奥数题库(四年级)数列规律计算(普通)
四年级奥数数列规律总汇
寻找常见数列的排列规律可以从以下三个方面入手:一、仔细观察数据的特征(对于一些特殊数要有一定的积累,如平方数、立方数),根据数据特征极其相互之间的关系找规律。
二、对数列中相邻两个数作差或相除,根据差和商的情况找规律。
三、统筹考虑数列中相邻的三、四个数,根据它们之间的关系找规律。
《奥赛天天练》第1讲,模仿训练,练习2【题目】:按规律在“?”处填数。
【解析】:第(1)小题,仔细观察前三幅图,通过计算可找到规律:上格的数字与左下格数字之差的2倍就是右下格数字,如第一幅图中:(8-6)×2=4。
所以第四幅图中“?”处的数字为:(13-6)×2=14;第五幅图中“?”处的数字为:32-(24÷2)=20。
第(2)小题,仔细观察前两幅图,通过计算可找到规律:中间方格中的数字就等于左、上、右方三角形中三个数字连乘的积,如第一幅图中:1×4×5=2 0。
所以第三幅图中“?”处的数字为:3×5×2=30;第四幅图中“?”处的数字为:56÷(7×8)=1。
《奥赛天天练》第1讲,巩固训练,习题2【题目】:将8个数从左到右排成一行,从第三个数开始,每个数恰好等于它前面两个数的和。
如果第7个数和第8个数分别是81,131,那么第一个数是多少?【解析】:根据题意列出数列(未知数字用方框代替):□、□、□、□、□、□、81、131……“从第三个数开始,每个数恰好等于它前面两个数的和”,倒过来可以推出,这个数列中每个数等于这个数后面两个数的差。
如:第8个数等于第7个数与第6个数的和,则第6个数就等于第8个数与第7个数的差,可求出第6个数为:131-81=50。
依次倒推,可求出前面5个数。
第5个数为:81-50=31;第4个数为:50-31=19;第3个数为:31-19=11;第2个数为:19-11=8;第1个数为:11-8=3。
四年级奥数数列规律解密
四年级奥数数列规律解密数学是一门充满魅力的学科,其中一个让人着迷的领域便是数列。
在四年级的奥数课程中,我们经常会遇到各种各样的数列题目。
这些题目看似复杂,但实际上背后隐藏着一些规律,只要我们掌握了这些规律,解题将会变得轻松而有趣。
本文将解密一些常见的数列规律,帮助大家在奥数课上取得更好的成绩。
一、等差数列等差数列是最常见的数列类型之一。
在等差数列中,每一项与前一项之间的差值保持不变。
我们可以通过以下形式来表示一个等差数列:an = a1 + (n-1)d其中,an表示第n项,a1是首项,d为公差(即每一项之间的差值)。
对于等差数列,我们需要关注三个重要要素:首项、公差和项数。
如果我们知道其中任意两个要素,就可以求解出其他的未知要素。
举例来说,如果我们知道等差数列的首项是3,公差是5,我们就可以轻松地计算出第10项的值。
a10 = a1 + (10-1)d = 3 + 9 * 5 = 48通过掌握等差数列的规律,我们可以迅速求解各种数列题目,不论是计算项数、求和还是找出某一项的值。
二、等比数列另一个常见的数列类型是等比数列。
在等比数列中,每一项与前一项之比保持不变。
我们可以通过以下形式来表示一个等比数列:an = a1 * r^(n-1)其中,an表示第n项,a1是首项,r为公比(即每一项与前一项的比值)。
与等差数列类似,对于等比数列,我们同样需要关注三个重要要素:首项、公比和项数。
通过掌握等比数列的规律,我们可以轻松求解各种等比数列题目。
例如,如果我们知道等比数列的首项是2,公比是3,我们可以计算出第5项的值。
a5 = a1 * r^(5-1) = 2 * 3^4 = 162三、斐波那契数列斐波那契数列是一种非常特殊的数列,其规律更加复杂。
在斐波那契数列中,每一项都是前两项的和。
数列的前几项通常为:1, 1, 2, 3, 5, 8, 13, 21, 34, ...我们可以使用递推公式来表示斐波那契数列:an = a(n-1) + a(n-2)其中,an表示第n项,a(n-1)表示前一项,a(n-2)表示前两项。
四年级下册数学试题-奥数培优:利用等差规律计算(含答案)全国通用
课 题 利用等差规律计算【精品】教学内容在小学数学竞赛中,常出现一类有规律的数列求和问题在三年级我们已介绍过高斯的故事,他之所以算得快,算得正确,就在于他善于观察,发现了等差数列求和规律.1+2+3+---+98+99+10050101=1+100+2+99++50+51 1444442444443共()()()= 101×50,即 (100 +1)×(100÷2)=101×50=5050.按一定次序排列的一列数叫做数列,数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项……最后一个数叫末项.如果一个数列从第二项开始,每一项与它前面一项的差都相等,就称这个数列为等差数列.后项与前项的差叫做这个数列的公差.如:1,2,3,4.…是等差数列,公差为l ;l ,3,5,7,…是等差数列,公差为2;5,10,15,20,…是等差数列,公差为5.由高斯的巧算可知,在等差数列中,有如下规律:项数=(末项首项)÷公差+1第几项=首项+(项-1)×公差总和=(首项十末项)×项数÷2本讲用各种实例展示了等差数列的广泛应用价值,我们要求同学们注意灵活应用这三个公式计算下面各题:(1) 2+5+8+…+23+26+29;(2)(2+4+6+...+100) - (1+3+5+ (99)解(1)这是一个公差为3、首项为2、末项为29、项数为(29 -2) ÷3+1=10的等差数列求和,原式= (2+29)×10÷2=31×10÷2=155.(2)解法一原式=(2+100)×50÷2-(1+99)×50÷2=2550 - 2500=50,解法二原式= (2-1)+(4-3)+(6-5)+…+(100 - 99)=l×50= 50.两种解法相比较,解法一直接套公式,平平淡淡;解法二从整体上把握了题目的运算结构和数字特点,运用交换律和结合律把原式转化成了整齐的结构“1+1+…+1”,因而解得更巧、更好计算:l÷2010 +2÷2010 +3÷2010 +…+2008÷2010+2009÷2010+ 2010÷2010如果按照原式的顺序,先算各个商,再求和,既繁又难,由于除数都相同,被除数组成一个等差数列:1,2,3,4,…,2008,2009,2010.所以可根据除法的运算性质,先求全部被除数的和,再求商解原式= (1+1+2+3+…+2009+2010)÷2010= (1- 2010)×2010÷2÷2010=1000. 5此题解法巧在根据题目特点,运用除法性质进行转化计算中又应用乘除混合运算的简化运算.使整个解答显得简捷明快。
小学四年级奥数专题训练AB卷二:数列(附答案)
四年级奥数专题训练二:数列(A)1. 把一堆苹果分给8个朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有几个?2. 图中是一个堆放铅笔的V形架,如果最上面一层放60支铅笔.问一共有多少支铅笔?3. 全部两位数的和是多少?4.下面的算式是按一定规律排列的,那么第100个算式的得数是多少?4+3,5+6,6+9,7+12,…5. 若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人.如果共有304人,最外圈有几人?6. 在1~100这一百个自然数中所有不能被11整除的奇数的和是多少?7. 在2949,2950,2951,…2997,2998这五十个自然数中,所有偶数之和比所有奇数之和多多少?8. 求一切除以4后余1的两位数的和?9. 一个剧场设置了20排座位,第一排有38个座位,往后每一排都比前一排多2个座位.这个剧场一共设置了多少个座位?10. 小明和小刚赛跑,限定时间为10秒,谁跑的距离长谁胜.小刚第一秒跑了1米,以后每秒都比前面一秒多跑0.1米;小明从始至终每秒都跑1.5米.问两人谁能取胜?11. 若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子.然后他外出了,小光从每个有棋子的盒子里各拿了一个棋子放在空盒内,再把盒子重新排列了一下.小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子.问共有多少个盒子?12. 小刚计算从1开始若干个连续自然数的和,结果误把1当成10来算,得错误结果恰为100.你能帮助小刚纠正错误吗?小刚算的是哪些自然数的和?13. 有10只盒子,44只乒乓球,能不能把44只乒乓球放到盒子中去,使各盒子里的乒乓球数不相等?14. 一个正三角形ABC,每边长1米,在每边上从顶点开始每隔2厘米取一点,然后从这些点出发作两条直线,分别和其他两边平行(如图).这些平行线相截在三角形ABC中得到许多边长为2厘米的正三角形.求边长为2厘米的正三角形的个数.四年级奥数专题训练二:数列(B)1. 求193+187+181+…+103的值.2. 某市举行数学竞赛,比赛前规定,前15名可以获奖,比赛结果第一名1人;第二名并列2人;第三名并列3人;……;第十五名并列15人.用最简便方法计算出得奖的一共有多少人?3. 全部三位数的和是多少?4. 在1949,1950,1951,…1997,1998这五十个自然数中,所有偶数之和比所有奇数之和多多少?5. 某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.这个剧院一共有多少个座位?6. 小明从一月一日开始写大字,第一天写了4个,以后每天比前一天多写相同数量的大字,结果全月共写589个大字,小明每天比前一天多写几个大字?7. 九个连续偶数的和比其中最小的数多232,这九个数中最大的数是多少?8. 39个连续奇数的和是1989,其中最大的一个奇数是多少?9. 在1~200这二百个数中能被9整除的数的和是多少?10. 在1~100这一百个自然数中所有不能被9整除的奇数的和是多少?11. 若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人.如果最内圈有32人,共有多少?12. 有一列数:1,1993,1992,1,1991,1990,1,…,从第三个数起,每一个数都是它前面两个数中大数减小数的差,求从第一个起到1993个数这1993个数之和.13. 学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手赛一场,一共进行了78场比赛,有多少人参加了选拔赛?14. 跳棋棋盘上一共有多少个棋孔?——————————————————A 卷答案———————————————————答 案:1. 36.1+2+3+4+5+6+7+8=(1+8)×8÷2=9×8÷2=72÷2=36(个).2. 1830.从最底层到最上层每一层堆放的铅笔支数组成一个等差数列,所以一共放铅笔.(1+60)×60÷2=61×60÷2=3660÷2=1830(支).3. 4905.两位数依次为10,11,12,…,99.排成一个公差为1,项数是(99-10)+1=90的等差数列,根据公式得:(10+99)×90÷2=109×90÷2=9810÷2=4905.4. 403.仔细观察可知:每个算式的第一个加数组成一个公差为1的等差数列:4,5,6,7,…;每个算式的第二个加数组成一个公差为3的等差数列:3,6,9,12,…;若要求第100个算式的得数,只要分别算出每个等差数列的第100项即可.根据通项: d n a a n ⨯-+=)1(1.第一个加数为:4+(100-1)×1=4+99=103;第二个加数为:3+(100-1)×3=3+99×3=3×100=300.所以第100个算式的得数为:103+400=403.5. 52.最外圈人数有:1a +(8-1)×4=(1a +28)人.所以共有人数可表示为:(11a a ++28)×8÷2=30412a +28=7612a =481a =24最外圈有: 24+28=52(人).6. 2009.(1+3+5+7+…+97+99)-(11+22+33+44+55+66+77+88+99)=(1+99)×50÷2-[(11+99)×4+55]=2500-495=2005.7. 25.根据题意可列出算式:(2950+2952+...+2998)-(2949+2951+ (2997)注意到这两个等差数列的项数相等,公差相同,且对应项差为1,所以25项就差25个1,即原式=(1950-1949)+(1952-1951)+…+(1998-1997)=1+1+1+…+125个=25.8. 1210.✶除以4后余1的最小两位数是多少? 12+1=13.✷除以4后余1的最大两位数是多少? 96+1=97.✹除以4后余1的两位数一共有多少个? 96÷4-2=22(个).它们的和是: 13+17+21+…+97=(13+97)×22÷2=1210.9. 1140.✶第20排有多少个座位? 38+2×(20-1)=76(个).✷这个剧场一共设置了多少座位?38+40+42+…+74+76=(38+76)×20÷2=1140(个).10. 小明胜.✶小刚10秒跑多少米?1+1.1+1.2+…+1.9=1+(1.1+1.9)×9÷2=14.5(米).✷小明10秒跑了多少米?1.5×10=15(米).因为15米>14.5米,所以小明胜.11. 11.由于小明有一个盒子没有放棋子,而小光在有棋子的盒子中各取一个后都放在原先的空盒中,这时又应出现一个空盒,也就是说小明有一个盒子只放了一个棋子.同样道理也有一个盒子放了2个棋子.依次类推,小明的放法为:0,1,2,3,…因为0+1+2+3+…+10=(1+10)×10÷2=55,所以一共有11个盒子.12. 1,2,3,4, (13)✶多加了多少? 10-1=9.✷正确的和应是多少? 100-9=91.✹因为1+2+3+…+13=(1+13)×13÷2=91.所以,小刚算的是1,2,3,4,…,13这13个连续自然数的和.13. 不能.按最少量计算:0+1+2+…+9=45,而45>44,所以原题不能.14. 2500.从图中不难看出边长为2厘米的三角形的个数:第一层有1个;第二层共有3个;第三层共有5个.于是想到共有几层,最底层共有多少个.边长为2厘米的三角形的个数实际上就是从1开始连续50个单数的和:1+3+5+…+99=(1+99)×50÷2=2500(个).————————————————————B 卷答案—————————————————答 案:1. 2368.原式=(103+193)×16÷2=296×16÷2=296×(16÷2)=296×8=23682. 120.通过审题可知,各个名次的获奖人数正好组成一等差数列:1,2,3,…,15.因此,根据公式可得: (1+15)×15÷2=16×15÷2=120(人).3. 494550.三位数依次为100,101,102,…,998,999,排成一个公差为1,项数是(999-100)+1=900的等差数列.求所有三位数的和,根据公式得:(100+999)×900÷2=1099×900÷2=494550.4. 25.(1950+1952+1954+...+1998)-(1949+1951+1953+ (1997)=(1950+1998)×25÷2-(1949+1997)×25÷2=(1950+1998-1949-1997)×25÷2=2×25÷2=25.5. 1150.根据题意可知,这是一个等差数列求和的问题,但要利用公式)(1n n a a S +=2÷⨯n 必须先知道第一排有多少个座位,即首项.d n a a n ⨯--=)1(1=70-(25-1)×2=70-24×2=70-48=22(个)所以一共有座位: (22+70)×25÷2=92×25÷2=1150(个).6. 1.因为以后每一天比前一天多写相同数量的大字,即每天写的字数组成一个等差数列,首项为4,和为589.又因为是一月份,所以有31天,即项数为31.求公差.根据)1()(1-÷-=n a a d n 求公差,必须先求出n a ,所以逆用求和公式)(1n n a a S +=2÷⨯n 得a n S a n n -÷=2,=38-4=34(个).所以: (34-4)÷(31-1)=30÷30=1(个).7. 36.已知九个连续偶数的和比其中最小的数多232,也就是另外八个偶数之和是232.相邻两个偶数差为2,根据公式:根据公式: n S a a n n ÷=+21.得: 92a a +=2×232÷8=58又因为, 2)18(29⨯-+=a a142+=a所以, 581422=++a a2a =(58-14)÷22a =229a =22+14=36.8. 89.因为39个连续奇数之和为1989,所以中间一个数是这39个数的平均数,1989÷39=51,比51大的另外19个奇数为:53,55,57,…,87,89.或用51+19×2=51+38=89.所以其中最大的一个奇数为89.9. 2277.在1~200这二百个数中能被9整除的数构成了一个以9为首项,公差为9的等差数列:9,18,27,36,…,189,198,一共有(198-9)÷9+1=22项.它们的和为:(9+198)×22÷2=207×22÷2=2277.10.2176.(1+3+5+…+99)-(9+27+45+63+81+99)=(1+99)×50÷2-(9+99)×6÷2=2500-324=2176.11.368.先求最外圈有多少人?32+(8-1)×4=32+28=60(人).共有人数:=92×8÷2=368(人).12.1766241.仔细观察这一数列,若把1抽出,则正好成为一个等差数列:1993,1992,1991,1990,…;在原数列中三个数一组出现一个1,则1993个数1993÷3=664…1.可分为664组一个1,即665个1,其余是1993到666这664×2=1328个数.所以前1993个数之和为:1×665+(666+1993)×1328÷2=665+2659×1328÷2=665+1765576=1766241.13.13.n个人参加比赛,每个参赛选手都要和其他选手赛一场,则每个选手赛)1n场,n个人赛(-(场,但每两个人只赛一场,所以这里有一半是重复的,所以实际应赛:-)1nn⨯n÷2=78⨯n)1(-n=156⨯n(-)113×12=156所以,13n.=14.121.六角形棋盘可看作一正一反两个大等边三角形重叠而成,大三角形每边上有13个棋孔,所以一个大三角形共有棋孔(1+2+3+…+13)=(1+13)×13÷2=91个,剩下三个小三角形(见图),共有棋孔:(1+2+3+4)×3=10×3=30(个).所以,跳棋盘上一共有棋孔91+30=121个.。
四年级奥数等差数列求和一
等差数列的通项公式
定义:等差数列中任意一项 都等于前一项加上一个常数
公式:an=a1+(n-1)d, 其中an是第n项,a1是第 一项,d是公差
特点:每一项与前一项的差 等于公差,且差值相等
求解方法:根据已知项和公 差,利用通项公式求出任意
一项
02
等差数列求和的方法
公式法求和
适用范围:适用 于已知首项和公 差的等差数列
公式:S_n = n/2 * (2a_1 + (n1)d),其中a_1是 首项,d是公差, n是项数
推导过程:由等 差数列的性质, 可以推导出该公 式
计算步骤:代入 已知数值,计算 出等差数列的和
倒序相加法求和
添加标题
定义:将等差数列从前往后和从后往前分别相加,再除以2得到等差数列 的和
添加标题
适用范围:适用于等差数列求和问题
+(n-1)d)
变形一: Sn=an^2/2+( n-9)an/2nd/2+n^2/4n/4
变形二: Sn=d/2*n^2+ (a1-d/2)*n
拓展:等差数列 求和公式的应用 范围和适用条件
05
等差数列求和的练习题
基础练习题
题目:1+2+3+...+99=? 题目:求1到100的所有偶数的和。 题目:求1到100的所有奇数的和。 题目:已知等差数列的前三项分别为a、b、c,求该等差数列的和。
添加标题
举例:对于数列1, 3, 5, 7, 9,倒序相加得到1+9, 3+7, 5+5,结果为 10+10+5=25
添加标题
优势:可以快速求解等差数列求和问题
四年级奥数第1专题找规律巧填数
奥数第一专题找规律巧填数专题精析:我们把按某种规律排列的一列数叫做数列,数列中的每一个数都叫做这个数列的项,通过观察已知的项找出所给数列的规律,并依据规律填写所缺的数,就是按规律填数。
基础提炼:例1:找出下面数列的规律,并根据规律在括号里填出适当的数:(1)1,5,11,19,29,(),55;(2)6,1,8,3,10,5,12,7,(),()。
解析:(1)先计算相邻两数的差,5-1=4,11-5=6,19-11=8,29-19=10,由此可以推知这些差依次为4,6,8,10,12,14.这样()里的数应比29多12,比55少14,也就是说应该填41.(2)仅从相邻的两个数难以看出这列数的排列规律,这时不妨隔着一个数来观察,就会发现原来这列数是由两列数复合而成的,第1列数是6,8,10,12,14,每两个数的差是2,;第二列数是1,3,5,7,9,每两个数的差也是2,所以括号里应依次应填14和9.例2:根据前2个三角形里3个数的关系,在第3个、第4个三角形的空格里应填几?解析:先看第1个三角形里的3个数,试着判断它们之间存在着什么样的关系,可能的关系有6×3→18,18—4→14;6+12→18,6+8→14,接着,再来看第2个三角形里的三个数之间的关系依然符合5×3→15,15—4→11 ,所以,第3个和第4个三角形可以填出:模仿训练:练习1 在下面各数列中填入合适的数(1)9,11,15,21,29,( ),51(2)3,4,5,8,7,16,9,32,( ),( )练习2:按规律在“?”处填数。
(1)巩固训练习题1 按数列的规律在括号内填入合适的数:(1)1,4,9,16,(),();(2)11×3,23×5,35×7,47×9,(),611×13.习题2:将8个数从左到右排成一行,从第三个数开始,每个数恰好等于它前面两个数的和,如果第7个数和第8个数分别是81,131,那么第一个数是多少?拓展提高:习题1从下边表格中各数列排列的规律可以看出:(1)☆代表,△代表,(2)81排在第行第列。
小学四年级奥数
小学四年级奥数基础的找规律(1)例题:找出下列数列的规律,并根据规律在括号里填出适当的数。
1、1 3 6 10 15 ()28 ()45〖思路〗计算相邻两数的差,3-1=2,6-3=3,10-6=4,15-10=5,由此可以推出这些差依次为2、3、4、5、6、7、8、9,这样第一个()里的数应比15多6,比28少7,填21。
同理,第二个()里的数应比28多8,比45少9,填36。
2、98 88 79 71 64 58 ()()〖思路〗从98-88=10,88-79=9,79-71=8,71-64=7,64-58=6,可以看出前一个数减去后一个数所得的差分别是10、9、8、7、6、5、4……,按此规律,应得到58-()=5,所以第一个()里填53,第二个人括号里就填49。
针对性训练思考下面各题中的变化规律,在括号里填出适当的数。
①8 10 14 20 28 ()()② 1 5 10 16 ()31 ()③0 3 7 12 ()25 ()④ 1 2 4 7 ()16 22⑤100 92 85 79 74 ()67⑥25 21 17 13 ()()⑦97 87 78 70 63 57 ()()⑧ 1 2 6 24 120 ()5040⑨486 162 ()18 6 2⑩ 2 4 12 48 ()1440答案:38 50 23 40 18 33 11 70 9 5 52 48 720 54 240找规律(2)例题:按一定的规律在括号里填上适合的数。
1、4 1 6 3 8 5 10 7 ()()〖思路〗数列仅从相邻的两个数,难以看出这列数的排列规律。
这时,我们换个角度,隔一个数观察,就会发现,这列数是由两列数复合而成。
奇数项:4 6 8 10(每两个数差2)偶数项:1 3 5 7(每两个数差2)2、7 6 14 7 21 8 28 9 ()()〖思路〗数列仅从相邻的两个数,难以看出这列数的排列规律。
这时,我们换个角度,隔一个数观察,就会发现,这列数是由两列数复合而成。
四年级奥数之简单的数列问题
四年级奥数之简单的数列问题知识概要等差数列的相关公式:等差数列的总和=(首项+末项)×项数÷2项数=(末项—首项)÷公差+1末项=首项+公差×(项数—1)首项=末项—公差×(项数—1)1、计算1+3+5+7+9+……+99 11+21+31+41+……+81+913+11+19+27+……+123 4+11+18+25+……+704(2+4+6+8+…+1998+2000)—(1+3+5+…+1997+1999)(3+4×1)+(3+4×2)+(3+4×3)+……+(3+4×50)2004—2003+2002—2001+2000—1999+1998—1997+……+4—3+2—12、求首项为3,末项为94,公差为7的等差数列的和。
3、求所有除以3后余2的两位数的和。
4、求在100到200之间能被6整除(没有余数)的数的和是多少?5、一个电影院共有23排座位,从第一排起以后每排都比前一排多2个座位。
第23个排有66个座位,这个电影院共有多少个座位?6、小刚做口算题,第一天做了8道题,以后每一天都比前一天多做4个,那么在一周中小刚共做了多少道题?7、一辆公共汽车上共有45个座位,空车出发第一站来1名乘客,以后每站都比前一站多1名乘客,如果没有乘客下车,到第几站后,车上坐满乘客?8、求100以内所有偶数(双数)的和是多少?9、求等差数列4、10、16、22、28……的第15项是多少?10、在等差数列3、7、11、15、19……中,103是第几项?11、求所有除以4余3的三位数的和。
12、在5和71之间插入8个数,使它成为一个等差数列,求这个等差数列的和。
作业:1、计算11+18+25+32+……2、计算:300—1—2—3……—20共60项3、下面算式是按一定规律排列的,那么第50个算式是什么?2+1,3+7,4+13,5+19,6+25……4、2004+2003—2002—2001+2000+1999—1998—1997+……+4+3—2—11966+1976+1986+1996+2006 567×422+567+577×56799999×22222+33333×33334 63 + 99×99 + 361991××125×25×32 3600000÷125÷32÷25 5×96×125×25899998+89998+8998+898 3456×998 37×18+27×42111111×99 9999+999999×77777 52×1100+5200×891234+3142+4321+2413 38×82+17×38+384600÷(23÷ 5 ) (91×63) ÷(13×9)作业:99999×77778+33333×66666 6+4×3÷8×212345+23451+34512+45123+51234 273×4500-45×17300。
小学四年级奥数第4课等差数列及其应用试题附答案-精品
小学四年级上册数学奥数知识点讲解第4课《等差数列及其应用》试题附答案例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, (98)⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.例2求等差数列1,6,11,16…的第20项.例3已知等差数列2,5,8,11,14-,问例是其中第几项?例4如果一等差数列的第4项为21,第6项为33,求它的第8项.例5计算1+5+9+13+17+ (1993)例6建筑工地有一批转,码成如右图形状,最上层两块待,第2层6块砖,第3 层10块存…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,间中间一层多少块枝?这堆待共有多少块?例7求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.例8连续九个自然数的和为54,则以这九个自然数的末项作为首项的九个连续自然数之和是多少?例9100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第 1 个,第3个…第99个,再把剩下的50个数相加,得多少?例10把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?例11把27枚棋子放到7个不同的空盒中,如果要求每个盒子都不空,且任意两个盒子里的棋子数目都不一样多,问能否办到,若能,写出具体方案,若不能,说明理由.答案例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, 98;⑤100,95,90,85,80,75,70.⑥20,18,16,14,12,10,8.这六个数列有一个共同的特点,即相邻两项的差是一个固定的数,像这样的数列就称为等差数列.其中这个固定的数就称为公差,一般用字母d表示, 如:数列①中,d=2-l=3-2=4-3=-=l;数列②中,d=3-l=5-3--=13-11=2;数列⑤中,*100-95二95-90=…=75-70二5;数列⑥中,d=20-l8=18-16='-'=10-8=2.例1下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22,98;⑥不是,因为第1项减去第2项不等于笫2项减去第3项.一般地说,如果一个数列是等差数列,那么这个数列的每一项或者都不小于前面的项,或者每一项都大于前面的项,上述例1的数列⑥中,第1项大于第2 项,第2项却又小于第3项,所以,显然不符合等差数列的定义.为了叙述和书写的方便,通常,我们把数列的第1项记为a,第2项记为抵,…,第n项记为an,an。
四年级奥数题目30道
四年级奥数题目30道一、四则运算类1. 计算:1 + 2 + 3+…+100解析:这是一个等差数列求和的问题。
等差数列求和公式为公式,其中公式是项数,公式是首项,公式是末项。
在公式中,公式,公式,公式。
则公式。
2. 25×32×125解析:把32拆分成公式,原式变为公式。
3. 999×999+1999解析:将1999拆分为公式,原式变为公式。
二、数字规律类4. 找规律填数:1,1,2,3,5,8,(),21解析:这是斐波那契数列,从第三项起,每一项都等于前两项之和。
所以括号里的数为公式。
5. 观察数列:1,4,9,16,25,()解析:这个数列是平方数数列,公式,公式,公式,公式,公式,括号里的数为公式。
三、植树问题类6. 在一条长200米的路的一侧种树,每隔5米种一棵,两端都种,一共要种多少棵树?解析:根据公式公式,间隔数公式总长公式间隔长度。
这里总长公式米,间隔长度公式米,间隔数为公式,则棵数为公式棵。
7. 一个圆形池塘周长是180米,每隔6米种一棵柳树,一共要种多少棵柳树?解析:圆形是封闭线路,棵数公式间隔数。
所以公式棵柳树。
四、年龄问题类8. 父亲今年40岁,儿子今年12岁,几年后父亲的年龄是儿子年龄的2倍?解析:设公式年后父亲年龄是儿子年龄的2倍。
可列方程公式,公式,移项得公式,公式。
9. 哥哥5年前的年龄和妹妹3年后的年龄相等,哥哥今年18岁,妹妹今年多少岁?解析:哥哥5年前的年龄为公式岁,因为哥哥5年前的年龄和妹妹3年后的年龄相等,所以妹妹3年后是13岁,妹妹今年公式岁。
五、鸡兔同笼问题类10. 鸡兔同笼,共有头30个,脚84只,问鸡兔各有多少只?解析:假设全是鸡,则脚有公式只,比实际少公式只。
每把一只兔当成鸡就少算公式只脚,所以兔有公式只,鸡有公式只。
11. 有蛐蛐和蜘蛛共10只,共有68条腿,蛐蛐有6条腿,蜘蛛有8条腿,问蛐蛐和蜘蛛各有多少只?解析:假设全是蛐蛐,则腿有公式条,比实际少公式条。
奥数四年级—数列问题
练 例3、计算11+15+19+......+99。 习
解:首项=11, 末项=99
总项数=(末项-首项)÷公差 + 1
总项数=(99-11)÷4+1 =23 公差=15-11=4
直接列公式: =(首项+末项)×(项数÷2) =(11+99)× (23÷2) =110×11.5 =1265
练 习
练 例2、求首项是3,公差是5的等差数列的前 习 1999项的和。
首项=3, 末项=?? 不知道,要先求! 总项数=1999, 公差=5 3,8,13,18,23,28,..... 解:第1项=3 第2项=3+(5×1)=8 第3项=3+(5×2)=13 第4项=3+(5×3)=18 第5项=3+(5×4)=23 第6项=3+(5×5)=28 ...... 第1999项=3+(5×1998)=9993
公式:(首项+末项)×(项数÷2) =(1+2006)× (2006÷2) =2007×1003 =2013021
练 例1、计算 习 1+2+3+…+2006
首项=1, 总项数=2006, 末项=2006 公差=1
直接列公式: =(首项+末项)×(项数÷2) =(1+2006)× (2006÷2) =2007×1003 =2013021
数列问题
(一)数列的基本知识
(1)1、2、3、4、5、6…… (2)2、4、6、8、10、12…… (3)5、10、15、20、25、30
像这样按照一定规律排列成的一列数我们称它为数列 数列中的每一个数称为一项; 第1项称为首项;最后1项称为末项; 在第几个位置上的数就叫第几项; 有多少项称为项数;
四年级奥数(寻找规律)
四年级奥数寻找规律按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
对于较复杂的按规律填数的问题,我们可以从以下几个方面来思考:1.对于几列数组成的一组数变化规律的分析,需要我们灵活地思考,没有一成不变的方法,有时需要综合运用其他知识,一种方法不行,就要及时调整思路,换一种方法再分析;2.对于那些分布在某些图中的数,它们之间的变化规律往往与这些数在图形中的特殊位置有关,这是我们解这类题的突破口。
3.对于找到的规律,应该适合这组数中的所有数或这组算式中的所有算式。
考点一:发现数列规律例1、填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()【解析】(1)前一个数加上3就等于后一个数,也就是相邻两个数的差都是3.根据这一规律,可以后推知括号里填15和18.(2)第一个数增加1等于第二个数,第二个数增加2等于第三个数,也就是每相邻两个数的差依次是1,2,3,4....,这样下一个数应比11大5,填16;再下一个数应比16大6,填22.(3)后一个数是前一个数的3倍,162和486例2、找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()(3)3,4,7,3,4,10 , 3 , 4 ,13,(),()(4)187,286,385,(),()【解析】(1)第一个数减3是第三个数,第三个数减3是第5个数,第二、第四、第六个数不变。
四年级下册数学试题-奥数培优:利用等差规律计算(含答案)全国通用
课 题利用等差规律计算教学内容在小学数学竞赛中,常出现一类有规律的数列求和问题在三年级我们已介绍过高斯的故事,他之所以算得快,算得正确,就在于他善于观察,发现了等差数列求和规律. 1+2+3+---+98+99+10050101=1+100+2+99++50+51 1444442444443共()()()= 101×50,即 (100 +1)×(100÷2)=101×50=5050.按一定次序排列的一列数叫做数列,数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项……最后一个数叫末项.如果一个数列从第二项开始,每一项与它前面一项的差都相等,就称这个数列为等差数列.后项与前项的差叫做这个数列的公差.如: 1,2,3,4.…是等差数列,公差为l ; l ,3,5,7,…是等差数列,公差为2; 5,10,15,20,…是等差数列,公差为5.由高斯的巧算可知,在等差数列中,有如下规律: 项数=(末项首项)÷公差+1 第几项=首项+(项-1)×公差 总和=(首项十末项)×项数÷2本讲用各种实例展示了等差数列的广泛应用价值,我们要求同学们注意灵活应用这三个公式计算下面各题:(1) 2+5+8+…+23+26+29;(2)(2+4+6+...+100) - (1+3+5+ (99)解(1)这是一个公差为3、首项为2、末项为29、项数为(29 -2) ÷3+1=10的等差数列求和,原式= (2+29)×10÷2=31×10÷2=155.(2)解法一原式=(2+100)×50÷2-(1+99)×50÷2=2550 - 2500=50,解法二原式= (2-1)+(4-3)+(6-5)+…+(100 - 99)=l×50= 50.两种解法相比较,解法一直接套公式,平平淡淡;解法二从整体上把握了题目的运算结构和数字特点,运用交换律和结合律把原式转化成了整齐的结构“1+1+…+1”,因而解得更巧、更好计算:l÷2010 +2÷2010 +3÷2010 +…+2008÷2010+2009÷2010+ 2010÷2010如果按照原式的顺序,先算各个商,再求和,既繁又难,由于除数都相同,被除数组成一个等差数列:1,2,3,4,…,2008,2009,2010.所以可根据除法的运算性质,先求全部被除数的和,再求商解原式= (1+1+2+3+…+2009+2010)÷2010= (1- 2010)×2010÷2÷2010=1000. 5此题解法巧在根据题目特点,运用除法性质进行转化计算中又应用乘除混合运算的简化运算.使整个解答显得简捷明快。
【冀教版】四年级奥数上册讲义-第五讲 数列数表规律
第五讲数列数表规律◆温故知新:1. 找规律填空:8、15、22、29、36、、、572.找规律填空:1、2、4、8、、32、643.一个等差数列共有13项,每一项都比它的前一项大2,首项为23,末项是。
4.一个等差数列共有13项,每一项都比它的前一项小7,末项为125,首项是。
5.等差数列通项公式:末项=首项+(项数-1)×公差;项数公式:项数=(末项-首项)÷公差+1求和公式:和=(首项+末项)×项数÷26.寻找数列、数表中的数排列的规律,利用周期性计算。
7.在数列中需要关注所求的是第几个数,在数表中则要考虑所求的数在第几行、第几列◆练一练1. 一个等差数列的首项是为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少?305是第几项?2.计算:(1)3+6+9+12+15+18+21+24+27+30(2)41+37+33+29+25+21+17+13+9+5+13.有9个连续的自然数的和是126,其中最小的数是多少?4.已知一个等差数列的前13项之和为533,前15项之和为690.请问:这个等差数列的首项是多少?◆例题展示例题1观察数列的规律1、1、4、2、7、3、10、1、13、2、16、3、19、1、22、2、25、3、…、100。
这个数列一共有多少项?练习1观察数列的规律3、1、6、2、9、3、12、1、15、2、18、3、21、1、24、2、27、3、…、102。
这个数列一共有多少项?例题21、100、2、98、3、96、2、94、1、92、2、90、3、88、2、86、1、84、 0请观察上面数列的规律,请问:(1)这个数列有多少项是2?(2)这个数列所有项的总和是多少?练习210、2、10、4、10、6、10、8、10、10、10、12、 (100)观察数列的规律并回答以下问题:(1)这个数列中有多少项是10?(2)这个数列所有项的总和是多少?例题31、2、3、4、4、5、6、7、7、8、9、10、……、97、98、99、100请观察数列的规律并回答以下问题:(1)这个数列一共有多少个数?(2)50在数列中是第几个数?练习3 1、2、3、2、3、4、3、4、5、……9、10、11请观察数列的规律并回答以下问题:(1)这个数列中一共有多少个数?(2)数字8出现了几次?例题4观察数组(1、2、3)、(3、4、5)、(5、6、7)、(7、8、9)……的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和。
奥数题库(四年级)数列规律计算(普通)
双重数列规律1.观察如下数列:10,1,10,2,10,3,10,4,……,10,9.这个数列一共有多少个数?2.观察如下数列:5,1,5,2,5,3,5,4,……,5,10.这个数列一共有多少个数?3.观察如下数列:8,1,8,2,8,3,8,4,……,8,7.这个数列一共有多少个数?4.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,10,100.那么这个数列一共有多少个数?5.观察如下数列:5,3,5,6,5,9,5,12,……,5,99.那么这个数列一共有多少个数?6.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,100,10.那么这个数列一共有多少个数?7.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,2,1.这个数列的和是多少?8.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84, 0这个数列的和是多少?9.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列的和是多少?10.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,1.这个数列中有多少个“2”?11.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列中有多少个“2”?12.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列中有多少个“2”?数组规律1.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么第10组中的三个数是什么?2.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么第10组中的三个数是什么?3.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么第10组中的三个数是什么?4.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么前10组中所有数的和是多少?5.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么前10组中所有数的和是多少?6.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么前10组中所有数的和是多少?7.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,那么这个数列的第24个数是什么?8.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,那么这个数列的第24个数是什么?9.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,那么这个数列的第24个数是什么?10.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,97,98,99,100,那么这个数列一共有多少数?11.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,99,100,101,102,那么这个数列一共有多少数?12.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,194,196,198,200,那么这个数列一共有多少数?。
四年级奥数竞赛试题
四年级奥数竞赛试题一、四则运算类题目1. 计算:1 + 2 + 3+…+99 + 100。
题目解析:这是一个等差数列求和的问题。
等差数列求和公式为公式,其中公式是项数,公式是首项,公式是末项。
在这个数列中,公式,公式,公式。
解答:根据公式可得公式。
2. 25×17×4题目解析:这道题考查乘法交换律的应用。
乘法交换律是公式,我们可以交换17和4的位置,先计算25×4,这样可以使计算更简便。
解答:公式。
二、数字规律类题目1. 找规律填数:1,1,2,3,5,8,(),()。
题目解析:这是斐波那契数列,从第三项开始,每一项都等于前两项之和。
解答:公式,公式,所以括号里应填13和21。
2. 观察下面的数列:1,4,9,16,25,()。
题目解析:这个数列中的数依次是公式,公式,公式,公式,公式,所以括号里的数应该是公式。
解答:括号里应填36。
三、几何图形类题目1. 一个长方形的长是12厘米,宽是8厘米,求这个长方形的周长和面积。
题目解析:长方形的周长公式为公式(其中公式为长,公式为宽),面积公式为公式。
解答:周长公式(厘米);面积公式(平方厘米)。
2. 一个正方形的边长是9分米,求它的面积。
题目解析:正方形的面积公式为公式(其中公式为边长)。
解答:面积公式(平方分米)。
四、逻辑推理类题目1. 甲、乙、丙三人分别是医生、教师和警察。
已知丙的年龄比教师大,甲和警察不同岁,警察比乙年龄小。
请你判断甲、乙、丙三人的职业。
题目解析:这是一个逻辑推理中的人物职业匹配问题。
根据“甲和警察不同岁,警察比乙年龄小”,可以推断出丙是警察。
又因为“丙的年龄比教师大”且“警察比乙年龄小”,所以乙不是教师,那么乙是医生,甲就是教师。
解答:甲是教师,乙是医生,丙是警察。
2. 有A、B、C、D四个小朋友比身高。
A比B高,C比A矮,D比C矮。
请按照从高到低的顺序排列这四个小朋友。
题目解析:根据所给条件进行比较推理。
小学奥数---简单数列中的规律专项练习30题(有答案)
小学奥数---简单数列中的规律专项练习30题(有答案)1.在数列1×2、2×3、3×4、4×5、…、99×100中,要求找到第6个数是多少。
答案:B。
562.给定数列1、3、5、…、9,要求找到第8组的三个数的和是多少。
答案:213.给定数列3、5、7、X、Y、Z,要求填出X、Y、Z应该是多少,同时找到这个数列的规律。
答案:X=9,Y=11,Z=13,规律为每个数加2.4.根据规律填数或者划出适当的图形。
1) 3,20;5,40;7,80;9,…2) 4,6,10,16,26,42,…3) 16,25,36,49,64,…4) □○△→△□○→○△□→□○△5.给定数列100,81,64,49,36,要求填出下面的两个数是多少。
答案:25,166.按规律在括号里填上适当的数。
1) 1、15、3、13、5、11、7、92) 198、297、396、495、5943) 21、4、18、5、15、6、14、77.根据规律填数。
①30,28,26,24,22,20;②1,3,6,10,15;③15,20,25,30,35,40.8.给定数列1,4,9,16,要求找到下面两个数是多少。
答案:25,369.找规律填后面的数。
1,4,9,16,25,36,49,64,81;2,3,5,8,13,21,34,55,89.10.给定数列:1) 1,4,9,16,25,36,49;2)4565456777要求填出缺少的数。
答案:1) 642)7898889911.给定数列xxxxxxxx,要求填出下一个数是多少。
答案:512.按规律填空。
1) 1,5,9,13,17,21,25,292) 2,4,6,10,16,26,42,…3) 1,3,6,10,15,21,28,…1.缺少一组数字,无法判断规律。
2.缺少两个数字,无法判断规律。
3.数列中每一项都是前一项的两倍再加1,所以下一个数是191.14.数列中第n个数组内的三个数分别是n^2.4n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双重数列规律
1.观察如下数列:10,1,10,2,10,3,10,4,……,10,9.这个数列一共有多少个数?
2.观察如下数列:5,1,5,2,5,3,5,4,……,5,10.这个数列一共有多少个数?
3.观察如下数列:8,1,8,2,8,3,8,4,……,8,7.这个数列一共有多少个数?
4.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,10,100.那么这个数列一共有多少个数?
5.观察如下数列:5,3,5,6,5,9,5,12,……,5,99.那么这个数列一共有多少个数?
6.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,100,10.那么这个数列一共有多少个数?
7.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,2,1.这个数列的和是多少?
8.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列的和是多少?
9.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列的和是多少?
10.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,1.这个数列中有多少个“2”?
11.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列中有多少个“2”?
12.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列中有多少个“2”?数组规律
1.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么第10组中的三个数是什么?
2.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么第10组中的三个数是什么?
3.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么第10组中的三个数是什么?
4.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么前10组中所有数的和是多少?
5.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么前10组中所有数的和是多少?
6.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么前10组中所有数的和是多少?
7.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,那么这个数列的第24个数是什么?
8.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,那么这个数列的第24个数是什么?
9.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,那么这个数列的第24个数是什么?
10.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,97,98,99,100,那么这个数列一共有多少数?
11.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,99,100,101,102,那么这个数列一共有多少数?
12.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,194,196,198,200,那么这个数列一共有多少数?。