines the ultimate on-resistance of the device during its on-time. Therefore, in this fourth interval, V GS is increased from V GS,Miller to its final value, V DRV. This is accomplished by charging the C GS and C GD capacitors, thus gate current is now split between the two components. While these capacitors are being charged, the drain current is still constant, and the drain-to-source voltage is slightly decreasing as the on-resistance of the device is being reduced.6Turn-Off procedureThe description of the turn-off procedure for the MOSFET transistor is basically back tracking the turn-on steps from the previous section. Start with V GS being equal to V DRV and the current in the device is the full load current represented by I DC in Figure 3. The drain-to-source voltage is being defined by I DC and the R DS(on) of the MOSFET. The four turn-off steps are shown in Figure 5. for completeness.Figure 5. MOSFET turn-off time intervals The first time interval is the turn-off delay which is required to discharge the C ISS capacitance from its initial value to the Miller plateau level. During this time the gate current is supplied by the C ISS capacitor itself and it is flowing through the C GS and C GD capacitors of the MOSFET. The drain voltage of the device is slightly increasing as the overdrive voltage is diminishing. The current in the drain is unchanged.In the second period, the drain-to-source voltage of the MOSFET rises from I D⋅R DS(on) to the final V DS(off) level, where it is clamped to the output voltage by the rectifier diode according to the simplified schematic of Figure 3. During this time period – which corresponds to the Miller plateau in the gate voltage waveform - the gate current is strictly the charging current of the C GDcapacitor because the gate-to-source voltage is constant. This current is provided by the bypass capacitor of the power stage and it is subtracted from the drain current. The total drain current still equals the load current, i.e. the inductor current represented by the DC current source in Figure 3.The beginning of the third time interval is signified by the turn-on of the diode, thus providing an alternative route to the load current.The gate voltage resumes falling from V GS,Miller to V TH. The majority of the gate current is coming out of the C GS capacitor, because the C GDcapacitor is virtually fully charged from the previous time interval. The MOSFET is in linear operation and the declining gate-to-source voltage causes the drain current to decrease and reach near zero by the end of this interval.Meanwhile the drain voltage is steady at V DS(off)due to the forward biased rectifier diode.The last step of the turn-off procedure is to fully discharge the input capacitors of the device. V GSis further reduced until it reaches 0V. The bigger portion of the gate current, similarly to the third turn-off time interval, supplied by the C GScapacitor. The drain current and the drain voltage in the device are unchanged.Summarizing the results, it can be concluded that the MOSFET transistor can be switched between its highest and lowest impedance states (either turn-on or turn-off) in four time intervals. The lengths of all four time intervals are a function of the parasitic capacitance values, the required voltage change across them and the available gate drive current. This emphasizes the importance of the proper component selection and optimum gate drive design for high speed, high frequency switching applications.7Characteristic numbers for turn-on, turn-off delays, rise and fall times of the MOSFET switching waveforms are listed in the transistor data sheets. Unfortunately, these numbers correspond to the specific test conditions and to resistive load, making the comparison of different manufacturers’ products difficult. Also, switching performance in practical applications with clamped inductive load is significantly different from the numbers given in the data sheets.Power lossesThe switching action in the MOSFET transistorin power applications will result in some unavoidable losses, which can be divided into two categories.The simpler of the two loss mechanisms is the gate drive loss of the device. As described before, turning-on or off the MOSFET involves chargingor discharging the C ISS capacitor. When the voltage across a capacitor is changing, a certain amount of charge has to be transferred. The amount of charge required to change the gate voltage between 0V and the actual gate drive voltage V DRV, is characterized by the typical gate charge vs. gate-to-source voltage curve in the MOSFET datasheet. An example is shown in Figure 6.Figure 6. Typical gate charge vs. gate-to-sourcevoltage This graph gives a relatively accurate worst case estimate of the gate charge as a function of the gate drive voltage. The parameter used to generate the individual curves is the drain-to-source off state voltage of the device. V DS(off) influences the Miller charge – the area below the flat portion of the curves – thus also, the total gate charge required in a switching cycle. Once the total gate charge is obtained from Figure 6, the gate charge losses can be calculated as:DRVGDRVGATEfQVP⋅⋅=where V DRV is the amplitude of the gate drive waveform and f DRV is the gate drive frequency – which is in most cases equal to the switching frequency. It is interesting to notice that the Q G⋅f DRV term in the previous equation gives the average bias current required to drive the gate. The power lost to drive the gate of the MOSFET transistor is dissipated in the gate drive circuitry. Referring back to Figures 4 and 5, the dissipating components can be identified as the combination of the series ohmic impedances in the gate drive path. In every switching cycle the required gate charge has to pass through the driver output impedances, the external gate resistor, and the internal gate mesh resistance. As it turns out, the power dissipation is independent of how quickly the charge is delivered through the resistors. Using the resistor designators from Figures 4 and 5, the driver power dissipation can be expressed as:OFFDRV,ONDRV,DRVIG,GATELODRVGDRVLOOFFDRV,IG,GATEHIDRVGDRVHIONDRV,PPPRRRfQVR21PRRRfQVR21P+=++⋅⋅⋅⋅=++⋅⋅⋅⋅=In the above equations, the gate drive circuit is represented by a resistive output impedance and this assumption is valid for MOS based gate drivers. When bipolar transistors are utilized in the gate drive circuit, the output impedance becomes non-linear and the equations do not yield the correct answers. It is safe to assume that with low value gate resistors (<5Ω) most gate drive losses are dissipated in the driver. If R GATE is sufficiently large to limit I G below the output89current capability of the bipolar driver, the majority of the gate drive power loss is then dissipated in R GATE .In addition to the gate drive power loss, the transistors accrue switching losses in the traditional sense due to high current and high voltage being present in the device simultaneously for a short period. In order to ensure the least amount of switching losses, the duration of this time interval must be minimized. Looking at the turn-on and turn-off procedures of the MOSFET, this condition is limited to intervals 2 and 3 of the switching transitions in both turn-on and turn-off operation. These time intervals correspond to the linear operation of the device when the gate voltage is between V TH and V GS,Miller , causing changes in the current of the device and to the Miller plateau region when the drain voltage goes through its switching transition.This is a very important realization to properly design high speed gate drive circuits. It highlights the fact that the most important characteristic of the gate driver is its source-sink current capability around the Miller plateau voltage level. Peak current capability, which is measured at full V DRV across the driver’s output impedance, has very little relevance to the actual switching performance of the MOSFET. What really determines the switching times of the device is the gate drive current capability when the gate-to-source voltage, i.e. the output of the driver is at ~5V (~2.5V for logic level MOSFETs).A crude estimate of the MOSFET switching losses can be calculated using simplified linear approximations of the gate drive current, drain current and drain voltage waveforms during periods 2 and 3 of the switching transitions. First the gate drive currents must be determined for the second and third time intervals respectively:()G.I GATE HI MillerGS,DRV G3G.IGATE HI TH Miller GS,DRVG2R R R V V I R R R V V 0.5V I ++−=+++⋅−=Assuming that I G2 charges the input capacitor of the device from V TH to V GS,Miller and I G3 is the discharge current of the C RSS capacitor while the drain voltage changes from V DS(off) to 0V, the approximate switching times are given as:G3offDS,RSS G2THMillerGS,ISS I V C t3I V V C t2⋅=−⋅=During t2 the drain voltage is V DS(off) and the current is ramping from 0A to the load current, I L while in t3 time interval the drain voltage is falling from V DS(off) to near 0V. Again, using linear approximations of the waveforms, the power loss components for the respective time intervals can be estimated:Loff DS,Loff DS,I 2V T t3P32I V T t2P2⋅⋅=⋅⋅=where T is the switching period. The total switching loss is the sum of the two loss components, which yields the following simplifed expression:Even though the switching transitions are well understood, calculating the exact switching losses is almost impossible. The reason is the effect of the parasitic inductive components which will significantly alter the current and voltage waveforms, as well as the switching times during the switching procedures. Taking into account the effect of the different source and drain inductances of a real circuit would result in second order differential equations to describe the actual waveforms of the circuit. Since the variables, including gate threshold voltage, MOSFET capacitor values, driver output impedances, etc. have a very wide tolerance, the above described linear approximation seems to be a reasonable enough compromise to estimate switching losses in the MOSFET.Effects of parasitic componentsThe most profound effect on switching performance is exhibited by the source inductance. There are two sources for parasitic source inductance in a typical circuit, the sourceTt3t22I V P L DS(off)SW +⋅⋅=。

MOSFET驱动电路设计参考

MOSFET驱动电路设计参考

MOSFET驱动电路设计参考MOSFET(金属氧化物半导体场效应晶体管)驱动电路是控制MOSFET开关的电路,它提供适当的电流和电压来确保MOSFET能够在正确的时间和条件下完全关闭和打开。

MOSFET驱动电路设计需要考虑到反馈和保护机制、功耗和效率以及电流和电压需求等因素。

以下是一些MOSFET驱动电路设计的参考。

1.电流放大器驱动电路:电流放大器是一种被广泛使用的MOSFET驱动电路设计,它通过升压变压器和反馈电路来将电流放大,并且能够提供足够的电流来驱动MOSFET。

这种电路设计具有简单、可靠和成本低廉的特点。

2.隔离式驱动电路:隔离式驱动电路是一种通过电流隔离器将控制电路与MOSFET隔离开来的设计。

通过隔离电路,可以阻止外部电路中的噪声、干扰和电压峰值对MOSFET的影响。

这种驱动电路设计适用于需要高耐受性和抗干扰性的应用。

3.模拟驱动电路:模拟驱动电路利用可变电流源来控制MOSFET。

这种设计需要一个与控制信号相对应的电压源,以确保MOSFET的开启和关闭速度与输入信号相匹配。

模拟驱动电路适用于需要快速响应和高精确度的应用,如音频放大器和直流直流变换器。

4.逻辑驱动电路:逻辑驱动电路是一种基于逻辑门电路的设计,通过逻辑门来控制MOSFET的开关。

逻辑驱动电路具有简单、易实现和低功耗的特点,适用于数字电路中的应用。

在设计MOSFET驱动电路时,还需要考虑以下几个关键因素:1.电流和电压需求:根据MOSFET的规格和应用需求,确保设计的驱动电路能够提供足够的电流和电压来使MOSFET达到预期的工作状态。

2.反馈和保护机制:添加适当的反馈和保护电路,如电流限制器和短路保护器,以确保MOSFET在超载、短路或其他异常情况下得到保护。

3.功耗和效率:通过优化电路设计和选择高效的元件来降低功耗,提高效率。

例如,可以选择低电阻的电源和高效的驱动器。

4.温度控制和散热设计:合理布局电路和选择散热器,以降低MOSFET的工作温度,提高可靠性和稳定性。

MOSFET驱动电路的设计与仿真

MOSFET驱动电路的设计与仿真

MOSFET驱动电路的设计与仿真摘要:MOSFET(金属氧化物半导体场效应晶体管)作为一种常见的功率开关元件,广泛应用于电路的开关和驱动控制中。

本文将介绍MOSFET驱动电路的设计与仿真过程,包括驱动电路的选型、电路的设计和电路的性能分析等。

一、驱动电路的选型在选择驱动电路时,需要考虑以下几个因素:1. 驱动电路的电压要能满足MOSFET的驱动要求。

通常,MOSFET的门极电压(Vgs)需要在规定的范围内才能正常工作。

2.驱动电路的电流要能满足MOSFET的驱动要求。

MOSFET的门极电流(Ig)需要足够大才能迅速充放电。

3.驱动电路的速度要能满足应用场景的需求。

驱动电路的响应速度需要足够快以确保MOSFET的正常开关操作。

4.驱动电路的成本要能够接受。

驱动电路的成本包括电路的制作、元件的购买等。

二、电路的设计根据选型的结果,可以开始设计驱动电路。

以下是驱动电路设计的几个关键步骤:1.选择适合的驱动电源。

电源的选择需要根据电路的工作电压和电流要求来确定。

一般来说,可以选择开关电源或者稳压电源。

2.选择合适的驱动电路拓扑结构。

驱动电路常见的拓扑结构包括共射极、共集极和共基极。

选择适合的拓扑结构需要考虑MOSFET的特性,如集电极功率损耗、输出电压的放大倍数等。

3.选择合适的驱动电路元件。

驱动电路元件包括电阻、电容和三极管等。

选取合适的元件需要考虑电压和电流的要求、响应速度和成本等因素。

4.进行电路的原理图设计。

根据选取的驱动电源、拓扑结构和元件,绘制驱动电路的原理图。

5.进行电路的PCB布局设计。

根据原理图,将电路元件进行布局,保证电路的稳定性和可靠性。

三、电路的仿真在完成电路设计后,可以利用电路仿真软件进行电路的性能分析和验证。

通过仿真可以评估电路的各种性能参数,如频率响应、电压和电流波形、功率损耗等。

在进行仿真前,需要建立电路的仿真模型。

根据电路的原理图和元件参数,建立仿真模型。

利用仿真软件进行电路性能分析。

高速MOSFET门极驱动电路的设计应用指南

高速MOSFET门极驱动电路的设计应用指南

高速MOSFET门极驱动电路的设计应用指南一、背景介绍二、设计步骤及要点1.确定MOSFET型号和工作条件:根据实际应用需求,选择合适的MOSFET型号,并确定其工作电压和电流。

这些参数将直接影响到驱动电路的设计。

2.确定驱动电源电压和电流:根据MOSFET的特性参数,选择合适的驱动电源电压和电流。

一般来说,高速应用中通常需要较高的电源电压和电流,以确保MOSFET能够迅速开关。

3.选择驱动芯片或设计驱动电路:根据以上参数,选择合适的驱动芯片或自行设计驱动电路。

常用的驱动芯片有IR2110、TC4420等,可以根据实际应用需求选择合适的芯片。

4.进行驱动电路的布局和连接:根据驱动芯片或电路设计,进行布局和连接。

注意保持短而稳定的门极连接线路,尽量减小电流环路和电磁干扰。

5.添加保护电路:考虑MOSFET的过电流、过压等保护问题,设计相应的保护电路,以确保MOSFET的安全工作。

6.进行仿真和测试:通过仿真软件进行仿真分析,验证电路设计是否满足要求。

同时,进行实际测试,检查电路的性能和稳定性。

三、高速MOSFET门极驱动电路的典型设计示例下图为一种常用的高速MOSFET门极驱动电路设计示例,以IR2110为例:[电路图]该驱动电路可实现高速的MOSFET开关控制,具有较高的转换效率和可靠性。

其中VCC为驱动电源电压,VDD为MOSFET的工作电源电压,VIN为控制信号输入端,VD为MOSFET的漏极电压,R1和R2为限流电阻,D1为反向恢复二极管。

四、设计注意事项1.选择合适的驱动芯片或自行设计驱动电路时,要充分考虑芯片的最大驱动电流和工作频率等参数,以确保其满足实际应用需求。

2.在设计驱动电路时,要注意尽量减小电流回路和电磁干扰,保持稳定的门极连接线路。

3.添加合适的保护电路,以保护MOSFET免受过电流、过压等故障的影响。

4.在设计完成后,进行仿真分析和实际测试,检查电路的性能和稳定性,并及时进行调整和改进。

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计MOSFET驱动电路是一种常见的电路设计,用于控制和驱动MOSFET晶体管的工作。

MOSFET驱动电路的设计能够确保MOSFET的开关速度,其选择和设计影响到整个电路的性能和可靠性。

以下是两种常见的MOSFET驱动电路设计。

1.单级放大器驱动电路单级放大器驱动电路是一种简单而常见的MOSFET驱动电路设计。

它包含一个放大器和一个偏置电源电路。

其输入端连接到信号源,输出端连接到MOSFET的门极。

当输入信号施加到放大器时,放大器将信号放大至足够高的电压,以控制MOSFET的开关。

单级放大器驱动电路的优点是简单,易于设计和实现。

然而,它可能存在驱动能力不足的问题。

因此,在应用中通常需要考虑额外的电流放大器或放大器级联来增加驱动能力。

2.高侧驱动电路高侧驱动电路是另一种常见的MOSFET驱动电路设计。

高侧驱动电路用于控制高侧(负载连接在电源正极的一侧)MOSFET。

它需要一个额外的电源电路和驱动电路来实现。

高侧驱动电路通常包含一个电源电路,用于提供MOSFET的驱动电压。

该电源电路可以是一个开关电源或线性调节电源。

驱动电路通常由电流源、驱动变压器和栅极驱动电路组成。

电流源用于提供驱动电路所需的电流,驱动变压器用于隔离输入信号源和MOSFET,以减小信号干扰和保护信号源。

高侧驱动电路的优点是能够驱动高侧MOSFET,使其能够正常工作。

然而,高侧驱动电路的设计复杂,需要考虑保护电路和故障检测电路,以确保其可靠性和安全性。

除了以上两种常见的MOSFET驱动电路设计,还有其他一些特殊应用的驱动电路,例如三相桥式驱动电路、半桥和全桥驱动电路等。

这些电路设计根据具体应用需求和性能要求可能有所不同,但基本的驱动原理和设计方法是相似的。

总之,MOSFET驱动电路设计是一项重要而复杂的工作,旨在保证MOSFET工作的可靠性和性能。

根据具体的应用需求和性能要求,选择合适的驱动电路设计,并考虑保护措施和故障检测电路,以确保电路的可靠性和安全性。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全1.简单的驱动电路最简单的MOSFET驱动电路是使用普通的NPN晶体管作为驱动器。

这种电路只需要一个晶体管和几个电阻。

晶体管的基极通过一个电阻连接到控制信号源,并且其发射极通过一个电阻连接到地。

MOSFET的栅极通过一个电阻与晶体管的集电极相连。

当驱动信号施加在基极时,晶体管将导通,从而允许电流流过栅极电阻,最终控制MOSFET的导通。

2.共射极驱动电路共射极驱动电路使用一个普通的NPN晶体管作为驱动器,并且具有共射极配置。

这种电路可以提供较高的驱动电流,并且对于驱动大功率的MOSFET特别有效。

MOSFET的栅极连接到驱动晶体管的集电极,并且通过一个电阻与源极相连。

此电路还可以通过添加一个二极管来保护MOSFET免受反向电压的损坏。

3.升压驱动电路升压驱动电路是一种通过升压来改善MOSFET开关速度和效率的驱动电路。

这种电路使用一个电感器、一个开关和一个脉冲宽度调制(PWM)控制器来提供短暂的高电压脉冲。

这种高电压脉冲可以快速地开启和关闭MOSFET,从而提高其开关速度和效率。

4.高低侧驱动电路高低侧驱动电路是一种使用驱动器来同时控制高侧和低侧MOSFET的开关的电路。

该电路利用一个半桥驱动器,包括两个晶体管和一个PWM控制器。

其中一个晶体管驱动高侧MOSFET,另一个晶体管驱动低侧MOSFET。

PWM控制器可以调整两个晶体管的开关频率和占空比,从而控制MOSFET 的导通和关断。

以上是一些常见的MOSFET管经典驱动电路设计。

每种电路都有其适用的场景和优缺点。

在设计时,需要根据具体应用的需求来选择合适的驱动电路,并确保合理的功率传输和电流控制。

电力电子技术课程设计-电流可逆斩波电路(MOSFET)-正文

电力电子技术课程设计-电流可逆斩波电路(MOSFET)-正文

电流可逆斩波电路(MOSFET )1 设计要求与方案设计一电流可逆斩波电路(MOSFET ), 已知电源电压为400V, 反电动势负载, 其中R 的值为5Ω、L 的值为1 mH 、E=350V, 斩波电路输出电压250V 。

电流可逆斩波主电路原理图如图1.1所示。

a)b)M 图1 .1 电流可逆斩波电路的原理图及其工作波形a )电路图b )波形 2 原理和参数2.1 设计原理如图1.1: V1和VD1构成降压斩波电路, 由电源向直流电动机供电, 电动机为电动运行, 工作于第1象限;V2和VD2构成升压斩波电路, 把直流电动机的动能转变为电能反馈到电源, 使电动机作再生制动运行, 工作于第2象限。

必须防止V1和V2同时导通而导致的电源短路。

只作降压斩波器运行时, V2和VD2总处于断态;只作升压斩波器运行时, 则V1和VD1总处于断态;第3种工作方式: 一个周期内交替地作为降压斩波电路和升压斩波电路工作。

当降压斩波电路或升压斩波电路的电流断续而为零时, 使另一个斩波电路工作, 让电流反方向流过, 这样电动机电枢回路总有电流流过。

在一个周期内, 电枢电流沿正、负两个方向流通, 电流不断, 所以响应很快。

2.2 参数计算V1 gate 信号的参数: 输出Uo大小由降压斩波电路决定, 根据, 已知Ui=400V, Uo=250V, 不妨取T=0.001s, 则ton=0.000625s, 占空比为62.5%。

V2 gate 信号的参数:由于电感只有1mH, 释放磁场能的时间不易计算, 可在后面仿真时再确定。

T=0.001s, 占空比粗略地取为30%, V2 gate 信号触发延时间:(62.5%+(1-30%))*0.001=0.000725s。

3 驱动电路分析与设计图3.1 驱动电路原理图功率MOSFET驱动电路的要求是:(1)开关管开通瞬时,驱动电路应能提供足够充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡;(2)开关管导通期驱动电路能保证MOSFET栅源极间电压保持稳定可靠导通;(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断;(4)关断期间驱动电路最好能提供一定的负电压避免受到干扰产生误导通;(5)另外要求驱动电路结构简单可靠,损耗小,根据情况施加隔离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MOSFET datasheet 参数理解及其主要特性来源:电源谷 作者:Blash下文主要介绍 mosfet 的主要参数,通过此参数来理解设计时候的考量 一、场效应管的参数很多,一般 datasheet 都包含如下关键参数: 1 极限参数:I D :最大漏源电流。

是指场效应管正常工作时,漏源间所允许通过的最大电流。

场效应管的工作电流不应超过 ID 。

此参数会随结温度的上升而有所减额。

I DM :最大脉冲漏源电流。

此参数会随结温度的上升而有所减额。

P D :最大耗散功率。

是指场效应管性能不变坏时所允许的最大漏源耗散功率。

使用时,场效应管实际功耗应小于 PDSM 并留有一定余量。

此参数一般会随结温度的上升而有所减额。

V GS :最大栅源电压。

Tj :最大工作结温。

通常为 150 ℃ 或 175 ℃ ,器件设计的工作条件下须确应避免超过这个温度,并留有一定裕量。

T STG :存储温度范围。

2 静态参数V (BR)DSS :漏源击穿电压。

是指栅源电压 V GS 为 0 时,场效应管正常工作所能承受的最大漏源电压。

这是一项极限参数,加在场效应管上的工作电压必须小于 V (BR)DSS 。

它具有正温度特性。

故应以此参数在低温条件下的值作为安全考虑。

△ V (BR)DSS/ △ Tj :漏源击穿电压的温度系数,一般为 0.1V/ ℃。

R DS(on) :在特定的 V GS (一般为 10V )、结温及漏极电流的条件下, MOSFET 导通时漏源间的最大阻抗。

它是一个非常重要的参数,决定了 MOSFET 导通时的消耗功率。

此参数一般会随结温度的上升而有所增大。

故应以此参数在最高工作结温条件下的值作为损耗及压降计算。

V GS(th) :开启电压(阀值电压)。

当外加栅极控制电压 V GS 超过 V GS(th) 时,漏区和源区的表面反型层形成了连接的沟道。

应用中,常将漏极短接条件下 I D 等于 1 毫安时的栅极电压称为开启电压。

此参数一般会随结温度的上升而有所降低。

I DSS :饱和漏源电流,栅极电压 V GS =0 、 V DS 为一定值时的漏源电流。

一般在微安级。

I GSS :栅源驱动电流或反向电流。

由于 MOSFET 输入阻抗很大, I GSS 一般在纳安级。

3 动态参数g fs :跨导。

是指漏极输出电流的变化量与栅源电压变化量之比,是栅源电压对漏极电流控制能力大小的量度。

g fs 与 V GS 的转移关系图如图 2 所示。

Q g :栅极总充电电量。

MOSFET 是电压型驱动器件,驱动的过程就是栅极电压的建立过程,这是通过对栅源及栅漏之间的电容充电来实现的,下面将有此方面的详细论述。

Q gs :栅源充电电量。

Q gd :栅漏充电(考虑到 Miller 效应)电量。

T d(on) :导通延迟时间。

从有输入电压上升到 10% 开始到 V DS 下降到其幅值 90% 的时间 ( 参考图 4) 。

Tr :上升时间。

输出电压 V DS 从 90% 下降到其幅值 10% 的时间。

T d(off) :关断延迟时间。

输入电压下降到 90% 开始到 V DS 上升到其关断电压时 10% 的时间。

T f :下降时间。

输出电压 V DS 从 10% 上升到其幅值 90% 的时间 ( 参考图 4) 。

C iss :输入电容, C iss = C GD + C GS ( C DS 短路)。

C oss :输出电容。

C oss = C DS +C GD 。

C rss :反向传输电容。

C rss = C GD 。

图 2 MOSFET 的极间电容MOSFET 之感生电容被大多数制造厂商分成输入电容,输出电容以及反馈电容。

所引述的值是在漏源电压为某固定值的情况下。

此些电容随漏源电压的变化而变化(见图 3 的一典型关系曲线)。

电容数值的作用是有限的。

输入电容值只给出一个大概的驱动电路所需的充电说明。

而栅极充电信息更为有用。

它表明为达到一个特定的栅源电压栅极所必须充的电量。

图 3 结电容与漏源电压之关系曲线4 雪崩击穿特性参数这些参数是 MOSFET 在关断状态能承受过压能力的指标。

如果电压超过漏源极限电压将导致器件处在雪崩状态。

E:单次脉冲雪崩击穿能量。

这是个极限参数,说明 MOSFET 所能承受的最大雪AS崩击穿能量。

:雪崩电流。

IAR:重复雪崩击穿能量。

EAR5 热阻:结点到外壳的热阻。

它表明当耗散一个给定的功率时,结温与外壳温度之间* 。

的差值大小。

公式表达⊿ t = PD:外壳到散热器的热阻,意义同上。

:结点到周围环境的热阻,意义同上。

6 体内二极管参数:连续最大续流电流(从源极)。

IS:脉冲最大续流电流(从源极)。

ISM:正向导通压降。

VSDTrr :反向恢复时间。

Qrr :反向恢复充电电量。

Ton :正向导通时间。

(基本可以忽略不计)。

图 3 gfs ----VGS曲线图图4 MOSFET开通时间和关断时间定义二、在 应用过程中,以下几个特性是经常需要考虑的:1、 V( BR ) DSS的正温度系数特性。

这一有异于双极型器件的特性使得其在正常工作温度升高后变得更可靠。

但也需要留意其在低温冷启机时的可靠性。

2、 V( GS ) th的负温度系数特性。

栅极门槛电位随着结温的升高会有一定的减小。

一些辐射也会使得此门槛电位减小,甚至可能低于 0 电位。

这一特性需要工程师注意 MOSFET 在此些情况下的干扰误触发,尤其是低门槛电位的 MOSFET 应用。

因这一特性,有时需要将栅极驱动的关闭电位设计成负值(指 N 型, P 型类推)以避免干扰误触发。

3、 VDSon /RDSon的正温度系数特性。

VDSon/RDSon随着结温的升高而略有增大的特性使得 MOSFET 的直接并联使用变得可能。

双极型器件在此方面恰好相反,故其并联使用变得相当复杂化。

RDSon 也会随着 ID的增大而略有增大,这一特性以及结和面 RDSon正温度特性使得 MOSFET 避免了象双极型器件那样的二次击穿。

但要注意此特性效果相当有限,在并联使用、推挽使用或其它应用时不可完全依赖此特性的自我调节,仍需要一些根本措施。

这一特性也说明了导通损耗会在高温时变得更大。

故在损耗计算时应特别留意参数的选择。

4、 I的负温度系数特性?D电源应用中Mosfet驱动电路设计参考来源:电源谷作者:Blash一、驱动过程原理驱动设计是 MOSFET 应用的重点之一。

而 MOSFET 驱动过程特性的理解将会有助于此方面的正确应用。

MOSFET 的栅极驱动过程可以简单理解为驱动电源对 MOSFET 输入电容的充放电过程。

其极间电容效应如本站文章“DATASHEET 参数及基本特性” 中示意图所示。

器件规格书目所提供的极间电容值是在一定条件下得到的静态参数。

而在实际应用,这些电容的参数是温度及电压的非线性函数关系,而且受米勒效应的影响,总的动态输入电容将比总静态电容大得多。

这些都给栅极驱动的准确分析带来很大困难。

但从应用角度,了解其驱动过程的特性是必须的。

下面图5和图6为器件商提供之恒流源(为了更容易地展现并解释栅极的容性负载充电过程)驱动栅极的典型特性曲线。

图7为器件商提供之恒压源驱动栅极时的典型特性曲线。

图 8 为一开关电源( SPS )模块( FLYBACK Topology )功率 MOSFET 驱动开启( Toff_on )时测量得到的波形记录。

图 9 为驱动过程分解之等效电路图 5 恒流源作为驱动电源时的驱动过程曲线及其对应的 MOSFET 开通波形曲线图 6 恒流源作为驱动电源时V GS与I D/V DS的关系曲线图7,在恒压源作为驱动电源时的驱动过程曲线及其对应的MOSFET开通波形曲线图 9 MOSFET 驱动电源为恒压源时开启过程之 4 阶段等效电路(以二极管钳位感性电路为负载)(a) t 0 ~ t 1 阶段等效电路(b) t 1 ~ t 2 阶段等效电路(c) t 2 ~ t 3 阶段等效电路(d) t 3 ~ t 4 阶段等效电路栅极驱动过程分解:时期 等效电路模型 过程描述t0 之前t 0 之前。

MOSFET 处于关闭状态,其漏源间承受全部电压 Vdd ,栅极电压VGS 和漏极电流 ID 为零;(a) t 0 ~ t 1t 0 ~ t 1 时期 。

在图 5 和图 6 中恒流驱动电源 I G 给 Ciss 充电 ( 一般静态 C GS >> C GD ,故仅考虑 V GS 已经有足够的精确度 ),V GS 线性上升并到达门槛电压 V G(th) 。

V GS 上升到 V G(th) 之前漏极电流I D ≈ 0A 。

所需驱动电量:△ Q t 0 ~ t 1 = (t 1-t 0 )I G = V G(th)Ciss ≈ V G(th)C GS所需驱动电流:I G = V G(th)Ciss / (t1-t0 ) 栅极电压上升率:dV GS /dt= I G /Ciss ≈ I G / C GS 现实使用中(驱动电压近似恒压源),如图 7 示, V GS 呈指数上升,时间常数 t 1 = R G (C GS + C GD1) .(b) t 1 ~ t 2t1~t2时期 。

t1时刻 MOSFET 被打开,在t1~t2期间I G 给 C iss 继续充电。

栅极电压V GS 继续上升,机理跟前一阶段完全一样,公式参考如上。

此时器件进入了饱和区(进入此区的条件是V DS >(V DS(sat)=V GS -V th ) ,漏极电流i D 从t1时刻起依V GS 按一定函数关系爬升(i D = K(V GS -V th )2 , K = ì n C OX W/2L,C OX =e OX /t OX ,其中 ì n 为反型层中电子的迁移率,e OX 为氧化物介电常数,t OX 为氧化物厚度, W/L 分别为沟道宽度和长度)。

此上升斜坡持续直至t2时刻电流i D 达到饱和或达到负载最大电流,故V GS 的上升到达平台 Va 随i D (一般为负载最大电流)而不同。

在此期间漏源极之间依然承受近乎全部电压 Vdd 。

以上所有时期t0~t2,Crss(即 C GD )的上端电位被钳位于 Vdd ,下端则随栅极电压变化而变化。

在这个期间 Crss 的充电电流非常小可以忽略不计,电流大部分流到 C GS 。

(c) t 2 ~ t 3t 2 ~ t 3 时期 。

t2 时刻电流 I D 达到饱和或达到负载最大电流并维持恒定,而漏源电压 V DS 继续下降。

在 t 2 ~ t3 时期MOSFET 工作于饱和区, V GS 被限制于一固定值( MOSFET 传输特性)。

故在此期间 C GS 不再消耗电荷,驱动电流转而流向 Crss (即 C GD )并给其充电。

相关文档
最新文档