条件不等式的求解
04 绝对不等式、条件不等式、矛盾不等式
名师精编优秀教案
绝对不等式、条件不等式、矛盾不等式绝对不等式:如果不论用什么实数代替不等式中的字母,它都能够成立,这样的不等式叫绝对不等式.
条件不等式:如果只有用某些范围内的实数代替不等式中的字母,它才能够成立,这样的不等式叫条件不等式.
矛盾不等式:如果不论用什么样的实数值代替不等式中的字母,不等式都不能成立,这样的不等式叫矛盾不等式.
如:a+8>a+1,a2>-1为绝对不等式;3x+5<2x+6为条件不等式(只有当x<1时不等式才能成立);a2<-6称为矛盾不等式.。
不等式的基本性质及解法
教学过程一、新课导入初中,我们学习了一元一次不等式(组);已经掌握了不等式(组)的基本性质及解法.从本节开始,我们将在过去已有知识的基础上进一步明确不等式的有关概念,学习其他几种不等式的解法.二、复习预习1.不等式的定义.2.不等式的基本性质.3.不等式的基本定理及推论.4.一元二次不等式解法.5.分式不等式解法.6.高次不等式解法.7.无理不等式解法.8.指对数不等式解法.三、知识讲解考点1 不等式的定义及比较大小1. 不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式.说明:(1)不等号的种类:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等)(3)不等式研究的范围是实数集R.2.判断两个实数大小的充要条件对于任意两个实数a、b,在a>b,a= b,a<b三种关系中有且仅有一种成立.判断两个实数大小的充要条件是:>baab⇔>-aa=bb-=⇔ab<ba<-⇔考点2 不等式的基本性质定理1如果a>b,那么b<a,如果b<a,那么a>b.(对称性) 即:a>b⇒b<a;b<a⇒a>b定理2如果a>b,且b>c,那么a>c.(传递性)即a>b,b>c⇒a>c定理3如果a>b,那么a+c>b+c.即a>b⇒a+c>b+c推论如果a>b ,且c>d ,那么a+c>b+d .(相加法则)即a>b , c>d ⇒a+c>b+d .定理4如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc .推论1如果a>b >0,且c>d>0,那么ac>bd .(相乘法则)推论2 若0,(1)n n a b a b n N n >>>∈>则且定理5 若0,1)a b n N n >>>∈>且考点3 一元二次不等式c bx ax ++2 >0(a ≠0)任何一个一元二次不等式,最后都可化为: c bx ax ++2>0或c bx ax ++2<0(a >0)的形式,一元二次不等式的解集与其相应的一元二次方程的根及二次函数的图象有关:(1)若判别式Δ=b 2-4ac >0,设方程c bx ax ++2=0的二根为x 1,x 2(x 1<x 2),则①a >0时,其解集为{x |x <x 1,或x >x 2};②a <0时,其解集为{x |x 1<x <x 2}.(2)若Δ=0,则有:①a >0时,其解集为{x |x ≠-ab ,x ∈R }; ②a <0时,其解集为∅.(3)若Δ<0,则有:①a >0时,其解集为R ;②a <0时,其解集为∅.类似地,可以讨论c bx ax ++2<0(a ≠0)的解集.考点4 绝对值不等式的解法不等式|x |<a 与|x |>a (a >0)的解集 1|x |<a (a >0)的解集为:{x |-a <x <a },几何表示为: .2|x |>a (a >0)的解集为:{x |x >a 或x <-a },几何表示为:.考点5 分式不等式解法(1))()(x g x f >0 f (x )g(x )>0;(2))()(x g x f <0⇔f (x )g(x )<0; (3))()(x g x f ≥0⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ; (4))()(x g x f ≤0⇔⎩⎨⎧≠≤0)(0)()(x g x g x f 考点6 高次不等式根轴法:奇穿偶不穿考点7 无理不等式⎪⎩⎪⎨⎧>⇒⎭⎬⎫≥≥⇔>)()(0)(0)()()(x g x f x g x f x g x f 定义域型⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或型 ⎪⎩⎪⎨⎧<>≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f 型考点8 指对数不等式指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩四、例题精析考点1不等式的定义及比较大小例1 已知x ≠0,比较(x 2+1)2与x 4+x 2+1的大小.【规范解答】 由题意可知:(x 2+1)2-(x 4+x 2+1)=(x 4+2x 2+1)-(x 4+x 2+1)=x 4+2x 2+1-x 4-x 2-1=x 2∵x≠0 ∴x2>0∴(x2+1)2-(x4+x2+1)>0∴(x2+1)2>x4+x2+1【总结与反思】此题属于两个代数式比较大小,但是其中的x有一定的限制,应该在对差值正负判断时引起注意,对于限制条件的应用经常被学生所忽略.本题知识点:乘法公式,去括号法则,合并同类项.例2 比较a4-b4与4a3(a-b)的大小.【规范解答】a4-b4 - 4a3(a-b)=(a-b)(a+b)(a2+b2) -4a3(a-b)= (a-b)(a3+ a2b+ab2+b3-4a3)=(a-b)[(a 2b-a 3)+(ab 3-a 3)+(b 3-a 3)]= - (a-b)2(3a 3+2ab+b 2)=- (a-b)20323322≤⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+b b a (当且仅当d =b 时取等号) ∴a 4-b 4≥4a 3(a-b)【总结与反思】“变形”是解题的关键,是最重一步因式分解、配方、凑成若干个平方和等是“变形”的常用方法. 例3 已知x>y ,且y ≠0,比较yx 与1的大小. 【规范解答】yy x y x -=-1 ∵x>y ,∴x-y>0当y<0时,y y x -<0,即yx <1 当y>0时,y y x ->0,即y x 【总结与反思】变形的目的是为了判定符号,此题定号时,要根据字母取值范围,进行分类讨论.考点2 不等式的基本性质例4 已和a >b >c >d >0,且dc b a =,求证:a +d >b +c 【规范解答】 ∵d c b a =∴dd c b b a -=- ∴(a -b )d =(c -d )b又∵a >b >c >d >0∴a -b >0,c -d >0,b >d >0且db >1 ∴d b dc b a =-->1 ∴a -b >c -d 即a +d >b +c.【总结与反思】此题中,不等式性质和比例定理联合使用,使式子形与形之间的转换更迅速用的信息,更有比例的信息,因此这道题既要重视性质的运用技巧,也要重视比例定理的应用技巧.例5 已知函数2()f x ax c =-, -4≤(1)f ≤-1, -1≤f (2)≤5, 求(3)f 的取值范围.【规范解答】∵ ⎩⎨⎧=+=-)2(4)1(f c a f c a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=)1(34)2(31)]1()2([31f f c f f a∴ )1(35)2(389)3(f f c a f -=-=∵ -4≤f (1)≤1, 故 )35)(4()1()35()35)(1(--≤-≤--f (1)又 -1≤f (2)≤5, 故 340)2(3838≤≤-f (2)把(1)和(2)的各边分别相加,得:-1≤)1(35)2(38f f -≤20所以,-1≤f (3)≤20【总结与反思】利用(1)f 与(2)f 设法表示 a 、c, 然后再代入(3)f 的表达式中,从而用(1)f 与(2)f 来表示(3)f , 最后运用已知条件确定(3)f 的取值范围.考点3 一元二次不等式不等式的解法例6解关于x 的不等式0)1(2>---a a x x .【规范解答】原不等式可以化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或a x -<1 若)1(--=a a 即21=a 则0)21(2>-x 即R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或a x ->1. 【总结与反思】结合二次函数图象求解,注意分类讨论.考点4 绝对值不等式的解法例7解不等式|2x +1|+|x -2|>4.【规范解答】|2x +1|+|x -2|>4⎪⎩⎪⎨⎧>--+--<⇔4)2()12(21x x x ⎩⎨⎧>-++>⎪⎩⎪⎨⎧>--+≤≤-421224)2(12221x x x x x x 或或 ⇔x <-1或1<x ≤2或x >2⇔x <-1,或x >1.故原不等式组的解集是{x |x <-1或x >1}.【总结与反思】解含多个绝对值符号不等式的方法之一是:分段讨论,将各段的解集并起来作为最后结果.例8 解不等式|552+-x x |<1.【规范解答】原不等式可转化为-1<552+-x x <1即⎩⎨⎧->+-<+-15515522x x x x ②① 解不等式①,得解集为{x |1<x <4};解不等式②,得解集为{x |x <2,或x >3}原不等式的解集是不等式①和不等式②的解集的交集,即{x |1<x <4}∩{x |x <2,或x >3}={x |1<x <2,或3<x <4}.故原不等式的解集是:{x |1<x <2,或3<x <4}.【总结与反思】解不等式时,在本例中,不等式①和不等式②是“交”的关系,必要时可借助数轴的直观作用特别要注意不等式是否带“=”号,只有这样,才能更准确无误地写出不等式的解集.考点5 分式及高次不等式的解法例9解不等式322322--+-x x x x <0 【规范解答】根据积的符号法则,可以将原不等式等价变形为(x 2-3x +2)(x 2-2x -3)<0即(x +1)(x -1)(x -2)(x -3)<0令(x +1)(x -1)(x -2)(x -3)=0可得零点x =-1或1,或2或3,将数轴分成五部分(如图). 由数轴标根法可得所求不等式解集为:{x |-1<x <1或2<x <3}.【总结与反思】注意根轴法--奇穿偶不穿.考点6 无理不等式的解法例10解不等式0343>---x x .【规范解答】∵根式有意义∴必须有:303043≥⇒⎩⎨⎧≥-≥-x x x 又∵ 原不等式可化为343->-x x两边平方得:343->-x x解之:21>x ∴}3|{}21|{}3|{>=>⋂>x x x x x x . 【总结与反思】对于无理不等式,注意根式有意义的条件,然后平方再求解.考点7 指对数不等式的解法例11 解不等式31831>⋅+-+x x【规范解答】原不等式可化为:018329332>+⋅-⋅x x即 0)233)(93(>-⋅-x x解之 93>x 或33<x ∴x >2或32log 3<x ∴不等式的解集为{x |x >2或32log 3<x } 【总结与反思】解指数不等式,要结合指数函数的图像与性质综合处理.例12 解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a【规范解答】原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有:221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x 当0<a <1时有: 2234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或 ∴当a >1时不等式的解集为221<<x ; 当0<a <1时不等式的解集为42<<x .【总结与反思】因为底数的不确定,所以要注意分类讨论.课程小结1.研究了如何比较两个实数的大小,在某些特殊情况下(如两数均为正,且作商后易于化简)还可考虑运用作商法比较大小,作商法是判断商值与1的大小关系.2.不等式的性质定理及其推论: 理解不等式性质的反对称性(a >b ⇔b <a =、传递性(a >b ,b >c ⇒a >c )、可加性(a >b ⇒a +c >b +c )、加法法则(a >b ,c >d ⇒a +c >b +d ),并记住这些性质的条件,尤其是字母的符号及不等式的方向,要搞清楚这些性质的主要用途及其证明的基本方法.3.掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.4.一元一次不等式和一元二次不等式的解法是解各类不等式的基础,要予以高度重视尤其把握好解一元二次不等式的解题步骤:一是将二次项系数变为正的;二是确定不等式对应方程根的情况(由判别式来确定);三是结合图象(二次函数图象)写出不等式的解集.形如|c bx ax ++2|<m 及|c bx ax ++2|>m (m >0)的不等式的解法,关键是去掉绝对值符号使其转化为一元二次不等式(组),借助数轴的直观作用,达到解题目的.5.要求大家在进一步掌握数轴标根法的基础上,掌握分式不等式的基本解法,即转化为整式不等式求解.6.解指对数不等式:注意数形结合思想方法的运用.。
不等式解题方法
不等式解题方法一、活用倒数法则 巧作不等变换——不等式的性质和应用不等式的性质和运算法则有许多,如对称性,传递性,可加性等.但灵活运用倒数法则对解题,尤其是不等变换有很大的优越性.倒数法则:若ab>0,则a>b 与1a <1b等价。
此法则在证明或解不等式中有着十分重要的作用。
如:(1998年高考题改编)解不等式log a (1-1x)>1.分析:当a>1时,原不等式等价于:1-1x >a,即 1x <1-a ,∵a>1,∴1-a<0, 1x <0,从而1-a, 1x 同号,由倒数法则,得x>11-a ; 当0<a<1时,原不等式等价于 0<1- 1x <a,∴1-a<1x <1, ∵0<a<1,∴ 1-a>0, 1x >0, 从而1-a, 1x 同号,由倒数法则,得1<x<11-a;综上所述,当a>1时,x ∈(11-a ,+∞);当0<a<1时,x ∈(1,11-a).注:有关不等式性质的试题,常以选择题居多,通常采用特例法,排除法比较有效。
二、小小等号也有大作为——绝对值不等式的应用绝对值不等式:||a|-|b||≤|a ±b|≤|a|+|b|。
这里a,b 既可以表示向量,也可以表示实数。
当a,b 表示向量时,不等式等号成立的条件是:向量a 与b 共线;当a,b 表示实数时,有两种情形:(1)当ab ≥0时,|a+b|=|a|+|b|, |a-b|=||a|-|b||;(2)当ab ≤0时,|a+b|=||a|-|b||, |a-b|=|a|+|b|.简单地说就是当a,b 同号或异号时,不等式就可转化为等式(部分地转化),这为解决有关问题提供了十分有效的解题工具。
如:若1<1a <1b,则下列结论中不正确的是( )A 、log a b>log b aB 、| log a b+log b a|>2C 、(log b a)2<1 D 、|log a b|+|log b a|>|log a b+log b a| 分析:由已知,得0<b<a<1,∴a,b 同号,故|log a b|+|log b a|=|log a b+log b a|,∴D 错。
解不等式的方法归纳
错因:忽视了“ ”的含义;机械的将等式的运算性质套用到不等式运算中.
正解:原不等式可化为:x+22x+3x-2 ①或x+22x+3x-2 ②;
解①得:x=-3或x=-2或x=2
解②得:x<-3或x>2
原不等式的解集为{x| x -3或x 或x }
例5解关于x的不等式
当k 0时;由题意:
解得:-1<k<0
;故选C.
例2命题 <3;命题 <0;若A是B的充分不必要条件;则 的取值范围是_______
A. B. C. D.
错解:由|x-1|<3得:-2<x<4;
又由x+2x+a=0得x=-2或x=-a;
A是B的充分不必要条件;
x|-2<x<4 x|-2<x<-a
-a>4故选D.
三、经典例题导讲
例1如果kx2+2kx-k+2<0恒成立;则实数k的取值范围是___.
A.-1≤k≤0 B.-1≤k<0C.-1<k≤0 D.-1<k<0
错解:由题意:
解得:-1<k<0
错因:将kx2+2kx-k+2<0看成了一定是一元二次不等式;忽略了k=0的情况.
正解:当k=0时;原不等式等价于-2<0;显然恒成立; k=0符合题意.
2.不等式组的解集是本组各不等式解集的交集;所以在解不等式组时;先要解出本组内各不等式的解集;然后取其交集;在取交集时;一定要利用数轴;将本组内各不等式的解集在同一数轴上表示出来;注意同一不等式解的示意线要一样高;不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集.3.集合的思想和方法在解不等式问题中有广泛的应用;其难点是区分何时取交集;何时取并集.解不等式的另一个难点是含字母系数的不等式求解—注意分类.
基本不等式的所有公式及常用解法
基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。
2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。
3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。
4.倒数不等式公式:若a>b>0,则1/a<1/b。
5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。
若a<0且n为奇数整数,则a^n<0。
常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。
2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。
3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。
通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。
4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。
5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。
以上是基本不等式的一些公式和常用解法。
对于不同的不等式,我们需要根据具体情况选择合适的解法。
希望以上内容对您有所帮助。
不等式解集方法
不等式解集方法一、引言不等式是数学中常见的一种基本概念,它涉及到比较两个数大小关系的数学符号。
不等式的解集是指满足不等式条件的所有数值的集合。
掌握不等式的解集方法对于解决实际问题具有重要意义。
本文将介绍求解一元一次不等式、解集在数轴上的表示、二元一次不等式组的解集、分式不等式的解法、含绝对值不等式的解法、一元二次不等式的解法和一元高次不等式的解法等方法。
二、求解一元一次不等式一元一次不等式是数学中最基础的不等式类型,其形式为ax+b>cc或ax+b<c,其中a、b、c为常数,x为未知数。
求解一元一次不等式的方法是将其转化为等式,然后通过移项、合并同类项和化简等步骤求解。
例如,求解2x+3>5,首先移项得到2x>2,然后除以2得到x>1。
三、解集在数轴上的表示解集在数轴上的表示是将不等式的解集在数轴上标出来。
首先需要确定解集的取值范围,然后将这个范围在数轴上表示出来。
例如,解集x>1表示在数轴上1的右侧的所有点都是这个不等式的解。
四、二元一次不等式组的解集二元一次不等式组是由两个或多个一元一次不等式组成的。
求解二元一次不等式组的方法是分别求解每个不等式,然后找出满足所有不等式的解的集合,即解集。
例如,求解不等式组{x+y>2, x-y<1},首先分别求解两个不等式得到两个解集,然后找出这两个解集的交集即为原不等式组的解集。
五、分式不等式的解法分式不等式是指含有分母的不等式。
求解分式不等式的方法是将其转化为整式不等式,然后通过求解整式不等式得到分式不等式的解。
例如,求解不等式(x+3)/(x-2)>0,首先去分母得到x^2-x-6>0,然后因式分解得到(x-3)(x+2)>0,最后确定解集为x<-2或x>3。
六、含绝对值不等式的解法含绝对值的不等式是指含有绝对值符号的不等式。
求解含绝对值不等式的方法是根据绝对值的定义将其转化为分段函数,然后分别求解每个分段函数的不等式得到原不等式的解。
不等式的解法与应用
不等式的解法与应用不等式是数学中常见的一种数值关系,它描述了数值之间的大小关系,与等式不同,不等式中的符号可以是“大于”,“小于”,“大于等于”,“小于等于”等。
解不等式的过程中,需要运用一系列的数学方法和技巧,同时不等式也有广泛的应用场景。
一、一元一次不等式的解法与应用1. 解一元一次不等式的基本方法是通过移项、合并同类项和化简等步骤,最终得到不等式的解集。
例如对于不等式2x + 3 > 7,可以先将3移到等式右边,得到2x > 7 - 3,再将同类项合并得到2x > 4,最后除以2得到x > 2,所以该不等式的解集为{x | x > 2}。
2. 在实际应用中,一元一次不等式经常用于描述物品的限制条件或问题的解集。
例如,在某个超市购物时,商品x的价格大于5元,可以表示为x > 5。
当我们需要求购物的范围时,就可以得到该不等式的解集,即{x | x > 5}。
二、一元二次不等式的解法与应用1. 解一元二次不等式的方法相对复杂一些,一般需要通过图像、因式分解、求根、区间判断等步骤来求解。
例如对于不等式x^2 - 4 < 0,可以将不等式的左边因式分解得到(x + 2)(x - 2) < 0,然后根据乘积为负的条件,可以得到x取值的范围为-2 < x < 2,即解集为{x | -2 < x < 2}。
2. 一元二次不等式在实际应用中有较广泛的应用。
例如,在解决某些物理问题时,一元二次不等式可以用来描述某个物理量的取值范围或限制条件。
同样地,在经济学中,一元二次不等式也可以用来描述某些经济问题的解集。
三、绝对值不等式的解法与应用1. 绝对值不等式是一种特殊的不等式,其中涉及到绝对值符号。
解绝对值不等式的方法一般分为以下几种情况来讨论:当绝对值大于等于零时,解集为实数集;当绝对值小于某个数时,解集为两个不等式的交集;当绝对值大于某个数时,解集为两个不等式的并集。
基本不等式及其应用(优秀经典专题及答案详解)
(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。
高中数学基础之基本不等式及应用
当acb取得最大值时,3a+1b-1c2的最大值为( C )
A.3
B.94
C.1
D.0
[思路引导] (1)2x-1>0,y-1>0→构建与2x-1,y-1相关的基本不等式. (2)三元变成二元→确定acb取得最大值时a,b,c的关系→求出结果.
[解析]
(1)依题意得2x-1>0,y-1>0,则
4x2 y-1
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多 少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范 围内?
[解]
(1)依题意得,y=
920v v2+3v+1600
=
920 3+v+16v00
≤
920 83
,当且仅当v=
16v00,即v=40时,等号成立,
3-
k m+1
(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知
2021年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定
投入和再投入两部分资金).
(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;
+
y2 2x-1
=
[2x-1+1]2 y-1
+
[y-1+1]2 2x-1
≥
42x-1 y-1
+
4y-1 2x-1
≥4×2
2yx--11×2yx--11
=8,即
4x2 y-1
+
y2 2x-1
2x-1=1,
≥8,当且仅当
y-1=1, 2yx--11=2yx--11,
不等式的性质与解题方法
03
一元二次不等式解法
一元二次不等式标准形式
一元二次不等式的一般形式为
$ax^2 + bx + c > 0$ 或 $ax^2 + bx + c < 0$,其中 $a, b, c$ 是常数,且 $a neq 0$。
标准形式的特点
不等式左侧是一个二次多项式,右侧是零;不等号表示不等关系,可以是大于、小于、大于等于或小于等于。
系数化为1
通过除以未知数的系数,将不 等式化为x > a(或< a)的形 式。
实际应用问题举例
行程问题
通过一元一次不等式求解行程中的最值、范 围等问题。
价格问题
利用一元一次不等式分析商品价格、折扣等 经济问题。
工程问题
通过一元一次不等式解决工程中的进度、效 率等问题。
其他实际问题
一元一次不等式还可以广泛应用于其他领域 ,如医学、环境科学等。
,以缩小可行域。
目标函数优化策略
目标函数的优化方向
根据实际问题要求,确定目标函数是求最大 值还是最小值。
目标函数的优化方法
通过比较目标函数在不同可行解上的取值,逐步逼 近最优解;利用单纯形法等优化算法求解线性规划 问题。
目标函数与约束条件的关 联分析
分析目标函数与约束条件之间的关联关系, 找出影响目标函数取值的关键因素,从而调 整决策变量以优化目标函数。
06
总结与提高:掌握各类不等式解 题技巧
回顾各类不等式解题要点
一元一次不等式
掌握基本性质,通过移项、 合并同类项、系数化为1等
步骤求解。
1
一元二次不等式
理解判别式意义,利用因式 分解、配方法或求根公式求
解。
不等式的解集计算
不等式的解集计算不等式是数学中的一种关系表达式,它描述了两个数或者两个代数式之间的大小关系。
计算不等式的解集是解决不等式问题的核心内容之一,它能帮助我们确定不等式中所有满足条件的数值范围。
在计算不等式的解集时,我们需要遵循一定的求解步骤和规则。
下面将介绍一些常见的不等式类型和相应的解集计算方法。
一、线性不等式线性不等式是指不等式中只包含一次线性项的不等式,如ax+b>0、cx-d≤0等形式。
解集计算的关键在于将不等式转化为等价的形式,并根据不等式的符号情况进行分类讨论。
我们可以通过以下步骤来计算线性不等式的解集:1. 将不等式中的变量项移到一边,常数项移到另一边,得到形如ax+b>0或ax+b≤0的等价不等式;2. 根据不等式中系数a的正负情况,分别进行讨论:a) 当a>0时,解集为x>-b/a或x≤-b/a,可以根据不等式的符号进行表示;b) 当a<0时,解集为x<-b/a或x≥-b/a,同样可以根据不等式的符号进行表示。
二、多项式不等式多项式不等式是指不等式中包含多个多项式项的不等式,如x^2+3x-10>0、2x^3-5x+1≤0等形式。
计算多项式不等式的解集可以通过构造不等式的因式分解形式,进而利用因式分解的性质进行求解。
具体的步骤如下:1. 将不等式移项,并得到多项式不等式的因式分解形式;2. 根据不等式的符号情况,考虑每个因子的符号,并根据多项式的乘法性质来确定解集。
三、分式不等式分式不等式是指不等式中包含分式表达式的不等式,如1/(x+2)<2/x 或(x-3)/(x+1)≥0等形式。
分式不等式的解集计算方法可以通过以下步骤来进行:1. 将不等式化简为分式的分子、分母均为多项式的形式,得到形如f(x)/g(x)>0或f(x)/g(x)≤0的等价形式;2. 构造分式的因子分解形式,并根据因子的符号情况来确定解集。
综上所述,不等式的解集计算方法可以根据不等式的类型和形式来进行相应的求解。
不等式解法整式分式根式
§ 不等式的解法一一线名师精讲基础知识串讲解不等式的基本原则:1、解不等式实质是一个等价变形的过程,当元的取值范围扩大时,应与原有取值范围求交集;2、解不等式是一个由繁到简的转化过程,其转化的总思路为:3、解含有等号的不等式时,应该将等式与不等式分开解答后取并集;基本类型不等式的解法: 一、整式不等式的解法 1、一元一次不等式标准形式:b ax >或)0(≠<a b ax .解法要点:在不等式的两端同时除以a 后,若0<a 则不等号要反向;2、一元二次不等式标准形式:02>++c bx ax 或02<++c bx ax 其中0>a ;解法要点:解一元二次不等式一般可按以下步骤进行:1整形:将不等式化为标准形式; 2求根:求方程02=++c bx ax 的根; 3写解:根据方程02=++c bx ax 根的情况写出对应不等式的解集;当两根明确时,可由“大于0,两根外;小于0,两根内”的口诀写解,当0≤∆时,则可由函数c bx ax y ++=2的草图写解;3、一元高次不等式可分解因式型标准形式:0)())((21>---n x x x x x x a 或0)())((21<---n x x x x x x a ()0>a ;解法要点:用“数轴穿根”的方法最为简便,一般可按如下步骤进行:1整形:将不等式化为标准形式; 2求根:求出对应方程的根;3穿根:将方程的根标在数轴上,用一条曲线从右上方开始依次穿过;方程有重根时,奇数重根按正常情况穿过,偶数重根则不穿过,反弹回来后继续穿根;即“奇过偶不过”;4写解:数轴上方所对应曲线的区间为0)())((21>---n x x x x x x a 的解,数轴下方所对应曲线的区间为0)())((21<---n x x x x x x a 的解;二、分式不等式的解法 标准形式:0)()(>x f x g ,或0)()(<x f x g ; 解法要点:解分式不等式的关键是去分母,将分式不等式转化为整式不等式求解;若分母的正负可定,可直接去分母;若分母的正负不定,则按以下原则去分母:0)()(0)()(>⋅⇔>x g x f x g x f 0)()(0)()(<⇔<x g x f x g x f 三、根式不等式的解法 标准形式:)()(x g x f >;)()(x g x f >;以及)()(x g x f <;解法要点:解根式不等式的关键是去根号,应抓住被开方数的取值范围以及不等式乘方的条件这两大要点进行等价变换:⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(x g x f x g x f x g x f ⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(2x g x f x f x g x g x f 或⎩⎨⎧≥<0)(0)(x f x g ⎪⎩⎪⎨⎧<≥>⇐<)()(0)(0)()()(2x g x f x f x g x g x f 基本题型指要【例1】 解下列不等式或不等式组:1⎪⎩⎪⎨⎧+<<-+220)1)(3(2x x x x 20)4)(2()3(2≤-+-x x x 3x x x x x <-+-+222322402)1(2≥---x x x1思路导引:按规范化程序操作,化为标准形式后求解,可以有效的防止错误;解析:将0)1)(3(<-+x x 化为标准形式0)1)(3(>-+x x ,易得:1,3>-<x x 或;由222+<x x 得01)1(2>+-x ,所以R x ∈; 综上所述,原不等式组的解集为{}13|>-<x x x 或,;2解析:由已知,0)4)(2()3(2≥-+-x x x , 用数轴穿根法易得原不等式的解集为:{}342|=≥-≤x x x x 或,,或误区警示:若不化为标准形式求解,易将解集错写为{}42|≤≤-x x ;另外,建议将这类等式与不等式的混合式中的“等式”单独求解,以防止漏掉3=x 这类解;3思路导引:解分式不等式的关键是去分母;但本题分母正负不明,若直接去分母应分类讨论,较为复杂,使用移项通分化为标准形式的方法较好;解析:将x x x x x <-+-+222322化为标准形式,得:0)1)(3()1)(2(2>+-++-x x x x x ,因为12>++x x 恒成立,所以,0)1)(3()2(>+--x x x ;用数轴穿根法易得原不等式的解集为:{}321|><<-x x x 或,;4思路导引:解根式不等式关键是抓住乘方的条件,对原不等式实施等价转换,去除根号;解析:原不等式等价于:02)1(2>---x x x (1)或02)1(2=---x x x (2)由1得:⎪⎩⎪⎨⎧>->--01022x x x ,解得2>x ;由2得12-==x x ,或;所以,原不等式的解集为{}12|-=≥x x x ,或; 误区警示:请找出下面解法的错误: 由022≥--x x ,得01≥-x ,所以,原不等式的解为1≥x ;点评:解等式与不等式的混合型不等式,最好将等式与不等式分开求解,以避免错误; ◆题型二:解含参数的不等式不少同学都怕解含参数的不等式,究其原因,关键是没有把握住解题技巧;其实,解含有参数的不等式在总思路上与解普通不等式完全相同,当参数不影响式子的变形时,与解普通不等式没有差异,在参数影响式子的变形时,就需弄清参数的取值范围或者予以分类讨论,才能顺利的解出不等式;例2解下列关于x 的不等式: 102>+ax 2x t tx )2(22+>+3)1,0(1log 22log 3≠>-<-a a x x a a 1思路导引:本题在求解x 时必须去除系数a ,由于a 的范围不明,无法直接变形,若将a 按变形的要求分为正、负、零三类,则在每一小类中式子就能顺利变形了;解析:由已知,2->ax ; ①、当0>a 时,a x 2->; ②、当0<a 时, ax 2-<; ③、当0=a 时,20->恒成立,R x ∈ ;故,原不等式解集当0>a 时为⎭⎬⎫⎩⎨⎧->a x x 2|,当0<a 时为⎭⎬⎫⎩⎨⎧-<a x x 2|,当0=a 时为R ;2思路导引:解含参数的二次不等式通常是在以下三个地方实施分类讨论:一是平方项系数有参数时需分正、负、零讨论,二是判别式△有参数时的需分正、负、零讨论,三是两根有参数时需根据他们的大小关系分类讨论;本题中的不等式即0)2)(1(>--tx x ,在求解过程中参数会在两个地方影响式子变形:一是平方项系数t 的正、负、零,二是对应的二次方程的根1与t2是否存在、谁大谁小;此时,同一字母t 形成了不同的分类,可将t 在0、2处分段统筹安排进行分类如图;解析:原不等式即0)2)(1(>--tx x ;① 当0<t 时,可以化为0)2)(1(<+--tx x , 易知12<t ,所以12<<x t; ② 当0=t 时,原不等式即022>+-x ,所以 1<x ;③ 当20<<t 时,易知12>t,可得,1<x tx 2>或; ④ 当2=t 时,原不等式即0)1(22>-x ,所 以1≠∈x R x ,且;⑤ 当2>t 时,易知12<t ,可得,tx 2< 1>x 或;综上所述,原不等式的解集当0<t 时,为 ⎭⎬⎫⎩⎨⎧<<12|x t x ;当0=t 时,为{}1|<x x ;当20<<t 时,为⎭⎬⎫⎩⎨⎧><t x x x 21|,或;当2=t 时,为{}1|≠∈x R x x ,且;当2>t 时,为⎭⎬⎫⎩⎨⎧><12|x t x x ,或;误区警示:本题易漏掉20==t t 和两种特殊情况的讨论;另外,在0<t 时,解集易错为⎭⎬⎫⎩⎨⎧><12|x t x x ,或;3思路导引:本题关键是抓住根式不等式的解题特点,对不等式进行乘方处理,去除根号;若令t x a =log 进行换元,会使书写变得更简便;解析:按根式不等式的解题思路,易知原不等式等价于⎪⎩⎪⎨⎧>--<-≥-)3(01log 2)2()1log 2(2log 3)1(02log 32 x x x x a a a a由1得,32log ≥x a 由2得,1log ,43log ><x x a a 或 由3得.21log >x a 由此得,1log ,43log 32><≤x x a a 或 当1>a 时,易求得原不等式的解集为}|{4332a xa x a x ><≤,或;当10<<a 时,易求得原不等式的解集为}0|{3243a x a x ax <<≤<,或;误区警示:在乘方去除根号的过程中,要注意不等式乘方的条件以及根号内式子的取值范围,保证不等式的变形为等价变形;点评:从本例的解答过程可以看出,解含参数的不等式关键是抓住以下两个要点来处理不等式中的参数:一是由“参数是否影响不等式变形”来确定该不该对参数进行分类讨论,二是由“参数是怎样影响不等式变形” 来确定怎样对参数进行分类讨论;已知不等式的解集求参数值或范围是一类很常见也很重要的题型;由于该题型解法较为灵活,我们在解题时若不能把握住它的解题规律,往往会觉得变化莫测而无可适从;解答本题型关键是要抓住以下两个要点:一是按其正向题型“解不等式”变化,试解原不等式;二是利用已知的解集或解集的部分信息去逆向推测它们与参数的关系;两个要点结合,就会比较容易找到所求参数的方程或不等式,从而求出它们的值或范围;例3已知不等式022>++bx ax 1若不等式的解集为31,21-,求b a +;2若不等式的解集为R,求b a 、应满足的条件; 1思路导引:从解集的形式可知:原不等式必为二次不等式;再从解不等式的角度来看,原不等式的解集可由方程022=++bx ax 的二根来得出,但二根不方便写出,自然会想到用韦达定理列式解题;解析:由题意,方程022=++bx ax 的二根为3121和-, 所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+->⨯-<aa b a b a 23121312102402易解得212-=-=b a ,, 所以,14-=+b a ;误区警示:不能遗漏条件0242>⨯-a b 和0<a ;2思路导引:原不等式022>++bx ax 的系数b a 、范围未定,可能形成二次型、一次型、常数型三类不等式;因为原不等式的解集为R,故原不等式只能为二次型、常数型不等式;解析:1当0==b a 时, 原不等式为02>,其解集显然为R,符合题意;2当0≠a 时,因为原不等式解集为R ,所以,⎪⎩⎪⎨⎧<⨯->02402a b a化简得a b a 802<>,且;综上所述,b a 、应满足的条件为:0==b a ;或a b a 802<>且;点评: 已知二次不等式的解集求参数值可分为两种类型:若解集为“两根内外”型,一般用韦达定理求解;若解集为R 或φ,则通常用数形结合解题;例4若不等式组⎪⎩⎪⎨⎧<+++>--05)25(20222k x k x x x 的整数解只有-2,求实数k 的取值范围;思路导引:本题的解题思路与已知不等式的解集求参数值相似,只是要注意不等式组的解集应是各个不等式解集的交集;解析: ⎪⎩⎪⎨⎧<+++>--)2(05)25(2)1(0222 k x k x x x由1解得12-<>x x ,或;由2得0))(52(<++k x x ;因为-2是不等式组的解,故0)2](5)2(2[<+-+-⨯k ,得 2<k ,所以25->-k ,2的解为k x -<<-25; 由此可知,原不等式组的解为Ⅰ⎪⎩⎪⎨⎧-<<--<k x x 251,或⎪⎩⎪⎨⎧-<<->k x x 252;因为2<k ,所以2->-k ,故Ⅰ的整数解为-2;而原不等式组的整数解只有-2,所以Ⅱ应该没有整数解,所以33-≥≤-k k ,即;综上所述,23<≤-k ;阅卷老师评题例51996年全国高考解不等式.1)11(log >-xa命题目的:本题综合考查了对数不等式、分式不等式、二次不等式的解法,以及分类讨论的思想和运算能力;考情分析:该题本身的能力要求并不高,但在解答的过程中却多次涉及易错点,故当年考生的得分率较低,区分度达;思路导引:因为对数函数的单调性与a 有关,故应对a 分类讨论去除对数符号,将原不等式化为分式不等式,然后再化为整式不等式求解;解析:Ⅰ当1>a 时,原不等式等价于: ⎪⎩⎪⎨⎧>->-)2(11)1(011 a x x 因1>a ,故只需解2式,由此得 )3(11 xa >- 因为,01<-a 所以,0<x 由3可得 .011<<-x aⅡ当10<<a 时,原不等式等价于: ⎪⎩⎪⎨⎧<->-)5(11)4(011 a xx 由4得,,01<>x x 或 由5得,011>->a x,故0>x , 易解得5的解为ax -<<111; 所以ax -<<111; 综上所述:当1>a 时,不等式的解集为 };011|{<<-x ax 当10<<a 时,不等式的解集为}.111|{ax x -<< 点评:解不等式要注意不等式变形的等价性,对常见的易错点应熟记于心,这样才能有效地避免错误;此外,在解题时注意充分使用已知条件,常常会得到简便解法;如解不等式25时利用a 的范围判断出x 的正负后,就能很方便的去分母了;本题也可由011>-x得出10><x x ,或后,分0<x 和1>x 两类解答;例62004年上海高考记函数fx=132++-x x 的定义域为A,g x =lg x -a -12a -xa <1 的定义域为B;1 求A ;2 若B ⊆A, 求实数a 的取值范围.命题目的:本小题主要考查集合的有关概念, 考查二次不等式、分式不等式、对数不等式的解法,以及分析问题和推理计算能力;考情分析:此题型在各地高考中经常出现;本题难度较小,得分率较高,但有的考生在求a 的范围时没充分使用1>a 的条件,引起解题过程复杂或出错;解析:1由2-13++x x ≥0, 得11+-x x ≥0, 解得 x <-1或x ≥1, 即A=-∞,-1∪1,+ ∞2 由x -a -12a -x >0, 得x -a -1x -2a <0.因为a <1,所以a +1>2a ,故B=2a ,a +1; 由B ⊆A 知:2a ≥1或a +1≤-1, 解得a ≥21或a ≤-2; 因为a <1, 所以21≤a <1或a ≤-2, 故当A B ⊆时, 实数a 的取值范围是-∞,-2∪21,1 . 好题优化训练基础巩固1、1652->+-x x x 的解集为 A )1,(-∞ B ),2(+∞ C )35,1[ D )35,(-∞答案:D解析:取0=x 可排除B 、C ;取1=x 可排除A;故选D; 2、满足3121-><xx 与的x 的取值范围是 A 2131<<x B 21>x C 31-<x D 3121-<>x x ,或 答案:D解析:解不等式组或验证排除; 3、解不等式212->-x x答案:⎭⎬⎫⎩⎨⎧<≤521|x x解析:原不等式等价于Ⅰ⎩⎨⎧<-≥-02012x x ,或Ⅱ⎪⎩⎪⎨⎧->-≥-≥-2)2(1202012x x x x由Ⅰ解得221<≤x , 由Ⅱ解得52<≤x所以,原不等式的解集为⎭⎬⎫⎩⎨⎧<≤521|x x ;点评:若令t x =-12,则该不等式可化为一个关于t 的二次不等式求解;4、解关于x 的不等式04)1(22<++-x a ax ; 答案:原不等式的解集当0=a 时,为{}2|>x x ;当10<<a 时,为⎭⎬⎫⎩⎨⎧<<a x x 22|;当1=a 时为 φ;当1>a 时,为⎭⎬⎫⎩⎨⎧<<22|x a x ;当0<a 时,为⎭⎬⎫⎩⎨⎧><22|x a x x ,或;解析: 原不等式即0)2)(2(<--x ax ,a 的范围明显会影响不等式的解集,故需分类讨论: 10=a 时,原不等式即042<+-x ,解得2>x ; 210<<a 时,22>a ,不等式的解为ax 22<<; 31=a 时,原不等式为0)2(2<-x ,Φ∈x ; 41>a 时,22<a ,不等式的解为22<<x a; 50<a 时,原不等式可化为0)2)(2(>-+-x ax , 易知22<a ,所以不等式的解为22><x a x ,或; 5、不等式13642222<++++x x m mx x 对一切实数x 均成立,求m 的取值范围; 答案:1,3;解析:已知分母恒正,故原不等式可化为:3642222++<++x x m mx x , 即0)3()26(22>-+-+m x m x , 由题意,该式对一切实数x 恒成立; 所以,0)3(8)26(2<---=∆m m , 容易解得31<<m ;技能培训6、不等式0343>---x x 的解集为:_______; 答案:3,+∞;解析:原不等式等价于⎪⎩⎪⎨⎧->-≥-≥-34303043x x x x ,解得3≥x ;7、设1)(2+-=ax x x f ;若方程0)(=x f 没有正根,则a 的取值范围为____________; 答案:)2(,-∞;解析:因为方程0)(=x f 没有正根,由图 易知;⎪⎩⎪⎨⎧<≥-=∆0242aa , 或042<-=∆a ; 解得:2<a ; 8、若关于x 的不等式0342>+++x x a x 的解是13-<<-x ,或2>x ,则a 的值为 A 2 B 2- C21D 21-答案:B解析:原不等式即0)3)(1)((>+++x x a x ,由其解集易知2-=a ;9、若0)1(3)1()1()(2<-+--+=m x m x m x f 对于 一切实数x 恒成立,则m 的取值范围是 A ),1(+∞ B )1,(--∞ C )1113,(--∞ D ),1()1113,(+∞--∞ 答案:C解析:由已知,⎪⎩⎪⎨⎧<-+--<+0)1)(1(12)1(012m m m m ,解得1113-<x ; 10、解关于x 的不等式)1(12)1(≠>--a x x a ; 答案:不等式的解集当0<a 时为⎭⎬⎫⎩⎨⎧<<--212|x a a x ;当10<<a 时为⎭⎬⎫⎩⎨⎧--<<122|a a x x ;当0=a 时为Φ;当1>a 时,为⎭⎬⎫⎩⎨⎧--<>122|a a x x x ,或; 解析: 原不等式可化为02)2()1(>--+-x a x a ,所以0)]2()1)[(2(>-+--a x a x ; 1当0<a 时,21201<--<-a a a ,,原不等式的解集为⎭⎬⎫⎩⎨⎧<<--212|x a a x ; 2当10<<a 时,212>--a a ,原不等式的解集为⎭⎬⎫⎩⎨⎧--<<122|a a x x ;3当0=a 时,原不等式为10>,所以∈x Φ; 4当1>a 时,212<--a a ,,所以原不等式的解集为⎭⎬⎫⎩⎨⎧--<>122|a a x x x ,或;11、某工厂生产商品M,若每件定价80元,则每年可销售80万件;税务部门对市场销售的商品征收附加费,为了既增加国家收入又有利于活跃市场,必须合理确定征收的税率;根据调查分析,若政府对商品M 征收的税率为p %时,每年销售减少10p 万件,试问:1若税务部门对商品M 每年所收税金不少96万元,求p 的取值范围;2在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,因如何确定p 值3若仅考虑每年税收金额最高,又应如何确定p 值答案:162≤≤p ;22=p ;34=p ;解析: 1税率为%p 时,销售量为p 1080-万件,销售金额为)1080(80p -万元80<<p ;由题意易得:⎩⎨⎧<<≥⋅-8096%)1080(80p p p ,解得62≤≤p ;2销售金额最大即)1080(80p -最大,由1可知,62≤≤p ,所以,当2=p 时 ,最大销售金额为4800万元;3由1知易知,销售金额为)1080(80p -,故税金为128)4(8%)1080(802+--=⋅-p p p , 因为80<<p ,所以,4=p 时,国家所得税金最多,为128万元;12、若不等式02>++c bx ax 的解集为),(βα,且βα<<0,求不等式02<++a bx cx 的解集; 答案:⎭⎬⎫⎩⎨⎧><αβ1,1|x x x 或解析:依题意,方程02=c bx ax ++的二根为βα、,故有:⎪⎪⎩⎪⎪⎨⎧>=<+-=)2(0)1(0)( αββαac ab所以,)(βα+-=a b ,)(αβa c =,这样即可将不等式02<++a bx cx 化为0)()(2<++-a x a x a βααβ,由题意易知0<a ,所以0)1)(1(>--x x βα; 因为βα<<0,所以αβ110<<,故所求不等式的解集为⎭⎬⎫⎩⎨⎧><αβ11|x x x ,或;13、解不等式)0(122>->-a x a ax答案:⎭⎬⎫⎩⎨⎧≥2|a x x解析:原不等式可化为:Ⅰ⎪⎩⎪⎨⎧->-≥-)2()1(2)1(0122 x a ax x 或Ⅱ⎪⎩⎪⎨⎧≥-<-)4(02)3(012a ax x 由1得1≤x ,由2得a a x a a 2121++<<-+, 由3得1>x , 由4得2ax ≥; 因为0>a ,所以121>++a a ; 1当20≤<a 时,121≤-+a a ,12≤a,故不等式组Ⅰ的解为121≤<-+x a a ,不等式组Ⅱ的解为1>x ,此时,原不等式的解为a a x 21-+>;2当2>a 时,121>-+a a ,12>a,此时不等式组Ⅰ的解为Φ,不等式组Ⅱ的解为2ax ≥,原不等式的解为2a x ≥; 综上所述,原不等式的解集当20≤<a 时为{}a a x x 21|-+>,当2>a 时为⎭⎬⎫⎩⎨⎧≥2|a x x ;点评:本题也可用图形法求解;思维拓展14、k 为何值时,方程0412=++-k kx x 的二实根的绝对值都小于1 答案: 5285-≤<-k 解析: 作函数41)(2++-==k kx x x f y ;因为方程0412=++-k kx x 的二实根的绝对值都小于1,所以函数图象与x 轴的交点的横坐标在-1与1之间如图 ; 分析图形特点可得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>+=->=<⨯--<-≥+--0452)1(045)1(11210)41(4)(2k f f k k k 解得5285-≤<-k ; 点评:已知一元二次方程的根在某个指定区间内时,常常数形结合,抓住判别式△、对称轴的位置以及区间端点的函数值列式解题;。
不等式的性质与解法
不等式知识关系表不等式的性质不等式的性质⑴(对称性或反身性)a b b a>⇔<;⑵(传递性)a b b c a c>>⇒>,;⑶(可加性)a b a c b c>+>+⇒,此法则又称为移项法则;(同向可相加)a b c d a c b d⇒>>+>+,⑷(可乘性)0a b c ac bc⇒>>>,;0a b c ac bc⇒><<,.(正数同向可相乘)00a b c d ac bd⇒>>>>>,⑸(乘方法则)00n na b n N a b>>∈⇔>>()⑹(开方法则)0,20n na b n N n a b>>∈⇔>>(≥)⑺(倒数法则)11a b aba b⇒>><,掌握不等式的性质,应注意:条件与结论间的对应关系,是“⇒”符号还是“⇔”符号;运用不等式性质的关键是不等号方向的把握,条件与不等号方向是紧密相连的。
运用不等式的性质可以对不等式进行各种变形,虽然这些变形都很简单,但却是我们今后研究和认识不等式的基本手段.n B ⇒⇒”,然后再证明“C ≥有关自然数的命题,(当然这里是不等式)可用数学归纳法证明。
例1. “a +b >2c ”成立的一个充分条件是( C )(A)a >c 或b >c (B)a >c 且b <c (C)a >c 且b >c (D)a >c 或b <c例2.若a >b ,下列式子中①ba 11<; ②a 3>b 3;③)1lg()1lg(22+>+b a ;④b a 22>, 正确的有(B ) (A)1个 (B)2个 (C)3个 (D)4个例3.5768--与的大小关系为?768-<-例4. 设1->n ,且,1≠n 则13+n 与n n +2的大小关系?n 3+1>n 2+n例5. 已知,αβ满足11123αβαβ-+⎧⎨+⎩≤≤≤≤, 试求3αβ+的取值范围.提示:把“αβ+”、“2αβ+”看成一个整体.解:∵3αβ+=2(2)()αβαβ+-+又∵22)6αβ+≤2(≤,1()1αβ--+≤≤∴137αβ+≤≤,∴3αβ+的取值范围是[]1,7例6.“a >0且b >0”是“2a b +( A )(A)充分而非必要条件 (B)必要而非充要条件(C)充要条件 (D)既非充分又非必要条件例7. 若x x f 21log )(=, A )2(b a f +=, G )(ab f =, H )2(b a ab f +=,其中,a b ∈R +, 则A ,G ,H 的大小关系是( A )(A )A ≤G ≤H (B )A ≤H ≤G (C )H ≤G ≤A (D )G ≤H ≤A例8.若,,a b c R +∈,且1a b c ++=,那么111a b c++有最小值( B ) (A)6 (B)9 (C)4 (D)3例9. 不等式1(13)(0)3y x x x =-<<的最大值是(B ) (A)4243 (B)112(C)164(D)172例10. 若a +b +c = 3,且a 、b 、c ∈R +,则cb a 11++的最小值为 . 43 例11.若关于x 的不等式220ax bx +->的解集是11(,)(,)23-∞-+∞,则ab 等于( B )()24A - ()24B ()14C ()14D -例12.不等式22x x x x++≥的解集是( D )()(2,0)A - (]()2,0B - ()C R ()(,2)(2,)D -∞--+∞例13. 不等式x -5≥1+x 的解集是( C ))(A |{x 4-≤x ≤}1 )(B x x |{≤}1- )(C x x |{≤}1 )(D 1|{-x ≤x ≤}1例14. 不等式12log 1xx x<的解集是( D ) (A)}21{<<x x (B)2{>x x 或 }1<x (C) ∅(D) 10{<<x x 或}2>x例15.不等式2lg(1)1x -<的解集是____________.(1)(1,11)-例16. 解不等式1lg()0.x x-<原不等式等价于2210,1 1.x x x x⎧->⎪⎪⎨-⎪<⎪⎩ 情形1 当x >0时,上述不等式组变成221,1.x x x ⎧>⎨<+⎩解得:112x << 情形2 当x <0时,上述不等式组变成221,1.x x x ⎧<⎨>+⎩解得1x -<< 所以原不等式解集为11{|1}{|1}22x x x -<<⋃<< 例17. 解关于x 的不等式222(1)3 1.x a x x ax+-+>+ 原不等式等价于2230.x x x ax-+>+ 由于230x x x R -+>∈对恒成立,∴20,()0x ax x x a +>+>即当a >0时,{|0}x x a x <->或;当a =0时,}0|{≠∈x R x x 且;当a <0时,}0|{a x x x -><或例18. 已知x ∈R ,求证:-2≤112222+---x x x x <2.证明:令y=112222+---x x x x ,去分母,整理得(y -2)x 2+(2-y)x +y +1=0.⑴当y ≠2时,要方程有实数解,须Δ=(2-y )2-4(y -2)(y +1)≥0 得-2≤y ≤2,又∵y ≠2 ∴-2≤y <2;⑵当y =2时,代入(y -2)x 2+(2-y )x +y +1=0中,得3=0,矛盾.∴综上所述, -2≤y <2得证.例19. 若0,0,0,a b c ≥≥≥求证222222a b b c c a +++2()a b c ++.综合法提示222()2)22a b a b a b ++=+ 另外本题还可用几何法. 证明:22a b +先考虑a 、b 、c 为正数的情况,这时可构造出图形:以a +b +c 为边长画一个正方形, 如图,则2222112,,AP a b PP b c =+=+222P B c a =+ 2()AB a b c =++.显然1122AP PP P B ++≥AB , 222222()a b b c c a a b c +++++2.当a 、b 、c 中有负数或零时,显然不等式成立.例20. 设R y x b a ∈,,,,且1,12222=+=+y x b a ,求证: 1.ax by +≤可用分析法,比较法,综合法,三角换元法以及向量法等证例21. 设,,,+∈R c b a 用放缩法证明:21<+++++<ac c c b b b a a . 提示:利用cb ac a b a a c b a a +++<+<++ 例22. 已知△ABC 的三边长是a ,b ,c ,且m 为正数,求证:a b c a m b m c m+>+++ .法一:构造函数法 证明:∵ f (x ) = x x + m (m >0) = 1-m x + m 在(0, + ∞)上单调递增,且在△ABC 中有a + b > c >0,∴ f (a + b)>f (c ),即 a + b a + b + m > c c + m 。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。
不等式恒成立问题中的参数求解技巧
不等式恒成立问题中的参数求解技巧在不等式中,有一类问题是求参数在什么范围内不等式恒成立。
恒成立条件下不等式参数的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,如何从题目中提取可借用的知识模块往往捉摸不定,难以寻觅,是同学们学习的一个难点,同时也是高考命题中的一个热点。
其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解。
本文通过实例,从不同角度用常规方法归纳,供大家参考。
一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。
例1 对于x∈R,不等式恒成立,求实数m的取值范围。
解:不妨设,其函数图象是开口向上的抛物线,为了使,只需,即,解得。
变形:若对于x∈R,不等式恒成立,求实数m的取值范围。
变形:此题需要对m的取值进行讨论,设。
①当m=0时,3>0,显然成立。
②当m>0时,则△<0。
③当m<0时,显然不等式不恒成立。
由①②③知。
关键点拨:对于有关二次不等式(或<0)的问题,可设函数,由a的符号确定其抛物线的开口方向,再根据图象与x轴的交点问题,由判别式进行解决。
例2 已知函数,在时恒有,求实数k的取值范围。
例2 解:令,则对一切恒成立,而是开口向上的抛物线。
①当图象与x轴无交点满足△<0,即,解得-2<k<1< span="">。
</k<1<>②当图象与x轴有交点,且在时,只需由①②知关键点拨:为了使在恒成立,构造一个新函数是解题的关键,再利用二次函数的图象性质进行分类讨论,使问题得到圆满解决。
二、参数大于最大值或小于最小值如果能够将参数分离出来,建立起明确的参数和变量x的关系,则可以利用函数的单调性求解。
恒成立,即大于时大于函数值域的上界。
不等式约束条件解法
不等式约束条件解法不等式约束条件是指在某些情况下,被优化变量需要满足一定的不等式条件。
在一个经济模型中,某些变量的值必须大于等于零,或者小于等于某个固定值。
这些条件称为不等式约束条件。
在数学建模中,经常会出现这样的问题:求某种函数在给定限制条件下的最优解,通常在限制条件下加入不等式约束,以使问题更加真实和现实。
常见的不等式约束条件求解方法有多种,常用的包括线性规划、非线性规划、梯度投影法和拉格朗日乘数法等。
1. 线性规划线性规划是在一定的约束条件下,求解一个线性目标函数的最优解的数学方法。
线性规划在经济学、工程学、管理学、运筹学等领域都有广泛的应用。
线性规划的约束条件通常是不等式约束,其数学表达形式为:$$\left\{\begin{aligned}&\quad Ax\le b \\&\quad x\ge 0\end{aligned}\right.$$A为系数矩阵,b为常数向量,x为变量向量,这些变量需要满足x>=0。
此处约束条件中的不等式为小于等于号。
线性规划的目标函数通常为:c为系数向量,表示要最大化的线性函数。
线性规划求解的基本思想是将问题转化为一个凸优化问题,然后采用各种求解算法进行求解。
f(x)为优化的目标函数,g(x)和h(x)分别为不等式约束和等式约束的约束函数。
非线性规划求解的基本思想是利用数值方法,对目标函数和约束函数进行求解,以获得最优解。
3. 梯度投影法梯度投影法是一种常用的处理带不等式约束的目标函数问题的方法,该方法通过将优化变量的取值范围限制在一定的合理区间内,以确保优化目标函数的最优解满足约束条件。
梯度投影法的基本思想是先对不带不等式约束的目标函数进行求导,在该点处求得函数的梯度,然后将该点的梯度向量投影到合理条件集合S上,得到一个新的点,然后再进行继续求导,并重复上述过程,最终求得目标函数的最小值。
这个过程类似于梯度下降法,在每个步骤中分别处理约束条件,以确保最后得到的解满足约束条件。
不等式解法
§7.2 一元二次不等式及其解法1.解不等式的有关理论f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.自查自纠:1.(1)同解不等式 (2)同解变形2.⎩⎨⎧⎭⎬⎫x |x >b a ⎩⎨⎧⎭⎬⎫x |x <b a a =0,b <0 3.(1)一元二次 (2)解集 (3)两边 中间(4)①{}x |x <x 1或x >x 2 ②⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2a ③∅(2014·课标Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A.设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( )A .{x |x ∈R }B .{x |x ≠1,x ∈R }C .{x |x ≥1}D .{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b ,由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B.已知-12<1x<2,则x 的取值范围是( )A .(-2,0)∪⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫-12,2 C.⎝⎛⎭⎫-∞,-12∪(2,+∞)D .(-∞,-2)∪⎝⎛⎭⎫12,+∞ 解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式2x 2-x <4的解集为____________. 解:由2x 2-x <4得x 2-x <2,解得-1<x <2,即不等式2x 2-x <4的解集为{x |-1<x <2}.故填{x |-1<x <2}.(2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.则⎩⎪⎨⎪⎧2k <0,Δ<0, 解得k ∈(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b<0的解集为⎝⎛⎭⎫-∞,-13,则关于x 的不等式(a -3b )x +b -2a >0的解集为________.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13, 得a +b >0,且3b -2a a +b=-13,从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a-3b )x +b -2a >0,得-bx -3b >0,x <-3,故填{x |x <-3}.点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2aa +b=-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅, ②当m =2时,原不等式的解集为R . (2)当m 2-4>0,即m <-2或m >2时,x <1m -2. (3)当m 2-4<0,即-2<m <2时,x >1m -2. 类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1)方程x 2-7x +12=0的解为x 1=3,x 2=4.而y =x 2-7x +12的图象开口向上,可得原不等式x 2-7x +12>0的解集是{x |x <3或x >4}.(2)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0.方程x 2+2x -3=0的解为x 1=-3,x 2=1. 而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(3)方程x 2-2x +1=0有两个相同的解x 1=x 2=1.而y =x 2-2x +1的图象开口向上,可得原不等式x 2-2x +1<0的解集为∅.(4)因为Δ<0,所以方程x 2-2x +2=0无实数解,而y =x 2-2x +2的图象开口向上,可得原不等式x 2-2x +2>0的解集为R .点拨:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.(2015·贵州模拟)关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是________.解:原不等式可化为(x -1)(x -a )<0,当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5;当a <1时,得a <x <1,此时解集中的整数为-2,-1,0.则-3≤a <-2,故a ∈[-3,-2)∪(4,5].故填[-3,-2)∪(4,5].类型三 二次不等式、二次函数及二次方程的关系(2015·贵州模拟)已知不等式ax 2+bx+2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫xx <-1或x >12B.⎩⎨⎧⎭⎬⎫x |-1<x <12 C .{x |-2<x <1} D .{x |x <-2或x >1}解:由题意知x =-1,x =2是方程ax 2+bx +2=0的两根,且a <0.由韦达定理得⎩⎨⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a <0,即2x 2+x -1<0.解得-1<x <12.故选B.点拨:已知一元二次不等式的解集,就能够得到相应的一元二次方程的两根,由根与系数的关系,可以求出相应的系数.注意结合不等式解集的形式判断二次项系数的正负.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式cx 2-bx +a >0的解集为________.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎨⎧-ba=2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,解得-12<x <-13.故填⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)当m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};(2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0. ①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)若1m<1,即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)若1m>1,即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m =1,即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a, 所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎣⎡⎦⎤-1,2a .类型五 分式不等式的解法(1)不等式x -12x +1≤1的解集为________.解:x -12x +1≤1 ⇔x -12x +1-1≤0 ⇔-x -22x +1≤0 ⇔x +22x +1≥0.解法一:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.解法二:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧x +2≥0,2x +1>0或⎩⎪⎨⎪⎧x +2≤0,2x +1<0.得{x |x >-12或x ≤-2}.故填{x |x >-12或x ≤-2}.(2)不等式x -2x 2+3x +2>0的解集为.解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:根据不等式的性质对不等式进行移项,使得右端为0,化为不等式的标准形式(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根.①若是整式不等式,将其分解因式,求出所有根;②若是分式不等式,用积和商的符号法则,将其转化为整式不等式,再求出所有根.(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根.但画线时遇偶重根不穿过(即线画至此根时,不穿过此根,而向左依次穿过其余的根),遇奇重根要穿过,可用口诀:“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,就连根一同取,但若是分式不等式,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则实数a 的最小值为( ) A .0 B .-2 C .-52D .-3解法一:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12, ∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数,∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.解法二:令f (x )=x 2+ax +1,对称轴为x =-a2.①⎩⎪⎨⎪⎧-a 2≤0,f (0)≥0⇒a ≥0.(如图1) ②⎩⎨⎧0<-a 2<12,f ⎝⎛⎭⎫-a 2≥0⇒-1<a <0.(如图2)③⎩⎨⎧-a 2≥12,f ⎝⎛⎭⎫12≥0⇒-52≤a ≤-1.(如图3)图1 图2 图3综上 ①②③,a ≥-52.故选C.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:(1)一元二次不等式恒成立问题,对于x 变化的情形,解法一利用参变量分离法,化成a >f (x )(a <f (x ))型恒成立问题,再利用a >f (x )max (a <f (x )min ),求出参数范围.解法二化归为二次函数,由于是轴动区间定,结合二次函数对称轴与定义域的位置关系、单调性等相关知识,求出参数范围.(2)对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.(1)(2015·甘肃模拟)若不等式a ·4x -2x+1>0对一切x ∈R 恒成立,则实数a 的取值范围是________.解:不等式可变形为a >2x -14x =⎝⎛⎭⎫12x -⎝⎛⎭⎫14x,令⎝⎛⎭⎫12x=t ,则t >0.∴y =⎝⎛⎭⎫12x -⎝⎛⎭⎫14x =t -t 2=-⎝⎛⎭⎫t -122+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a >14.故填⎝⎛⎭⎫14,+∞.(2)对于满足|a |≤2的所有实数a ,使不等式x 2+ax +1>2x +a 成立的x 的取值范围为________.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0, 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0,解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.故填(-∞,-1)∪(3,+∞).类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .[0,1)解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.点拨:本题考查一元二次方程的根的分布与系数的关系,画出相应函数的图象后“看图说话”,主要从以下四个方面分析:①开口方向;②判别式;③区间端点函数值的正负;④对称轴x =-b2a与区间端点的关系.本书2.4节有较详细的讨论,可参看.(2015·贵州模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为________.解:根据题意有f (-2)f (-1)<0,∴(6a +5)(2a +3)<0.∴-32<a <-56.又a ∈Z ,∴a =-1.检验知合要求.不等式f (x )>1即为-x 2-x +1>1,解得-1<x <0. ∴故填{x |-1<x <0}.类型八 一元二次不等式的应用(2013·上海)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意,200⎝⎛⎭⎫5x +1-3x ≥3 000⇒5x -14-3x ≥0⇒5x 2-14x -3≥0⇒(5x +1)(x -3)≥0,又1≤x ≤10,可解得3≤x ≤10.(2)设利润为y 元,则y =900x·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫-3x 2+1x +5=9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112. 故x =6时,y max =457 500元.点拨:和一元二次不等式有关的实际应用题是高考考查的重点,这类题目往往与实际生活结合紧密,应予以重视.(2015·河南模拟)某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解: (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . ∵售价不能低于成本价,∴100⎝⎛⎭⎫1-x10-80≥0. ∴y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.∴x 的取值范围是⎣⎡⎦⎤12,2.1.一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的解集的确定,受二次项系数a 的符号及判别式Δ=b 2-4ac 的符号制约,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集;二次函数y =ax 2+bx +c 的值恒大于0的条件是a >0且Δ<0;若恒大于或等于0,则a >0且Δ≤0.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形.2.解分式不等式要使一边为零;求解非严格分式不等式时,要注意分母不等于0,转化为不等式组.(注:形如f (x )g (x )≥0或f (x )g (x )≤0的不等式称为非严格分式不等式)3.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.4.解不等式的过程,实质上是不等式等价转化的过程.因此保持同解变形是解不等式应遵循的基本原则.5.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.6.对给定的一元二次不等式,求解的程序框图是:1.不等式x -2x +1≤0的解集是( )A .(-∞,-1)∪(-1,2]B .[-1,2]C .(-∞,-1)∪[2,+∞)D .(-1,2] 解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D.2.(2015·湖北模拟)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解:由题意得⎩⎨⎧-2+1=1a,-2×1=-ca , 解得⎩⎪⎨⎪⎧a =-1,c =-2.则f (x )=-x 2-x +2,∴f (-x )=-x 2+x +2.故选C. 3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为( )A .{x |x <-1或x >lg2}B .{x |-1<x <lg2}C .{x |x >-lg2}D .{x |x <-lg2}解:可设f (x )=a (x +1)⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎫10x -12<0,从而10x <12,解得x <-lg2,故选D.4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是( ) A .[15,20] B .[12,25] C .[10,30] D .[20,30]解:设矩形的另一边为y m ,依题意得x40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.故选C.5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-12)B .(-4,+∞)C .(-12,+∞)D .(-∞,-4)解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D.6.若关于x 的方程3x 2-5x +a =0的一个根大于-2且小于0,另一个根大于1且小于3,则实数a 的取值范围是( )A .(-∞,2)B .(-12,+∞)C .(-22,0)D .(-12,0)解:设f (x )=3x 2-5x +a ,则由题意有⎩⎪⎨⎪⎧f (-2)>0,f (0)<0,f (1)<0,f (3)>0.即⎩⎪⎨⎪⎧22+a >0,a <0,-2+a <0,12+a >0.解得-12<a <0.故选D.7.(2015·浙江模拟)不等式log 2⎝⎛⎭⎫x +1x +6≤3的解集为________.解:log 2⎝⎛⎭⎫x +1x +6≤3⇔log 2⎝⎛⎭⎫x +1x +6≤log 28⇔0<x +1x +6≤8⇔-6<x +1x ≤2.当x >0时,x +1x≥2,此时x =1;当x <0时,x +1x≤-2,此时x+1x>-6,解得-3-22<x <-3+22. 故填(-3-22,-3+22)∪{1}. 8.(2015·昆明模拟)已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a对一切非负实数x 恒成立,则a 的最大值是______________.解:原不等式可化为x 2a ≥1+x2-1+x (*),令1+x =t ,t ≥1,则x =t 2-1,所以(*)即(t 2-1)2a≥1+t 2-12-t =t 2-2t +12=(t -1)22,对t ≥1恒成立,所以(t +1)2a ≥12对t ≥1恒成立,又a 为正的常数,所以a ≤[2(t +1)2]min =8,故a 的最大值是8.故填8.9.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解法一:设f (x )=x 2-ax -a.则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )min ≤-3,即f ⎝⎛⎭⎫a 2=-4a +a 24≤-3,解得a ≤-6或a ≥2.解法二:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax-a+3=0的判别式Δ≥0,解得a≤-6或a≥2.10.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km/h的弯道上,甲、乙两辆车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m,又知甲、乙两种车型的刹车距离s(m)与车速x(km/h)之间分别有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.问甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x+0.01x2>12,即x2+10x-1200>0,解得x>30或x<-40(舍去).这表明甲车的车速超过30 km/h,又由甲车刹车距离略超12 m,可判断甲车车速不会超过限速40 km/h.对于乙车有0.05x+0.005x2>10,即x2+10x-2000>0,解得x>40或x<-50(舍去).这表明乙车超过40 km/h,超过规定限速.11.已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;(2)若f(x)的最大值为正数,求a的取值范围.解:(1)∵f(x)+2x>0的解集为(1,3),∴f(x)+2x=a(x-1)(x-3),且a<0.因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.①由方程f(x)+6a=0得ax2-(2+4a)x+9a=0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a)]2-4a·9a=0,即5a2-4a-1=0,解得a=1或a=-15.由于a<0,舍去a=1,将a=-15代入①得f(x)的解析式f(x)=-15x2-65x-35.(2)由f(x)=ax2-2(1+2a)x+3a=a⎝⎛⎭⎪⎫x-1+2aa2-a2+4a+1a,及a<0,可得f(x)的最大值为-a2+4a+1a.由⎩⎨⎧-a2+4a+1a>0,a<0,解得a<-2-3或-2+3<a<0.故当f(x)的最大值为正数时,实数a的取值范围是(-∞,-2-3)∪(-2+3,0).解关于x的不等式:a(x-1)x-2>1(a <1).解:(x-2)[(a-1)x+2-a]>0,当a<1时有(x-2)⎝⎛⎭⎪⎫x-a-2a-1<0,若a-2a-1>2,即0<a<1时,解集为{x|2<x<a-2a-1};若a-2a-1=2,即a=0时,解集为∅;若a-2a-1<2,即a<0时,解集为{x|a-2a-1<x<2}.§7.3二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据________(即画出不等式组所表示的公共区域).②设________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出条件,确定________函数.然后,用图解法求得数学模型的解,即________,在可行域内求得使目标函数________.自查自纠:1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解不等式x-2y+6>0表示的区域在直线x-2y+6=0的()A.左下方B.左上方C.右下方D.右上方解:画出直线并取原点代入知C正确.故选C.(2015·北京)若x,y满足⎩⎪⎨⎪⎧x-y≤0,x+y≤1,x≥0,则z=x +2y的最大值为()A.0 B.1 C.32D.2解:由题意作出可行域如图中阴影部分所示,当z=x+2y经过点A(0,1)时取最大值,即z max =2.故选D.(2015·湖南)若变量x,y满足约束条件⎩⎪⎨⎪⎧x+y≥-1,2x-y≤1,y≤1,则z=3x-y的最小值为() A.-7 B.-1 C.1 D.2解:作出不等式组⎩⎨⎧x+y≥-1,2x-y≤1,y≤1表示的可行域如图中阴影部分所示,当平行直线系z =3x -y 过点A (-2,1)时取最小值,即z min =3×(-2)-1=-7.故选A.点()-2,t 在直线2x -3y +6=0的上方,则t 的取值范围是________.解:()-2,t 在2x -3y +6=0的上方,则2×()-2-3t +6<0,解得t>23.故填⎩⎨⎧⎭⎬⎫t|t >23 .(2015·日照模拟)若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.解:平面区域A 如图所示(三角形OBC 及其内部),所求面积(阴影部分)为S 阴影=12×2×2-12×22×22=2-14=74.故填74.类型一 二元一次不等式(组)表示的平面区域设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0所表示的平面区域为M ,则使函数y =a x ()a >0,a ≠1的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10]C .[2,9] D .[10,9]解:如图,阴影部分为平面区域M ,显然a >1,只需研究过(1,9),(3,8)两种情形,a 1≤9且a 3≥8即2≤a ≤9,故选C.点拨:①关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O (0,0)为特殊点;②这里的曲线y =a x 是过定点(0,1)的一系列曲线.(2014·安徽)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD |=2,C 点坐标(8,-2),∴S △ABC =S △ABD +S △BCD =12×2×(2+2)=4.故填4.类型二 利用线性规划求线性目标函数的最优解(2015·福建)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于( ) A .-52 B .-2 C .-32 D .2解:可行域如图中阴影部分,当直线过点A ⎝⎛⎭⎫-1,12,z =2x -y 有最小值-52.故选A.点拨:可行域是封闭区域时,可以将端点代入目标函数z =2x -y ,求出最值,这种代入的方法对于解线性规划的含参问题往往更优.若线性规划的可行域不是封闭区域时,不能简单的运用代入顶点的方法求最优解.如变式2,需先准确地画出可行域,再将目标函数对应直线在可行域上移动,观察z 的大小变化,得到最优解.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4,x -y ≥1,x -2y ≤2,则z =x +y ( )A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值解:画出不等式组表示的平面区域,如图,由z =x +y ,得y =-x +z ,令z =0,画出y =-x 的图象,当它的平行线经过A (2,0)时,z 取得最小值为z min =2+0=2,由于可行域是向右上方无限延伸的非封闭区域,y =-x +z 向右上方移动时,z =x +y 也趋于无穷大,所以z =x +y 无最大值,故选B.类型三 含参数的线性规划问题(1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34解:由题目所给的不等式组可知,其表示的平面区域如图阴影部分所示,这里直线y =kx +43只需经过线段AB 的中点D即可,易得D 点的坐标为⎝⎛⎭⎫12,52,代入可得k =73.故选A.(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B 的坐标分别为A (0,1)和B (1,0),且S △ABC =2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y =4,将点C (1,4)代入ax -y +1=0得a =3.故选D.点拨:此类问题综合性较强,注意到y =kx +43,ax -y +1=0都是含参数且恒过定点的直线,因此这两题我们采用数形结合求解.注意把握住两点:①参数的几何意义;②条件的合理转化.(1)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解:画出不等式组所表示的可行域如图中阴影部分所示,∵目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,∴作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,有a ×2+0=4,得a =2.故选B.(2)(2014·湖南)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 利用线性规划求非线性目标函数的最优解若实数x ,y 满足x 2+y 2≤1,则|2x +y-2|+|6-x -3y |的最小值是________.解:x 2+y 2≤1表示圆x 2+y 2=1及其内部,此时6-x -3y >0,故|6-x -3y |=6-x -3y ,令z =|2x +y -2|+|6-x -3y |=6-x -3y +|2x +y -2|,当2x +y -2≥0时,z =x -2y +4,目标函数z 在点A ⎝⎛⎭⎫35,45 处取得最小值,z min =3;当2x +y -2≤0时,z =8-3x -4y ,同理可知,目标函数z 在点A ⎝⎛⎭⎫35,45处取得最小值,z min =3,综上所述,|2x +y -2|+|6-x -3y |的最小值为3.故填3.点拨:本题可行域是圆及其内部的点,首先可以从目标函数的两个绝对值号中去掉一个,再分类讨论去掉另一个绝对值号,注意充分利用目标函数或可行域的几何意义.实系数方程f (x )=x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,求:(1)b -2a -1的值域; (2)(a -1)2+(b -2)2的值域.解:由题意知⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0⇒⎩⎪⎨⎪⎧b >0,a +2b +1<0,a +b +2>0. 可行域是一个不包括边界的三角形, 其顶点为A (-3,1),B (-2,0),C (-1,0).如图所示.(1)设b -2a -1=k ⇒b =k (a -1)+2,则k 表示可行域内一个动点P (a ,b )和定点Q (1,2)连线的斜率,因为A (-3,1),C (-1,0),则k AQ =14,k CQ =1,k AQ <k <k CQ ,14<k <1.∴b -2a -1的值域是⎝⎛⎭⎫14,1. (2)(a -1)2+(b -2)2表示可行域内一个动点P(a,b)和定点Q(1,2)的距离的平方,显然,当动点P(a,b)和点C(-1,0)重合时距离最小,最小值为22,而P(a,b)和点A(-3,1)重合时距离最大,最大值为17,所以(a-1)2+(b-2)2的值域为(8,17).类型五线性规划与整点问题设不等式组⎩⎪⎨⎪⎧x>0,y>0,y≤-nx+3n(n∈N*)所表示的平面区域为D n,记D n内的整点(即横坐标和纵坐标均为整数的点)个数为a n(a n∈N*),则数列{a n}的通项公式为__________.解:直线y=-nx+3n=-n(x-3),过定点(3,0),由y=-nx+3n>0得x<3,又x>0,所以x=1或x=2.直线x=2交直线y=-nx+3n于点(2,n),直线x=1交直线y=-nx+3n于点(1,2n),所以整点个数a n=n+2n=3n.故填a n=3n.点拨:求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设实数x,y满足不等式组⎩⎪⎨⎪⎧x+2y-5>0,2x+y-7>0,x≥0,y≥0,若x,y为整数,则3x+4y的最小值为()A.14 B.16 C.17 D.19解:画出可行域如图,令3x+4y=z,y=-34x+z4,过x轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y=-34x+z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min=3×4+4=16.故选B.类型六线性规划在实际问题中的应用(2015·陕西)某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8C.17万元D.18万元解:设每天生产甲、乙两种产品分别为x、y吨,利润为z元,则⎩⎪⎨⎪⎧3x+2y≤12,x+2y≤8,x≥0,y≥0,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分),即可行域.由z=3x+4y得y=-34x+z4,平移直线y=-34x至经过点B时,直线y=-34x+z4的纵截距最大,此时z最大,解方程组⎩⎪⎨⎪⎧3x+2y=12,x+2y=8,得⎩⎪⎨⎪⎧x=2,y=3,即B(2,3).∴z max=3x+4y=6+12=18.即每天生产甲、乙两种产品分别为2吨、3吨,能够获得最大利润,最大的利润是18万元.故选D.点拨:对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为元.解:设甲种设备需要生产x 天,乙种设备需要生产y 天,该公司所需租赁费为z 元,则z =200x +300y ,甲、乙两种设备每天生产A ,B 两类产品 产品 设备 A 类产品(件) (≥50) B 类产品(件) (≥140) 租赁费(元)甲设备 5 10 200 乙设备620300⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +65y ≥10,x+2y ≥14,x ≥0,y ≥0.作出不等式组表示的平面区域,当z =200x +300y 对应的直线过两直线⎩⎪⎨⎪⎧x +65y =10,x +2y =14的交点(4,5)时,目标函数z =200x +300y 取得最小值为2300元.故填2300.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.求目标函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距zb的最值间接求出z 的最值.最优解一般在顶点或边界取得.但要注意:①当b >0时,截距z b 取最大值,z 也取最大值;截距zb取最小值,z 也取最小值;②当b <0时,截距zb取最大值,z 取最小值;截距zb取最小值时,z 取最大值.3.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过可行域的一个便是.第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点Pi 逐一代入目标函数ZP i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.(2015·烟台模拟)不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13D.14解:作出不等式组对应的区域为如图△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D=12,所以S △BCD =12×(x C -x B )×12=14.故选D. 2.(2014·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .5解:画出约束条件表示的平面区域如图中阴影部分所示,目标函数可化为y =-12x +12z ,由图可知,当直线y =-12x +12z 经过点(1,1)时,z 取得最小值3.故选B.3.(2015·天津)设变量x ,y 满足约束条件。
条件不等式的求解
f 2 0 f (2) 0
2 2 a 1 a 2a 1 0 2 2 a 1 a 2a 1 0
1 解不等式组得:a 3或a 1 x 8或 0 x 2
2
分类讨论
当我们要解决的问题不能统一处理 时,要按照问题出现的各种情况分类进 行讨论,分别作出与各类情况相应的结 论。一些不等式含有参数,这类问题的 解与参数的变化有关。此时,就需要根 据参数的不同取值情况进行分类讨论。
例2
n为自然数,a 1,解关于x 的不等式:
n 1 ( 2) loga x 4log a2 x 12log a3 x ... n(2)n1 log an x log a (x 2 a) 3
分 析
此不等式比较复杂,不仅含有参数 a ,还有自然 数 n。先把此不等式化简,再对参数进行讨论, 不等式化简为:
观察图像得不等式的解集为
2 {x | a x 0} 3
用数形结合法解不等式涉及到的图形有直线、圆、椭圆、 双曲线、抛物线等。
谢谢
1)当0 a 1 时,不等式变为不等式组
x0 2 x a 0 x x2 a
2)当 a 1 时,不等式变为不等式组
x0 2 x a 0 x x2 a
3 用几何方法求解不等式
如果不等式的结构可以通过某种方式 与图形建立起联系,则可设法构造图形, 将不等式所表达的抽象的数量关系转化为 图形加以解决。
例3
设 A x 1 x 3 , B 是关于 x的不等式组
x2 2 x a 0 2 x 2bx 5 0
的解集,试确定 a, b 的取值范围,使得 A B。
不等式方法
不等式方法
不等式方法是用来解决不等式问题的一种数学方法。
它包括了对不等式进行运算和推导,以确定不等式的解集。
不等式方法的基本步骤如下:
1. 对不等式两边进行相同的运算,不改变不等式的方向。
常用的运算包括加减乘除,取对数,开方等。
2. 将不等式转化成一个更简单的形式,使得求解更容易。
例如,将复杂的不等式分解成两个更简单的不等式,或者将不等式移到一个边界上。
3. 利用已知条件和性质,推导出更多的不等式关系。
例如,利用数的性质,推导出两个不等式的相加或相乘的关系。
4. 根据已知条件和不等式关系,确定不等式的解集。
解集可以使用数轴上的图形表示,或者写成一组数的形式。
需要注意的是,不等式方法在解决不等式问题时,需要符合不等式的性质和规则。
例如,不等式两边的运算必须要保持不等式的方向不变,不能违反不等式的定义和规则。
不等式方法在数学和实际问题中都有广泛的应用。
在数学中,不等式方法被用来解决各种类型的不等式问题,例如线性不等式、二次不等式、绝对值不等式等。
在实际问题中,不等式方
法可以用来解决问题的约束条件和限制条件,使问题的解集更加准确和可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将不等式转化为: a 1 p a 2a 1 0 2 令 f p a 1 p a 2a 1 则 f p 0 恒成立,等价于:
2
f 2 0 f (2) 0
2 2 a 1 a 2a 1 0 2 2 a 1 a 2a 1 0
1)当0 a 1 时,不等式变为不等式组
x0 2 x a 0 x x2 a
2)当 a 1 时,不等式变为不等式组
x0 2 x a 0 x x2 a
3 用几何方法求解不等式
如果不等式的结构可以通过某种方式 与图形建立起联系,则可设法构造图形, 将不等式所表达的抽象的数量关系转化为 图形加以解决。
1 解不等式组得:a 3或a 1 x 8或 0 x 2
2
分类讨论
当我们要解决的问题不能统一处理 时,要按照问题出现的各种情况分类进 行讨论,分别作出与各类情况相应的结 论。一些不等式含有参数,这类问题的 解与参数的变化有关。此时,就需要根 据参数的不同取值情况进行分类讨论。
例2
n为自然数,a 1,解关于x 的不等式:
n 1 ( 2) loga x 4log a2 x 12log a3 x ... n(2)n1 log an x log a (x 2 a) 3
分 析
此不等式比较复杂,不仅含有参数 a ,还有自然 数 n。先把此不等式化简,再对参数进行讨论, 不等式化简为:
第六节 条件不等式的求解
什么是条件不 等式呢?
一个不等式,如果只有用某些范 围内的数值代替其中的字母,它 才能够成立,这样的不等式叫做 条件不等式.
条件不等式的分类和方程的分类相同, 都可以分为超越和代数不等式。代数不等 式又可以分为有理不等式和无理不等式。 有理式再分为整式不等式和分式不等式。 与方程主要讨论一元二次方程一样,整式 不等式中主要讨论一元二次不等式。二者 在解法上也是相通的。但是,不等式的解 法也具有自己的特色。
且有
g (1) 0 2b 6 0 b3 g (3) 0 14 6b 0
所以满足条件的 a , b取值范围为 a 3 且 b 3
对于不等式 f ( x) g( x) ,若把左右表达式看成函 数 y1 f ( x), y2 g( x) ,然后观察函数 y1 , y2 的图像, 找到与 y1 的图像在 y2上方的部分对应的自变量 的范围就是不等式的解。用此方法的关键是能 正确地构造函数 y1 , y2 且画出它们的图像。具体 步骤如下: (1)构造函数 y1 , y2 (2)画出函数 y1 , y2 的图像 (3)求 y1 , y2 图像的交点坐标 (4)给出不等式的解
观察图像得不等式的解集为
2 {x | a x 0} 3
用数形结合法解不等式涉及到的图形有直线、圆、椭圆、 双曲线、抛物线等。
谢谢
2 2
g x x 2bx 5 x b 5 b
2 2
2
如下图所示:
要使 A B ,则必须使 f x , g ( x) ,在 x上的 函数图像落在轴下方,即有 :
a 1 0 f 1 0 a 3 a 3 0 f 3 0
6
例1
若p R且 p 2, 不等式
log 2 x
2
p log 2 x 1 2log 2 x p
恒成立,求实数 x 的取值范围。
分析:此例如果把不等式看成是关于 log2 x的一元二 次不等式,则问题很难处理。如将问题转化关于 p 令 log 2 x a 的一次不等式,问题反而很好解决,
1 2 1 (2) loga x log x2 a a 3 3
n n
对 n 进行讨论:
(1)当 n 为偶数时,原不等式转化为
loga x loga (x2 a)
(2)当 n 为奇数时,原不等式转化为
loga x loga (x2 a)
下面再 a 对进行讨论,由于 a 为对数的底, 故分 0 a 1与a 1 两种情况:
例4
解关于 x 的不等式 a2 2x2 x a
分析 构造函数 y a2 2x2, y x a,先求两个函数图像的交点。
2 y a2 2x2 x1 0或x2 a 3 y x a
显然当 a 0 时无解,当 a 0 时,图像如下:
例3
设 A x 1 x 3 , B 是关于 x的不等式组
x2 2 x a 0 2 x 2bx 5 0
的解集,试确定 a, b 的取值范围,使得 A B。
分析 构造函数
f x x 2 x a x 1 a 1
本 节 学 习 内 容
1
由复杂向简单不 等式的转化
2
分类讨论
3
2015/11/17
用几何方法求解 不等式
1 由复杂向简单不等式的转化
转化,或者称为化归,是数学 中常用的处理方法。在解不等式中,可 以将超越不等式转化为代数不等式;将 无理不等式转化为有理不等式;将高次 不等式转化为低次不等式等等。