2019-2020学年北京四中八年级(下)期中数学试卷 ( 解析版)
2019学年北京市八年级下学期期中数学试卷【含答案及解析】
(1)下列网格每个小正方形的边长都为 1,请你在网格中作出一个正方形 ABCD,使它的
边长 a=
,要求 A、 B、 C、 D四个顶点都在小正方形的格点上 .
(2)参考小强的思路,探究解决下列问题:作另一个正方形
EFGH,使它的四个顶点分别
在( 1)中所做正方形 ABCD的边上,并且边长 b 取得最小值 . 请你画出图形,并简要说明 b
四个顶点分别在已知正方形的四条边上,并且边长等于
b.
小强的思考是:如图,假设正方形 EFGH已作出 , 其边长为 b,点 E、F、 G、 H分别在 AD、
AB、 BC、 CD上,则正方形 EFGH的中心就是正方形 ABCD的中心 O(对角线的交点) .
∵正方形 EFGH的边长为 b,∴对角线 EG= HF= b, ∴OE= OF=OG=OH= b,进而点 E、 F、 G、 H可作出 . 解决问题 :
参考答案及解析
第 1 题 【答案】
第 2 题 【答案】
第 3 题 【答案】 第 4 题 【答案】 第 5 题 【答案】
第 6 题 【答案】 第 7 题 【答案】 第 8 题 【答案】
第 9 题 【答案】 第 10 题【答案】
第 11 题【答案】 第 12 题【答案】
第 13 题【答案】 第 14 题【答案】 第 15 题【答案】 第 16 题【答案】
(1)求证:四边形 DBFE是平行四边形; (2)当△ ABC满足什么条件时,四边形 DBFE是菱形 ?为什么 ?
21. 某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为
4 万元,
可变成本
逐年增长 . 已知该养殖户第 1 年的可变成本为 2.6 万元 . 设可变成本平均每年增长的百分率
人教数学八年级下册北京四中第二学期期中考试初二年级学科试题及答案.docx
ACB (第4题图)初中数学试卷桑水出品数学试卷(时间:100分钟满分:120分) 姓名:班级:成绩: ____________一、选择题(每小题3分,共30分)1.□ABCD 中,∠A :∠B =1:2,则∠A 的度数为().A .30°B .45°C .60°D .120°2.某服装店试销一款女式防晒服,试销期间对不同颜色的防晒服的销售情况做了统计. 如果服装店经理最关心的是哪种颜色的防晒服最畅销,那么对经理最有意义的统计量是(). A .平均数 B .众数 C .中位数 D .方差3.关于x 的一元二次方程222310x x a ---=的一个根为2,则a 的值是(). A .0 B .1 C .-1 D .1±4.如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底部C 点12米处,则大树断裂之前的高度为(). A .9米 B .15米 C .21米 D .24米 5.某城2012年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2014年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是(). A .300(1+x )=363 B .300(1+x )²=363 C .300(1+2x )=363 D .363(1-x )²=3006.如图,□ABCD 中,AB=10,BC=6,E 、F 分别是AD 、DC 的中点,若EF=7,则四边形EACF 的周长是(). A .20 B .22 C .29 D .317.不能..判定为平行四边形的是(). A .一组对边平行,一组对角相等的四边形B .一组对边平行,一条对角线被另一条对角线平分的四边形C .一组对边相等,另一组对边平行的四边形D .两条对角线互相平分的四边形8.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是().A .2.5B .5C .322D .29.如果关于x 的一元二次方程210ax x +-=有实数根,则a 的取值范围是().A .14a >-B .14a ≥-C .14a ≥-且a ≠0D .14a >-且a ≠010.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且13AE AB =,将矩形沿直线EF A BD CEF (第6题图)(第8题图)折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( ).A .①②B .②③C .①③D .①④二、填空题(每小题2分,共20分)11.已知a 是方程22430x x +-=的一个根,则代数式22a a +=_______.12.矩形的两条对角线所夹的锐角为60º,较短的边长为12,则对角线长为______. 13.如果把代数式223x x -+化成2()x h k -+的形式,其中h ,k 为常数,那么h+k 的值是. 14.如图,把两块相同的含30o 角的三角尺如图放置,若66AD =cm ,则三角尺的最长边长为__________cm .15.样本数据3,6,a ,4,2的平均数是5,则a =_____;这个样本的方差是______. 16.等腰ABC ∆两边的长分别是一元二次方程2560x x -+=的两个解,则这个等腰三角形的周长是____________.17.如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线 AC 上的一个动点,则PE+PB 的最小值是__________. 18.在实数范围内定义一种运算“※”,其规则为♢※△=♢²-2△,根据这个规则,方程(x -3)※x 21=0的解为__________. (第14题图)(第17题图)(第19题图)19.如图,正方形ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE =30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ =AE ,则AP 等于 cm . 20.如图,在平面直角坐标系xOy 中,有一边长为1的正方形OABC ,点B 在x 轴的正半轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB 1为边作第三个正方形OB 1 B 2C 2,…,照此规律作下去,则B 2的坐标是; B 2015的坐标是. 三、解答题 21.(每小题3分)解下列关于x 的方程 (1)3x (x -2)=2x -4;(2)x 2-3x -28=0; (3)3x 2-4x =2;(4)x 2+mx +2=mx 2+3x .(m ≠1) 22.(本题5分)如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,求四边形ACBD 的面积. 23.(本题5分)如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E. (1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断△ABC 的形状,并说明理由.(第10题图) C 4C3C 2C 1B 4B 3B 2B 1A BCO yxE24.(本题5分)已知关于x 的方程.022)13(2=+++-m x m mx(1) 求证:无论m 取任何实数,方程恒有实数根; (2) 若该方程有两个整数根,且m 为整数,求m 的值. 25.(本题5分)列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园ABCD ,为了节约材料,花园的一边AD 靠着原有的一面墙,墙长为8米(AD <8),另三边用栅栏围成,已知栅栏总长为24米,求花园一边AB 的长. 26.(本题5分)四中在开展“好算手”系列活动中,为了解本校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下: (1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该1200名学生共参加了多少次活动.27.(本题6分)已知,矩形ABCD 中,延长BC 至E ,使BE=BD ,F 为DE 的中点,连结AF . (1) 若AB =3,AD =4,求 DE 的长; (2) 求证:∠ADB=2∠DAF28.(本题7分)如图1,EF 是中位线,AD 与EF 相交于点O .若将△AEO 与△AFO 分别绕E EBCF 构成矩形PBCQ ,我们把这样形成的矩形称为△ABC (1)若△ABC 的边BC =5PBCQ 的长为________,宽为________;(2)如图2,在△ABC 中,∠C =90°,BC =2,AC =4,试求△ABC 的所有等积矩形的长和宽; (3)如图3,矩形ABCD 中,AB =2,BC =3,那么能形成这样的等积矩形的三角形有多少个?试探究其中周长最小的三角形的三边长. 四、附加题1.(本题6分)如图在矩形ABCD 中,AB =3,AD =1,点P 在线段AB 上运动设AP =x ,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E ,F 为折痕与矩形边的交点),再将纸片还原. (1)当点E 与点A 重合时,折痕EF 的长为; (2)当四边形EPFD 为菱形时,x 的取值范围为; (3)当x =2时,菱形EPFD 的边长为_____________.2.(本题7分)已知:α,β(α>β)是一元二次方程x 2-x -1=0的两个实数根,设s 1=α+β,s 2=α2+β2,…,s n =αn +βn .根据根的定义,有α2-α-1=0,β2-β-1=0,将两式相加,得(α2+β2)-(α+β)-2=0,于是,得s 2-s 1-2=0.根据以上信息,解答下列问题:(1)利用配方法求α,β的值,并直接写出s 1,s 2的值;(2)猜想:当n ≥3时,s n ,s n -1,s n -2之间满足的数量关系,并证明你的猜想的正确性; (3)根据(2)中的猜想,求(1+52)5+(1-52)5的值.3.(本题7分)如图1,P 为正方形ABCD 的边CD 上一点,E 在CB 的延长线上,BE =DP ,∠CEP 的平分线交正方形的对角线AC 于点F . (1)求证:AE =AF ;(2)如图2,AM ⊥PE 于M ,FN ⊥PE 于N ,求证:AM +FN =AD ;EA(3)在(2)的条件下,若正方形ABCD 的边长为a ,N 为PM 的中点,求线段FN 的长(用含a 的代数式表示).一、选择题1.C.2.B.3.D4.D5.B6.C7.C8.B9.C 10.D 二、填空题11.3212.24 13.3 14.12 15. 10,8 16.7或19.2或1 20.(0, ,(22- 三、解答题 21.(1)1222,3x x == ; (2)127,4x x ==-(3)12x x ==;(4)1221,1x x m ==- 22.36 23.直角三角形24.(1)略 (2)1m =±. 25.x=10.26.(1)平均数=3.3 众数4, 中位数3. (2)3960略 28. (1)5 3(2)△ABC 可形成如下三个等积矩形: 图①中的矩形的长为2,宽为2 图②中的矩形的长为4,宽为1图③中的矩形的长为42+22=25,宽为4×22×25=255(3)能形成这样的等积矩形的三角形有无数个其中,当以BC 为底时,构成已知等积矩形的三角形的高是4则这样的三角形的另一顶点P 在图④中的四个矩形拼成的图形中的EF 上 当P 为EF 的中点时,△PBC 的周长最小PB +PC +BC =3+3 2+82=3+73当以AB 为底时,构成已知等积矩形的三角形的高是6, 这样的三角形的另一顶点P 在图⑤中的EF 上 同理当P 为EF 的中点时,△PAB 的周长最小PB +PA +AB =2+2 2+122=2+237∵3+73<12,2+237>14∴能形成这样的等积矩形的三角形的周长最小值为3+73 三角形的三边长分别为3,732,732附加题:53;(3)4x ≤≤ 2. 解:(1)移项,得x2-x =1配方,得x2-2×x ×12+( 12)2=1+( 12)2即(x - 12)2= 54开平方,得x - 12=±52,即x =1±52∵α>β,∴α=1+52,β=1-52·············· 3分于是s 1=α+β=1,s 2=s 1+2=3 ················ 5分 (2)猜想:s n =s n -1+s n -2 ······················ 6分证明:根据根的定义,有α2-α-1=0两边都乘以αn-2,得αn-αn-1-αn-2=0 ①同理,βn-βn-1-βn-2=0 ②①+②,得(αn+βn)-(αn-1+βn-1)-(αn-2+βn-2)=0∵s n=αn+βn,s n-1=αn-1+βn-1,s n-2=αn-2+βn-2∴s n-s n-1-s n-2=0,即s n=s n-1+s n-2···············10分(3)由(1)知,s1=1,s2=3由(2)中的关系式可得:s3=s2+s1=4,s4=s3+s2=7,s5=s4+s3=11,3.(1)连接AP∵正方形ABCD,∴AB=AD,∠ABE=∠D=90°又BE=DP,∴△ABE≌△ADP∴AE=AP,∠BAE=∠DAP∵∠BAP+∠DAP=90°∴∠BAP+∠BAE=90°,即∠EAP=90°∴∠AEP=∠APE=45°∵正方形ABCD,∴∠ACB=45°∴∠AEP=∠ACB∵∠AEF=∠AEP+∠PEF,∠AFE=∠ACB+∠CEF又∠PEF=∠CEF,∴∠AEF=∠AFE∴AE=AF(2)过F作FH⊥AM于H则四边形MHFN是矩形,∴FN=MH由(2)知,AE=AP,AE=AF∴AF=AP易知△AEP是等腰直角三角形又AM⊥PE,∴AM=PM,∠MAP=45°∴∠HAF=∠DAP=45°-∠PAF又∠AHF=∠D=90°,∴△AHF≌△ADP∴AD=AH=AM+MH=AM+FN即AM+FN=AD(3)设FN=x,则PM=AM=a-x,AP=2(a-x)∵△AHF≌△ADP,∴DP=FH=MN=12PM=12(a-x)在Rt△ADP中,a2+[12(a-x)]2=[2(a-x)]2整理得:7x2-14ax+3a2=0ABDC EFP ABDC EFPMNH解得:x1=a+277a(舍去),x1=a-277a即FN=a-277a。
2019-2020学年北京四中八年级(下)期中数学试卷 ( 解析版)
2019-2020学年北京四中八年级(下)期中数学试卷一.选择题(共10小题)1.函数中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3D.x≤32.以下列各组数为边长,能构成直角三角形的是()A.1,,2B.1,1,2C.2,3,4D.4,5,63.下列各式中与是同类二次根式的是()A.B.C.D.4.如图,将▱ABCD的一边BC延长至点E,若∠1=55°,则∠A=()A.35°B.55°C.125°D.145°5.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直6.在下列图形性质中,平行四边形不一定具备的是()A.两组对边分别平行B.两组对边分别相等C.对角线相等D.对角线互相平分7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角8.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=39.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为()A.(1,2)B.(4,2)C.(2,4)D.(2,1)10.如图,Rt△ABC中,AB=18,BC=12,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.8B.6C.4D.10二.填空题(共8小题)11.如图,在▱ABCD中,BC=9,AB=5,BE平分∠ABC交AD于点E,则DE的长为.12.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠BOC=120°,AB=3,则BC的长为.13.估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)14.如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为.15.如果一个无理数a与的积是一个有理数,写出a的一个值是.16.如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB.下面结论:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正确的结论是.17.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若AE=6,正方形ODCE的边长为2,则BD等于.18.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢的作法,他的作图依据是:.三.解答题(共10小题)19.计算:+÷20.在平面直角坐标系xOy中,已知A(﹣3,2),B(﹣1,﹣2),C(1,1),若以A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.(在平面直角坐标系中画出平行四边形并标上点D的坐标.)21.如图,E、F是▱ABCD的对角线AC上的两点,AE=CF.求证:EB=DF(写出主要的证明依据).22.已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.23.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线AP,以点P为圆心,P A长为半径画弧,交AP的延长线于点B;②以点B为圆心,BA长为半径画弧,交l于点C(不与点A重合),连接BC;③以点B为圆心,BP长为半径画孤,交BC于点Q;④作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:∵PB=P A,BC=,BQ=PB,∴PB=P A=BQ=.∴PQ∥l()(填推理的依据).24.下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()25.常常听说“勾3股4弦5”,是什么意思呢?它就是勾股定理,即“直角三角形两直角边长a,b与斜边长c之间满足等式:a2+b2=c2”的一个最简单特例.我们把满足a2+b2=c2的三个正整数a,b,c,称为勾股数组,记为(a,b,c).(1)请在下面的勾股数组表中写出m、n、p合适的数值:a b c a b c345435512m681072425p15179n41102426116061123537………………平面直角坐标系中,横、纵坐标均为整数的点叫做整点(格点).过x轴上的整点作y轴的平行线,过y轴上的整点作x轴的平行线,组成的图形叫做正方形网格(有时简称网格),这些平行线叫做格边,当一条线段AB的两端点是格边上的点时,称为AB在格边上.顶点均在格点上的多边形叫做格点多边形.在正方形网格中,我们可以利用勾股定理研究关于图形面积、周长的问题,其中利用割补法、作图法求面积非常有趣.(2)已知△ABC三边长度为4、13、15,请在下面的网格中画出格点△ABC并计算其面积.26.如图,矩形ABCD中,点E为矩形的边CD上的任意一点,点P为线段AE的中点,连接BP并延长与边AD交于点F,点M为边CD上的一点,且CM=DE,连接FM.(1)依题意补全图形;(2)求证∠DMF=∠ABF.27.(1)小My同学在网络直播课中学习了勾股定理,他想把这一知识应用在等边三角形中:边长为a的等边三角形面积是(用含a的代数式表示);(2)小My同学进一步思考:是否可以将正方形剪拼成一个等边三角形(不重叠、无缝隙)?①如果将一个边长为2的正方形纸片剪拼等边三角形,那么该三角形边长的平方是;②小My同学按下图切割方法将正方形ABCD剪拼成一个等边三角形EFG:M、N分别为AB、CD边上的中点,P、Q是边BC、AD上两点,G为MQ上一点,且∠MGP=∠PGN=∠NGQ=60°.请补全图形,画出拼成正三角形的各部分分割线,并标号;③正方形ABCD的边长为2,设BP=x,则x2=.28.如图,双边直尺有两条平行的边,但是没有刻度,可以用来画等距平行线:我们也可用工具自制(如图):下面是小My同学设计的“过直线外一点作这条直线的平行线”的双边直尺作图过程.(1)根据小My同学的作图过程,请证明O为PH中点.(2)根据小My同学的作图过程,请证明PQ∥l.参考答案与试题解析一.选择题(共10小题)1.函数中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3D.x≤3【分析】根据二次根式有意义的条件,即根号下大于等于0,求出即可.【解答】解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.2.以下列各组数为边长,能构成直角三角形的是()A.1,,2B.1,1,2C.2,3,4D.4,5,6【分析】根据勾股定理的逆定理的内容和三角形三边关系定理逐个判断即可.【解答】解:A、∵12+()2=22,∴以1,,2为边能组成直角三角形,故本选项符合题意;B、1+1=2,不符合三角形三边关系定理,不能组成三角形,也不能组成直角三角形,故本选项不符合题意;C、∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴以4,5,6为边不能组成直角三角形,故本选项不符合题意;故选:A.3.下列各式中与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的定义逐个判断即可.【解答】解:A、与不是同类二次根式,故本选项不符合题意;B、=3,与不是同类二次根式,故本选项不符合题意;C、=2,与不是同类二次根式,故本选项不符合题意;D、=3,与是同类二次根式,故本选项符合题意;故选:D.4.如图,将▱ABCD的一边BC延长至点E,若∠1=55°,则∠A=()A.35°B.55°C.125°D.145°【分析】根据平行四边形的对角相等得出∠A=∠BCD,再根据平角等于180°列式求出∠BCD=125°,即可得解.【解答】解:∵四边形ABCD是平行四边形,∠A=∠BCD,∵∠1=55°,∴∠BCD=180°﹣∠1=125°,∴∠A=∠BCD=125°.故选:C.5.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.6.在下列图形性质中,平行四边形不一定具备的是()A.两组对边分别平行B.两组对边分别相等C.对角线相等D.对角线互相平分【分析】根据平行四边形的性质:平行四边形的对边相等且平行,对角线互相平分,可得A、B、D正确.C错误即可.【解答】解:∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴选项A、B、D正确.C错误.故选:C.7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角【分析】根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【解答】解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、一组对角是否都为直角,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选:D.8.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=3【分析】根据同类二次根式的定义得出方程,求出方程的解即可.【解答】解:∵最简二次根式与最简二次根式是同类二次根式,∴x+3=2x,解得:x=3,故选:D.9.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为()A.(1,2)B.(4,2)C.(2,4)D.(2,1)【分析】根据三角形的中位线定理和坐标解答即可.【解答】解:过N作NE⊥y轴,NF⊥x轴,∵点A(0,2),B(4,0),点N为线段AB的中点,∴NE=2,NF=1,∴点N的坐标为(2,1),故选:D.10.如图,Rt△ABC中,AB=18,BC=12,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.8B.6C.4D.10【分析】设BN=x,则由折叠的性质可得DN=AN=18﹣x,根据中点的定义可得BD=6,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=18﹣x,∵D是BC的中点,∴BD=6,在Rt△NBD中,x2+62=(18﹣x)2,解得x=8.即BN=8.故选:A.二.填空题(共8小题)11.如图,在▱ABCD中,BC=9,AB=5,BE平分∠ABC交AD于点E,则DE的长为4.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵BC=9,CD=5,∴DE=AD﹣AE=9﹣5=4.故答案为:4.12.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠BOC=120°,AB=3,则BC的长为3.【分析】根据矩形的性质求出AC=2AO,AO=BO,根据等边三角形的判定得出△AOB 是等边三角形,求出AB=AO=3,求出AC,再根据勾股定理求出BC即可.【解答】解:∵∠BOC=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,AO=OC,BO=DO,∴AO=BO,∴△AOB是等边三角形,∴AB=AO=BO,∵AB=3,∴AO=3,∴AC=2AO=6,由勾股定理得:BC===3,故答案为:3.13.估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0,∴>0.5.故答案为:>.14.如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为4.【分析】过E作EM⊥BC于M,根据矩形的性质得出∠A=∠B=90°,求出四边形ABME 是矩形,根据矩形的性质得出EM=AB=5,AE=BM,求出EM=FM=5,根据BC=13和AE=CF=BM求出即可.【解答】解:如图,过E作EM⊥BC于M,则∠EMF=∠EMB=90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴四边形ABME是矩形,∵AB=5,∴EM=AB=5,AE=BM,∵∠EFB=45°,∠EMF=90°,∴∠MEF=45°=∠EFB,∴EM=FM=5,∵BC=13,AE=CF=BM,∴2AE+5=13,解得:AE=4,故答案为:4.15.如果一个无理数a与的积是一个有理数,写出a的一个值是(答案不唯一).【分析】直接化简二次根式,进而得出符合题意的值.【解答】解:∵=2,∴无理数a与的积是一个有理数,a的值可以为:(答案不唯一).故答案为:(答案不唯一).16.如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB.下面结论:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正确的结论是①②④.【分析】证明Rt△DEF≌Rt△DEC得出①正确;在证明△ABE≌△DF A得出S△ABE=S△ADF;②正确;得出BE=AF,④正确,③不正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABE=90°,AD∥BC,AB=CD,∵DF=AB,∴DF=CD,∵DF⊥AE,∴∠DF A=∠DFE=90°,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),①正确;∵AD∥BC,∴∠AEB=∠DAF,在△ABE和△DF A中,,∴△ABE≌△DF A(AAS),∴S△ABE=S△ADF;②正确;∴BE=AF,④正确,③不正确;故答案为:①②④.17.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若AE=6,正方形ODCE的边长为2,则BD等于4.【分析】设BD=x,正方形ODCE的边长为2,则CD=CE=2,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.【解答】解:设正方形ODCE的边长为2,则CD=CE=2,设BD=x,∵△AFO≌△AEO,△BDO≌△BFO,∴AF=AE,BF=BD,∴AB=x+6,AC=6+2=8,BC=x+2,∵AC2+BC2=AB2,∴(x+2)2+82=(x+6)2,∴x=4,故答案为:4.18.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢甲或乙的作法,他的作图依据是:两组对边分别相等的四边形是平行四边形或对角线互相平分的四边形是平行四边形.【分析】根据平行四边形的判定方法即可解决问题.【解答】解:①甲,两组对边分别相等的四边形是平行四边形;②乙,对角线互相平分的四边形是平行四边形.故答案为:甲或乙,两组对边分别相等的四边形是平行四边形或对角线互相平分的四边形是平行四边形.三.解答题(共10小题)19.计算:+÷【分析】先化简二次根式,计算二次根式的除法,再合并同类二次根式即可得.【解答】解:原式=3+=4.20.在平面直角坐标系xOy中,已知A(﹣3,2),B(﹣1,﹣2),C(1,1),若以A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.(在平面直角坐标系中画出平行四边形并标上点D的坐标.)【分析】根据平行四边形的判定即可得点D的坐标.【解答】解:如图,∵A(﹣3,2),B(﹣1,﹣2),C(1,1),以A、B、C、D为顶点的四边形是平行四边形,∴点D的坐标为:(﹣5,﹣1)或(﹣1,5)或(3,﹣3).21.如图,E、F是▱ABCD的对角线AC上的两点,AE=CF.求证:EB=DF(写出主要的证明依据).【分析】由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,可得AB ∥CD,AB=CD,根据两直线平行,内错角相等,可得∠FCD=∠EAB,由已知AE=CF,可证得△FCD≌△EAB(SAS),所以EB=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD(平行四边形的对边平行且相等),∴∠FCD=∠EAB(两直线平行,内错角相等),∵AE=CF,∴△FCD≌△EAB(SAS),∴EB=DF.22.已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.【分析】根据勾股定理的逆定理求出∠BDC=90°,求出∠ADC=90°,在Rt△ADC中,由勾股定理得出a2=(a﹣6)2+82,求出a即可.【解答】解:设AB=AC=acm,∵BC=10cm,CD=8cm,BD=6cm,∴BD2+CD2=BC2,∴∠BDC=90°,即∠ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a﹣6)2+82,解得:a=,即AB=cm.23.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线AP,以点P为圆心,P A长为半径画弧,交AP的延长线于点B;②以点B为圆心,BA长为半径画弧,交l于点C(不与点A重合),连接BC;③以点B为圆心,BP长为半径画孤,交BC于点Q;④作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:∵PB=P A,BC=BA,BQ=PB,∴PB=P A=BQ=QC.∴PQ∥l(三角形的中位线定理)(填推理的依据).【分析】(1)根据要求画出图形.(2)利用三角形的中位线定理证明即可.【解答】解:(1)直线PQ即为所求.(2)证明:∵PB=P A,BC=BA,BQ=PB,∴PB=P A=BQ=QC.∴PQ∥l(三角形的中位线定理).故答案为:BA,QC,三角形的中位线定理24.下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形25.常常听说“勾3股4弦5”,是什么意思呢?它就是勾股定理,即“直角三角形两直角边长a,b与斜边长c之间满足等式:a2+b2=c2”的一个最简单特例.我们把满足a2+b2=c2的三个正整数a,b,c,称为勾股数组,记为(a,b,c).(1)请在下面的勾股数组表中写出m、n、p合适的数值:a b c a b c345435512m681072425p15179n41102426116061123537………………平面直角坐标系中,横、纵坐标均为整数的点叫做整点(格点).过x轴上的整点作y轴的平行线,过y轴上的整点作x轴的平行线,组成的图形叫做正方形网格(有时简称网格),这些平行线叫做格边,当一条线段AB的两端点是格边上的点时,称为AB在格边上.顶点均在格点上的多边形叫做格点多边形.在正方形网格中,我们可以利用勾股定理研究关于图形面积、周长的问题,其中利用割补法、作图法求面积非常有趣.(2)已知△ABC三边长度为4、13、15,请在下面的网格中画出格点△ABC并计算其面积.【分析】(1)根据勾股数的定义计算即可;(2)根据勾股数确定长为13和15的边,再根据三角形的面积公式计算即可.【解答】解:(1)∵52+122=132,∴m=13;∵92+402=412,∴n=40,∵82+152=172,∴p=8.(2)如图所示:在△ABC中,AB=15,BC=4,AC=13,S△ABC=S ABD﹣S△ACD==24.26.如图,矩形ABCD中,点E为矩形的边CD上的任意一点,点P为线段AE的中点,连接BP并延长与边AD交于点F,点M为边CD上的一点,且CM=DE,连接FM.(1)依题意补全图形;(2)求证∠DMF=∠ABF.【分析】(1)按要求画图;(2)延长BF交CD的延长线于点N,首先证明△APB和△EPN全等,得到EN=AB,再根据已知条件证明FN=FM,可得结论.【解答】(1)解:如图所示,(2)证明:延长BF交CD的延长线于点N,∵点P为线段AE中点,∴AP=PE,∵AB∥CD,∴∠PEN=∠P AB,∠2=∠N,∵在△APB和△EPN中,∵,∴△APB≌△EPN(AAS),∴AB=EN,∴AB=CD=EN,∵EN=DN+DE,CD=DM+CM,∵DE=CM,∴DN=DM,∵FD⊥MN,∴FN=FM,∴∠N=∠1,∴∠1=∠2,即∠DMF=∠ABF.27.(1)小My同学在网络直播课中学习了勾股定理,他想把这一知识应用在等边三角形中:边长为a的等边三角形面积是a2(用含a的代数式表示);(2)小My同学进一步思考:是否可以将正方形剪拼成一个等边三角形(不重叠、无缝隙)?①如果将一个边长为2的正方形纸片剪拼等边三角形,那么该三角形边长的平方是;②小My同学按下图切割方法将正方形ABCD剪拼成一个等边三角形EFG:M、N分别为AB、CD边上的中点,P、Q是边BC、AD上两点,G为MQ上一点,且∠MGP=∠PGN=∠NGQ=60°.请补全图形,画出拼成正三角形的各部分分割线,并标号;③正方形ABCD的边长为2,设BP=x,则x2=﹣1.【分析】(1)如图1,过A作AD⊥BC于D,根据等边三角形的性质得到BD=CD=BC =a,由勾股定理得到AD===a,于是得到S△ABC=BC•AD=a2;(2)①根据三角形的面积公式即可得到结论;②补全图形如图2所示;③由题意知,PG=PE,GN=NF,推出PN是△GEF的中位线,得到PN=EF,根据勾股定理即可得到结论.【解答】解:(1)如图,过A作AD⊥BC于D,∵△ABC是等边三角形,∴BD=CD=BC=a,∴AD===a,∴S△ABC=BC•AD=a2;(2)①∵边长为2的正方形的面积=4,∴剪拼成的等边三角形的面积=4,∴a2=4,∴a2=,即该三角形边长的平方是;②补全图形如图2所示;③由题意知,PG=PE,GN=NF,∴PN是△GEF的中位线,∴PN=EF,∵N为AB边上的中点,∴BN=AB=1,∵边长为2的正方形的面积=4,∴剪拼成的等边三角形的面积=4,∴a2=4,∴a2=,即△GEF边长的平方是,∴EF=,∴PN=,∵PN2=BN2+BP2,∴=+1x2,∴x2=﹣1;故答案为:(1)a2;(2)①;③﹣1;28.如图,双边直尺有两条平行的边,但是没有刻度,可以用来画等距平行线:我们也可用工具自制(如图):下面是小My同学设计的“过直线外一点作这条直线的平行线”的双边直尺作图过程.(1)根据小My同学的作图过程,请证明O为PH中点.(2)根据小My同学的作图过程,请证明PQ∥l.【分析】(1)根据小My同学的作图过程可得,四边形PMHN是平行四边形,根据平行四边形的对角线互相平分,即可得结论;(2)作OK∥TH交QI于点K,由作图过程可证明△OQK≌△TOH(ASA),可得OQ=OT,进而可以得结论.【解答】解:(1)根据小My同学的作图过程可知:四边形PMHN是平行四边形,根据平行四边形的对角线互相平分,所以O为PH中点.(2)如图,作OK∥TH交QI于点K,由作图过程可知:PH∥QI,∴OK=HI=TH,∠QOK=∠OTH,∠OKQ=∠QIH=∠OHT,∴△OQK≌△TOH(ASA),∴OQ=OT,∵OP=OH,∴四边形PQHT是平行四边形,∴PQ∥l.。
北京四中八年级下学期期中考试试题及答案
数 学 试 卷(考试时间为100分钟,试卷满分为100分)班级 学号 姓名 分数 一.选择题(本题共30分,每小题3分)1.对于函数x y k=,若2=x 时,3-=y ,则这个函数的解析式是( )A. x y 6=B. x y 61=C. x y 6 -= D. x y 61 -=2.下列各式中,运算正确的是( ) A. B. = C.= D.a b =+3.下列说法中正确的是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直且相等的四边形是正方形D .两条对角线互相平分的四边形是平行四边形4. x y 2-=图象上有两点A (x 1,y 1)和 B(x 2,y 2),若y 1<y 2<0, 则x 1与x 2的关系是( )A .0 < x 1 < x 2B .0 > x 1 > x 2C .x 1 < x 2 < 0D .x 1 > x 2> 0 5. 如图,□ABCD 中,∠DAB 的平分线AE 交CD 于E ,AB =5,BC =3,则EC 的长( ) A .1 B .1.5 C .2 D .36. 若一个等腰梯形的周长为30cm ,腰长为6cm, 则它的中位线长为( ) A. 12cm B. 6cm C. 18cm D. 9cm 7.下列三角形中,不是直角三角形的是( )A .三个内角之比为5∶6∶1B . 一边上的中线等于这一边的一半C .三边之长为20、21、29D . 三边之比为1.5 : 2 : 3 8.如图,数轴上点A 所表示的数为a ,则a 的值是( )A B .C DCBAED9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,矩形AOBC 中,点A 的坐标为(0,8),点D 的纵坐标为3,若将矩形沿直线AD 折叠,则顶点C 恰好落在边OB 上E 处,那么图中阴影部分的面积为( )A. 30 B .32 C .34 D .16 二.填空题(本题共16分,每小题2分)11.函数y =x -2中自变量x 的取值范围是12.在□ABCD 中,∠A =70°,∠D =________ . 13. 比较大小:32 13.14.若1x =-是关于x 的方程2220x ax a +-=15.矩形的两条对角线所夹的锐角为60︒,16.顺次连接等腰梯形各边中点得到的四边形是_________________.17.如图,如果曲线l 1是反比例函数xky =在第一象限内的图象,且过点A (2,1), 那么与l 1关于x 轴对称的曲线l 2的解析式为 (x>0). 18.如图,△ABC 中,∠ACB=90°,,取斜边的中点,向斜直角三角形的斜边与△ABC 的BC 边长为__________.三.计算(本题共20分,第19题12分,第2019.计算:(1) )2332)(2332(-+ (2))2681()235041(+-解:原式=ADCF EDCBA xy21OA l 1l 2y(3)444(1)(4)3(1).2x x x x⎡⎤+-+-÷-⎢⎥-⎣⎦ 解:原式=20.解关于x 的方程(1)9)7)(3(-=+-x x ; (2)220x x k --=(其中k 为常数). 解: 解:四.解答题(本题共22分,第21,22题6分,第23,24题每题5分)21. 在□ABCD 中,对角线BD 、AC 相交于点O ,BE =DF ,过点O 作线段GH 交AD 于点G ,交BC 于点H ,顺次连接EH 、HF 、FG 、GE ,求证:四边形EHFG 是平行四边形.22.甲乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时.问二人每小时各走几千米?D23.已知反比例函数)0(1<=k xky 的图象过点A(m ,3-),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为3 (1) 求k 和m 的值;(2) 若一次函数12+=ax y 的图象经过点A ,并且与x 轴相交于点C ,求AC AO :的值;24.在下面所给的图形中,若连接BC ,则四边形ABCD 是矩形,四边形CBEF 是平行四边形.用铅笔和三角板画图:(1)在图1中画出两条线段,将整个图形分成面积相等的两个部分(不写画法); (2)在图2中画出一条线段,还能够将整个图形分成面积相等的两个部分,并写出画法的主要步骤.xyOABC五.解答题(本题共12分,第25、26题每题6分)25. 有一块直角三角形纸片, 两直角边AC = 6cm, BC = 8cm,①如图1,现将纸片沿直线AD折叠, 使直角边AC落在斜边AB上, 且与AB重合, 则CD = _________.图1图2②如图2,若将直角∠C沿MN折叠, 使点C落在AB中点H上, 点M、N分别在AC、BC上, 则2AM、2BN与2MN之间有怎样的数量关系?并证明你的结论。
北京XX中学2019-2020学年八年级下数学期中考试数学试卷-附答案(精校版)
的小路长为()
A.3米B.6米C.8米D.10米
7.将抛物线 平移,得到抛物线 ,下列平移方式中,正确的是()
A.先向左平移1个单位,再向上平移2个单位
B.先向左平移1个单位,再向下平移2个单位
C.先向右平移1个单位,再向上平移2个单位
D.先向右平移1个单位,再向下平移2个单位
(2)求这个二次函数的表达式;
(3)在右图中画出此二次函数的图象;
(4)此抛物线在第一象限内的部分记为
图象G,如果过抛物线顶点的直线
y=mx+n(m≠0)与图象G有唯一公共
点,请结合图象,写出m的取值范围
_________________________________.
24.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:
(1)如图1,在正方形ABCD中,点E为 BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.求证:AE=MN;
同学们发现,过点D作DP∥MN,交AB于P,构造□DNMP,经过推理能够使问题得到解决(如图2).请你完成证明过程.
(2)如图3,当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,求证:BF= FG.
A.平均数B.中位数C.众数D.方差
4.三角形的两边长分别为3和6,第三边的长是方程 的一个根,则
此三角形的周长为()
A.10B.11C.13D.11或13
5.如图,□ABCD中,对角线AC、BD交于点O,点
E是BC的中点.若OE=3cm,则AB的长为()
A.12cmB.9cmC.6cmD.3cm
2019-2020年八年级下学期期中考试数学试卷(IV)
2019-2020年八年级下学期期中考试数学试卷(IV)一.选择题:(每小题3分,共45分)(请将选择题答案写在..指定的位置上......).........答卷1. 下列各式中正确的是()A. B. C. D.2.式子在实数范围内有意义,则x的取值范围是()A.B.C. D.3. 以下化简正确的是()A. B.C. D.4.下列四组数据不能作为直角三角形的三边长的是()A. 0.3、0.4、0.5B. 1、、C. 3、5、6D. 5、12、135.下列条件,不能使四边形ABCD是平行四边形的是().A.AB∥CD,AB=CD; B.AB∥CD,BC∥AD;C.AB∥CD,BC=AD; D.AB=CD,BC=AD;6. 如图所示:有一个长、宽都是2米,高为3米的无盖长方体纸盒,一只小蚂蚁从A点爬到B点,那么这只蚂蚁爬行的最短路径为()米.A.4 B.5 C.D.77.用两个全等的直角三角形,一定..能拼出下列图形中的()⑴等腰三角形;⑵平行四边形;⑶菱形;⑷矩形;A.⑴⑵⑶ B.⑴⑵⑷ C.⑴⑵⑶⑷ D.⑵⑶⑷8.正方形具有而矩形不一定具有的性质是()A.对角线互相平分; B. 对角相等;C. 对角线相等;D. 一条对角线平分一组对角.9. 菱形的边长和一条对角线长都为2,则另一条对角线长为().A. 2 B. C. D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分;B.测量两组对边,看是否分别相等;C.测量对角线,看是否相等;D.测量对角线的交点到四个顶点的距离,看是否都相等.11.如图,矩形ABCD中,点O为对角线的交点,E为BC的中点,OE=3,AC=12,则AD =( )A. B. 8 C. 6 D.12. 面积为4cm2的正方形,对角线的长为()cm.A. B. C. D.13. 关于正比例函数,下列说法错误的是()A. 图象经过原点;B. 其图象是一条直线;C. 随增大而增大;D. 点(-2,6)在其图象上.14.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限15. 已知:直线与直线都经过A(-2,0),且与y轴分别交于B、C两点,则:△ABC的面积为()A. 4B. 5C. 6D. 7宜昌四中xx年春季期中考试八年级数学试卷答卷16.(6分) 化简:⑴⑵17.(6分) 已知:如图,在□ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:四边形AECF为平行四边形..18.(7分) ⑴请在下面边长为1的正方形网格中画一个钝角..△ABC,使AB=.⑵你画的图中,BC= ,CA= ,△ABC的面积= .19.(7分) 已知:如图,△ABC中,DE∥BC,EF∥AB,BE平分∠ABC.⑴求证:四边形BFED是菱形.⑵若AB=BC=8,求菱形BFED的周长.20.(8分) 现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.实施操作:将纸片沿直线AE折叠,使点B落在矩形ABCD内,记为点B′.⑴求证:∠BB′C=900;⑵求B′C的长度.21. (8分) 为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费,即:每月用水10吨以内(包括10吨)的用户,每吨收水费a元;每月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设居民月用水吨,应收水费元,与之间的函数关系如图所示:⑴求a的值;某户居民上月用水8吨,应收水费多少元?⑵求b的值,并写出当x>10时,y与x之间的函数关系式;⑶已知:居民甲上月比居民乙多用水4吨,两家共收水费46元,求两户居民上月分别用水多少吨?22. (10分) 如图,在四中八年级学生耐力测试赛中,甲、乙两学生跑的距离S(米)与时间t(秒)之间的函数关系的图象分别为折线OABC和线段OD. 根据图象的信息,解答以下问题:⑴甲同学前15秒跑了米,同学先到终点.⑵出发后第几分钟两位同学第一次相遇?本次测试的全程是多少米?⑶两位同学第二次相遇是在距终点多远的地方?23. (11分) 如图,直线y=-2x+4与坐标轴分别交于B、D, 四边形ABCD为菱形,其对角线交于点P,AC交y轴于点E.⑴求B、D、A三个点的坐标;⑵求PE的长.24. (12分) 如图,已知正方形ABCD的边长为4,点E、F分别从C、A两点同时出发,以相同的速度作直线运动.已知点E沿射线CB运动,点F沿边BA的延长线运动,连接DF、DE、EF,EF与对角线AC所在的直线交于点P,点H为FB的中点,连接PH.(图1供参考)⑴请写出DE与DF的关系,并说明理由;⑵设CE =x,PH=y,求: y与x之间的函数关系式,并写出自变量x的取值范围.接23题答题区:。
北京市第四中学八年级下学期期中数学试题
北京市第四中学2019-2020学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.函数y=中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3 D.x≤3【答案】B【分析】根据二次根式有意义的条件,即根号下大于等于0,求出即可.【详解】有意义的条件是:x﹣3≥0.∴x≥3.故选B.【点睛】考查了函数变量的取值范围,此题是中考考查重点,同学们应重点掌握,特别注意根号下可以等于0这一条件.2.以下列各组数为边长,能构成直角三角形的是()A.1 2 B.1,1,2 C.2,3,4 D.4,5,6【答案】A【分析】根据勾股定理的逆定理的内容和三角形三边关系逐个判断即可.【详解】解:A、∵12+)2=22,∴以12为边能组成直角三角形,故本选项符合题意;B、1+1=2,不符合三角形三边关系定理,不能组成三角形,也不能组成直角三角形,故本选项不符合题意;C、∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴以4,5,6为边不能组成直角三角形,故本选项不符合题意;故选:A.【点睛】本题主要考查勾股定理的逆定理及三角形三边关系,掌握勾股定理的逆定理及三角形三边关系是解题的关键.3A B C D【答案】C【分析】根据同类二次根式的概念逐一判断即可.【详解】解:A的被开方数不同,故A选项错误;B3=,3不是二次根式,故B选项错误;C=C选项正确;D=,的被开方数不同,故D选项错误;故选:C.【点睛】本题主要考查同类二次根式的定义,解题的关键是熟练的掌握同类二次根式的定义:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.4.如图,将▱ABCD的一边BC延长至点E,若∠1=55°,则∠A=()A.35°B.55°C.125°D.145°【答案】C【分析】根据平行四边形的对角相等得出∠A=∠BCD,再根据平角等于180°列式求出∠BCD=125°,即可得解.【详解】解:∵四边形ABCD是平行四边形,∠A=∠BCD,∵∠1=55°,∴∠BCD=180°-∠1=125°,∴∠A=∠BCD=125°.故选:C.【点睛】本题考查了平行四边形的对角相等的性质,是基础题,熟记平行四边形的性质是解题的关键.5.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【答案】A【分析】根据平行四边形的判定定理逐个判断即可.【详解】A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选A.【点睛】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.6.下列选项中,平行四边形不一定具有的性质是( )A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.对角线相等【答案】D【分析】根据平行四边形的性质:平行四边形的对边相等且平行,对角线互相平分,可得正确选项.【详解】∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴选项A. B. C正确,D错误.故选D.【点睛】本题考查平行四边形的性质,解题关键在于对平行四边形性质的理解.7.在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量四边形其中的三个角是否都为直角【答案】D【分析】根据矩形的判定定理即可选出答案.【详解】解:A.对角线是否相互平分,能判定平行四边形,而不能判定矩形;B.两组对边是否分别相等,能判定平行四边形,而不能判定矩形;C.一组对角是否都为直角,不能判定形状;D.四边形其中的三个角是否都为直角,能判定矩形.故选D.【点睛】本题考查了矩形的判定定理.解题的关键是牢记这些定理.矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.8.则x的值为()A.x=0 B.x=1 C.x=2 D.x=3【答案】D【分析】根据同类二次根式的定义得出方程,求出方程的解即可.【详解】解:∵∴x+3=2x,解得:x=3,故选:D.【点睛】本题考查了最简二次根式和同类二次根式的定义,熟练掌握这些知识点是解题的关键.9.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为()A.(1,2)B.(4,2)C.(2,4)D.(2,1)【答案】D【分析】根据三角形的中位线的性质和点的坐标,解答即可.【详解】过N作NE⊥y轴,NF⊥x轴,∴NE∥x轴,NF∥y轴,∵点A(0,2),B(4,0),点N为线段AB的中点,∴NE=2,NF=1,∴点N的坐标为(2,1),故选:D.【点睛】本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.10.如图,Rt△ABC中,AB=18,BC=12,∠B=90°,将△ABC折叠,使点A与BC 的中点D重合,折痕为MN,则线段BN的长为()A.8 B.6 C.4 D.10【答案】A【分析】设BN=x,则由折叠的性质可得DN=AN=18﹣x,根据中点的定义可得BD=6,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】解:设BN=x,由折叠的性质可得DN=AN=18﹣x,∵D是BC的中点,∴BD=6,在Rt△NBD中,x2+62=(18﹣x)2,解得x=8.即BN=8.故选:A.【点睛】本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,熟悉相关性质是解题的关键.二、填空题11.如图,在▱ABCD中,BC=9,AB=5,BE平分∠ABC交AD于点E,则DE的长为_____.【答案】4【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度.【详解】解:∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD=BC=9,∴∠AEB =∠EBC ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠ABE =∠AEB ,∴AE=AB =5,∴DE =AD ﹣AE =9﹣5=4.故答案为:4.【点睛】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出ABE AEB ∠=∠.12.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠BOC =120°,AB =3,则BC 的长为_____.【答案】【分析】根据矩形的性质求出AC =2AO ,AO =BO ,根据等边三角形的判定得出△AOB 是等边三角形,求出AB =AO =3,求出AC ,再根据勾股定理求出BC 即可.【详解】解:120BOC ∠=︒,60AOB ∴∠=︒,四边形ABCD 是矩形,90ABC ∴∠=︒,AC BD =,AO OC =,BO DO =,AO BO ∴=,AOB ∴∆是等边三角形,AB AO BO ,3AB =,3AO ∴=,26AC AO ,由勾股定理得:22226333BCAC AB ,故答案为: 【点睛】 本题考查了矩形的性质,等边三角形的性质和判定,勾股定理等知识点,能灵活运用定理进行推理是解此题的关键.13.估计12与0.5的大小关系是:12______0.5.(填“>”、“=”、“<”) 【答案】>【详解】解:12-,2>0,>0. 故答案为:>14.如图,在矩形ABCD 中,E ,F 分别是AD ,BC 边上的点,AE =CF ,∠EFB =45°,若AB =5,BC =13,则AE 的长为_____.【答案】4【分析】过E 作EM ⊥BC 于M ,根据矩形的性质得出∠A =∠B =90°,得出四边形ABME 是矩形,根据矩形的性质得出EM =AB =5,AE =BM ,求出EM =FM =5,根据BC =13和AE =CF =BM 求出即可.【详解】解:如图,过E 作EM ⊥BC 于M ,则∠EMF =∠EMB =90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴四边形ABME是矩形,∵AB=5,∴EM=AB=5,AE=BM,∵∠EFB=45°,∠EMF=90°,∴∠MEF=45°=∠EFB,∴EM=FM=5,∵BC=13,AE=CF=BM,∴2AE+5=13,解得:AE=4,故答案为:4.【点睛】本题考查了矩形的判定和性质、等腰直角三角形的判定,熟练掌握这些知识并合理的作出辅助线是解题的关键.15.如果一个无理数a的积是一个有理数,写出a的一个值是_____..【分析】直接化简二次根式,进而得出符合题意的值.【详解】解:=∴无理数a的积是一个有理数,a..【点睛】本题主要考查实数的性质以及同类二次根式的性质,解题的关键是掌握有理数和无理数的基本定义以及同类二次根式的积为有理数即可.16.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若AE =6,正方形ODCE 的边长为2,则BD 等于_____.【答案】4【分析】设BD =x ,正方形ODCE 的边长为2,则CD =CE =2,根据全等三角形的性质得到AF =AE ,BF =BD ,根据勾股定理即可得到结论.【详解】解:设正方形ODCE 的边长为2,则2CD CE ==,设BD x =,AFO AEO ,BDO BFO ,AF AE ∴=,BF BD =,6AB x ,628AC ,2BC x =+,222AC BC AB +=,222(2)8(6)x x ,4x ∴=,故答案为:4.【点睛】本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.17.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.【答案】乙对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定方法,即可解决问题.【详解】根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.故答案为:乙;对角线互相平分的四边形是平行四边形.【点睛】本题主要考查尺规作图-复杂作图,平行四边形的判定定理,掌握尺规作线段的中垂线以及平行四边形的判定定理,是解题的关键.三、解答题18.如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB .下面结论:①△DEF ≌△DEC ;②S △ABE =S △ADF ;③AF =AB ;④BE =AF .其中正确的结论是_____.【答案】①②④. 【分析】证明Rt △DEF ≌Rt △DEC 得出①正确;在证明△ABE ≌△DF A 得出S △ABE =S △ADF ;②正确;得出BE =AF ,④正确,③不正确;即可得出结论. 【详解】 解:四边形ABCD 是矩形, 90CABE,//AD BC ,AB CD =,DF AB ,DF CD ∴=, DF AE ⊥,90DFADFE,在Rt DEF ∆和Rt DEC ∆中,DE DE DFDC,Rt DEFRt DEC(HL),①正确;//AD BC ,AEB DAF ∴∠=∠,在ABE ∆和DFA ∆中,ABEDFA AEB DAF ABDF, ()ABE DFA AAS , ABEADFSS;②正确;BE AF ∴=,④正确,③不正确;故答案为:①②④. 【点睛】本题考查了矩形的性质、全等三角形的判定与性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.19【答案】.【分析】先化简二次根式,计算二次根式的除法,再合并同类二次根式即可得.【详解】=+=【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.在平面直角坐标系xOy中,已知A(﹣3,2),B(﹣1,﹣2),C(1,1),若以A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.(在平面直角坐标系中画出平行四边形并标上点D的坐标.)【答案】点D的坐标为:(﹣5,﹣1)或(﹣1,5)或(3,﹣3).【分析】根据平行四边形的判定即可得点D的坐标.【详解】解:如图,∵A(﹣3,2),B(﹣1,﹣2),C(1,1),以A、B、C、D为顶点的四边形是平行四边形,∴点D的坐标为:(﹣5,﹣1)或(﹣1,5)或(3,﹣3).【点睛】本题主要考查平面直角坐标系和平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.如图,E、F是▱ABCD的对角线AC上的两点,AE=CF.求证:EB=DF(写出主要的证明依据).【答案】详见解析.【分析】由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,可得AB∥CD,AB =CD,根据两直线平行,内错角相等,可得∠FCD=∠EAB,由已知AE=CF,可证得△FCD≌△EAB(SAS),所以EB=DF.【详解】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD(平行四边形的对边平行且相等),∴∠FCD=∠EAB(两直线平行,内错角相等),∵AE=CF,∴△FCD≌△EAB(SAS),∴EB=DF.【点睛】此题考查了平行四边形的性质与全等三角形的判定与性质,熟悉相关性质是解题的关键. 22.已知,如图,等腰△ABC 的底边BC =10cm ,D 是腰AB 上一点,且CD =8cm ,BD =6cm ,求AB 的长.【答案】AB =253cm . 【分析】根据勾股定理的逆定理求出∠BDC =90°,求出∠ADC =90°,在Rt △ADC 中,由勾股定理得出a 2=(a ﹣6)2+82,求出a 即可. 【详解】 解:设ABACacm ,10BC cm =,8CD cm =,6BD cm =,222BD CD BC ∴+=,90BDC ∴∠=︒,即90ADC ∠=︒,在Rt ADC ∆中,由勾股定理得:222AC AD CD =+, 即222(6)8aa ,解得:253a =, 即253ABcm . 【点睛】本题考查了勾股定理,等腰三角形的性质,勾股定理的逆定理等知识点,能根据勾股定理的逆定理求出90ADC ∠=︒是解此题的关键.23.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程 已知:直线l 及直线l 外一点P .求作:直线PQ ,使得PQ ∥l . 作法:如图,①在直线l上取一点A,作射线AP,以点P为圆心,PA长为半径画弧,交AP的延长线于点B;②以点B为圆心,BA长为半径画弧,交l于点C(不与点A重合),连接BC;③以点B为圆心,BP长为半径画孤,交BC于点Q;④作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:∵PB=PA,BC=,BQ=PB,∴PB=PA=BQ=.∴PQ∥l()(填推理的依据).【答案】(1)详见解析;(2)BA,QC,三角形的中位线定理【分析】(1)根据要求画出图形.(2)利用三角形的中位线定理证明即可.【详解】解:(1)直线PQ即为所求.(2)证明:∵PB=P A,BC=BA,BQ=PB,∴PB=P A=BQ=QC.∴PQ∥l(三角形的中位线定理).故答案为:BA,QC,三角形的中位线定理【点睛】本题考查了三角形的中位线定理,熟练掌握三角形的中位线定理是解题的关键.24.下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在RtΔABC中,∠ABC=90°,0为AC的中点.求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO;②连接AD,CD,则四边形ABCD为矩形.根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);(2)完成下面的证明.证明:∴点O为AC的中点,∴AO=CO.又∵DO=BO,∵四边形ABCD为平行四边形(__________)(填推理的依据).∵∠ABC=90°,∴ABCD为矩形(_________)(填推理的依据).【答案】(1)作图如图所示,见解析(2)对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【详解】(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【点睛】本题考查作图-复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识.25.常常听说“勾3股4弦5”,是什么意思呢?它就是勾股定理,即“直角三角形两直角边长a,b与斜边长c之间满足等式:a2+b2=c2”的一个最简单特例.我们把满足a2+b2=c2的三个正整数a,b,c,称为勾股数组,记为(a,b,c).(1)请在下面的勾股数组表中写出m、n、p合适的数值:平面直角坐标系中,横、纵坐标均为整数的点叫做整点(格点).过x轴上的整点作y 轴的平行线,过y轴上的整点作x轴的平行线,组成的图形叫做正方形网格(有时简称网格),这些平行线叫做格边,当一条线段AB的两端点是格边上的点时,称为AB在格边上.顶点均在格点上的多边形叫做格点多边形.在正方形网格中,我们可以利用勾股定理研究关于图形面积、周长的问题,其中利用割补法、作图法求面积非常有趣.(2)已知△ABC三边长度为4、13、15,请在下面的网格中画出格点△ABC并计算其面积.【答案】(1)m=13,n=40,p=8;(2)图详见解析,24.【分析】(1)根据勾股数的定义计算即可;(2)根据勾股数确定长为13和15的边,再根据三角形的面积公式计算即可.【详解】(1)根据勾股数的定义计算即可;(2)根据勾股数确定长为13和15的边,再根据三角形的面积公式计算即可.解:(1)∵52+122=132,∴m=13;∵92+402=412,∴n=40,∵82+152=172,∴p=8.(2)如图所示:在△ABC中,AB=15,BC=4,AC=13,S△ABC=S ABD﹣S△ACD=11129-125=24 22⨯⨯⨯⨯.【点睛】本题考查了勾股数的综合应用,对勾股定理及其逆定理以及常见的勾股数非常熟悉,是解题的关键.26.如图,矩形ABCD中,点E为矩形的边CD上的任意一点,点P为线段AE的中点,连接BP并延长与边AD交于点F,点M为边CD上的一点,且CM=DE,连接FM.(1)依题意补全图形;(2)求证∠DMF=∠ABF.【答案】(1)见解析;(2)见解析.【分析】(1)按要求画图即可;(2)延长BF交CD的延长线于点N,首先证明△APB和△EPN全等,得到EN=AB,再根据已知条件利用垂直平分线的性质定理证明FN=FM,可得结论.【详解】(1)解:如图所示,(2)证明:延长BF 交CD 的延长线于点N ,∵点P 为线段AE 中点,∴AP =PE ,∵AB ∥CD ,∴∠PEN =∠P AB ,∠2=∠N ,∵在△APB 和△EPN 中,∵2=N PAB PEN PA PE ∠∠⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△EPN (AAS ),∴AB =EN∴AB =CD =EN ,∵EN =DN +DE ,CD =DM +CM ,∵DE =CM ,∴DN =DM ,∵FD ⊥MN ,∴FN =FM ,∴∠N =∠1,∴∠1=∠2,即∠DMF =∠ABF .【点睛】本题考查了几何作图、矩形的性质、全等三角形的判定和性质、线段垂直平分线的性质、等腰三角形的性质,作出合适的辅助线是解题的关键.27.(1)小My同学在网络直播课中学习了勾股定理,他想把这一知识应用在等边三角形中:边长为a 的等边三角形面积是 (用含a 的代数式表示);(2)小My 同学进一步思考:是否可以将正方形剪拼成一个等边三角形(不重叠、无缝隙)?①如果将一个边长为2的正方形纸片剪拼等边三角形,那么该三角形边长的平方是 ;②小My 同学按下图切割方法将正方形ABCD 剪拼成一个等边三角形EFG :M 、N 分别为AB 、CD 边上的中点,P 、Q 是边BC 、AD 上两点,G 为MQ 上一点,且∠MGP =∠PGN =∠NGQ =60°.请补全图形,画出拼成正三角形的各部分分割线,并标号;③正方形ABCD 的边长为2,设BP =x ,则x 2= .【答案】(12;(2)①3;②详见解析;③3﹣1. 【分析】 (1)如图1,过A 作AD ⊥BC 于D ,根据等边三角形的性质得到BD =CD =12BC =12a ,由勾股定理得到AD ==,于是得到S △ABC =12BC •AD 2; (2)①根据三角形的面积公式即可得到结论;②补全图形如图2所示;③由题意知,PG =PE ,GN =NF ,推出PN 是△GEF 的中位线,得到PN =12EF ,根据勾股定理即可得到结论.【详解】解:(1)如图,过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴BD =CD =12BC =12a ,∴AD 2a ==,∴S △ABC =12BC •AD 2;(2)①∵边长为2的正方形的面积=4,∴剪拼成的等边三角形的面积=4,∴4a 2=4,∴a 2=3,; ②补全图形如图2所示;③由题意知,PG =PE ,GN =NF ,∴PN 是△GEF 的中位线,∴PN =12EF , ∵N 为AB 边上的中点, ∴BN =12AB =1, ∵边长为2的正方形的面积=4,∴剪拼成的等边三角形的面积=4,∴4a 2=4,∴a 2=3,即△GEF 边长的平方是3,∴EF∴PN,∵PN 2=BN 2+BP 2,1+x 2,∴x 2=3﹣1;故答案为:(1)24a ;(2)①3;③13 .【点睛】本题考查了等边三角形的判定,性质,勾股定理,正方形性质,三角形中位线等知识,根据题意,充分根据解题步骤是解题关键.此类题目每一步都为后续解题提供解题知识准备或解题方法提示.28.如图,双边直尺有两条平行的边,但是没有刻度,可以用来画等距平行线:我们也可用工具自制(如图):下面是小My 同学设计的“过直线外一点作这条直线的平行线”的双边直尺作图过程.(1)根据小My同学的作图过程,请证明O为PH中点.(2)根据小My同学的作图过程,请证明PQ∥l.【答案】(1)详见解析;(2)详见解析.【分析】(1)根据小My同学的作图过程可得,四边形PMHN是平行四边形,根据平行四边形的对角线互相平分,即可得结论;(2)作OK∥TH交QI于点K,由作图过程可证明△OQK≌△TOH(ASA),可得OQ =OT,进而可以得结论.【详解】解:(1)根据小My同学的作图过程可知:四边形PMHN是平行四边形,根据平行四边形的对角线互相平分,所以O为PH中点.(2)如图,作OK∥TH交QI于点K,由作图过程可知:PH∥QI,∴OK=HI=TH,∠QOK=∠OTH,∠OKQ=∠QIH=∠OHT,∴△OQK≌△TOH(ASA),∴OQ=OT,∵OP=OH,∴四边形PQHT是平行四边形,∴PQ∥l.【点睛】本题考查平行四边形的判定及性质的应用,熟练掌握平行四边形的判定及性质是解题的关键.。
北京2019-2020年下学期八年级期中考试 数学(含答案)
北京2019-2020年下学期八年级期中考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅲ卷附加题三部分,其中第Ⅰ卷(选择题)和第Ⅱ卷共100分,第Ⅲ卷20分,考试时间100分钟。
第Ⅰ卷(共30分)一、选择题:(本大题共10小题,每小题3分,共30分. 在每小题的四个选项中,只有一个选项是符合题目要求的). 1.下列各式中,运算正确的是( ). A .3333-= B .822= C .2+323=D .2(2)2-=- 2.下列二次根式中,是最简二次根式的是(). A .15 B .12 C .13D .9 3.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A .1,2,3B .3,4,5C .5,12,13D .2,2,31.4.如图,矩形ABCD 中,对角线AC ,BD 交于O 点. 若∠AOB=60°,AC =8,则AB 的长为( ).A .4B .43C .3D .55.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( ).A .平行四边形B .矩形C .菱形D .正方形 6.用配方法解方程2230x x --=,原方程应变形为( ).A .2(1)2x -=B .2(1)4x +=C .2(1)4x -= D .2(1)2x +=7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10, 则AE 的长为( ). A .13B .14 C .15 D .16 8.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行. 在此滑动过程中,点P 到点O 的距离( ).A .不变B .变小C .变大D .无法判断10.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ). A .线段EC B .线段AE C .线段EF D .线段BF第9题图 第10题图第Ⅱ卷(共70分)二、填空:(每小题2分,共10个小题,共20分)11.写出一个以0,1为根的一元二次方程.12.如果3x -在实数范围内有意义,那么x 的取值范围是________. 13.一元二次方程2x +kx -3=0的一个根是x=1,则k 的值是.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直, 请你说出其中的数学原理.15.某城2016年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2018年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程是 .16.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为.17.如果关于x 的一元二次方程210ax x +-=有实数根,则a的取值范围N M OA PPFE DCBA EC'DBA是________.18.如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O 作OE ⊥AC 交AD 于E, 则AE 的长是.19.如图,将矩形ABCD 沿对角线BD 所在直线折叠,点C 落在同一平面内,落点记为C’,BC’与AD 交于点E ,若 AB=3,BC =4,则DE 的长为.20.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点, PE +PF 的最小值等于.第18题图 第19题图 第20题图三、解答题:(21,22题每小题4分,23,24,25每题5分, 26,27每题6分,28题7分;共计50分) 21.计算(1)188(31)(31)-++-; (2)1(123)622+⨯-22.解方程: (1)2650x x -+=;(2) 22310x x --=.23.如图,在四边形ABCD 中,∠B =90º,AB=BC=2, AD =1,CD =3.求∠DAB 的度数.24.列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园ABCD ,为了节约材料,花园的一边AD 靠着 原有的一面墙,墙长为8米(AD <8),另三 边用栅栏围成,已知栅栏总长为24米, 求花园一边AB 的长.25.如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E.求证:四边形AECD 是菱形.D26.已知关于x的一元二次方程22(22)40x m x m+++-=有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.27.如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.(1)求证:四边形ABFE是平行四边形(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.28.如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).第Ⅲ卷附加题(共20分)DAC BM附加题(1题6分,2题7分,3题7分,共20分)1. 如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .30° 45°60° 90° 120°135°150° S12122由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,2(135)2S S ο==.由上表可以得到 (60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD =2,∠AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图2图22.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根; (2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围. 3. 阅读下列材料:问题:如图1,在平行四边形ABCD 中,E 是AD 上一点,AE=AB ,∠EAB=60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB=∠EAB ,连接AG. 求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB 交GE 于点H ,构造全等三角形,经过推理解决问题.参考小明同学的思路,探究并解决下列问题: (1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG 、AG 、BG 之间的数量关系,并证明你的结论. (1)证明:(2)解:线段EG 、AG 、BG 之间的数量关系为____________________________. 证明:图1GB E A D F 图2G C B答案及评分标准一、选择题(本题共30分每小题3分,) 题号 1 2 3 4 5 6 7 8 9 10 答案BADAACDDAB二、填空题:(共20分..) 11. 20x x -=或(1)0x x -= 12.x ≥313. 2 14. 对角线相等的平行四边形是矩形,矩形的四个角都是直角; 15. 300(1+x )2 =363 16. 1.517. a ≥-14且a ≠0 18. 3.4 19.25820.2 21.(118831)(31);=3222(31)-…………………………………………………3分 =22……………………………………………………………4分(2)原式=2(233)62 ----2分 =3362=3322⨯3分 =922=82 …………………………………………………………………4分22.(1)解:2650x x -+=移项,得265x x -=-.配方,得26959x x -+=-+,…………………………………………………1分所以,2(3)4x -=.………………………………………………………………2分 由此可得32x -=±,所以,15x =,21x =.…………………………………………………………4分 (2)解:2a =,3b =-,1c =-.………………………………… 1分224(3)42(1)170b ac ∆=-=--⨯⨯-=>.………………………2分方程有两个不相等的实数根24b b ac x -±-=3174±=,1317x +2317x -=.……………………………………4分23.解:连接AC在Rt △ABC 中,∠B =90º,AB =BC =2,∴∠BAC =∠ACB =45°,………………………………………………1分∴222AC AB BC =+.∴22AC =2分∵AD =1,CD =3,∴222AC AD CD +=.…………………………3分在△ACD 中,222AC AD CD +=,∴△ACD 是直角三角形,即∠DAC =90º.……………………………………4分 ∵∠BAD =∠BAC +∠DAC ,∴∠BAD =135º.………………………………………………………………5分 24.解:设AB 的长为x 米,则AD=BC=(242x -)米.(242)240x x -⋅=………………………………2分 212200x x -+= (10)(2)0x x --=DC1210,2x x ==………………………………4分当110,4x AD == 当22,20x AD ==8,4AD AD <∴=10x ∴=………………………………5分答:AB 的长为10米.25.证明:∵AB ∥CD ,CE ∥AD∴四边形ADCE 是平行四边形…………………1分 ∵AC 平分∠BAD∴∠DAC=∠EAC ………………2分 ∵AB ∥CD∴∠DCA=∠EAC ………………3分 ∴∠DAC=∠DCA∴AD=DC …………………………4分 ∴四边形ADCE 是菱形…………5分26. 解:(1)∵一元二次方程22(22)40x m x m +++-=有两个不相等的实数根, ∴2224(22)41(4)b ac m m ∆=-=+-⨯⨯-………………………………1分 8200m =+>……………………………………………………………2分∴52m >-.……………………………………………………………………3分(2)∵m 为负整数,∴1m =-或2-.……………………………………………………………4分当1m =-时,方程230x -=的根为13x =,23x =-不是整数,不符合题意, 舍去.…………………………………………………………………………5分当2m =-时,方程220x x -=的根为10x =,22x =都是整数,符合题意.综上所述2m =-.…………………………………………………………6分27.(1)证明:∵四边形ABCD 是矩形,∴AD =BC , ∠D =∠BCD =90°. ∴∠BCF =180°-∠BCD =180°-90°=90°.∴∠D =∠BCF .------------------------------------------------------------------1分 在Rt △ADE 和Rt △BCF 中,,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF . ---------------------------------------------------------2分∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形. ---------------------------------------------------3分(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°. --------------------------------------------------------------------------4分在Rt△ABE中, AE=3,BE=4,AB=2222345AE BE+=+=.∵四边形ABFE是平行四边形,∴EF=AB=5. --------------------------------------------------------------------------6分28.(1)①依题意补全图形.---------------------------------------------------------1分②解法1:证明:连接CE.∵四边形ABCD是正方形,∴∠BCD=90°, AB=BC.∴∠ACB=∠ACD=12∠BCD=45°.∵∠CMN=90°, CM=MN,∴∠MCN=45°.∴∠ACN=∠ACD+∠MCN=90°. ∵在Rt△ACN中,点E是AN中点,∴AE=CE=12AN. ----------------------------------------------------------------------------2分∵AE=CE,AB=CB,∴点B,E在AC的垂直平分线上.∴BE 垂直平分AC .∴BE ⊥AC . --------------------------------------------------------------------------------------3分 解法2:证明:连接CE .∵四边形ABCD 是正方形,∴∠BCD =90°, AB =BC .∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°,CM =MN ,∴△CMN 是等腰直角三角形.∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°.∵在Rt △ACN 中,点E 是AN 中点,∴AE =CE =12AN . 在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE .∵AB =BC ,∴BE ⊥AC . --------------------------------------------------------------------------------------3分(2)BE =22AD +12CN (或2BE =2AD +CN ). -------------------------------------4分 证明:∵AB =BC , ∠ABE =∠CBE ,∴AF =FC .∵点E 是AN 中点,∴AE =EN .∴FE 是△ACN 的中位线.∴FE =12CN .∵BE ⊥AC ,∴∠BFC =90°.∴∠FBC +∠FCB =90°.∵∠FCB =45°,∴∠FBC =45°.∴∠FCB =∠FBC .∴BF =CF .在Rt △BCF 中,222BF CF BF +=,∴BF 2BC . -----------------------------------------------------------------------------5分 ∵四边形ABCD 是正方形,∴BC =AD .∴BF 2AD . ∵BE =BF +FE ,∴BE 2AD +12CN . -------------------------------------------------------------------6分 (3)34.---------------------------------------------------------------------------------------7分附加题:1.(1233;12.(说明:每对两个给1分)----------------------------------2分 (2)120;30;α. -----------------------------------------------------------------------------------4分 (说明:前两个都答对给1分,最后一个α答对给1分)(3)答:两个带阴影的三角形面积相等.证明:将△ABO 沿AB 翻折得到菱形AEBO , 将△CDO 沿CD 翻折得到菱形OCFD .∴S △AOB =12S 菱形AEBO =12S (α)---------------------------------------------------5分 S △CDO =12S 菱形OCFD =12S (180α︒-)-----------------------------------------6分 由(2)中结论S (α)=S (180α︒-)∴S △AOB =S △CDO .2.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- ···························································· 1分269m m =-+2(3)m =-. ······························································································· 2分 ∵3m >,∴2(3)0m ->,即0∆>.∴方程总有两个不相等的实数根. ··························································· 3分(2)①解:由求根公式,得3(1)(3)2m m x m-±-=. ∴1x =或23m x m -=. ∵3m >,∴23321m m m-=->. ∵12x x <,∴11x =,22332m x m m-==-. ····························································· 5分 ②323m <<. ··································································································· 7分 3.(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H ,则∠GAB=∠HAE .……………………1分∵∠EAB=∠EGB ,∠AOE=∠BOF ,∴∠ABG=∠AEH .在△ABG 和△AEH 中 GAB HAE AB AE ABG AEH⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=60°,∴△AGH 是等边三角形.∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .………4分证明: O如图2,作∠GAH=∠EAB交GE的延长线于点H,则∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.……………………5分在△ABG和△AEH中,∴△ABG≌△AEH.……………………6分∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG,∴EG+BG =AG. (7)。
2019-2020学年北京四中八年级下学期期中数学试卷(含答案解析)
2019-2020学年北京四中八年级下学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是()A. △ABC是直角三角形,且AC为斜边B. △ABC是直角三角形,且∠ABC=90°C. △ABC的面积为60D. △ABC是直角三角形,且∠A=60°2.下列式子中,属于最简二次根式的是()A. √9B. √15C. √20D. √133.下列运算正确的是()A. a6÷a2=a3B. (a3)2=a5C. √(−2)2=−2D. √8÷√2=24.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于BF中正点G,则①DH=HC;②DF=FC;③BF=AC;④CE=12确有()A. 1个B. 2个C. 3个D. 4个5.如图,□OABC的顶点C 在x 轴的正半轴上,顶点A、B 在第一象限内,且点A 的横坐标为2,对角线AC与OB 交于点D.若反比例函数的图象经过点A与点D,则□OABC的面积为A. 16B. 20C. 24D. 306.如图,菱形ABCD中,点E为对角线BD上一点,且EH⊥BC于点H,连接CE,若∠DEC=∠ABC=30°,则∠HEC的度数为()A. 75°B. 70°C. 65°D. 60°7.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=58°,则∠CAD的度数是()A. 22°B. 29°C. 32D. 61°8.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.则DH=()A. 6B. 245C. 485D. 59.有以下几个命题:等边三角形的三个内角相等;等腰三角形的两个底角相等;若a是有理数,b是无理数,则a+b是无理数;若a=b,则a2−b2=0.以上命题中有逆定理的个数是()A. 1个B. 2个C. 3个D. 4个10.如图所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.如果函数f(x)=,那么f()=.12.实数P在数轴上的位置如图所示,化简√(p−2)2+√(p−3)2=______.13.如图Rt△ABE中,∠B=90°,AB=3,BE=4,将△ABE沿BE方向平移至△DCF的位置,平移距离是AE的长度,连接AF,则AF=______.14.如图所示,菱形OABC的顶点A的坐标为(,0),点B,C在第一象限,∠COA=60°,将菱形OABC绕原点O逆时针旋转120°得到菱形ODEF,则阴影部分的面积等于.15.在平面直角坐标系中,已知点A(−1,0)和直线m的函数表达式为y=x,动点B(x,0)在A点的右边,过点B作x轴的垂线交直线m于点C,过点B作直线m的平行线交y轴于点D,当∠CAD=45°时,则x的值为______.16.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为______.17.如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为______ .18.如图,在Rt△ABC中,∠C=90°,以点A为圆心,适当的长度为半径MN画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于12的长度为半径画弧,两弧交于点O,作射线AO交BC于点D,若∠B=50°,则∠CDA=______度.三、计算题(本大题共1小题,共10.0分))19.(1)(−2)2−√4×(−12(2)3√3−3(√3−√2)四、解答题(本大题共10小题,共56.0分)20.(1)计算:(3√12+√27−2√6+√3)÷√3−(√2+√6)0;3(2)已知x=2−√3,求(7+4√3)x2+(2+√3)x+√3的值21.已知:如图,在长方形ABCD中,AB=CD=3cm,AD=BC=5cm,动点P从点B出发,以每秒1cm的速度沿BC方向向点C运动,动点Q从点C出发,以每秒2cm的速度沿CD−DA−AB向点B运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,设点P运动的时间为t秒,请回答下列问题:(1)请用含t的式子表达△CPQ的面积S,并直接写出t的取值范围.(2)是否存在某个t值,使得△ABP和△CDQ全等?若存在,请求出所有满足条件的t值;若不存在,请说明理由.22.如图,在由边长都为1个单位长度的小正方形组成正方形网格中,每个小正方形的顶点叫做格点.(1)在图1中,正方形网格中标注了6个格点,请以其中4个格点为顶点,画一个平行四边形.(2)在图2中画出一个面积最小的▱PAQB,且点A,B都在格点上.(3)在图3中画一个面积为5的等腰直角三角形.且等腰直角三角形的顶点都在格点上.23.如图所示,△ABC中,点D在BC的延长线上,点O是AC边上的一个动点(不与A,C重合),过点O的直线MN//BC,CE平分∠ACB交MN于点E,CF平分∠ACD交MN于点F.(1)求证:OE=OF.(2)当点O运动到何处时,四边形AECF是矩形,并说明理由.24.如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤20a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费26元,则a=______元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费______元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费81.6元.请问该用户实际用水多少立方米?25.在△ABC中,点D、E分别在边AC、AB上,BD、CE交于点F,CE=BE,且∠BEC+∠BDC=180°(1)如图1,当∠BEC=120°时,与AC相等的线段是______;(请直接写出答案)(2)如图2,当∠BEC≠120°时,(1)中的结论是否成立,若成立请证明,若不成立,请说明理由;(3)如图3,点D、E分别在边CA、BA的延长线上时,BD、CE交于点F,若将条件CE=BE改为“CE=kBE”,且BF=m,EF=n,∠BFE=α,其它条件不变,求AE的长(用含k,m,n,α的式子表示)26.简单应用.将一张长方形纸片对折两次,得到三条折痕,这三条折痕有什么关系,请说明理由即可.27.公路l同侧的A、B两村,共同出资在公路边修建一个客车停靠站C,并使停靠站到A、B两村的距离相等,你如何确定停靠站C的位置.利用尺规作图作出点C,写出作法,并保留作图痕迹.28.计算:(1)√8(√2−1)+√18(2)√12+√3√3−√23×√2429.(1)如图①,在四边形ABCD中,AB//DC,E是BC的中点,若AE是∠BAD的平分线,求证:AD=DC+AB,(2)如图②,在四边形ABCD中,AB//DC,F是DC延长线上一点,连接AF,E是BC的中点,若AE是∠BAF的平分线,求证:AB=AF+CF.【答案与解析】1.答案:D解析:解:∵△ABC中,AB=8,BC=15,AC=17,∴AB2+BC2=82+152=AC2=172,∴△ABC是直角三角形,∵AC为斜边,∴A、B正确;×8×15=60,故C正确;∵△ABC是直角三角形,∴S△ABC=12故选:D.先根据勾股定理的逆定理判断出△ABC的形状,再根据直角三角形的性质进行逐一判断即可.本题考查的是勾股定理的逆定理及直角三角形的性质,根据题意判断出△ABC的形状是解答此题的关键.2.答案:B解析:解:A、√9被开方数含能开得尽方的因数或因式,故A错误;B、√15被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、√20被开方数含能开得尽方的因数或因式,故C错误;D、√1被开方数含分母,故D错误;3故选:B.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.答案:D解析:解:A.a6÷a2=a4,故此选项错误;B.(a3)2=a6,故此选项错误;C.√(−2)2=2,故此选项错误;D、.√8÷√2=√4=2,正确.故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则和二次根式的性质分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算和二次根式的性质,正确掌握相关运算法则是解题关键.4.答案:C解析:解:①∵CD⊥AB于D,∴∠BDC=90°,∵H是BC边的中点,∴DH=CD,∴①正确;②过F作FM⊥BC于M,则FM<FC,∵BE平分∠ABC,∴DF=FM,∴DF<FC,∴②错误;③∵∠ABC=45°,CD⊥AB于D,∴△BCD是等腰直角三角形,∴BD=CD,∵CD⊥AB于D,BE⊥AC于E,∴∠DBF+∠A=90°,∠ACD+∠A=90°,∴∠DBF=∠ACD,在△BDF与△CDA中,{∠DBF=∠ACDBD=CD∠BDF=∠CDA=90°,∴△BDF≌△CDA(ASA),∴BF=AC,∴③正确;④∵BE平分∠ABC,且BE⊥AC于E,∴∠ABE=∠CBE,∠AEB=∠CEB=90°,∴在△ABE与△CBE中,{∠ABE=∠CBEBE=BE∠AEB=∠CEB=90°,∴△ABE≌△CBE(ASA),∴AE=CE=12AC,∵AC=BF,∴CE=12BF,∴④正确.故选:C.①根据直角三角形斜边上的中线性质进行判断;②过F作FM⊥BC于M,则FM<FC,由角平分线定理和三角形边的关系判断便可;③根据∠ABC=45°,CD⊥AB于D,可以证明△BCD是等腰直角三角形,然后根据等腰直角三角形的性质可得BD=CD,然后证明△BDF与△CDA全等,根据全等三角形对应边相等可得BF=AC,从而判断③正确;④根据BE平分∠ABC,且BE⊥AC于E,可以证明△ABE与△CBE全等,根据全等三角形对应边相等可得AE=CE,从而判断④正确.本题考查了等腰直角三角形的判定与性质,角平分线的性质,全等三角形的判定与性质,仔细分析图形并熟练掌握各性质是解题的关键.5.答案:D解析:本题考查反比例函数的图象及性质。
北京四中八年级下册期中数学试卷(解析版) (4)
八年级(下)期中数学试卷一、选择题(本大题有12小题,每小题3分,共36分)1.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100°B.120°C.20°或120°D.36°2.如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A.34cm B.32cm C.30cm D.28cm3.如图,在等边三角形ABC中,D是AC边上的中点,延长BC到点E,使CE=CD,则∠E的度数为()A.15°B.20°C.30°D.40°4.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°5.不等式组的整数解共有()A.1个B.2个C.3个D.4个6.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C. D.7.不等式的负整数解有()A.1个B.2个C.3个D.4个8.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),关于x的不等式x+m>kx ﹣1的解集是()A.x≥﹣1 B.x>﹣1 C.x≤﹣1 D.x<﹣19.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(﹣2,﹣1)10.如图,若正六边形ABCDEF绕着中心点O旋转α度后得到的图形与原来图形重合,则α的最小值为()A.120°B.90°C.45°D.60°11.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为()A.25°B.30°C.50°D.55°12.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种二、填空题(本大题有4小题,每小题3分,共12分)13.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=_______.14.如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_______度.15.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集为_______.16.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_______.三、解答题(本大题有7小题,共52分)17.已知不等式5x﹣2<6x+1的最小正整数解是方程3x﹣ax=6的解,求a的值.18.某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.19.P为正方形ABCD内一点,且AP=2,将△APB绕点A按逆时针方向旋转90°得到△AP′D.(1)作出旋转后的图形;(2)试求△APP′的周长和面积.20.如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.如图,在Rt△ABC中,∠ACB=90°,D是BC延长线上的一点,线段BD的垂直平方线EG交AB于点E,交BD于点G.(1)当∠B=30°时,AE和EF有什么关系?请说明理由;(2)当点D在BC延长线上(CD<BC)运动时,点E是否在线段AF的垂直平分线上?23.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠ACB的取值范围.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题有12小题,每小题3分,共36分)1.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100°B.120°C.20°或120°D.36°【考点】等腰三角形的性质;三角形内角和定理.【分析】本题难度中等,考查等腰三角形的性质.因为所成比例的内角,可能是顶角,也可能是底角,因此要分类求解.【解答】解:设两内角的度数为x、4x;当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30,4x=120;因此等腰三角形的顶角度数为20°或120°.故选C.2.如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A.34cm B.32cm C.30cm D.28cm【考点】等边三角形的性质;多边形.【分析】仔细分析题目,图中小三角形也是正三角形,且边长等于正六边形的边长,所以求出正六边形的周长就可求出正六边形的边长.【解答】解:图中小三角形也是正三角形,且边长等于正六边形的边长,所以正六边形的周长是正三角形的周长的,正六边形的周长为90×3×=180cm,所以正六边形的边长是180÷6=30cm.故选C.3.如图,在等边三角形ABC中,D是AC边上的中点,延长BC到点E,使CE=CD,则∠E的度数为()A.15°B.20°C.30°D.40°【考点】等边三角形的性质.【分析】根据等边三角形的性质可得∠ACB=60°,∠CBD=30°,再根据等边对等角的性质求出∠E=∠CDE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求解得到∠E的度数.【解答】解:∵△ABC是等边三角形,D是AC中点,∴∠ACB=60°,∠CBD=30°,∵CD=CE,∴∠E=∠CDE,∵∠BCD=∠E+∠CDE=2∠E=60°,∴∠E=30°,故选C.4.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【考点】线段垂直平分线的性质.【分析】利用线段的垂直平分线的性质计算.通过已知条件由∠B=90°,∠BAE=10°⇒∠AEB,∠AEB=∠EAC+∠C=2∠C.【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.5.不等式组的整数解共有()A.1个B.2个C.3个D.4个【考点】一元一次不等式组的整数解.【分析】此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值.【解答】解:,解①得:x≥3,则不等式组的解集是:3≤x<5.则整数解是3和4,共2个.故选:B.6.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.7.不等式的负整数解有()A.1个B.2个C.3个D.4个【考点】一元一次不等式的整数解.【分析】先求出不等式组的解集,再求不等式组的整数解.【解答】解:去分母得,x﹣7+2<3x﹣2,移项得,﹣2x<3,解得x>﹣.故负整数解是﹣1,共1个.故选A.8.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),关于x的不等式x+m>kx ﹣1的解集是()A.x≥﹣1 B.x>﹣1 C.x≤﹣1 D.x<﹣1【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x>﹣1时,直线y1=x+m都在直线y2=kx﹣1上方,即x+m>kx﹣1.【解答】解:根据题意得当x>﹣1时,y1>y2,所以不等式x+m>kx﹣1的解集为x>﹣1.故选B.9.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(﹣2,﹣1)【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:原三角形中点A的坐标是(﹣4,1),将△ABC向右平移6个单位后,平移后点的横坐标变为﹣4+6=2,而纵坐标不变,所以点A的坐标变为(2,1).故选B.10.如图,若正六边形ABCDEF绕着中心点O旋转α度后得到的图形与原来图形重合,则α的最小值为()A.120°B.90°C.45°D.60°【考点】旋转对称图形.【分析】先求出正六边形ABCDEF的中心角,然后根据正六边形的性质可判定正六边形ABCDEF绕着中心点O旋转60°的整数倍后得到的图形与原来图形重合.【解答】解:∵正六边形ABCDEF的中心角的度数为=60°,∴正六边形ABCDEF绕着中心点O旋转60°的整数倍后得到的图形与原来图形重合.故选D.11.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为()A.25°B.30°C.50°D.55°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.12.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种【考点】利用旋转设计图案;利用轴对称设计图案.【分析】利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.【解答】解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.二、填空题(本大题有4小题,每小题3分,共12分)13.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=18°.【考点】等腰三角形的性质.【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.14.如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是115度.【考点】线段垂直平分线的性质;三角形内角和定理;三角形的外角性质;角平分线的性质.【分析】先由题意得出垂直平分线垂直且平分BC,BE=EC,由题意可得∠C=∠EBC=×50°=25°,所以∠AEC=90°+25°=115°.易求解.【解答】解:∵AD垂直且平分BC于点D,∴BE=EC,∴∠DBE=∠DCE,又∵∠ABC=50°,BE为∠ABC的平分线,∴∠EBC=∠C=,∴∠AEC=∠C+∠EDC=90°+25°=115°,∴∠AEC=115°.故答案为:115°.15.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集为x≥.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法计算出b的值,进而得到不等式,再解不等式即可.【解答】解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,解得:b=﹣1,∴不等式2x+b≥0变为不等式2x﹣1≥0,解得:x≥,故答案为:x≥.16.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).【考点】坐标与图形变化-旋转.【分析】首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA,进而得出B′的坐标.【解答】解:直线y=﹣x+4与x轴,y轴分别交于A(3,0),B(0,4)两点,∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A,OB=O′B′,O′B′∥x轴,∴点B′的纵坐标为OA长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).三、解答题(本大题有7小题,共52分)17.已知不等式5x﹣2<6x+1的最小正整数解是方程3x﹣ax=6的解,求a的值.【考点】一元一次不等式的整数解;一元一次方程的解.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,然后根据不等式最小整数解是方程的解,进而求得a.【解答】解:∵5x﹣2<6x+1,∴x>﹣3,∴不等式5x﹣2<6x+1的最小正整数解为x=1,∵x=1是方程3x﹣ax=6的解,∴a=﹣2.18.某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.【考点】一次函数的应用.【分析】(1)利用题目中提供的收费方式列出函数关系式即可;(2)求出当两种收费方式费用相同的值,并以此为界作出正确的方案即可.【解答】解:(1)y甲=x+500,y乙=2x;(2)当y甲>y乙时,即x+500>2x,则x<500,当y甲=y乙时,即x+500=2x,则x=500,当y甲<y乙时,即x+500<2x,则x>500,∴该学校印制学生手册数量小于500本时应选择乙厂合算,当印制学生手册数量大于500本时应选择甲厂合算,当印制学生手册数量等于500本时选择两厂费用都一样.19.P为正方形ABCD内一点,且AP=2,将△APB绕点A按逆时针方向旋转90°得到△AP′D.(1)作出旋转后的图形;(2)试求△APP′的周长和面积.【考点】作图-旋转变换;三角形的面积.【分析】(1)利用题意得出对应点P′的位置进而得出答案;(2)利用等腰直角三角形的性质求出周长和面积即可.【解答】解:(1)如图所示:△AP′D即为所求;(2)∵AP=2,将△APB绕点A按逆时针方向旋转90°得到△AP′D,∴AP′=AP=2,∠PAP′=90°,∴PP′=2,故△APP′的周长为:2+2+2=4+2;△APP′的面积为:×2×2=2.20.如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.【考点】全等三角形的判定与性质;平移的性质.【分析】(1)由AB=CD,利用等式的性质得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE与直角三角形DBF全等,利用全等三角形对应边相等得到EC=BF,再利用AAS 得到三角形ECG与三角形FBG全等,利用全等三角形对应边相等得到BG=CG,即可得证;(2)(1)中的结论成立,理由为:由AC=DB,利用等式的性质得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE与直角三角形DBF全等,利用全等三角形对应边相等得到EC=BF,再利用AAS得到三角形ECG与三角形FBG全等,利用全等三角形对应边相等得到BG=CG,即可得证.【解答】(1)证明:∵CE⊥AD,BF⊥AD,∴∠ACE=∠DBF=90°,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,,∴Rt△ACE≌Rt△DBF(HL),∴CE=FB,在△CEG和△BFG中,,∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分线段BC;(2)(1)中结论成立,理由为:证明:∵CE⊥AD,BF⊥AD,∴∠ACE=∠DBF=90°,∵AB=CD,∴AB﹣BC=CD﹣BC,即AC=DB,在Rt△ACE和Rt△DBF中,,∴Rt△ACE≌Rt△DBF(HL),∴CE=FB,在△CEG和△BFG中,,∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分线段BC.21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.【考点】角平分线的性质;勾股定理.【分析】(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.【解答】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.22.如图,在Rt△ABC中,∠ACB=90°,D是BC延长线上的一点,线段BD的垂直平方线EG交AB于点E,交BD于点G.(1)当∠B=30°时,AE和EF有什么关系?请说明理由;(2)当点D在BC延长线上(CD<BC)运动时,点E是否在线段AF的垂直平分线上?【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】(1)根据线段垂直平分线性质得出DE=BE,求出∠D=∠B=30°,根据三角形内角和定理和三角形外角性质求出∠A=∠DEA=60°,即可得出答案;(2)求出∠A=∠AFE,根据线段垂直平分线性质得出即可.【解答】解:(1)AE=EF,理由是:∵线段BD的垂直平方线EG交AB于点E,交BD于点G,∴DE=BE,∵∠B=30°,∴∠D=∠B=30°,∴∠DEA=∠D+∠B=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∴∠A=∠DEA=60°,∴△AEF是等边三角形,∴AE=EF;(2)点E是在线段AF的垂直平分线,理由是:∵∠B=∠D,∠ACB=90°=∠FCD,∴∠A=∠DFC,∵∠DFC=∠AFE,∴∠A=∠AFE,∴EF=AE,∴点E是在线段AF的垂直平分线.23.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠ACB的取值范围.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)证得△ACP≌△BCP即可;(2)加上(1)的结论,证得△ACE≌△BCF即可;(3)假设存在点P,能使得S△ABC=S△ABG,由(2)得到的AE=BF,则新三角形ABG也为等腰三角形,根据底边都为AB,面积相等,得到高相等,所以AC=AE,即三角形ACE 为等腰三角形,则底角∠ACB为锐角,即可得到∠ACB的取值范围.【解答】(1)证明:∵△ABC是等腰三角形,CH是底边上的高线,∴AC=BC,∠ACP=∠BCP.又∵CP=CP,∴△ACP≌△BCP.∴∠CAP=∠CBP,即∠CAE=∠CBF.(2)证明:∵在△ACE与△BCF中,,∴△ACE≌△BCF(ASA).∴AE=BF.(3)解:∵由(2)知△ABG是以AB为底边的等腰三角形,∴S△ABC=S△ABG.∴AE=AC.①当∠ACB为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;②当∠ACB为锐角时,∠CAH=90°﹣∠ACB,而∠CAE<∠CAH,要使AE=AC,只需使∠ACB=∠CEA,此时,∠CAE=180°﹣2∠ACB,只须180°﹣2∠ACB<90°﹣∠ACB,解得:60°<∠ACB<90°.2016年9月8日。
2019学年北京市八年级下学期期中考试数学试卷【含答案及解析】
2019学年北京市八年级下学期期中考试数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________ 题号-二二三四五六七总分得分、单选题i•请判别下列哪个方程是一元二次方程()3A. 「二,IB. j ' ;C. 、一D.: -x2. 在四边形拦;匚二中,对角线心話互相平分,若添加一个条件使得四边形是菱形,则这个条件可以是()A. __二匚'I?B.C.抚二•枣巴D. :.;〃.「3. L -i'是一次函数图象上的两个点,贝【J | 的大小关系是()A. 1B. 匚一,C.1D. 不能确定、选择题4. 如图,在口ABC中,AE丄C于点E,Z B= 65 °,则/ D等于(35°三、单选题6.关于x的一元二次方程I J 1 ! :* :〕二的一个根是0,则a的值是()A. 1B. -1C.四、选择题7. 汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,?则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系及自变量的取值范围是(?)A . S=120-30t (0< t < 4)B . S=30t (0< t < 4)C . S=120-30t (t>0 )D . S=30t (t=4 )五、单选题8. 如图,在正方形—外侧,作等边三角形/. , ■:与―相交于,•‘,则Z :为()A.145 °B.120 °C.115 °D. 1059. 如图,已知矩形A 梟中,厂、.分别是…、;上的点,二、,分别是.’、C.长度不改变D.不能确定「的中点,当点.「在,匸上从打向:移动而,〔不动时,那么线段;的长的变化是( )10. 如图,在直角梯形丄光.,.:中,二V // .鳥a , Z : =90 ° ,打:=28cm —=24cm,.=4cm点「从点,「出发,以1cm/s的速度向点:运动,点•从点…同时出发,以2cm/s的速度向点.运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动。
北京市2020〖人教版〗八年级数学下册复习试卷期中试卷参考答案与试题解析
北京市2020年〖人教版〗八年级数学下册复习试卷期中试卷参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题:(每小题2分,共20分)1.(2分)若分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x>﹣2 D.x >2考点:分式有意义的条件..分析:分式有意义的条件是分母不为0,解答:解:分式有意义,则x﹣2≠0,∴x≠2.故选A.点评:本题比较简单,考查了分式有意义的条件:分母不能为0.2.(2分)在式子,,,+,中,分式的个数是()A.5B.4C.3D.2考点:分式的定义..分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,+的分母中均不含有字母,因此它们是整式,而不是分式.,,分母中含有字母,因此是分式.故选C.点评:本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.3.(2分)下列函数是反比例函数的是()A.y=B.y=C.y=D.y=考点:反比例函数的定义..分析:此题应根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.解答:解:A、y=是正比例函数,错误;B、y=是反比例函数,正确;C、y=不符合反比例函数的定义,错误;D、y=不符合反比例函数的定义,错误.故选B.点评:本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式(k≠0).4.(2分)现修建一座既是中心对称图形又是轴对称图形的花坛,征集到设计方案有平行四边形、正三角形、等腰三角形、矩形、菱形、正方形等图案,你认为符合条件的有()A.3个B.4个C.5个D.6个考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念并分析各图形的特征求解.解答:解:平行四边形是中心对称图形,但不是轴对称图形;正三角形是轴对称图形,但不是中心对称图形;等腰三角形是轴对称图形,但不是中心对称图形;矩形是轴对称图形,也是中心对称图形;菱形是轴对称图形,也是中心对称图形;正方形是轴对称图形,也是中心对称图形;综上可得符合条件的有3个.故选A.点评:本题考查了轴对称及中心对称的知识,掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2分)如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍考点:分式的基本性质..分析:依题意,分别用3x和3y去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用3x和3y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选B.点评:解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.(2分)如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为()A.9米B.15米C.21米D.24米考点:勾股定理的应用..专题:应用题.分析:根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.解答:解:由题意得BC=9,在直角三角形ABC中,根据勾股定理得:AB==15米.所以大树的高度是15+9=24米.故选D.点评:本题考查了勾股定理.熟记9,12,15这组勾股数,计算的时候较快.7.(2分)(•哈尔滨)直角三角形的两条直角边长分别为6cm和8cm,则连接这两条直角边中点线段的长为()A.3cm B.4cm C.5cm D.12cm考点:三角形中位线定理;勾股定理..分析:由题意可知:BC=6,AC=8.根据勾股定理得:BA=10.D、E是两直角边的中点,即为三角形中位线,根据中位线性质即可解答.解答:解:如图所示,在RT△ABC中,BC=6,AC=8,根据勾股定理得:AB==10,又D、E是两直角边的中点,所以DE=AB=5故选C.点评:此题不但考查了勾股定理,还考查了三角形中位线定理,所以学生要把学过的知识融合起来.要培养整体思维的能力.8.(2分)下列命题中不正确的是()A.直角三角形斜边中线等于斜边的一半B.矩形的对角线相等C.矩形的对角线互相垂直D.矩形是轴对称图形考点:命题与定理..分析:根据直角三角形斜边上的性质对A进行判断;根据矩形的性质对B、C、D进行判断.解答:解:A、直角三角形斜边中线等于斜边的一半,所以A选项的命题正确;B、矩形的对角线相等,所以B选项的命题正确;C、矩形的对角线相等且互相平分,所以C选项的命题不正确;D、矩形是轴对称图形,有两条对称轴,所以D选项的命题正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.(2分)顺次连结矩形各边的中点,所成的四边形一定是()A.平行四边形B.矩形C.菱形D.梯形考点:中点四边形..分因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都析:相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.10.(2分)如图,过四边形ABCD的各顶点作对角线BD,AC的平行线围成四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是()A.菱形B.平行四边形C.矩形D.对角线相等的四边形考点:菱形的性质..分析:推出四边形EFGH、HGCA\DGFB是平行四边形,推出GH=GF,则可求解.解答:解:∵EH∥BD,GF∥BD,∴EH∥GF,∵EF∥AC,GH∥AC,∴EF∥GH,∴四边形EFGH是平行四边形,∵GH∥AC,EH∥CG,∴四边形HACG是平行四边形,∴GH=AC,同理GF=BD,∴GH=GF,∴平行四边形EFGH是菱形,故选D.点评:此题主要考查平行四边形和菱形的判定.二、填空题:(每空3分,共30分)11.(3分)1纳米=0.000000001米,则7.5纳米用科学记数表示为7.5×10﹣9米.考点:科学记数法—表示较小的数..分析:首先把7.5纳米化为0.0000000075米,再用科学记数法表示,绝对值小于1的正数利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:7.5纳米=0.0000000075米=7.5×10﹣9米,故答案为:7.5×10﹣9米.点评:本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)若反比例函数y=的图象分布在第一、三象限,则k的取值范围是k>﹣2 .考点:反比例函数的性质..专题:计算题.分析:让反比例函数的比例系数大于0列式求值即可.解答:解:∵反比例函数y=的图象分布在第一、三象限,∴k+2>0,解得k>﹣2.故答案为:k>﹣2.点评:考查反比例函数的性质;用到的知识点为:反比例函数的图象在一、三象限,比例系数大于0.13.(3分)已知正方形的边长为10cm,则对角线的长为10cm.考点:正方形的性质..分析:作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾股定理得AD2=AB2+BD2,求出AD的值即可.解答:解:如图所示:四边形ABCD是边长为4cm的正方形,在Rt△ABD中,由勾股定理得:AD===10cm.所以对角线的长:AD=10cm.点评:本题主要考查勾股定理的应用,应先构造一个直角三角形,在直角三角形中斜边的平方等于两直角边的平方和,作图可以使整个题变得简洁明了14.(3分)已知反比例函数的图象经过A(2,6),那么点B(﹣3,一4)是否在这个函数的图象上在(填“在”或“不在).考点:待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征..分析:计算点B的横纵坐标的积与点A的横纵坐标的积是否相等即可.解答:解:∵反比例函数的图象经过A(2,6),∴k=2×6=12.又∵﹣3×(一4)=12=k,∴点B(﹣3,一4)在这个函数的图象上.故答案为:在.点评:考查反比例函数的图象上的点的坐标的特征.用到的知识点为:反比例函数图象上点的横纵坐标的积相等.15.(3分)(•资阳)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=5 .考点:含30度角的直角三角形;矩形的性质..分析:根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.解答:解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.点评:本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.16.(3分)若方程=无解,则m= ﹣1 .考点:分式方程的解..专题:计算题.分析:分式方程无解,即化成整式方程时无解,或者求得的x的值使最简公分母为0,据此进行解答.解答:解:方程两边同乘x﹣2,得x﹣1=﹣m,∴x=1﹣m.由于此整式方程一定有解,则此解使最简公分母为0.当x﹣2=0时,x=2,∴1﹣m=2时,m=﹣1.故若方程=无解,则m=﹣1.点评:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.本题将分式方程化成整式方程以后,发现是一元一次方程,一定有解,则只能是整式方程的根使最简公分母为0.17.(3分)若菱形两条对角线长分别为6cm和8cm,则它的周长为20cm,面积是24cm2.考点:菱形的性质..专题:计算题.分析:根据菱形的对角线互相平分且垂直,可得菱形的周长为20cm;根据菱形的面积等于对角线积的一半,可得菱形的面积为24cm2.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD,∵AC=8cm,BD=6cm,∴AD=5cm,S菱形ABCD=AC•BD=24cm2.故答案为:20cm、24cm2.点评:此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的四条边都相等.解题的关键注意菱形面积的求解方法:底乘以高或对角线积的一半.18.(3分)(•杭州)当m= 3 时,分式的值为零.考点:分式的值为零的条件..专题:计算题.分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解答:解:要使分式由分子(m﹣1)(m﹣3)=0.解得:m=1或3;而m=3时,分母m2﹣3m+2=2≠0;当m=1时分母m2﹣3m+2=1﹣3+2=0,分式没有意义.所以m的值为3.故答案为3.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.19.(3分)如图所示,一个梯子AB长5m,顶端A靠在墙AC上,这时梯子下端B与墙角C间的距离为3m梯子滑动后停在DE位置上,如图,测得DB的长为1m,则梯子顶端A下落了1 m.考点:勾股定理的应用..专题:应用题.分析:根据梯子、墙、地面构成直角三角形,利用勾股定理解答即可.解答:解:在Rt△ABC中,AB=5m,BC=3m,根据勾股定理得AC==4米,Rt△CDE中,ED=AB=5m,CD=BC+DB=3+1=4米,根据勾股定理得CE==3,所以AE=AC﹣CE=1米,即梯子顶端下滑了1m.点评:连续运用两次勾股定理,分别求得AC和CE的长,进一步求得AE的长.20.(3分)(•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为.考点:反比例函数系数k的几何意义..专题:压轴题;规律型.分析:根据反比例函数中k的几何意义再结合图象即可解答.解答:解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴S1=1,S△OA2P2=1,∵OA1=A1A2,∴S△OA2P2=,同理可得,S2=S1=,S3=S1=,S4=S1=,S5=S1=.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.三、解答题:(共50分)21.(5分)已知y是x的反比例函数,当x=2时,y=6.(1)写出y与x的函数关系式;(2)求当x=4时y的值.考点:待定系数法求反比例函数解析式..专题:待定系数法.分析:(1)因为函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值,从而求得反比例函数的解析式.(2)把x=4代入函数的解析式,求出y的值.解答:解:(1)设∵当x=2时,y=6∴解得k=12∴(2)把x=4代入,得.点评:本题考查的是用待定系数法求反比例函数的解析式,比较简单.22.(5分)(•武汉)解方程:.考点:解分式方程..分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.23.(6分)判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.考点:勾股定理的逆定理..分析:根据两小边的平方和等于最长边的平方就是直角三角形,否则就不是,分别进行判断,即可求出答案.解答:解:(1)∵152+82=172,即a2+b2=c2,则是直角三角形;(2)132+142≠152,则不是直角三角形.点评:此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.24.(6分)先化简,然后选取一个你喜欢的x的值代入计算.考点:分式的化简求值..专题:计算题;开放型.分析:先对x2﹣2x+1分解因式,再进行通分化简,最后求值.解答:解:==,(x≠1)当x=2时,原式=2.点评:主要考查分式的化简求值比较简单,不过选择喜欢的值时,一定要使分母有意义.25.(6分)某空调厂的装配车间计划组装9000台空调:(1)从组装空调开始,每天组装的台数m(单位:台/天)与生产时间t(单位:天)之间有怎样的函数关系?(2)原计划用2个月时间,(每月以30天计算)完成,由于气温提前升高,厂家决定这批空调提前10天上市,那么原装配车间每天至少要组装多少空调?考点:反比例函数的应用..专题:应用题.分析:首先根据题意,因总工作量为9000台空调,故每天组装的台数m与生产时间t之间成反比例关系,即m•t=9000;进一步求解可得答案.解答:解:(1)每天组装的台数m(单位:台/天)与生产时间t(单位:天)之间的函数关系:;(2)当t=50时,.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调.点评:本题考查反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.26.(6分)如图,在海上观察所A,我边防海警发现正北6km的B处有一可疑船只正在向东方向8km的C处行驶.我边防海警即刻派船前往C处拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?考点:勾股定理的应用..分析:首先利用勾股定理求得线段AC的长,然后利用行驶时间相等求得边防海警船的速度.解答:解:∵AB=6,BC=8∴AC==10km,∵可疑船只的行驶速度为40km/h,∴可疑船只的行驶时间为8÷40=0.2小时,∴我边防海警船的速度为10÷0.2=50km/小时,∴我边防海警船的速度为50km/h时,才能恰好在C处将可疑船只截住.点评:本题考查了勾股定理在实际生活中的应用,本题中正确的找到OB,AB的等量关系,并且根据该等量关系在直角△OAB中求解是解题的关键.27.(6分)(•黔南州)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.考点:全等三角形的判定;平行四边形的性质;菱形的性质;矩形的判定..专题:几何综合题.分析:(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.解答:(1)证明:∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD.∴AE=CF.在△AED与△CBF中,,∴△ADE≌△CBF(SAS).(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴四边形AGBD是矩形.点评:主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.28.(10分)如图,已知反比例函数的图象经过第二象限内的点A(﹣2,m),AB⊥x轴于B,△AOB的面积为3,(1)求k,m的值;(2)若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点.①求直线y=ax+b的解析式;②设直线y=ax+b与x轴交于点M,求AM的长;③根据图象写出使反比例函数>y=ax+b的值x的取值范围.考点:反比例函数综合题..专题:综合题.分析:(1)利用△AOB的面积可求出点A的坐标,把点A的坐标代入反比例函数解析式即可求得k的值;(2)把C坐标代入反比例函数就能求得C完整的坐标:①把A、C代入一次函数解析式就能求得解析式;②求出M的坐标,利用勾股定理即可求得AM长;③应从A、C两点入手,判断出反比例函数的值>y=ax+b的值x的取值范围.解答:解:(1)∵点A(﹣2,m)在第二象限内∴AB=m,OB=2∴即:∴,解得m=3∴A(﹣2,3)∵点A(﹣2,3)在反比例函数的图象上,∴,解得:k=﹣6;(2)由(1)知,反比例函数为,又∵反比例函数的图象经过∴,解得:n=4.∴①∵直线y=ax+b过点A(﹣2,3)、∴∴解方程组得∴直线y=ax+b的解析式为.②当y=0时,即,解得:x=2,即点M(2,0)在Rt△ABM中,∵AB=3,BM=BO+OM=2+2=4由勾股定理得:AM=5.③由图象知:当﹣2<x<0或x>4时,反比例函数的值>的值.点评:过某个点,这个点的坐标应适合这个函数解析式.求一次函数的解析式需知道它上面的两个点的坐标;求自变量的取值范围应该从交点入手思考;需注意反比例函数的自变量不能取0.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。
2019-2020学年北京市八年级数学下册期中模拟试卷含解析
2019-2020学年北京市八年级数学下册期中模拟试卷班级姓名座号题号一二三总分得分一、选择题[本题共8道小题,每小题2分共16分)下面名题均有四个选项,其中只有一个是符合题意的1.(2分)下列志愿者标识中是中心对称图形的是()A.B.C.D.2.(2分)已知函数y=,自变量x的取值范围是()A.x≠3B.x≠0C.x>3D.x≠33.(2分)如果一个正多边形的一个外角是45°,则这个正多边形的边数是()A.8B.7C.6D.54.(2分)如图,在△ABC中,点D、E分别是AB、AC的中点,如果DE=3,那么BC的长为()A.4B.5C.6D.75.(2分)函数y=2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,矩形ABCD的对角线AC,BD交于点O,AC=6,∠AOB=60°,则AB 的长为()A.3B.4C.4D.27.(2分)一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论中正确的个数是()①y2随x的增大而减小;②3k+b=3+a;③当x<3时,y1<y2;④当x>3时,y1<y2.A.3B.2C.1D.08.(2分)如图①,在矩形MMPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,那么下列说法不正确的是()A.当x=2时,y=5B.矩形MNPQ的周长是18C.当x=6时,y=10D.当y=8时,x=10二、填空题[本共8道小题,每小题2分,共16分)9.(2分)请你写出一个正比例函数表达式.10.(2分)菱形ABCD的边长为5,一条对角线长为6,则该菱形的面积为.11.(2分)已知点A(﹣3,y1),B(4,y2)是一次函数y=﹣8x+3图象上的两个点,则y1 y2.(填“>”、“=”或“<”)12.(2分)工人师博常常通过测量平行四边形零件的对角线是否相等来检验零件是否为矩形,请问工人师博此种检验方法依据的道理是.13.(2分)如图,边长为4的正方形ABCD的顶点D的坐标为(1,5),且CD∥y轴,则点B的坐标是.14.(2分)已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为.15.(2分)A、B两城间的公路长为450千米,甲车从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回,甲车离A城的距离y(千米)与出发时间x(小时)之间的函数图象如图所示.求甲车返回过程中y与x之间的函数表达式,并写出自变量x的取值范围.16.(2分)用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n个三角形需要s支火柴棒,那么s关于n的函数关系式是(n为正整数).三、解答题(本题共12道小第17-22,每小题5分,第23-26每小题5分,第27、28题,每小题5分,共68分)17.(5分)已知直线y=kx+2(k≠0)经过点(﹣1,3).(1)求k的值;(2)求此直线与x轴、y轴围成的三角形面积.18.(5分)在▱ABCD中,点E、F在对角线AC上,且DE∥BF,求证:BF=DE.19.(5分)如图,在平面直角坐标系中,O为坐标原点,△ABC的顶点坐标分别为A(3,2)、B(1,0)、C(4,﹣1).试画出△ABC关于点O的中心对称图形△A′B′C′,并写出其顶点坐标.20.(5分)如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.21.(5分)已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是;(2)函数y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是.22.(5分)如图,AC=BC,D是AB中点,CE∥AB,CE=AB.(1)求证:四边形CDBE是矩形.(2)若AC=5,CD=3,F是BC上一点,且DF⊥BC,求DF的长.23.(6分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数的图象的交于点C(m,4).(1)求m的值及一次函数y=kx+b的表达式;(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.24.(6分)如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6(1)求直线AC的表达式:(2)如果直线y=x+b与矩形OABC没有公共点,则b的取值范围是.25.(6分)“一带一路”战略为民营快递企业转变为跨境物流商提供了机遇.也让国民可以足不出户地买到世界各国的商品.小丝购买了一些物品,并了解到两家快递公司的收费方式.甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.乙公司:按物品重量每千克7元计价,外加一份包装费10元.设物品的重量为x千克,甲、乙公司快递该物品的费用分别为y甲,y乙.(1)写出y乙与x的函数表达式;(2)图中给出了y甲与x的函数图象,请在图中画出(1)中的函数图象;(3)小丝需要快递的物品重量为4千克,如果想节省快递费用,结合图象指出,应选择的快递公司是.26.(6分)阅读下面的材料:如图1,四根长度一定的木条,其中AB=6,CD=10,将这四根木条用小钉钉在一起,构成一个四边形ABCD(在A,B,C,D四点处是可以活动的),现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置:位置一:当DA⊥AB时,BC∥AD(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若BC的长为x,求AD的长(用含x的代数式表示);(2)在图3中画出位置二的准确图形(各木条长度需符合题目要求),此时AD边的长为.27.(7分)学习函数知识后,可以借助函数的知识解决方程或不等式的相关问题,如“解方程:2x﹣2=0”,既可以直接解方程求解,也可以用函数的知识进行求解,解题思路如下:方程2x﹣2=0可以看成是函数y=2x﹣2的函数值y=0的情况,该方程的解则是对应的自变量x的取值,解为x=1:该问题也可以借助函数图象解决,如图1,方程2x﹣2=0的解对应的是函数y=2x﹣2的图象与x轴交点(点A)的横坐标所以x=1.同样,不等式的问题也可以借助函数知识解决,如“解不等式2x﹣2>0”,既可以直接解不等式进行求解,也可以把不等式2x﹣2>0看成是函数y=2x﹣2的函数值y>0的情况,该不等式的解集就是对应的自变量x的取值范围,所以x>1:借助函数图象,如图1,不等式2x﹣2>0的解集对应的是函数y=2x﹣2的图象在x轴上方的部分点的横坐标取值范围,所以该不等式的解集是x>1请解决如下问题:(1)函数y=mx﹣n(m、n为常数)的图象如图2所示,请回答:①方程mx﹣n=0的解为;②不等式mx﹣n>3的解集为;(2)函数y=x2﹣2x的图象如图3所示,请回答:①方程x2﹣2x=0的解为;②不等式x2﹣2x>0的解集为;③不等式x2﹣2x﹣3≤0的解集为;(3)知不等式(a2+1)x+3>0的解集是x>﹣2,请在图4中画出y=(a2+1)x+3的图象.28.(7分)随着国际间的贸易往来越来越频繁,海洋上的货轮运输也随之不断增加,保证主要运输航线的安全也成为国际社会的重要议题.中国作为国际贸易的重要一员,从2008年开始派出护航编队,到重要的海上航线一亚丁湾执行护航任务,已经先后为各个国家将近7000艘货轮施行护航.现有巡逻舰的巡航航道符合函数y=x的函数图象,其中y轴正方向为北,x轴正方向为东.假设点A(x1,y1),又有y2=x1,当|y2﹣y1|≤2时,我们称点A是巡逻舰的“巡航范围点”,例如点B(1,2),将x1=1代入y2=x1,得y2=1,则|y2﹣y1|=|1﹣2|=1<2,即点B是巡逻舰的巡航范围点.(1)有三个小岛坐标分别为C(0,),D(﹣2,3),E(5,3)①是巡航范围点的小岛有;②需要到小岛E上例行检查,巡逻舰不能离开航道,需要在距离小岛E最近的位置停下,放下小艇上岛,求巡逻舰停治位置点G的坐标;③原点为O(0,0),以线段OC为一条边作矩形OCMN,且此矩形中的点全部为巡航范围点,求点M的横坐标x M的取值范围;(2)巡逻舰的所有“巡航范围点”组成“巡航范围带”.小型运输船甲从点(3,0)出发向北航行,另一艘同型号运输船乙位于甲船的东侧,与甲船同时出发向北航行,两艘运输船的航线截巡逻舰的“巡航范围带”所得四边形为菱形,出发时乙运输船位于甲船东侧多少?参考答案与试题解析一、选择题[本题共8道小题,每小题2分共16分)下面名题均有四个选项,其中只有一个是符合题意的1.(2分)下列志愿者标识中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、不是中心对称图形,故选项错误.故选:C.2.(2分)已知函数y=,自变量x的取值范围是()A.x≠3B.x≠0C.x>3D.x≠3【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣3≠0.解得x≠3,故选:D.3.(2分)如果一个正多边形的一个外角是45°,则这个正多边形的边数是()A.8B.7C.6D.5【分析】根据多边形的外角和定理作答.【解答】解:∵多边形外角和=360°,∴这个正多边形的边数是360°÷45°=8.故选:A.4.(2分)如图,在△ABC中,点D、E分别是AB、AC的中点,如果DE=3,那么BC的长为()A.4B.5C.6D.7【分析】根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.【解答】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=3,∴BC=2×3=6.故选:C.5.(2分)函数y=2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由于k=2,函数y=2x﹣1的图象经过第一、三象限;b=﹣1,图象与y轴的交点在x轴的下方,即图象经过第四象限,即可判断图象不经过第二象限.【解答】解:∵k=2>0,∴函数y=2x﹣1的图象经过第一,三象限;又∵b=﹣1<0,∴图象与y轴的交点在x轴的下方,即图象经过第四象限;所以函数y=﹣x﹣1的图象经过第一,三,四象限,即它不经过第二象限.故选:B.6.(2分)如图,矩形ABCD的对角线AC,BD交于点O,AC=6,∠AOB=60°,则AB 的长为()A.3B.4C.4D.2【分析】由矩形的性质得出AO=BO=BD=AC=3,再证明△AOB为等边三角形,得出BO=AB,即可求出AB.【解答】解:∵四边形ABCD是矩形,∴AO=BO=BD=AC=3,又∵∠AOB=60°,∴△AOB为等边三角形,∴BO=AB=3,故选:A.7.(2分)一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论中正确的个数是()①y2随x的增大而减小;②3k+b=3+a;③当x<3时,y1<y2;④当x>3时,y1<y2.A.3B.2C.1D.0【分析】利用一次函数的性质对①进行判断;x=3时,y1=y2对②进行判断;利用x<3直线y1=kx+b在直线y=x+a的上方可对③进行判断;利用x>3直线y1=kx+b在直线y =x+a的下方可对③进行判断.【解答】解:对于y2=x+a,y2随x的增大而增大,所以①错误;∵x=3时,y1=y2,∴3k+b=3+a,所以②正确;当x<3时,y1>y2;所以③错误;当x>3时,y1<y2;所以④正确.故选:B.8.(2分)如图①,在矩形MMPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,那么下列说法不正确的是()A.当x=2时,y=5B.矩形MNPQ的周长是18C.当x=6时,y=10D.当y=8时,x=10【分析】本题通过右侧的图象可以判断出长方形的边长,然后选项计算,选项A、B、C 都可证正确,选项D,面积为8时,对应x值不为10,所以错误,故答案为D【解答】解:由图象可知,四边形MNPQ的边长,MN=5,NP=4,点R的速度为1单位/秒选项A,x=2时,△MNR的面积==5,正确选项B,矩形周长为2×(4+5)=18,正确选项C,x=6时,点R在QP上,△MNR的面积==10,正确选项D,y=8时,高=8,则高=,点R在PN或QM上,距离QP有个单位,对应的x值都不为10,错误故选:D.二、填空题[本共8道小题,每小题2分,共16分)9.(2分)请你写出一个正比例函数表达式y=2x.【分析】根据正比例函数的定义可以写出一个符合要求的函数解析式.【解答】解:y=2x是正比例函数,故答案为:y=2x.10.(2分)菱形ABCD的边长为5,一条对角线长为6,则该菱形的面积为24.【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【解答】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO==4,∴AC=8,∴菱形的面积是:6×8÷2=24,故答案为:2411.(2分)已知点A(﹣3,y1),B(4,y2)是一次函数y=﹣8x+3图象上的两个点,则y1>y2.(填“>”、“=”或“<”)【分析】利用一次函数图象上点的坐标特征可求出y1、y2的值,比较后即可得出结论(利用一次函数的性质找出结论亦可).【解答】解:∵A(﹣3,y1),B(4,y2)是一次函数y=﹣8x+3的图象上的两个点,∴y1=﹣8×(﹣3)+3=27,y2=﹣8×4+3=﹣29.∵27>﹣29,∴y1>y2.故答案为:>.12.(2分)工人师博常常通过测量平行四边形零件的对角线是否相等来检验零件是否为矩形,请问工人师博此种检验方法依据的道理是对角线相等的平行四边形是矩形.【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)得到矩形ABCD可得到答案.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故答案为:对角线相等的平行四边形是矩形.13.(2分)如图,边长为4的正方形ABCD的顶点D的坐标为(1,5),且CD∥y轴,则点B的坐标是(﹣3,1).【分析】由正方形的性质可得AB=BC=CD=4,∠BCD=90°,由题意可求点B坐标.【解答】解:∵四边形ABCD是边长为4的正方形∴AB=BC=CD=4,∠BCD=90°∵D的坐标为(1,5),且CD∥y轴,∴点C坐标(1,1),∠BCD=90°,BC=4∴点B(﹣3,1)故答案为:(﹣3,1)14.(2分)已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为2cm或8cm.【分析】点M的位置不确定,可分情况讨论.(1)点M在直线b的下方,直线a和直线b之间的距离为5cm﹣3cm=2cm(2)点M在直线a、b的之间,直线a和直线b之间的距离为5cm+3cm=8cm.【解答】解:当M在b下方时,距离为5﹣3=2cm;当M在a、b之间时,距离为5+3=8cm.故答案为:2cm或8cm15.(2分)A、B两城间的公路长为450千米,甲车从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回,甲车离A城的距离y(千米)与出发时间x(小时)之间的函数图象如图所示.求甲车返回过程中y与x之间的函数表达式,并写出自变量x的取值范围y=﹣90x+900(5≤x≤10).【分析】设出一次函数解析式,代入图象上的两个点的坐标,即可解答.【解答】解:设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴,解得,∴y=﹣90x+900,函数的定义域为5≤x≤10.故答案为:y=﹣90x+900(5≤x≤10)16.(2分)用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n个三角形需要s支火柴棒,那么s关于n的函数关系式是s=2n+1(n为正整数).【分析】此题关键在观察、分析已知数据,寻找它们之间的以及与第一个图形的相互联系,探寻其规律.【解答】解:第一个三角形需要3根火柴;第二个三角形需要(3+2)根火柴;第3个三角形需要(3+2×2)根火柴.第n个三角形需要[3+(n﹣1)×2]=2n+1根火柴.∴s=2n+1.三、解答题(本题共12道小第17-22,每小题5分,第23-26每小题5分,第27、28题,每小题5分,共68分)17.(5分)已知直线y=kx+2(k≠0)经过点(﹣1,3).(1)求k的值;(2)求此直线与x轴、y轴围成的三角形面积.【分析】(1)直接把点(﹣1,3)代入y=kx+2可求出k的值;(2)由(1)得到直线解析式为y=﹣x+2,然后根据坐标轴上点的坐标特征确定直线与坐标轴的交点坐标,即可求出此直线与x轴、y轴围成的三角形面积.【解答】解:(1)把(﹣1,3)代入y=kx+2得﹣k+2=3,解得k=﹣1;(2)直线解析式为y=﹣x+2,令y=0,得直线与x轴交点坐标为(2,0);令x=0得,得直线与y轴交点坐标为(0,2);所以此直线与x轴、y轴围成的三角形面积为:×2×2=2.18.(5分)在▱ABCD中,点E、F在对角线AC上,且DE∥BF,求证:BF=DE.【分析】由平行四边形的性质得出BC=AD,BC∥AD,由平行线的性质得出∠BCF=∠DAE,∠BFE=∠DEF,得出∠BFC=∠DEA,由AAS证明△BCF≌△DAE,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,∴∠BCF=∠DAE,∵DE∥BF,∴∠BFE=∠DEF,∴∠BFC=∠DEA,在△BCF和△DAE中,,∴△BCF≌△DAE(AAS),∴BF=DE.19.(5分)如图,在平面直角坐标系中,O为坐标原点,△ABC的顶点坐标分别为A(3,2)、B(1,0)、C(4,﹣1).试画出△ABC关于点O的中心对称图形△A′B′C′,并写出其顶点坐标.【分析】根据A、B、C点的坐标找出A′、B′、C′的坐标,依此连接三点即可得出图形.【解答】解:∵A(3,2)、B(1,0)、C(4,﹣1).△ABC关于点O的中心对称图形△A′B′C′,∴A′(﹣3,﹣2),B′(﹣1,0),C3(﹣4,1).如图所示:20.(5分)如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.【分析】(1)证明四边形ABCD是平行四边形,则结论得出;(2)证明△OAE≌△OCF(ASA).则OE=OF,可得出结论.【解答】证明:(1)∵∠E=∠F,∴AD∥BC,∵AD=BC,∴四边形ABCD是平行四边形,∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC,∴∠EAC=∠FCA,在△OAE和△OCF中,,∴△OAE≌△OCF(ASA).∴OE=OF,∴四边形AFCE是平行四边形.21.(5分)已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【解答】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.故答案为:(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1.22.(5分)如图,AC=BC,D是AB中点,CE∥AB,CE=AB.(1)求证:四边形CDBE是矩形.(2)若AC=5,CD=3,F是BC上一点,且DF⊥BC,求DF的长.【分析】(1)由AC=BC,D为AB中点,利用三线合一得到DB等于AB的一半,且CD 与DB垂直,根据CE等于AB的一半,等量代换得到DB=CE,由CE与AB平行,得到四边形CDBE为平行四边形,根据CD与DB垂直即可得证;(2)在直角三角形CDB中,由BC与CD的长,利用勾股定理求出BD的长,根据DF 与BC垂直,得到DF•BC=CD•BD,即可求出DF的长.【解答】(1)证明:∵AC=BC,∴△ACB是等腰三角形,∵D是AB中点,∴DB=AB,CD⊥DB,∵CE=AB,∴DB=CE,∵CE∥AB,∴四边形CDBE是平行四边形,又∵CD⊥DB,∴四边形CDBE是矩形;(2)解:在Rt△CDB中,∠CDB=90°,CB=AC=5,CD=3,∴BD==4,∵DF⊥BC于F,∴DF•BC=CD•BD,解得:DF=.23.(6分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数的图象的交于点C(m,4).(1)求m的值及一次函数y=kx+b的表达式;(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.【分析】(1)首先利用待定系数法把C(m,4)代入正比例函数中,计算出m的值,进而得到C点坐标,再利用待定系数法把A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值,进而得到一次函数解析式.(2)利用△BPC的面积为6,即可得出点P的坐标.【解答】解:(1)∵点C(m,4)在正比例函数的图象上,∴•m,m=3即点C坐标为(3,4).∵一次函数y=kx+b经过A(﹣3,0)、点C(3,4)∴解得:∴一次函数的表达式为(2)∵点P是y轴上一点,且△BPC的面积为6,∴点P的坐标为(0,6)、(0,﹣2)24.(6分)如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6(1)求直线AC的表达式:(2)如果直线y=x+b与矩形OABC没有公共点,则b的取值范围是b<﹣8或b>6.【分析】(1)由条件可先求得A、C两点的坐标,再利用待定系数法可求得直线AC的解析式;(2)当直线y=x+b过C点和A点时,可求得b的最大值和最小值,可求得b的取值范围.【解答】解:(1)∵OA=8,OC=6,∴A(8,0),C(0,6),设直线AC解析式为y=kx+m,把A、C两点坐标代入可得,解得,∴直线AC的解析式为y=﹣x+6;(2)由图象可知当直线y=x+b过点C时,把C点坐标代入可得6=0+b,∴b=6;当直线y=x+b过点A时,把A点坐标代入可得0=8+b,解得b=﹣8,∵若直线y=x+b与矩形OABC没有公共点∴b的取值范围为b<﹣8或b>6,故答案为:b<﹣8或b>6.25.(6分)“一带一路”战略为民营快递企业转变为跨境物流商提供了机遇.也让国民可以足不出户地买到世界各国的商品.小丝购买了一些物品,并了解到两家快递公司的收费方式.甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.乙公司:按物品重量每千克7元计价,外加一份包装费10元.设物品的重量为x千克,甲、乙公司快递该物品的费用分别为y甲,y乙.(1)写出y乙与x的函数表达式;(2)图中给出了y甲与x的函数图象,请在图中画出(1)中的函数图象;(3)小丝需要快递的物品重量为4千克,如果想节省快递费用,结合图象指出,应选择的快递公司是甲.【分析】(1)根据乙公司的快递费用=7×物品重量+10,即可得出y乙与x的函数表达式;(2)根据一次函数图象上点的坐标特征找出y乙与x的函数图象经过的两点,描点、连点成线,即可画出(1)中的函数图象;(3)根据数量关系找出y甲与x的函数表达式,令y甲=y乙求出费用相等时x的值,结合函数图象即可找出结论.【解答】解:(1)根据题意可知:y乙与x的函数表达式为:y乙=7x+10.(2)当x=0时,y乙=7x+10=10;当x=1时,y乙=7x+10=17.描点、连点成线,画出函数图象,如图所示.(3)根据题意可知:y甲与x的函数表达式为:y甲=.当y甲=y乙时,有7x+10=4x+16,解得:x=2.观察函数图象可知:当x>2时,y甲与x的函数图象在y乙与x的函数图象的下方,∴当x=4时,选择甲公司费用较低.故答案为:甲.26.(6分)阅读下面的材料:如图1,四根长度一定的木条,其中AB=6,CD=10,将这四根木条用小钉钉在一起,构成一个四边形ABCD(在A,B,C,D四点处是可以活动的),现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置:位置一:当DA⊥AB时,BC∥AD(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若BC的长为x,求AD的长(用含x的代数式表示);(2)在图3中画出位置二的准确图形(各木条长度需符合题目要求),此时AD边的长为26.【分析】(1)根据旋转不变量在图2中表示出AD的长即可;(2)根据图形旋转的性质作出图形,根据题目中的所求表示出AD的长,利用勾股定理得到关于x的方程,解得x的值即可.【解答】解:(1)∵在四边形ABCD的转动过程中,BC、AD边的长度始终保持不变,BC=x,∴在图2中,过点C作CE⊥AD于点E,则四边形ABCE是矩形,∴AD=BC=x,CE=AB=6,∴ED==8,∴AD=AE+EC=x+8.(2)位置二的准确图如图3.∵在四边形ABCD转动的过程中,BC、AD边的长度始终保持不变,∴在图3中,BC=x,AC=AB+BC=6+x,AD=x+8,∵△ACD为直角三角形,∠C=90°,由勾股定理得:AC2+CD2=AD2,∴(6+x)2+102=(x+8)2整理,得x=18,即BC=18,∴AD=26.27.(7分)学习函数知识后,可以借助函数的知识解决方程或不等式的相关问题,如“解方程:2x﹣2=0”,既可以直接解方程求解,也可以用函数的知识进行求解,解题思路如下:方程2x﹣2=0可以看成是函数y=2x﹣2的函数值y=0的情况,该方程的解则是对应的自变量x的取值,解为x=1:该问题也可以借助函数图象解决,如图1,方程2x﹣2=0的解对应的是函数y=2x﹣2的图象与x轴交点(点A)的横坐标所以x=1.同样,不等式的问题也可以借助函数知识解决,如“解不等式2x﹣2>0”,既可以直接解不等式进行求解,也可以把不等式2x﹣2>0看成是函数y=2x﹣2的函数值y>0的情况,该不等式的解集就是对应的自变量x的取值范围,所以x>1:借助函数图象,如图1,不等式2x﹣2>0的解集对应的是函数y=2x﹣2的图象在x轴上方的部分点的横坐标取值范围,所以该不等式的解集是x>1请解决如下问题:(1)函数y=mx﹣n(m、n为常数)的图象如图2所示,请回答:①方程mx﹣n=0的解为x=﹣1;②不等式mx﹣n>3的解集为x<﹣2;(2)函数y=x2﹣2x的图象如图3所示,请回答:①方程x2﹣2x=0的解为x=0或2;②不等式x2﹣2x>0的解集为x<0或x>2;③不等式x2﹣2x﹣3≤0的解集为﹣1≤x≤3;(3)知不等式(a2+1)x+3>0的解集是x>﹣2,请在图4中画出y=(a2+1)x+3的图象.【分析】(1)令y=mx﹣n,①由图象可得,当y=0时,x=﹣1,即可求求解;②由图象可得,当y>3时,x<﹣2,即可求解;(2)①由图象可得,当y=2时,x=0或2,即可求解;②由图象可得,当y>0时,x <0或x>2,即可求解;③由图象可得,当y≤0时,﹣1≤x≤3,即可求解;(3)y=kx+b=(a2+1)x+3是一次函数,k=a2+1>0,b=3>0,y>0时,x>﹣2,即当y=0时,x=﹣2,即可求解.【解答】解:(1)令y=mx﹣n,①由图象可得,当y=0时,x=﹣1,故答案为:x=﹣1;②由图象可得,当y>3时,x<﹣2,故答案为:x<﹣2;(2)①由图象可得,当y=2时,x=0或2,故答案为:x=0或2;②由图象可得,当y>0时,x<0或x>2,故答案为:x<0或x>2;③由图象可得,当y≤0时,﹣1≤x≤3,故答案为:﹣1≤x≤3;(3)y=kx+b=(a2+1)x+3是一次函数,∵k=a2+1>0,b=3>0,y>0时,x>﹣2,即当y=0时,x=﹣2,故图象如下图所示:28.(7分)随着国际间的贸易往来越来越频繁,海洋上的货轮运输也随之不断增加,保证主要运输航线的安全也成为国际社会的重要议题.中国作为国际贸易的重要一员,从2008年开始派出护航编队,到重要的海上航线一亚丁湾执行护航任务,已经先后为各个国家将近7000艘货轮施行护航.现有巡逻舰的巡航航道符合函数y=x的函数图象,其中y轴正方向为北,x轴正方向为东.假设点A(x1,y1),又有y2=x1,当|y2﹣y1|≤2时,我们称点A是巡逻舰的“巡航范围点”,例如点B(1,2),将x1=1代入y2=x1,得y2=1,则|y2﹣y1|=|1﹣2|=1<2,即点B是巡逻舰的巡航范围点.(1)有三个小岛坐标分别为C(0,),D(﹣2,3),E(5,3)①是巡航范围点的小岛有CE;②需要到小岛E上例行检查,巡逻舰不能离开航道,需要在距离小岛E最近的位置停下,放下小艇上岛,求巡逻舰停治位置点G的坐标;③原点为O(0,0),以线段OC为一条边作矩形OCMN,且此矩形中的点全部为巡航范围点,求点M的横坐标x M的取值范围;(2)巡逻舰的所有“巡航范围点”组成“巡航范围带”.小型运输船甲从点(3,0)出发向北航行,另一艘同型号运输船乙位于甲船的东侧,与甲船同时出发向北航行,两艘运输船的航线截巡逻舰的“巡航范围带”所得四边形为菱形,出发时乙运输船位于甲船东侧多少?【分析】(1)①根据“巡航范围点”的定义解答即可;②过点E作EF∥x轴,交图象于点F,过点E作EG垂直于图象,交于点G,根据EF=2,△EFG为等腰直角三角形可得解;③求出l1和l2的解析式,进而得出M'和点M的坐标,即可得解;(2)画出图形即可得解.【解答】解:(1)①∵C(0,),将x1=0代入y2=x1,得y2=0,则|y2﹣y1|=|0﹣|=<2,即点C是巡逻舰的巡航范围点;D(﹣2,3),将x1=﹣2代入y2=x1,得y2=﹣2,则|y2﹣y1|=|﹣2﹣3|=3+2>2,即点D不是巡逻舰的巡航范围点;E(5,3),将x1=5代入y2=x1,得y2=5,则|y2﹣y1|=|5﹣3|=2,即点E是巡逻舰的巡航范围点;∴是巡航范围点的小岛有点C和点E.②函数y=x的图象过点(1,1),图象与x轴夹角为45°.过点E作EF∥x轴,交图象于点F,过点E作EG垂直于图象,交于点G.可知点F坐标为(3,3).则有EF=2,且△EFG为等腰直角三角形.所以,点G坐标为(4,4).③如图,l1和l2是巡航范围点的边界线,。
北京四中八年级下数学期中试卷
北 京 市 第 四 中 学 -----------八年级下数学期中试卷一、选择题(每小题3分,共30分)1.不等式x 4316+>的正整数解的个数是( )(A) 1个 (B) 3个 (C) 4个 (D) 无数个 2.下列各式中从左到右的变形,是因式分解的是( ) (A)(a+3)(a-3)=a 2-9 (B)x 2+x-5=(x-2)(x+3)+1 (C) x 2+1=x(x+x1) (D) a 2b+ab 2=ab(a+b)3. 使分式1122+-x x 有意义的x 的取值为( )(A)x≠±1 ; (B)x≠1; (C) x≠-1; (D) x 为任意实数 .4. 把△ABC 的各边分别扩大为原来的3倍,得到△A ′B ′C ′,下列结论不能成立的是( )A .△ABC ∽△A ′B ′C ′B .△ABC 与△A ′B ′C ′的各对应角相等C .△ABC 与△A ′B ′C ′的相似比为41 D .△ABC 与△A ′B ′C ′的相似比为315.如果32-a 是多项式942-+ma a 的一个因式,则m 的值是( )A .0B .6C .12D .—126. 如果(m+3)x >2m+6的解集为x < 2,则m 的取值范围是( )(A)m<0 (B) m<-3 (C)m>-3 (D)m 是任意实数 7. 解关于x 的方程113-=--x m x x 产生增根,则常数m 的值等于( )(A) -1 (B) -2 (C) 1 (D) 2.8.下列四个三角形,与左图中的三角形相似的是( )9.若矩形的半张纸与整张纸相似,那么整张纸的长是宽的( )A.2B.4倍C.2倍D.3倍第11题A B C D10.在一段坡路,小明骑自行车上坡的速度为每小时1ν千米,下坡时的速度为每小时2ν千米,则他在这段路上、下坡的平均速度是( )千米/时 A 、221v v + B 、2121v v v v + C 、21212v v v v + D 、无法确定二、填空题(每小题3分,共24分) 11.当x=1时,分式nx m x -+2无意义,当x=4时分式的值为零, 则n m +=__________.12.①若x:y:z=3:4:5 则zy x z y x ++-+234= 。
北京市北京市房山区2019-2020学年八年级下学期数学期中考试试卷及参考答案
甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描
述和分析.下面给出了部分信息.
a.甲校20名学生成绩的频数分布表和频数分布直方图如下:
甲校学生样本成绩频数分布表
成绩m(分)
频数(人数)
频率
1
0.05
c
0.10
3
0.15
a
b
6
0.30
合计
20
1.0
表1
图1
b.甲校成绩在
的这一组的具体成绩是:81 81 89 83 89 82 83 89
c.甲、乙两校成绩的平均分、中位数、众数、方差如下:
学校
平均分
中位数
众数
甲
84
n
89
乙
84.2
85
85
方差
129.7 138.6
表2
根据以上图表提供的信息,解答下列问题:
(1) 表1中a=;表2中的中位数n =; (2) 补全图1甲校学生样本成绩频数分布直方图; (3) 在此次测试中,某学生的成绩是84分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲” 或“乙”),理由是; (4) 假设甲校1000名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为人. 25. 小明租用共享单车从家出发,匀速骑行到相距2400米的邮局办事.小明出发的同时,他的爸爸以每分钟100米的速 度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家 之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD,线段EF分别表示s1 , s2与t之间的函数
2019-2020学年北京四中八年级(下)期中数学试卷
2019-2020学年北京四中八年级(下)期中数学试卷一、单项选择题(每小题只有一个选项符合题意.共10小题,每小题3分,共30分.)1.(3分)函数中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3D.x≤32.(3分)以下列各组数为边长,能构成直角三角形的是()A.1,,2B.1,1,2C.2,3,4D.4,5,63.(3分)下列各式中与是同类二次根式的是()A.B.C.D.4.(3分)如图,将▱ABCD的一边BC延长至点E,若∠1=55°,则∠A=()A.35°B.55°C.125°D.145°5.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直6.(3分)在下列图形性质中,平行四边形不一定具备的是()A.两组对边分别平行B.两组对边分别相等C.对角线相等D.对角线互相平分7.(3分)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角8.(3分)若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=39.(3分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为()A.(1,2)B.(4,2)C.(2,4)D.(2,1)10.(3分)如图,Rt△ABC中,AB=18,BC=12,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.8B.6C.4D.10二、填空题(共8小题,每题3分,共24分.)11.(3分)如图,在▱ABCD中,BC=9,AB=5,BE平分∠ABC交AD于点E,则DE的长为.12.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠BOC=120°,AB=3,则BC的长为.13.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)14.(3分)如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为.15.(3分)如果一个无理数a与的积是一个有理数,写出a的一个值是.16.(3分)如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB.下面结论:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正确的结论是.17.(3分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若AE=6,正方形ODCE的边长为2,则BD等于.18.(3分)已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢的作法,他的作图依据是:.三、解答题(共46分,第19题3分,第20题至第22题各6分,第23题至第24题各5分,第25题7分,第26题8分)19.(3分)计算:+÷20.(6分)在平面直角坐标系xOy中,已知A(﹣3,2),B(﹣1,﹣2),C(1,1),若以A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.(在平面直角坐标系中画出平行四边形并标上点D的坐标.)21.(6分)如图,E、F是▱ABCD的对角线AC上的两点,AE=CF.求证:EB=DF(写出主要的证明依据).22.(6分)已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.23.(5分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线AP,以点P为圆心,P A长为半径画弧,交AP的延长线于点B;②以点B为圆心,BA长为半径画弧,交l于点C(不与点A重合),连接BC;③以点B为圆心,BP长为半径画孤,交BC于点Q;④作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:∵PB=P A,BC=,BQ=PB,∴PB=P A=BQ=.∴PQ∥l()(填推理的依据).24.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()25.(7分)常常听说“勾3股4弦5”,是什么意思呢?它就是勾股定理,即“直角三角形两直角边长a,b与斜边长c之间满足等式:a2+b2=c2”的一个最简单特例.我们把满足a2+b2=c2的三个正整数a,b,c,称为勾股数组,记为(a,b,c).(1)请在下面的勾股数组表中写出m、n、p合适的数值:a b c a b c345435512m681072425p15179n41102426116061123537………………平面直角坐标系中,横、纵坐标均为整数的点叫做整点(格点).过x轴上的整点作y轴的平行线,过y轴上的整点作x轴的平行线,组成的图形叫做正方形网格(有时简称网格),这些平行线叫做格边,当一条线段AB的两端点是格边上的点时,称为AB在格边上.顶点均在格点上的多边形叫做格点多边形.在正方形网格中,我们可以利用勾股定理研究关于图形面积、周长的问题,其中利用割补法、作图法求面积非常有趣.(2)已知△ABC三边长度为4、13、15,请在下面的网格中画出格点△ABC并计算其面积.26.(8分)如图,矩形ABCD中,点E为矩形的边CD上的任意一点,点P为线段AE的中点,连接BP并延长与边AD交于点F,点M为边CD上的一点,且CM=DE,连接FM.(1)依题意补全图形;(2)求证∠DMF=∠ABF.三、B卷27.(10分)(1)小My同学在网络直播课中学习了勾股定理,他想把这一知识应用在等边三角形中:边长为a的等边三角形面积是(用含a的代数式表示);(2)小My同学进一步思考:是否可以将正方形剪拼成一个等边三角形(不重叠、无缝隙)?①如果将一个边长为2的正方形纸片剪拼等边三角形,那么该三角形边长的平方是;②小My同学按下图切割方法将正方形ABCD剪拼成一个等边三角形EFG:M、N分别为AB、CD边上的中点,P、Q是边BC、AD上两点,G为MQ上一点,且∠MGP=∠PGN=∠NGQ=60°.请补全图形,画出拼成正三角形的各部分分割线,并标号;③正方形ABCD的边长为2,设BP=x,则x2=.28.(10分)如图,双边直尺有两条平行的边,但是没有刻度,可以用来画等距平行线:我们也可用工具自制(如图):下面是小My同学设计的“过直线外一点作这条直线的平行线”的双边直尺作图过程.(1)根据小My同学的作图过程,请证明O为PH中点.(2)根据小My同学的作图过程,请证明PQ∥l.2019-2020学年北京四中八年级(下)期中数学试卷参考答案与试题解析一、单项选择题(每小题只有一个选项符合题意.共10小题,每小题3分,共30分.)1.【解答】解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.2.【解答】解:A、∵12+()2=22,∴以1,,2为边能组成直角三角形,故本选项符合题意;B、1+1=2,不符合三角形三边关系定理,不能组成三角形,也不能组成直角三角形,故本选项不符合题意;C、∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴以4,5,6为边不能组成直角三角形,故本选项不符合题意;故选:A.3.【解答】解:A、与不是同类二次根式,故本选项不符合题意;B、=3,与不是同类二次根式,故本选项不符合题意;C、=2,与不是同类二次根式,故本选项不符合题意;D、=3,与是同类二次根式,故本选项符合题意;故选:D.4.【解答】解:∵四边形ABCD是平行四边形,∠A=∠BCD,∵∠1=55°,∴∠BCD=180°﹣∠1=125°,∴∠A=∠BCD=125°.故选:C.5.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;6.【解答】解:∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴选项A、B、D正确.C错误.故选:C.7.【解答】解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、一组对角是否都为直角,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选:D.8.【解答】解:∵最简二次根式与最简二次根式是同类二次根式,∴x+3=2x,解得:x=3,故选:D.9.【解答】解:过N作NE⊥y轴,NF⊥x轴,∵点A(0,2),B(4,0),点N为线段AB的中点,∴NE=2,NF=1,∴点N的坐标为(2,1),故选:D.10.【解答】解:设BN=x,由折叠的性质可得DN=AN=18﹣x,∵D是BC的中点,∴BD=6,在Rt△NBD中,x2+62=(18﹣x)2,解得x=8.即BN=8.二、填空题(共8小题,每题3分,共24分.)11.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵BC=9,CD=5,∴DE=AD﹣AE=9﹣5=4.故答案为:4.12.【解答】解:∵∠BOC=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,AO=OC,BO=DO,∴AO=BO,∴△AOB是等边三角形,∴AB=AO=BO,∵AB=3,∴AO=3,∴AC=2AO=6,由勾股定理得:BC===3,故答案为:3.13.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0,∴>0.5.故答案为:>.14.【解答】解:如图,过E作EM⊥BC于M,则∠EMF=∠EMB=90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴四边形ABME是矩形,∵AB=5,∴EM=AB=5,AE=BM,∵∠EFB=45°,∠EMF=90°,∴∠MEF=45°=∠EFB,∴EM=FM=5,∵BC=13,AE=CF=BM,∴2AE+5=13,解得:AE=4,故答案为:4.15.【解答】解:∵=2,∴无理数a与的积是一个有理数,a的值可以为:(答案不唯一).故答案为:(答案不唯一).16.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABE=90°,AD∥BC,AB=CD,∵DF=AB,∴DF=CD,∵DF⊥AE,∴∠DF A=∠DFE=90°,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),①正确;∵AD∥BC,∴∠AEB=∠DAF,在△ABE和△DF A中,,∴△ABE≌△DF A(AAS),∴S△ABE=S△ADF;②正确;∴BE=AF,④正确,③不正确;故答案为:①②④.17.【解答】解:设正方形ODCE的边长为2,则CD=CE=2,设BD=x,∵△AFO≌△AEO,△BDO≌△BFO,∴AF=AE,BF=BD,∴AB=x+6,AC=6+2=8,BC=x+2,∵AC2+BC2=AB2,∴(x+2)2+82=(x+6)2,∴x=4,故答案为:4.18.【解答】解:①甲,两组对边分别相等的四边形是平行四边形;②乙,对角线互相平分的四边形是平行四边形.故答案为:甲或乙,两组对边分别相等的四边形是平行四边形或对角线互相平分的四边形是平行四边形.三、解答题(共46分,第19题3分,第20题至第22题各6分,第23题至第24题各5分,第25题7分,第26题8分)19.【解答】解:原式=3+=4.20.【解答】解:如图,∵A(﹣3,2),B(﹣1,﹣2),C(1,1),以A、B、C、D为顶点的四边形是平行四边形,∴点D的坐标为:(﹣5,﹣1)或(﹣1,5)或(3,﹣3).21.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD(平行四边形的对边平行且相等),∴∠FCD=∠EAB(两直线平行,内错角相等),∵AE=CF,∴△FCD≌△EAB(SAS),∴EB=DF.22.【解答】解:设AB=AC=acm,∵BC=10cm,CD=8cm,BD=6cm,∴BD2+CD2=BC2,∴∠BDC=90°,即∠ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a﹣6)2+82,解得:a=,即AB=cm.23.【解答】解:(1)直线PQ即为所求.(2)证明:∵PB=P A,BC=BA,BQ=PB,∴PB=P A=BQ=QC.∴PQ∥l(三角形的中位线定理).故答案为:BA,QC,三角形的中位线定理24.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形25.【解答】解:(1)∵52+122=132,∴m=13;∵92+402=412,∴n=40,∵82+152=172,∴p=8.(2)如图所示:在△ABC中,AB=15,BC=4,AC=13,S△ABC=S ABD﹣S△ACD==24.26.【解答】(1)解:如图所示,(2)证明:延长BF交CD的延长线于点N,∵点P为线段AE中点,∴AP=PE,∵AB∥CD,∴∠PEN=∠P AB,∠2=∠N,∵在△APB和△EPN中,∵,∴△APB≌△EPN(AAS),∴AB=EN,∴AB=CD=EN,∵EN=DN+DE,CD=DM+CM,∵DE=CM,∴DN=DM,∵FD⊥MN,∴FN=FM,∴∠N=∠1,∴∠1=∠2,即∠DMF=∠ABF.三、B卷27.【解答】解:(1)如图,过A作AD⊥BC于D,∵△ABC是等边三角形,∴BD=CD=BC=a,∴AD===a,∴S△ABC=BC•AD=a2;(2)①∵边长为2的正方形的面积=4,∴剪拼成的等边三角形的面积=4,∴a2=4,∴a2=,即该三角形边长的平方是;②补全图形如图2所示;③由题意知,PG=PE,GN=NF,∴PN是△GEF的中位线,∴PN=EF,∵N为AB边上的中点,∴BN=AB=1,∵边长为2的正方形的面积=4,∴剪拼成的等边三角形的面积=4,∴a2=4,∴a2=,即△GEF边长的平方是,∴EF=,∴PN=,∵PN2=BN2+BP2,∴=+1x2,∴x2=﹣1;故答案为:(1)a2;(2)①;③﹣1;28.【解答】解:(1)根据小My同学的作图过程可知:四边形PMHN是平行四边形,根据平行四边形的对角线互相平分,所以O为PH中点.(2)如图,作OK∥TH交QI于点K,由作图过程可知:PH∥QI,∴OK=HI=TH,∠QOK=∠OTH,∠OKQ=∠QIH=∠OHT,∴△OQK≌△TOH(ASA),∴OQ=OT,∵OP=OH,∴四边形PQHT是平行四边形,∴PQ∥l.。
四中初二下期中答案
第 1页 共 3页
八年级数学试卷答案及评分参考
A卷
一、选择题(本题共 30 分,每小题 3 分)
题号 1
2
3
4
5
6
7
8
9
10
答案 B A D
C
A
C
Dห้องสมุดไป่ตู้
D
D
A
二、填空题(本题共 24 分,每小题 3 分)
题号 11
12 13
14
15
16
17
18
答案 4
33 > 4
3
(不 ① ②
4
唯
④
一)
①甲,两组对边分别 相等的四边形是平行 四边形;②乙,对角 线互相平分的四边形 是平行四边形.
三、解答题
19.解: 18 14 7
=3 2 2 2 分
=4 2
20.(-5,-1)或(-1,5)或(3,-3) 21. 证明△BAE≌DCF.…………………………………………………… 4 分
24
26.(1)如图
D
E
M
C
F P
A
(2)由全等证明∠2=∠H
H
由 HE=AB=CD 证明 HD=DM
则∠1=∠H,即∠DMF=∠ABF
B
D
E
M
C
1
FP A
2
B
B卷
D
M
C
1.(1) 3 a2 ;(2) 16 3 ; x2 4 3 1
4
3
3
④
G
③
P
Q
E
②
③
北京四中20202020学年度第二学期期中测验初二年级数学学科doc初中数学
北京四中20202020学年度第二学期期中测验初二年级数学学科 doc 初中数学〔考试时刻为100分钟,试卷总分值为100分〕2.以下线段不能构成直角三角形的是〔 B.2,3, 53 •某种品牌电脑的显示器的寿命大约为〔天〕平均每天工作的时刻为t 〔小时〕,那么能正确表示d 与t 之间的函数关系的图象是〔 丨;班级 学号 姓名 分数一•精心选一选:〔此题共30分,每题 1•以下根式中,属于最简二次根式的是〔 3分〕丨; A. . a 2bB..2C.x 2 y 2 D. 8aA.5, 12, 13 C. 4, 7, 5D. 1 , .2 ,3104小时,这种显示器工作的天数为dL1kJLxlO 4■k1>1lxlQ 4i1x10*■kUlO*■-------------------------------- ii_______ •1* 0? 02~BP"1/i•1)4.以下运算正确的选项是〔 A. ■- a b ■- a bB. ■- a bC. a 2b 2D.1 ab(a 0,b5. x 、y 是实数, 3x 46y0,假设axy-3x=y,那么实数a 的值是〔〕〕A.-4C.-4D.-4〕A .第一、二象限B .第一、三象限C .第二、四角限D .第三、四象限二.细心填一填: 〔此题共18分,每题3分〕11.函数y 于中'自变量的取值范畴是12. 如图,E 、F 是平行四边形ABCD 对角线BD 上的两点,请你 A 添上一个适当的条件: ________ ,使四边形AECF 为平行四边形. 13. 以下讲法:—C①顺次连结菱形四边的中点所得的四边形是正方形;②平行四边形两条对角线的交 点是平行四边形的对称中心;③矩形是轴对称图形,它有4条对称轴;④菱形的对角线相等;⑤对角线互相垂直且相等的四边形是正方形.其中正确的讲法是 ___________ k ,14. 反比例函数y -的图象与直线y=2x 和y=x+1过同一点,那么当x<0时,那个 x反比例函数的函数值y 随x 的增大而 __________ :〔填"增大〃或"减小〃〕15. 如图,梯形 ABCD 中,AD // BC ,/ C 90,且 AB AD .连6 •在平面直角坐标系中,A 、B 、C 三点坐标分不为〔0, 0〕,〔 0, -5〕,〔 -2,-2〕, 以这三点为平行四边形的三个顶点,那么第四个顶点不可能在〔 丨; A.第一象限B.第二象限C.第三象限D.第四象限7.如图,一根木棍斜靠在与地面〔OM 丨垂直的墙〔ON 〕上, 设木棍中点为P,假设木棍A 端沿墙下滑,且B 沿地面向右滑行 在此滑动过程中,点P 到点O 的距离〔 〕;A.变大B.变小C.不变D.无法判定8.函数y的图象位于〔〕;9.假设a 0,那么 2a.;等于〕;10.如图, ABC D , C. — J aa边长为1的正方形ABCD 绕点A 逆时针旋转30到正方形图中阴影部分的面积为〔〕• a B.2 aD. 2a 2. aB .匕3CCADDD结BD ,过A 点作BD 的垂线,交BC 于E .假如EC 3cm , CD 4cm ,那么,梯 形ABCD 的面积是 _______________ cm 2.16.:如图,在平面直角坐标系中, 0为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分不为A : 10,0〕、C 〔 0,4〕, 点D 是OA 的中点,点P 在BC 边上运动,当△ ODP 是腰长 cyFa 1—为5的等腰三角形时,点P 的坐标为 .01A A三.用心算一算:(此题共16分,17题每题3分,18题4分)17.运算:四、解答题〔此题共18分,19、20题每题5分,21题8分〕 19. :如图,在四边形 ABCD 中,AB=DC,AD=BC ,点E 、 分不在边BC 、AD 上, AF=CE ,EF 与对角线BD 交于 O.⑴24 2心⑹ ⑵3'16a⑷ (3.2 2、3)2 7218.先化简,再求值:x 2 2xx 2 1x 1汩,其中x 21求证:0是BD的中点.,, k,20. 如图,一次函数y ax b的图象与反比例函数y -的图象交于第一象限C,xD两点,与坐标轴交于A、B两点,连结OC, OD〔0是坐标原点〕。
北京四中八年级下册期中数学试卷(解析版)
八年级(下)期中数学试卷一、选择题(本部分共12小题,每小题3分,共36分,每小题只有一个选项正确)1.已知a>b,下列不等式中正确的是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>2.下列各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)3.下列多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)24.将一把直尺与一把三角板如图那样放置,若∠1=35°,∠2的度数是()A.65°B.70°C.75°D.80°5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C. D.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.若a﹣b=2,ab=3,则ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣58.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或209.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣110.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,则下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点11.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是()A.17 B.16 C.15 D.1212.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S=4cm2,△ABC 等于()则S阴影A.2cm2 B.1cm2 C.cm2D.cm2二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:4x2﹣8x+4=______.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,则∠DAE=______.15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),则不等式kx1+b1<kx2+b2的解集是______.16.如图,已知Rt△ABC中,AC⊥BC,∠B=30°,AB=10,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A1⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段A1C1,A2C2,…,则A1C1=______;则A3C3=______;则A n C n=______.三、解答题(本题共7小题,共52分)17.计算:(1)解不等式:x ﹣(2x ﹣1)≤3 (2)解不等式组:,并把它的解集在数轴上表示出来.(3)因式分解:﹣4a 2x +12ax ﹣9x .18.先因式分解,再求值:4x (m ﹣1)﹣3x (m ﹣1)2,其中x=,m=3.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,Rt △OAB 的B 点在第三象限,到x 轴的距离为3,到y 轴的距离为4,直角顶点A 在y 轴,画出△OAB .①点B 的坐标是______;②把△OAB 向上平移5个单位后得到对应的△O 1A 1B 1,画出△O 1A 1B 1,点B 1的坐标是______;③把△OAB 绕原点O 按逆时针旋转90°,画出旋转后的△O 2A 2B 2,点B 2的坐标是______.20.如图,在Rt △ABC 中,∠C=90°,∠A=30°,∠ABC=60°,AB 的垂直平分线分别交AB ,AC 于点D ,E .(1)求证:AE=2CE ; (2)求证:DE=EC .21.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.22.某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则: (1)设学生数为x (人),甲旅行社收费为y 甲(元),乙旅行社收费为y 乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?23.如图,已知△ABC中AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点P点Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点P点Q的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间,点P与点Q第一次在△ABC的哪条边上相遇?八年级(下)期中数学试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分,每小题只有一个选项正确)1.已知a>b,下列不等式中正确的是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>【考点】不等式的性质.【分析】根据不等式的性质1,可判断A,B;根据不等式的性质3,可判断C;根据不等式的性质2,可判断D.【解答】解;A、不等式的两边都加上那个同一个数,不等号的方向不变,故A错误;B、不等式的两边都减去同一个数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都除以同一个负数不等号的方向改,故D正确;故选:D.2.下列各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是乘积的形式,不是分解因式,选项正确;B、是分解因式,选项错误;C、是分解因式,选项错误;D、是分解因式,选项错误.故选A.3.下列多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2【考点】因式分解-运用公式法.【分析】能运用平方差公式因式分解的式子的特点是:两项平方项;符号相反.【解答】解:A、﹣m2+4符合平方差公式因式分解的式子的特点,故A错误;B、﹣x2﹣y2两项的符号相同,所以不能用平方差公式因式分解,故B正确;C、x2y2﹣1符合平方差公式因式分解的式子的特点,故C错误;D、(m﹣a)2﹣(m+a)2符合平方差公式因式分解的式子的特点,故D错误.故选B.4.将一把直尺与一把三角板如图那样放置,若∠1=35°,∠2的度数是()A.65°B.70°C.75°D.80°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由三角形外角的性质即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=35°,∴∠3=∠1=35°,∴∠2=35°+30°=65°.故选A.5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.7.若a﹣b=2,ab=3,则ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣5【考点】因式分解-提公因式法.【分析】直接将原式提取公因式ab,进而分解因式将已知代入求出答案.【解答】解:∵a﹣b=2,ab=3,则b﹣a=﹣2,∴ab2﹣a2b=ab(b﹣a)=3×(﹣2)=﹣6.故选:C.8.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.9.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【考点】解一元一次不等式.【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.10.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,则下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点【考点】角平分线的性质;线段垂直平分线的性质.【分析】分别作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点.【解答】解:作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点,故选C.11.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是()A.17 B.16 C.15 D.12【考点】一元一次不等式的应用.【分析】根据竞赛得分=10×答对的题数+(﹣5)×未答对的题数,根据本次竞赛得分要超过100分,列出不等式求解即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>100,10x﹣100+5x>100,15x >200, 解得:x >,根据x 必须为整数,故x 取最小整数14,即小彤参加本次竞赛得分要超过100分,他至少要答对14道题. 故选C . 12.如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于( )A .2cm 2B .1cm 2C . cm 2D . cm 2【考点】三角形的面积.【分析】根据三角形的面积公式,知:等底等高的两个三角形的面积相等. 【解答】解:S 阴影=S △BCE =S △ABC =1cm 2.故选:B .二、填空题(本题共4小题,每小题3分,共12分) 13.分解因式:4x 2﹣8x +4= 4(x ﹣1)2 . 【考点】提公因式法与公式法的综合运用.【分析】先提取公因式4,再根据完全平方公式进行二次分解即可求得答案. 【解答】解:4x 2﹣8x +4=4(x 2﹣2x +1)=4(x ﹣1)2. 故答案为:4(x ﹣1)2. 14.如图,△ABC 中,AD ⊥BC ,AE 是∠BAC 的平分线,∠B=60°,∠BAC=84°,则∠DAE= 12° .【考点】三角形内角和定理.【分析】由角平分线的定义可求得∠BAE ,在Rt △ABD 中可求得∠BAD ,再利用角的和差可求得∠DAE 的大小. 【解答】解:∵AE 是∠BAC 的平分线,∠BAC=84°,∴∠BAE=∠BAC=×84°=42°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=42°﹣30°=12°,故答案为:12°15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),则不等式kx1+b1<kx2+b2的解集是x<1.【考点】一次函数与一元一次不等式.【分析】看两函数交点坐标左边的图象所对应的自变量的取值即可.【解答】解:一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),所以不等式kx1+b1<kx2+b2的解集是x<1.故答案为:x<1.16.如图,已知Rt△ABC中,AC⊥BC,∠B=30°,AB=10,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A1⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段A1C1,A2C2,…,则A1C1=5×()2;则A3C3=5×()6;则A n C n=5×()2n.【考点】勾股定理;含30度角的直角三角形.【分析】首先求出∠A的度数和AC的长,根据角的正弦函数与三角形边的关系,可求出各边的长,然后再总结出规律.【解答】解:∵Rt△ABC中,AC⊥BC,∠B=30°,AB=10,∴∠A=60°,AC=AB=5,∴sinA=,∴A1C=AC×=5×,又∵A1C1⊥BC,CA1⊥AB,∴∠A1CC1=∠A,∴在Rt△A1C1C中,根据锐角三角函数得,A1C1=5×()2,以此类推,则A3C3=5×()6;()2n;∴A n C n,5×故答案为:,5×()6,5×()2n.三、解答题(本题共7小题,共52分)17.计算:(1)解不等式:x﹣(2x﹣1)≤3(2)解不等式组:,并把它的解集在数轴上表示出来.(3)因式分解:﹣4a2x+12ax﹣9x.【考点】解一元一次不等式组;提公因式法与公式法的综合运用;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可;(3)先提取公因式,再利用公式法进行因式分解即可.【解答】解:(1)去括号得,x﹣2x+1≤3,移项得,x﹣2x≤3﹣1,合并同类项得,﹣x≤2,把x的系数化为1得,x≥﹣2;(2)由①得,x≥﹣3,由②得,x<2,故不等式组的解集为:﹣3≤x<2.在数轴上表示为:;(3)原式=﹣x(4a2﹣12a+9)=﹣x(2a﹣3)2.18.先因式分解,再求值:4x(m﹣1)﹣3x(m﹣1)2,其中x=,m=3.【考点】因式分解的应用.【分析】先分解因式,再代入求值.【解答】解:4x(m﹣1)﹣3x(m﹣1)2,=(m﹣1)[4x﹣3x(m﹣1)],=(m﹣1)(4x﹣3mx+3x),=(m﹣1)(7x﹣3mx),当x=,m=3时,原式=(3﹣1)(7×﹣3×3×)=2×(﹣3)=﹣6.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,Rt△OAB的B点在第三象限,到x轴的距离为3,到y轴的距离为4,直角顶点A在y轴,画出△OAB.①点B的坐标是(﹣4,﹣3);②把△OAB向上平移5个单位后得到对应的△O1A1B1,画出△O1A1B1,点B1的坐标是(﹣4,1);③把△OAB绕原点O按逆时针旋转90°,画出旋转后的△O2A2B2,点B2的坐标是(3,﹣4).【考点】作图-旋转变换;作图-平移变换.【分析】①根据第三象限内点的坐标特征写出B点坐标;②利用网格特点和平移性质写出A、B、O的对应点A1、B1、O1的坐标,然后描点得到△O1A1B1;③利用网格特点和旋转的性质画出A、B、O的对应点A2、B2、O2,从而得到△O2A2B2.【解答】解:①点B的坐标是(﹣4,﹣3);②如图,△O1A1B1为所作,点B1的坐标是(﹣4,1);③如图,△O2A2B2为所作,点B2的坐标是(3,﹣4).故答案为(﹣4,﹣3),(﹣4,1),(3,﹣4).20.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线分别交AB,AC于点D,E.(1)求证:AE=2CE;(2)求证:DE=EC.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】(1)首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE;(2)通过BE=AE,得到∠ABE=∠A=30°,求得∠CBE=∠ABE=30°,根据角平分线的性质即可得到结论.【解答】解:(1)连接BE,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=90°﹣∠A=60°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;(2)∵BE=2CE,AE=2CE;∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=∠ABE=30°,∵DE⊥AB,∠C=90°,∴DE=CE.21.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.【考点】一元一次不等式的应用.【分析】首先设车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品,利用使此车间每天所获利润不低于15600元,得出不等关系进而求出即可.【解答】解:设车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品. 根据题意可得,12x ×100+10(10﹣x )×180≥15600,解得;x ≤4,∴10﹣x ≥6,∴至少要派6名工人去生产乙种产品才合适.22.某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x (人),甲旅行社收费为y 甲(元),乙旅行社收费为y 乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?【考点】一次函数的应用.【分析】(1)设我校区级“三好学生”的人数为x 人.则选甲旅行社时总费用=400+400×50%x ,选乙旅行社时总费用=400×60%(x +1);(2)当400+400×50%x <400×60%(x +1)时,甲旅行社较为优惠.反之,乙旅行社优惠,相等时,两旅行社一样.【解答】解:(1)根据题意得,甲旅行社时总费用:y 甲=400+400×50%x ,乙旅行社时总费用:y 乙=400×60%(x +1);(2)设我校区级“三好学生”的人数为x 人,根据题意得:400+400×50%x <400×60%(x +1),解得:x >10,当学生人数超过10人,甲旅行社比较优惠,当学生人数10人之内,乙旅行社比较优惠,刚好10人,两个旅行社一样.23.如图,已知△ABC 中AB=AC=12厘米,BC=9厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点P 点Q 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由; ②若点P 点Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?【考点】三角形综合题.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【解答】解:(1)①∵t=1(秒),∴BP=CQ=3(厘米)∵AB=12,D为AB中点,∴BD=6(厘米)又∵PC=BC﹣BP=9﹣3=6(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t===1.5(秒),此时V Q===4(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得4x=3x+2×12,解得x=24(秒)此时P运动了24×3=72(厘米)又∵△ABC的周长为33厘米,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.2016年9月27日。
北京四中八年级下册期中数学试卷(解析版) (3)
八年级(下)期中数学试卷一、选择题(本大题有12小题,每小题3分,共36分.每小题只有一个正确的选项.)1.贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A.18<t<27 B.18≤t<27 C.18<t≤27 D.18≤t≤272.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n23.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°5.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.6.若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°8.下列不等式中,正确的是()A.m与4的差是负数,可表示为m﹣4<0B.x不大于3可表示为x<3C.a是负数可表示为a>0D.x与2的和是非负数可表示为x+2>09.某次数学竞赛中出了10道题,每答对一题得5分,每答错一题扣3分,若答题只有对错之分,如果至少得10分,那么至少要答对()A.4 题 B.5 题 C.6题D.无法确定10.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C. D.511.如果不等式组的解集是x>2,则m的取值范围是()A.m≥2 B.m≤2 C.m=2 D.m<212.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(本大题共4小题,每小题3分,共12分.)13.如图,将周长为8cm的△ABC沿BC方向平移1cm得到△DEF,则四边形ABFD的周长为cm.14.若点P(2k﹣1,1﹣k)在第四象限,则k的取值范围为.15.若一次函数y=kx+b(k,b是常数,k≠0)的图象如图,则不等式kx+b>0的解集是.16.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题:(本大题共7题,共52分)17.解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.18.解不等式组,并写出不等式组的整数解.19.如图,在边长为1的小正方形组成的方格纸上,分别将△ABC向左平移3个单位和绕着点A顺时针旋转90°.(1)画出平移后的△A1B1C1;(2)画出旋转之后的△AB2C2.20.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB=7.(1)求BE的长;(2)在图中作出延长BE与DF的交点G,并说明BG⊥DF.21.如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCD的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC,求证:BC=BD.22.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.23.如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题有12小题,每小题3分,共36分.每小题只有一个正确的选项.)1.贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A.18<t<27 B.18≤t<27 C.18<t≤27 D.18≤t≤27【考点】不等式的定义.【分析】根据不等式的定义进行解答即可.【解答】解:∵贵阳市今年5月份的最高气温为27℃,最低气温为18℃,某一天的气温为t℃,∴18≤t≤27.故选D.2.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n2【考点】不等式的性质.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.3.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,也是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,也是中心对称图形.故选C.4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【考点】等腰三角形的性质.【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】不等式2x+3≥5的解集是x≥1,大于应向右画,且包括1时,应用点表示,不能用空心的圆圈,表示1这一点,据此可求得不等式的解集以及解集在数轴上的表示.【解答】解:不等式移项,得2x≥5﹣3,合并同类项得2x≥2,系数化1,得x≥1;∵包括1时,应用点表示,不能用空心的圆圈,表示1这一点;故选D.6.若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形【考点】三角形内角和定理.【分析】设∠A=x°,∠B=2x°,∠C=3x°,根据∠A+∠B+∠C=180°得出方程x+2x+3x=180,求出x即可.【解答】解:∵△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180,∴x+2x+3x=180°,∴x=30,∴∠C=90°,∠A=30°,∠B=60°,即△ABC是直角三角形,故选C.7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.8.下列不等式中,正确的是()A.m与4的差是负数,可表示为m﹣4<0B.x不大于3可表示为x<3C.a是负数可表示为a>0D.x与2的和是非负数可表示为x+2>0【考点】由实际问题抽象出一元一次不等式.【分析】根据各选项的语言表述列出不等式,再与选项中所表示的式子进行比较即可得出答案.【解答】解:A、m与4的差是负数,可表示为m﹣4<0,正确;B、x不大于3可表示为x≤3,故本选项错误;C、a是负数可表示为a<0,故本选项错误;D、x与2的和是非负数可表示为x+2≥0,故本选项错误;故选A.9.某次数学竞赛中出了10道题,每答对一题得5分,每答错一题扣3分,若答题只有对错之分,如果至少得10分,那么至少要答对()A.4 题 B.5 题 C.6题D.无法确定【考点】一元一次不等式的应用.【分析】设要答对x道题,则答错(10﹣x)道,答对x道题可以得分5x分,答错(10﹣x)道扣分3(10﹣x),根据题意可得不等式5x﹣3(10﹣x)≥10,再解不等式即可.【解答】解:设要答对x道题,由题意得:5x﹣3(10﹣x)≥10,解得:x≥5.即:至少要答对5道题,才能至少得10分.故选:B.10.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C. D.5【考点】全等三角形的判定与性质.【分析】由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选B.11.如果不等式组的解集是x>2,则m的取值范围是()A.m≥2 B.m≤2 C.m=2 D.m<2【考点】解一元一次不等式组.【分析】本题可根据x+5<4x﹣1解出x的取值,然后结合x>2和x>m,根据“若x同时大于某一个数,那么解集为x大于较大的那个数.”可解出m的取值范围.【解答】解:依题意得:即∴m的值必不大于2即m≤2故选B.12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【考点】等边三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(本大题共4小题,每小题3分,共12分.)13.如图,将周长为8cm的△ABC沿BC方向平移1cm得到△DEF,则四边形ABFD的周长为10cm.【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.【解答】解:根据题意,将周长为8cm的△ABC沿BC向右平移1cm得到△DEF,∴AD=1cm,BF=BC+CF=BC+1cm,DF=AC;又∵AB+BC+AC=8cm,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10cm.故答案为:10.14.若点P(2k﹣1,1﹣k)在第四象限,则k的取值范围为k>1.【考点】解一元一次不等式组;点的坐标.【分析】根据第四象限内点的横坐标为正数、纵坐标都是负数列出不等式组求解即可.【解答】解:∵点P(2k﹣1,1﹣k)在第四象限,∴,解不等式①,得:k>,解不等式②,得:k>1,∴k>1,故答案为:k>1.15.若一次函数y=kx+b(k,b是常数,k≠0)的图象如图,则不等式kx+b>0的解集是x >1.【考点】一次函数与一元一次不等式.【分析】不等式kx+b>0的解集就是图象在x轴的上边的部分的x的取值范围,据此即可求解.【解答】解:不等式kx+b>0的解集是x>1.故答案是:x>1.16.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.三、解答题:(本大题共7题,共52分)17.解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法,去括号,移项,合并同类项,系数化为1即可得解.【解答】解:去括号得,2x﹣2﹣3<1,移项、合并得,2x<6,系数化为1得,x<3.在数轴上表示如下:18.解不等式组,并写出不等式组的整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:由①得x<3;由②得x≥﹣1,∴原不等式组的解集为﹣1≤x<3,则不等式组的整数解有﹣1,0,1,2.19.如图,在边长为1的小正方形组成的方格纸上,分别将△ABC向左平移3个单位和绕着点A顺时针旋转90°.(1)画出平移后的△A1B1C1;(2)画出旋转之后的△AB2C2.【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点B、C绕点A顺时针旋转90°后的对应点B2、C2的位置,然后顺次连接即可.【解答】解:(1)△A1B1C1如图所示;(2)△AB2C2如图所示.20.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB=7.(1)求BE的长;(2)在图中作出延长BE与DF的交点G,并说明BG⊥DF.【考点】旋转的性质;正方形的性质.【分析】(1)先根据旋转得出AF=4,再根据勾股定理求得BE的长;(2)先根据旋转得出∠F=∠AEB,再根据∠AEB+∠ABE=90°,得出∠F+∠ABE=90°,即可得出结论.【解答】解:(1)∵△ADF旋转一定角度后得到△ABE,AF=4,∴AE=AF=4,∵∠BAE=90°,∴Rt△ABE中,BE===;(2)如图,延长BE与DF的交点G,由旋转得,∠F=∠AEB,∵Rt△ABE中,∠AEB+∠ABE=90°,∴∠F+∠ABE=90°,∴∠BGF=90°,即BG⊥DF.21.如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCD的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC,求证:BC=BD.【考点】线段垂直平分线的性质;等腰三角形的判定与性质.【分析】(1)由AB的垂直平分线MN交AB于点D,交AC于点E,可得AD=BD,又由△BCD的周长等于25cm,可得AC+BC=25cm,继而求得答案;(2)由∠A=36°,并且AB=AC,易求得∠BDC=∠C=72°,即可证得BC=BD.【解答】(1)解:∵MN是AB的垂直平分线,∴AD=BD,∵AC=15cm,△BCD的周长等于25cm,∴BC+CD+BD=BC+CD+AD=BC+AC=25cm,∴BC=10cm.(2)证明:∵∠A=36°,AB=AC,∴∠ABC=∠C==72°,∵BD=AD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=36°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.22.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.【分析】(1)设生产A种产品x件,则生产B种产品有(10﹣x)件,根据计划获利14万元,即两种产品共获利14万元,即可列方程求解;(2)根据计划投入资金不多于44万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数;(3)得出利润y与A产品数量x的函数关系式,根据增减性可得,B产品生产越多,获利越大,因而B取最大值时,获利最大,据此即可求解.【解答】解:(1)设生产A种产品x件,则生产B种产品(10﹣x)件,于是有x+3(10﹣x)=14,解得:x=8,则10﹣x=10﹣8=2(件)所以应生产A种产品8件,B种产品2件;(2)设应生产A种产品x件,则生产B种产品有(10﹣x)件,由题意有:,解得:2≤x<8;所以可以采用的方案有:,,,,,,共6种方案;(3)设总利润为y万元,生产A种产品x件,则生产B种产品(10﹣x)件,则利润y=x+3(10﹣x)=﹣2x+30,则y随x的增大而减小,即可得,A产品生产越少,获利越大,所以当时可获得最大利润,其最大利润为2×1+8×3=26万元.23.如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.【考点】翻折变换(折叠问题);全等三角形的判定与性质.【分析】(1)①利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;②利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;(2)首先过C作CM⊥GF于M,由勾股定理以及由面积法得,CM=2.4,进而得出答案【解答】解:(1)①在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);②∵CD=3DE∴DE=2,CE=4,设BG=x,则CG=6﹣x,GE=x+2∵GE2=CG2+CE2∴(x+2)2=(6﹣x)2+42,解得x=3,∴CG=6﹣3=3;(2)如图,过C作CM⊥GF于M,∵BG=GF=3,∴CG=3,EC=6﹣2=4,∴GE==5,CM•GE=GC•EC,∴CM×5=3×4,∴CM=2.4,∴S△FGC=GF×CM=×3×2.4=3.6.2016年9月2日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年北京四中八年级(下)期中数学试卷一.选择题(共10小题)1.函数中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3D.x≤32.以下列各组数为边长,能构成直角三角形的是()A.1,,2B.1,1,2C.2,3,4D.4,5,63.下列各式中与是同类二次根式的是()A.B.C.D.4.如图,将▱ABCD的一边BC延长至点E,若∠1=55°,则∠A=()A.35°B.55°C.125°D.145°5.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直6.在下列图形性质中,平行四边形不一定具备的是()A.两组对边分别平行B.两组对边分别相等C.对角线相等D.对角线互相平分7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角8.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=39.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为()A.(1,2)B.(4,2)C.(2,4)D.(2,1)10.如图,Rt△ABC中,AB=18,BC=12,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.8B.6C.4D.10二.填空题(共8小题)11.如图,在▱ABCD中,BC=9,AB=5,BE平分∠ABC交AD于点E,则DE的长为.12.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠BOC=120°,AB=3,则BC的长为.13.估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)14.如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为.15.如果一个无理数a与的积是一个有理数,写出a的一个值是.16.如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB.下面结论:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正确的结论是.17.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若AE=6,正方形ODCE的边长为2,则BD等于.18.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢的作法,他的作图依据是:.三.解答题(共10小题)19.计算:+÷20.在平面直角坐标系xOy中,已知A(﹣3,2),B(﹣1,﹣2),C(1,1),若以A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.(在平面直角坐标系中画出平行四边形并标上点D的坐标.)21.如图,E、F是▱ABCD的对角线AC上的两点,AE=CF.求证:EB=DF(写出主要的证明依据).22.已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.23.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线AP,以点P为圆心,P A长为半径画弧,交AP的延长线于点B;②以点B为圆心,BA长为半径画弧,交l于点C(不与点A重合),连接BC;③以点B为圆心,BP长为半径画孤,交BC于点Q;④作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:∵PB=P A,BC=,BQ=PB,∴PB=P A=BQ=.∴PQ∥l()(填推理的依据).24.下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()25.常常听说“勾3股4弦5”,是什么意思呢?它就是勾股定理,即“直角三角形两直角边长a,b与斜边长c之间满足等式:a2+b2=c2”的一个最简单特例.我们把满足a2+b2=c2的三个正整数a,b,c,称为勾股数组,记为(a,b,c).(1)请在下面的勾股数组表中写出m、n、p合适的数值:a b c a b c345435512m681072425p15179n41102426116061123537………………平面直角坐标系中,横、纵坐标均为整数的点叫做整点(格点).过x轴上的整点作y轴的平行线,过y轴上的整点作x轴的平行线,组成的图形叫做正方形网格(有时简称网格),这些平行线叫做格边,当一条线段AB的两端点是格边上的点时,称为AB在格边上.顶点均在格点上的多边形叫做格点多边形.在正方形网格中,我们可以利用勾股定理研究关于图形面积、周长的问题,其中利用割补法、作图法求面积非常有趣.(2)已知△ABC三边长度为4、13、15,请在下面的网格中画出格点△ABC并计算其面积.26.如图,矩形ABCD中,点E为矩形的边CD上的任意一点,点P为线段AE的中点,连接BP并延长与边AD交于点F,点M为边CD上的一点,且CM=DE,连接FM.(1)依题意补全图形;(2)求证∠DMF=∠ABF.27.(1)小My同学在网络直播课中学习了勾股定理,他想把这一知识应用在等边三角形中:边长为a的等边三角形面积是(用含a的代数式表示);(2)小My同学进一步思考:是否可以将正方形剪拼成一个等边三角形(不重叠、无缝隙)?①如果将一个边长为2的正方形纸片剪拼等边三角形,那么该三角形边长的平方是;②小My同学按下图切割方法将正方形ABCD剪拼成一个等边三角形EFG:M、N分别为AB、CD边上的中点,P、Q是边BC、AD上两点,G为MQ上一点,且∠MGP=∠PGN=∠NGQ=60°.请补全图形,画出拼成正三角形的各部分分割线,并标号;③正方形ABCD的边长为2,设BP=x,则x2=.28.如图,双边直尺有两条平行的边,但是没有刻度,可以用来画等距平行线:我们也可用工具自制(如图):下面是小My同学设计的“过直线外一点作这条直线的平行线”的双边直尺作图过程.(1)根据小My同学的作图过程,请证明O为PH中点.(2)根据小My同学的作图过程,请证明PQ∥l.参考答案与试题解析一.选择题(共10小题)1.函数中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3D.x≤3【分析】根据二次根式有意义的条件,即根号下大于等于0,求出即可.【解答】解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.2.以下列各组数为边长,能构成直角三角形的是()A.1,,2B.1,1,2C.2,3,4D.4,5,6【分析】根据勾股定理的逆定理的内容和三角形三边关系定理逐个判断即可.【解答】解:A、∵12+()2=22,∴以1,,2为边能组成直角三角形,故本选项符合题意;B、1+1=2,不符合三角形三边关系定理,不能组成三角形,也不能组成直角三角形,故本选项不符合题意;C、∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴以4,5,6为边不能组成直角三角形,故本选项不符合题意;故选:A.3.下列各式中与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的定义逐个判断即可.【解答】解:A、与不是同类二次根式,故本选项不符合题意;B、=3,与不是同类二次根式,故本选项不符合题意;C、=2,与不是同类二次根式,故本选项不符合题意;D、=3,与是同类二次根式,故本选项符合题意;故选:D.4.如图,将▱ABCD的一边BC延长至点E,若∠1=55°,则∠A=()A.35°B.55°C.125°D.145°【分析】根据平行四边形的对角相等得出∠A=∠BCD,再根据平角等于180°列式求出∠BCD=125°,即可得解.【解答】解:∵四边形ABCD是平行四边形,∠A=∠BCD,∵∠1=55°,∴∠BCD=180°﹣∠1=125°,∴∠A=∠BCD=125°.故选:C.5.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.6.在下列图形性质中,平行四边形不一定具备的是()A.两组对边分别平行B.两组对边分别相等C.对角线相等D.对角线互相平分【分析】根据平行四边形的性质:平行四边形的对边相等且平行,对角线互相平分,可得A、B、D正确.C错误即可.【解答】解:∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴选项A、B、D正确.C错误.故选:C.7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角【分析】根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【解答】解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、一组对角是否都为直角,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选:D.8.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=3【分析】根据同类二次根式的定义得出方程,求出方程的解即可.【解答】解:∵最简二次根式与最简二次根式是同类二次根式,∴x+3=2x,解得:x=3,故选:D.9.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为()A.(1,2)B.(4,2)C.(2,4)D.(2,1)【分析】根据三角形的中位线定理和坐标解答即可.【解答】解:过N作NE⊥y轴,NF⊥x轴,∵点A(0,2),B(4,0),点N为线段AB的中点,∴NE=2,NF=1,∴点N的坐标为(2,1),故选:D.10.如图,Rt△ABC中,AB=18,BC=12,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.8B.6C.4D.10【分析】设BN=x,则由折叠的性质可得DN=AN=18﹣x,根据中点的定义可得BD=6,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=18﹣x,∵D是BC的中点,∴BD=6,在Rt△NBD中,x2+62=(18﹣x)2,解得x=8.即BN=8.故选:A.二.填空题(共8小题)11.如图,在▱ABCD中,BC=9,AB=5,BE平分∠ABC交AD于点E,则DE的长为4.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵BC=9,CD=5,∴DE=AD﹣AE=9﹣5=4.故答案为:4.12.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠BOC=120°,AB=3,则BC的长为3.【分析】根据矩形的性质求出AC=2AO,AO=BO,根据等边三角形的判定得出△AOB 是等边三角形,求出AB=AO=3,求出AC,再根据勾股定理求出BC即可.【解答】解:∵∠BOC=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,AO=OC,BO=DO,∴AO=BO,∴△AOB是等边三角形,∴AB=AO=BO,∵AB=3,∴AO=3,∴AC=2AO=6,由勾股定理得:BC===3,故答案为:3.13.估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0,∴>0.5.故答案为:>.14.如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为4.【分析】过E作EM⊥BC于M,根据矩形的性质得出∠A=∠B=90°,求出四边形ABME 是矩形,根据矩形的性质得出EM=AB=5,AE=BM,求出EM=FM=5,根据BC=13和AE=CF=BM求出即可.【解答】解:如图,过E作EM⊥BC于M,则∠EMF=∠EMB=90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴四边形ABME是矩形,∵AB=5,∴EM=AB=5,AE=BM,∵∠EFB=45°,∠EMF=90°,∴∠MEF=45°=∠EFB,∴EM=FM=5,∵BC=13,AE=CF=BM,∴2AE+5=13,解得:AE=4,故答案为:4.15.如果一个无理数a与的积是一个有理数,写出a的一个值是(答案不唯一).【分析】直接化简二次根式,进而得出符合题意的值.【解答】解:∵=2,∴无理数a与的积是一个有理数,a的值可以为:(答案不唯一).故答案为:(答案不唯一).16.如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB.下面结论:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正确的结论是①②④.【分析】证明Rt△DEF≌Rt△DEC得出①正确;在证明△ABE≌△DF A得出S△ABE=S△ADF;②正确;得出BE=AF,④正确,③不正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABE=90°,AD∥BC,AB=CD,∵DF=AB,∴DF=CD,∵DF⊥AE,∴∠DF A=∠DFE=90°,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),①正确;∵AD∥BC,∴∠AEB=∠DAF,在△ABE和△DF A中,,∴△ABE≌△DF A(AAS),∴S△ABE=S△ADF;②正确;∴BE=AF,④正确,③不正确;故答案为:①②④.17.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若AE=6,正方形ODCE的边长为2,则BD等于4.【分析】设BD=x,正方形ODCE的边长为2,则CD=CE=2,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.【解答】解:设正方形ODCE的边长为2,则CD=CE=2,设BD=x,∵△AFO≌△AEO,△BDO≌△BFO,∴AF=AE,BF=BD,∴AB=x+6,AC=6+2=8,BC=x+2,∵AC2+BC2=AB2,∴(x+2)2+82=(x+6)2,∴x=4,故答案为:4.18.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢甲或乙的作法,他的作图依据是:两组对边分别相等的四边形是平行四边形或对角线互相平分的四边形是平行四边形.【分析】根据平行四边形的判定方法即可解决问题.【解答】解:①甲,两组对边分别相等的四边形是平行四边形;②乙,对角线互相平分的四边形是平行四边形.故答案为:甲或乙,两组对边分别相等的四边形是平行四边形或对角线互相平分的四边形是平行四边形.三.解答题(共10小题)19.计算:+÷【分析】先化简二次根式,计算二次根式的除法,再合并同类二次根式即可得.【解答】解:原式=3+=4.20.在平面直角坐标系xOy中,已知A(﹣3,2),B(﹣1,﹣2),C(1,1),若以A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.(在平面直角坐标系中画出平行四边形并标上点D的坐标.)【分析】根据平行四边形的判定即可得点D的坐标.【解答】解:如图,∵A(﹣3,2),B(﹣1,﹣2),C(1,1),以A、B、C、D为顶点的四边形是平行四边形,∴点D的坐标为:(﹣5,﹣1)或(﹣1,5)或(3,﹣3).21.如图,E、F是▱ABCD的对角线AC上的两点,AE=CF.求证:EB=DF(写出主要的证明依据).【分析】由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,可得AB ∥CD,AB=CD,根据两直线平行,内错角相等,可得∠FCD=∠EAB,由已知AE=CF,可证得△FCD≌△EAB(SAS),所以EB=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD(平行四边形的对边平行且相等),∴∠FCD=∠EAB(两直线平行,内错角相等),∵AE=CF,∴△FCD≌△EAB(SAS),∴EB=DF.22.已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.【分析】根据勾股定理的逆定理求出∠BDC=90°,求出∠ADC=90°,在Rt△ADC中,由勾股定理得出a2=(a﹣6)2+82,求出a即可.【解答】解:设AB=AC=acm,∵BC=10cm,CD=8cm,BD=6cm,∴BD2+CD2=BC2,∴∠BDC=90°,即∠ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a﹣6)2+82,解得:a=,即AB=cm.23.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线AP,以点P为圆心,P A长为半径画弧,交AP的延长线于点B;②以点B为圆心,BA长为半径画弧,交l于点C(不与点A重合),连接BC;③以点B为圆心,BP长为半径画孤,交BC于点Q;④作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:∵PB=P A,BC=BA,BQ=PB,∴PB=P A=BQ=QC.∴PQ∥l(三角形的中位线定理)(填推理的依据).【分析】(1)根据要求画出图形.(2)利用三角形的中位线定理证明即可.【解答】解:(1)直线PQ即为所求.(2)证明:∵PB=P A,BC=BA,BQ=PB,∴PB=P A=BQ=QC.∴PQ∥l(三角形的中位线定理).故答案为:BA,QC,三角形的中位线定理24.下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形25.常常听说“勾3股4弦5”,是什么意思呢?它就是勾股定理,即“直角三角形两直角边长a,b与斜边长c之间满足等式:a2+b2=c2”的一个最简单特例.我们把满足a2+b2=c2的三个正整数a,b,c,称为勾股数组,记为(a,b,c).(1)请在下面的勾股数组表中写出m、n、p合适的数值:a b c a b c345435512m681072425p15179n41102426116061123537………………平面直角坐标系中,横、纵坐标均为整数的点叫做整点(格点).过x轴上的整点作y轴的平行线,过y轴上的整点作x轴的平行线,组成的图形叫做正方形网格(有时简称网格),这些平行线叫做格边,当一条线段AB的两端点是格边上的点时,称为AB在格边上.顶点均在格点上的多边形叫做格点多边形.在正方形网格中,我们可以利用勾股定理研究关于图形面积、周长的问题,其中利用割补法、作图法求面积非常有趣.(2)已知△ABC三边长度为4、13、15,请在下面的网格中画出格点△ABC并计算其面积.【分析】(1)根据勾股数的定义计算即可;(2)根据勾股数确定长为13和15的边,再根据三角形的面积公式计算即可.【解答】解:(1)∵52+122=132,∴m=13;∵92+402=412,∴n=40,∵82+152=172,∴p=8.(2)如图所示:在△ABC中,AB=15,BC=4,AC=13,S△ABC=S ABD﹣S△ACD==24.26.如图,矩形ABCD中,点E为矩形的边CD上的任意一点,点P为线段AE的中点,连接BP并延长与边AD交于点F,点M为边CD上的一点,且CM=DE,连接FM.(1)依题意补全图形;(2)求证∠DMF=∠ABF.【分析】(1)按要求画图;(2)延长BF交CD的延长线于点N,首先证明△APB和△EPN全等,得到EN=AB,再根据已知条件证明FN=FM,可得结论.【解答】(1)解:如图所示,(2)证明:延长BF交CD的延长线于点N,∵点P为线段AE中点,∴AP=PE,∵AB∥CD,∴∠PEN=∠P AB,∠2=∠N,∵在△APB和△EPN中,∵,∴△APB≌△EPN(AAS),∴AB=EN,∴AB=CD=EN,∵EN=DN+DE,CD=DM+CM,∵DE=CM,∴DN=DM,∵FD⊥MN,∴FN=FM,∴∠N=∠1,∴∠1=∠2,即∠DMF=∠ABF.27.(1)小My同学在网络直播课中学习了勾股定理,他想把这一知识应用在等边三角形中:边长为a的等边三角形面积是a2(用含a的代数式表示);(2)小My同学进一步思考:是否可以将正方形剪拼成一个等边三角形(不重叠、无缝隙)?①如果将一个边长为2的正方形纸片剪拼等边三角形,那么该三角形边长的平方是;②小My同学按下图切割方法将正方形ABCD剪拼成一个等边三角形EFG:M、N分别为AB、CD边上的中点,P、Q是边BC、AD上两点,G为MQ上一点,且∠MGP=∠PGN=∠NGQ=60°.请补全图形,画出拼成正三角形的各部分分割线,并标号;③正方形ABCD的边长为2,设BP=x,则x2=﹣1.【分析】(1)如图1,过A作AD⊥BC于D,根据等边三角形的性质得到BD=CD=BC =a,由勾股定理得到AD===a,于是得到S△ABC=BC•AD=a2;(2)①根据三角形的面积公式即可得到结论;②补全图形如图2所示;③由题意知,PG=PE,GN=NF,推出PN是△GEF的中位线,得到PN=EF,根据勾股定理即可得到结论.【解答】解:(1)如图,过A作AD⊥BC于D,∵△ABC是等边三角形,∴BD=CD=BC=a,∴AD===a,∴S△ABC=BC•AD=a2;(2)①∵边长为2的正方形的面积=4,∴剪拼成的等边三角形的面积=4,∴a2=4,∴a2=,即该三角形边长的平方是;②补全图形如图2所示;③由题意知,PG=PE,GN=NF,∴PN是△GEF的中位线,∴PN=EF,∵N为AB边上的中点,∴BN=AB=1,∵边长为2的正方形的面积=4,∴剪拼成的等边三角形的面积=4,∴a2=4,∴a2=,即△GEF边长的平方是,∴EF=,∴PN=,∵PN2=BN2+BP2,∴=+1x2,∴x2=﹣1;故答案为:(1)a2;(2)①;③﹣1;28.如图,双边直尺有两条平行的边,但是没有刻度,可以用来画等距平行线:我们也可用工具自制(如图):下面是小My同学设计的“过直线外一点作这条直线的平行线”的双边直尺作图过程.(1)根据小My同学的作图过程,请证明O为PH中点.(2)根据小My同学的作图过程,请证明PQ∥l.【分析】(1)根据小My同学的作图过程可得,四边形PMHN是平行四边形,根据平行四边形的对角线互相平分,即可得结论;(2)作OK∥TH交QI于点K,由作图过程可证明△OQK≌△TOH(ASA),可得OQ=OT,进而可以得结论.【解答】解:(1)根据小My同学的作图过程可知:四边形PMHN是平行四边形,根据平行四边形的对角线互相平分,所以O为PH中点.(2)如图,作OK∥TH交QI于点K,由作图过程可知:PH∥QI,∴OK=HI=TH,∠QOK=∠OTH,知识像烛光,能照亮一个人,也能照亮无数的人。