山东省临沂市2020届高三数学模拟考试试题 理(含解析)
山东省临沂市2024届高三下学期一模考试数学试题答案
2024年普通高等学校招生全国统一考试(模拟)数学试题参考答案及评分标准2024.3说明:一㊁本解答只给出了一种解法供参考,如考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准酌情赋分.二㊁当考生的解答在某一步出错误时,如果后继部分的解答未改该题的内容与难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确答案应得分数一半;如果后继部分的解答有较严重的错误或又出现错误,就不再给分.三㊁解答右端所注分数,表示考生正确做到这一步应得的累加分数.四㊁只给整数分数,选择题和填空题不给中间分.一㊁选择题:本题共8小题,每小题5分,共40分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.B㊀2.A㊀3.C㊀4.C㊀5.A㊀6.B㊀7.D㊀8.B二㊁选择题:本题共3小题,每小题6分,共18分㊂在每小题给出的选项中,有多项符合题目要求㊂全部选对的得6分,部分选对的得部分分,有选错的得0分㊂9.ACD㊀10.BCD㊀11.AC三㊁填空题:本题共3小题,每小题5分,共15分㊂12.[1,10)㊀13.2㊀14.36(2+3)π㊀144π四㊁解答题:本题共5小题,共77分㊂解答应写出文字说明㊁证明过程或演算步骤㊂15.(13分)解:(1)f(x)=a㊃b=2cos2x+23sinxcosx1分=cos2x+1+3sin2x3分=2sin(2x+π6)+1,4分因为f(x0)=115,即2sin(2x0+π6)+1=115,所以sin(2x0+π6)=35,5分又x0ɪ(π6,π3),所以2x0+π6ɪ(π2,5π6),所以cos(2x0+π6)=-45,6分所以cos2x0=cos(2x0+π6-π6)7分㊀=cos(2x0+π6)cosπ6+sin(2x0+π6)sinπ6=3-4310.8分(2)由题意知,g(x)=12(2sin(2(x-π6)+π6)+1-1)=sin(2x-π6),10分由g(x)ȡ12得,π6+2kπɤ2x-π6ɤ5π6+2kπ,kɪZ,ʑπ6+kπɤxɤπ2+kπ,kɪZ,11分令k=0,得xɪ[π6,π2],令k=-1,得xɪ[-5π6,-π2],又xɪ[-π6,π3],ʑxɪ[π6,π3].故不等式g(x)ȡ12,xɪ[-π6,π3]的解集为[π6,π3].13分16.(15分)(1)解:随机变量X可能取值为6,7,8,9.1分由题意得每次掷骰子上两级台阶的概率为23,上三级台阶的概率为13,2分则X-6B(3,13)3分可得P(X=6)=(23)3=827,4分P(X=7)=C13ˑ13ˑ(23)2=49,5分P(X=8)=C23ˑ(13)2ˑ23=29,6分P(X=9)=(13)3=127,7分所以X的分布列为X6789P8274929127㊀㊀因为E(X-6)=3ˑ13=1,所以E(X)=7.9分(2)解:记甲㊁乙两位学生参加游戏,恰有一人获得奖品的概率为P,由题意知,位于第10级台阶则认定游戏失败,无法获得奖品,所以投掷3次后,学员站在第7步台阶,第四次投掷次骰子,出现3的倍数,即位于第10级台阶,10分其概率P1=C13ˑ13ˑ(23)2ˑ13=427,12分 所以P=C12ˑP1ˑ(1-P1)=2ˑ427ˑ2327=184729.14分 甲㊁乙两位学生参加游戏,恰有一人获得奖品的概率为184729.15分 17.(15分)解:(1)作直线AB1即为所求.1分 连结AC1交DE于点M,连结MF,2分ȵAD=2DA1,C1E=2EC,ʑAD=C1E=23AA1=2,又ADʊC1E,ʑ四边形ADC1E为平行四边形,ʑAM=MC1,4分 又B1F=FC1,ʑMFʊAB1,5分 又MF⊂平面DEF,AB1⊄平面DEF,ʑAB1ʊ平面DEF.6分(2)ȵSәABC=12ˑ2ˑ2sinøABC=2sinøABCʑ当øABC=π2时,SәABC取最大值2,即当ABʅBC时,三棱柱ABC-A1B1C1的体积最大,7分又ȵBB1ʅAB,BB1ʅBC,以B为坐标原点,BA,BC,BB1为x轴,y轴,z轴建立空间直角坐标系,8分则D(2,0,2),E(0,2,1),F(0,1,3),ʑDEң=(-2,2,-1),EFң=(0,-1,2),10分 设平面DEF的法向量n=(x,y,z),由n㊃DEң=0n㊃EFң=0{,得-2x+2y-z=0,-y+2z=0,{㊀取z=1,则y=2,x=32,此时n=(32,2,1),12分又平面ABC的一个法向量为m=(0,0,1),13分记平面DEF与平面ABC夹角为θ,则cosθ=|m㊃n||m||n|=194+4+1=22929.14分故平面DEF与平面ABC夹角的余弦值为22929.15分18.(17分)解:(1)当a=1时,f(x)=x2(lnx+1),ʑf(1)=1,1分 又fᶄ(x)=x(2lnx+3),2分ʑfᶄ(1)=3,3分 ʑf(x)在(1,f(1))处的切线方程为3x-y-2=0.4分(2)ȵxɪ(0,+ɕ),fᶄ(x)=2x(lnx+a)+x=x(2lnx+2a+1),5分令φ(x)=2lnx+2a+1,φᶄ(x)=2x>0,ʑφ(x)在(0,+ɕ)上单调递增,6分由φ(x)=2lnx+2a+1=0得x=e-a-12,7分ʑf(x)在(0,e-a-12)上单调递减,在(e-a-12,+ɕ)上单调递增.9分(3)ȵf(e-a)=0,ʑxɪ(0,e-a)时,f(x)<0,ʑ0<x1<e-a-12<x2<e-a,10分ʑlnx1<-a-12<lnx2<-a,即2(lnx1+a)<-1<2(lnx2+a)<0,11分由f(x1)=f(x2)得,x12(lnx1+a)=x22(lnx2+a),即elnx12(lnx1+a)e2a=elnx22(lnx2+a)e2a,ʑe2(lnx1+a)㊃2(lnx1+a)=e2(lnx2+a)㊃2(lnx2+a),13分令t1=2(lnx1+a),t2=2(lnx2+a),设g(t)=tet,tɪ(-ɕ,0),ʑgᶄ(t)=(t+1)et.14分ʑtɪ(-ɕ,-1)时,gᶄ(t)<0,g(t)单调递减,tɪ(-1,0)时,gᶄ(t)>0,g(t)单调递增,下面证明t1+t2<-2,又t2>-1,即证t1<-2-t2<-1,即证g(t1)>g(-2-t2),即证g(t2)>g(-2-t2),15分 令G(t)=g(t)-g(-2-t),tɪ(-1,0),Gᶄ(t)=gᶄ(t)-gᶄ(-2-t)=(t+1)(et-e-2-t)>0,ʑG(t)在(-1,0)上单调递增,16分ʑG(t)>G(-1)=0,从而得证,故2(lnx1+a)+2(lnx2+a)<-2,即lnx1x2<-2a-1,ʑ0<x1x2<e-2a-1,ʑ1x1x2>e2a+1.17分 19.(17分)(1)解:设动圆C的半径为r,易知圆C1和圆C2的半径分别为52,2,ȵC与C1,C2都内切,则|CC1|=52-r,|CC2|=r-2,1分ʑ|CC1|+|CC2|=52-r+r-2=42,2分 又C1(-2,0),C2(2,0),ʑ|C1C2|=4<42,3分 ʑ点C的轨迹是C1,C2为焦点的椭圆,4分 设E的方程为:x2a2+y2b2=1(a>b>0),则2a=42,2c=4,ʑa2=8,b2=a2-c2=4,ʑE的方程为:x28+y24=1.5分(2)(i)证明:设A(x1,y1),B(x2,y2),P(8,t)(tʂ0),则结合圆锥曲线的性质,知直线PA的方程为x1x8+y1y4=1,6分 直线PB的方程为x2x8+y2y4=1,7分 又直线PA,PB都过点P(8,t),则x1+ty14=1,x2+ty24=1,8分因此直线AB的方程为x+ty4=1,显然当y=0时,x=1,9分㊀ʑ直线AB过定点(1,0).10分(ii)设AB方程为:x=my+1(mʂ0),联立x=my+1x2+2y2=8{,ʑ(m2+2)y2+2my-7=0,11分ʑy1+y2=-2mm2+2,y1y2=-7m2+2,12分又Aᶄ(x1,-y1),直线AᶄB方程为y+y1=y1+y2x2-x1(x-x1),令y=0得xM=x1y2+x2y1y1+y2=(my1+1)y2+(my2+1)y1y1+y2=2my1y2+(y1+y2)y1+y2=2m㊃y1y2y1+y2+1=2m㊃-7m2+2-2mm2+2+1=8,14分ʑM(8,0),又C2(2,0),ʑ|S1-S2|=12|C2M|||y1|-|y2||=3|y1+y2|=6|m|m2+2=6|m|+2|m|ɤ622=322,16分ʑ|S1-S2|的最大值为322,当且仅当|m|=2|m|,即m=ʃ2时取等号.17分。
山东省临沂市兰山区临沂一中2025届高三3月份模拟考试数学试题含解析
山东省临沂市兰山区临沂一中2025届高三3月份模拟考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,若复数(1)22z i i -=+,则复数z 等于( ) A .2i -B .2iC .1i -+D .02.已知双曲线C :22221x y a b-=()0,0a b >>的左右焦点分别为1F ,2F ,P 为双曲线C 上一点,Q 为双曲线C 渐近线上一点,P ,Q 均位于第一象限,且22QP PF =,120QF QF ⋅=,则双曲线C 的离心率为( ) A .31-B .31+C .132+D .132-3.已知三棱锥P ABC -中,O 为AB 的中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,则有下列四个结论:①若O 为ABC 的外心,则2PC =;②ABC 若为等边三角形,则⊥AP BC ;③当90ACB ∠=︒时,PC 与平面PAB 所成的角的范围为0,4π⎛⎤ ⎥⎝⎦;④当4PC =时,M 为平面PBC 内一动点,若OM ∥平面PAC ,则M 在PBC内轨迹的长度为1.其中正确的个数是( ). A .1B .1C .3D .44.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞D .(3,1)--5.设全集U =R ,集合{}02A x x =<≤,{}1B x x =<,则集合A B =( )A .()2,+∞B .[)2,+∞C .(],2-∞D .(],1-∞6.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+7.已知双曲线2222:1x y a bΓ-=(0,0)a b >>的一条渐近线为l ,圆22:()4C x c y -+=与l 相切于点A ,若12AF F ∆的面积为23,则双曲线Γ的离心率为( )A .2B .233C .73D .2138.设0.380.3log 0.2,log 4,4a b c ===,则( )A .c b a <<B .a b c <<C .a c b <<D .b a c <<9.二项式22()nx x +的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180B .90C .45D .36010.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺11.已知椭圆22:13x C y +=内有一条以点11,3P ⎛⎫ ⎪⎝⎭为中点的弦AB ,则直线AB 的方程为( )A .3320x y --=B .3320x y -+=C .3340x y +-=D .3340x y ++=12.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( ) A .324B .522C .535D .578二、填空题:本题共4小题,每小题5分,共20分。
山东省高中名校2025届高三第三次模拟考试数学试卷含解析
山东省高中名校2025届高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下: 小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的; 小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( ) A .小王或小李B .小王C .小董D .小李2.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)-D .1(,1)23.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④4.已知向量(,1)a m =,(1,2)b =-,若(2)a b b -⊥,则a 与b 夹角的余弦值为( ) A .21313-B .21313C .61365-D .613655.若()()()20192019012019111x a a x a x -=+++++,x ∈R ,则22019122019333a a a ⋅+⋅++⋅的值为( )A .201912--B .201912-+C .201912-D .201912+6.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .607.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( )A .74B .94C .52D .28.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .439.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π10.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .111.已知实数集R ,集合{|13}A x x =<<,集合|2B x y x ⎧==⎨-⎩,则()R A C B ⋂=( ) A .{|12}x x <≤ B .{|13}x x << C .{|23}x x ≤<D .{|12}x x <<12.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .8二、填空题:本题共4小题,每小题5分,共20分。
山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析
山东省实验中学2020届高三第一次模拟考试数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在直角坐标平面内,已知A(-2,0),3(2,0)以及动点。
是AABC的三个顶点,且sin Asin B-2cosC=0,则动点C的轨迹曲线「的离心率是()\/2a/3A.2B.2 c.扬 D.右2.若函数f(x)=l+\x\+x\贝0/(lg2)+/flg|k/(lg5)+/flg^=()A.2b.4 C.6 D.83.在AA3C中,CA_CA AB.则sinA:sin3:sinC=()543A.9:7:8b.c.6:8:7D何.3:由4.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种A.120B.260C.340D.4205.已知直线y=kx-1与抛物线J=8y相切,则双曲线x2-k2y2=l的离心率为()73A.打B.右C.D.26.已知数列{%}的前〃项和S"满足S"+a"=2n(nwN*),则%=()1_127321385A.3b.64 c.32d.64x+y>l,7.设x,y满足约束条件\x-y>-l,若目标函数z=ax+3y仅在点(1,0)处取得最小值,则。
的取值范围2x-y<2,为()A.(—6,3)B.(-6,-3)C.(。
,3)D.(-6,0]8.已知集合M=(x|y=log2(-4x-x2)},2V=(x|(-)x>4},则肱N=()A.d-2]b.[-2,0) c.(-4,2]D(-co,-4)9.如图,已知等腰梯形A3CD中,AB=2DC=4,AD=BC=^5,E是OC的中点,P是线段BC±的动点,则的最小值是()_9_4A.5B.0C.5D.110.已知^A={x\a-l<x<a+2},B=(x|3<x<5},则能使A^B成立的实数。
2020届高考数学(理)一轮必刷题 专题64 随机抽样(解析版)
考点64 随机抽样1.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3【答案】D【解析】由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167【答案】C【解析】初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40 B .36 C .30 D .20 【答案】C【解析】利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90,解得n =30.4.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( ) A .5,10,15,20,25,30 B .2,4,8,16,32,48 C .5,15,25,35,45,55 D .1,12,34,47,51,60【答案】C【解析】从60枚新型导弹中随机抽取6枚,采用系统抽样间隔应为606=10,只有C 选项中导弹的编号间隔为10.5.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A .1,2,3,4,5,6 B .6,16,26,36,46,56 C .1,2,4,8,16,32 D .3,9,13,27,36,54【答案】B【解析】由系统抽样知识可知,所取学生编号之间的间距相等且为10,所以应选B.6.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 A .23 B .09 C .02 D .16【答案】D【解析】从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.7.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9 D .24,17,9 【答案】B【解析】由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1). 令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.故选B.8.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 成等差数列,则二车间生产的产品数为( ) A .800 B .1 000 C .1 200D .1 500【答案】C【解析】因为a 、b 、c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3 600×13=1 200.故选C.9.从一个容量为N 的总体中抽取一个容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3【答案】D【解析】根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p 1=p 2=p 3.10.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 45 0744 38 15 51 00 13 42 99 66 02 79 54第9行A .07B .25C .42D .52【答案】D【解析】依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D. 11.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( ) A .9 B .8 C .10 D .7【答案】A【解析】由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.12.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( ) A .7,11,18 B .6,12,18 C .6,13,17 D .7,14,21【答案】D【解析】因为该单位共有27+54+81=162(人),样本容量为42,所以应当按42162=727的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是7,14,21.故选D.13.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =( ) A .660 B .720 C .780 D .800【答案】B【解析】由已知可得,抽样比为13780=160,从而35600+780+n =160,解得n =720.14.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( ) A .480 B .481 C .482 D .483 【答案】C【解析】根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500.所以n ≤20.72,故最大编号为7+25×(20-1)=482.15.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n 的样本.已知从讲师中抽取的人数为16,那么n =________. 【答案】72【解析】依题意得,80120+100+80+60=16n,由此解得n =72.16.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________. 【答案】40【解析】在系统抽样中,确定分段间隔k ,对编号进行分段,k =Nn (N 为总体的容量,n 为样本的容量),所以k =N n =1 20030=40.17.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =8,则在第8组中抽取的号码是________. 【答案】76【解析】由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.18.一汽车制造厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆,则z 的值为________. 【答案】400【解析】设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400.19.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________. 【答案】1 211【解析】由题意知,抽样比为k =3 000150=20,又第一组抽出的号码是11,则11+60×20=1 211,故第六十一组抽出的号码为1 211.20.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. 【答案】45【解析】分组间隔为648=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.21.某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生. 【答案】32【解析】从高一年级抽取的学生人数为80×44+3+3=32.22.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 【答案】12【解析】抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈[1,20]),在[481,720]之间抽取的号码记为20k +x 0,则481≤20k +x 0≤720,k ∈N *.∴24120≤k +x 020≤36.∵x 020∈⎣⎡⎦⎤120,1,∴k =24,25,26,…,35, ∴k 值共有35-24+1=12(个),即所求人数为12.23.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________. 【答案】2【解析】系统抽样的间隔为186=3.设抽到最小编号为x ,则x +(3+x )+(6+x )+(9+x )+(12+x )+(15+x )=57.解得x =2.24.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人. 【答案】36【解析】根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36(人).25.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程. 【解析】按1∶5的比例抽样,295÷5=59.第一步,把295名同学分成59组,每组5人.第一组是编号为1~5的5名学生,第二组是编号为6~10的5名学生,…,依次类推,第59组是编号为291~295的5名学生.第二步,采用简单随机抽样,从第一组5名学生中随机抽取1名,不妨设其编号为k (1≤k ≤5).第三步,从以后各段中依次抽取编号为k +5i (i =1,2,3,…,58)的学生,再加上从第一段中抽取的编号为k 的学生,得到一个容量为59的样本.26.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.根据统计图所提供的信息,解答下列问题:(1)本次共调查了________名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.【答案】(1)2 000.(2)(3)96(万)【解析】(1)本次共调查的市民人数为800÷40%=2 000.(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400. 将条形统计图补充完整,如图所示.(3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).。
【市级联考】山东省临沂市2024届高三下学期高考模拟考试(二模)理综物理核心考点试题(基础必刷)
【市级联考】山东省临沂市2024届高三下学期高考模拟考试(二模)理综物理核心考点试题(基础必刷)学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:75分钟)总分栏题号一二三四五六七总分得分评卷人得分一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题核污染水中的放射性元素锶()会发生衰变,半衰期为28.8年,则()A.衰变所释放的电子是原子核外的电子电离形成的B.海水稀释不能改变锶的半衰期C.秋冬气温逐渐变低时,锶的衰变速度会变慢D.经过约57.6年,核污染水中的锶()将全部衰变结束第(2)题如图所示,半径为R的光滑绝缘半圆轨道固定在水平地面上,一水平向右的通电直导线固定于轨道正上方,两半径相同、质量均为m的金属环P、Q分别置于半圆轨道两侧与圆心等高处,其中金属环Q有一小缺口。
同时由静止释放两金属环,若不计碰撞时损失的机械能,金属环半径远小于半圆轨道半径,则下列说法中正确的是( )A.金属环P在下滑过程中有顺时针方向的感应电流B.两环恰好在半圆轨道最低点发生第一次碰撞C.两环第一次碰撞后,金属环P恰好能回到出发处D.最终两环产生的焦耳热总量为第(3)题关于科学研究方法,以下说法不正确的是()A.利用速度一时间图象推导匀变速直线运动的位移公式时,使用了微元法B.在探究加速度与力、质量三者关系的实验中,应用了控制变量法C.电场力做功可以与重力做功类比,两种力做功都与路径无关D.法拉第在研究电磁感应现象时,利用了理想实验的方法第(4)题2023年8月,日本不顾多个国家的反对,公然将含有大量放射性物质的核废水排放到太平洋中,其中有一种放射性物质是碳14,它的半衰期大约为5730年,其衰变方程为;则下列说法正确的是()A.衰变方程中X为粒子B.如果有100个碳14,经过5730年将有50个原子核发生衰变C.碳14半衰期很长,所以短期内不会对人类造成影响D.衰变产生的X粒子电离本领比光子强第(5)题某物块的位置x与时间t的关系如图所示,则下列速度v与时间t的关系图像可能正确的是( )A.B.C.D.第(6)题如图所示,电量为Q的带正电的小球A通过绝缘杆固定,为了使带电小球B在A的左下方连线与水平方向成角处静止,在竖直平面内加一个匀强电场,两小球均可视为点电荷,AB两球的距离为r,静电力常量为k。
山东省16市2020届高三第一次模拟(4月)考试数学试题分类汇编:圆锥曲线(原卷版)
山东省16市2020届高三第一次模拟(4月)考试数学试题分类汇编 圆锥曲线一、单项选择1. (2020·潍坊·一模)8.如图,已知抛物线C:y 2=2px (p >0)的焦点为F ,点P(x 0,2√3)(x 0>p2)是抛物线C 上一点.以P 为圆心的圆与线段PF 相交于点Q ,与过焦点F 且垂直于对称轴的直线交于点A ,B ,|AB |=|PQ |,直线PF 与抛物线C 的另一交点为M ,若|PF |=√3|PQ |,则|PQ ||FM |=( )A 1B. √3C. 2D. √52. (2020·威海·一模)8.已知点A ,B 分别在双曲线C:x 2a 2−y2b2=1(a >0,b >0)的左右两支上,且关于原点O 对称,C 的左焦点为F 1,直线AF 1与C 的左支相交于另一点M ,若|MF 1|=|BF 1|,且BF 1⃗⃗⃗⃗⃗⃗⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为( ) A. √10B. 52C. √5D.23. (2020·泰安·一模)8.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3,设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( ) A. √34B. √33C. √32D. √34. (2020·威海·一模)4.以抛物线y 2=4x 的焦点为圆心,且与抛物线的准线相切的圆的方程为( ).A. (x −2)2+y 2=16B. (y −2)2+x 2=16C. (x −1)2+y 2=4D. (y −1)2+x 2=45. (2020·青岛·一模)7. 在同一直角坐标系下,已知双曲线C:y 2a2−x2b2=1(a >0,b >0)的离心率为√2,双曲线C 的一个焦点到一条渐近线的距离为2,函数y =sin (2x +π6)的图象向右平移π3单位后得到曲线D ,点A ,B 分别在双曲线C 的下支和曲线D 上,则线段AB 长度的最小值为( ) A. 2B. √3C. √2D. 16. (2020·临沂·一模)8.点M 为抛物线y =14x 2上任意一点,点N 为圆x 2+y 2−2y +34=0上任意一点,若函数f (x )=log a (x +2)+2(a >1)的图象恒过定点P ,则|MP |+|MN |的最小值为( ) A. 52B. 114C. 3D. 1347. (2020·济南·一模)6.已知抛物线的焦点为,直线过且与抛物线交于,两点,过作抛物线准线的垂线,垂足为,的角平分线与抛物线的准线交于点,线段的中点为.若,( ) A. 2B. 4C. 6D. 88. (2020·菏泽·一模)5.已知双曲线一条渐近线上存在一点到轴距离与到原点的距离之比为,则实数的值为( ). A. 2B. 4C. 6D. 8二、多项选择9. (2020·淄博·一模)11.已知椭圆x 24+y 23=1的左、右焦点分别为F 、E ,直线x =m (﹣1<m <1)与椭圆相交于点A 、B ,则( ) A .当m =0时,△F AB 的面积为√3 B .不存在m 使△F AB 为直角三角形 C .存在m 使四边形FBEA 面积最大 D .存在m ,使△F AB 的周长最大24y x =F l F A B A M MAF ∠P AB Q 8AB =PQ =2215x y a-=的x O 23a10. (2020·枣庄·一模)11.已知P 为双曲线C:x 23−y 2=1上的动点,过P 作两渐近线的垂线,垂足分别为A ,B ,记线段PA ,PB 的长分别为m ,n ,则( ) A. 若PA ,PB 的斜率分别为k 1,k 2,则k 1k 2=−3 B. mn >12C. 4m +n 的最小值为√3D. |AB|的最小值为3211. (2020·潍坊·一模)9.已知双曲线x 24−y22=sin2θ(θ≠kπ,k ∈Z ),则不因θ改变而变化的是( ) A. 焦距 B. 离心率C. 顶点坐标D. 渐近线方程12. (2020·聊城·一模)11.已知直线与抛物线相交于两点,点是抛物线的准线与以为直径的圆的公共点,则下列结论正确的是( )A. B. C. D. 的面积为13. (2020·聊城·一模)10.若双曲线的实轴长为6,焦距为10,右焦点为,则下列结论正确的是( ) A. 的渐近线上的点到距离的最小值为4B. 的离心率为C. 上的点到距离的最小值为2D. 过的最短的弦长为14. (2020·济宁·一模)11.设抛物线的焦点为,准线为,为上一点,以为圆心,为半径的圆交于两点,若,且的面积为,则( )A.B. 是等边三角形C. 点 到准线的距离为3D. 抛物的方程为15. (2020·菏泽·一模)12.已知直线过抛物线的焦点,且与该抛物线交于,两点,若线段的长是16,的中点到轴的距离是6,是坐标原点,则( ). :220l kx y kp --=2:2(0)C y px p =>,A B ()1,1M --C AB 2p =2k =-5AB =MAB △2222:1(0,0)x y C a b a b-=>>F C F C 54C F F 323()2:20C y px p =>F l AC F FA l ,BD 90ABD ∠=ABF ∆3BF =ABF ∆F C 26y x =l 2:2(0)C y px p =->M N MN MN y OA. 抛物线的方程是B. 抛物线的准线方程是C. 直线的方程是D. 的面积是16. (2020·德州·一模)10.1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为,,下列结论正确的是( )A. 卫星向径的取值范围是B. 卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间C. 卫星向径的最小值与最大值的比值越大,椭圆轨道越扁D. 卫星运行速度在近地点时最大,在远地点时最小17. (2020·日照·一模)12. 已知双曲线,不与轴垂直的直线与双曲线右支交于点,,(在轴上方,在轴下方),与双曲线渐近线交于点,(在轴上方),为坐标原点,下列选项中正确的为( ) A. 恒成立 B. 若,则 C. 面积的最小值为1D. 对每一个确定的,若,则的面积为定值18. (2020·烟台·一模)10.已知P 是双曲线C :x 23﹣y 2m =1上任一点,A ,B 是双曲线上关于坐标原点对称的两点,设直线PA ,PB 的斜率分别为k 1,k 2(k 1k 2≠0),若|k |1+|k 2|≥t 恒成立,且实数t 的最大值为233,则下列说法正确的( )C 28y x =-2y =l 20x y -+=MON △2a 2c [],a c a c -+()22*1x y n n n-=∈N x lB C B x C x A D A x O AC BD =13BOC AOD S S =△△AB BC CD ==AOD △n AB BC CD ==AOD △A .双曲线的方程为x 23﹣y 2=1B .双曲线的离心率为2C .函数y =log a (x ﹣1)(a >0,a ≠1)的图象恒过C 的一个焦点D .直线2x ﹣3y =0与C 有两个交点三、填空题19. (2020·淄博·一模)15.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2−y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为 √3−1 ;双曲线N 的离心率为 . 20. (2020·枣庄·一模)15.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,直线√3x −y +4√3=0过点F 1且与C 在第二象限的交点为P ,若∠POF 1=60°(O 为原点),则F 2的坐标为________,C 的离心率为__________.21. (2020·泰安·一模)16.过点(,0)(0)M m m -≠的直线l 与直线3x +y −3=0垂直,直线l 与双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A,B ,若点P(m,0)满足||||PA PB =,则双曲线C 的渐近线方程为_______,离心率为_______. 22. (2020·临沂·一模)15.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线方程为y =√2x ,左、右焦点分别为F 1,F 2,点A 在双曲线上,且AF 2⊥F 1F 2,则该双曲线的离心率为__________,sin ∠AF 1F 2=__________.23. (2020·济宁·一模)15.设双曲线的左焦点为,直线过点且与双曲线在第二象限的交点为为原点,,则双曲线的右焦点的坐标为__________;离心率为_________________.24. (2020·济南·一模)14.已知双曲线的渐近线与圆相切,则该双曲线的离心率为__________.25. (2020·德州·一模)15.已知双曲线的左、右焦点分别()2222:10,0x y C a b a b-=>>F 43200x y -+=F C ,P O OP OF =C 22221(0,0)x y a b a b-=>>()222+=1x y -()2222:10,0x y C a b a b-=>>为、.(1)若到渐近线的距离是3,则为__________.(2)若为双曲线右支上一点,且的角平分线与轴的交点为,满足,则双曲线的离心率为__________. 26. (2020·日照·一模)15. 直线过抛物线的焦点,且与交于,两点,则__________,的最小值是__________. 27. (2020·烟台·一模)16.已知F 为抛物线x 2=2py (p >0)的焦点,抛物线内一点A(1,p ),M 为抛物线上任意一点,|MA |+|MF |的最小值为3,则抛物线方程为 ;若线段AF 的垂直平分线交抛物线于P ,Q 两点,则四边形APFQ 的面积为 .四、解答题28. (2020·淄博·一模)20.如图,已知抛物线x 2=y ,点A (−12,14),B (32,94),抛物线上的点P (x ,y )(−12<x <32),过点B 作直线AP 的垂线,垂足为Q . (Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求|P A |•|PQ |的最大值.1F 2F 2F b P C 1260F PF ∠=︒12F PF ∠x Q 122FQ QF =C l ()2:20C y px p =>()1,0F C M N p =19MF NF-29. (2020·潍坊·一模)21.直角坐标系xOy 中,F 1,F 2分别为椭圆C:x 2a 2+y2b2=1(a >b >0)的左右焦点,A 为椭圆的右顶点,点P 为椭圆C 上的动点(点P 与C 的左右顶点不重合),当△PF 1F 2为等边三角形时,12PF F S(1)求椭圆C 的方程;(2)如图,M 为AP 的中点,直线MO 交直线x =−4于点D ,过点O 作OE//AP 交直线x =−4于点E ,证明:∠OEF 1=∠ODF 1.30. (2020·威海·一模)20.已知椭圆x 2a +y 2b =1(a >b >0)的左、右焦点分别为F 1,F 2,点P (−1,32)是椭圆上一点,|F 1F 2|是|PF 1|和|PF 2|的等差中项.(Ⅰ)求椭圆的标准方程;(Ⅰ)若A 为椭圆的右顶点,直线AP 与y 轴交于点H ,过点H 的另一直线与椭圆交于M 、N 两点,且S △HMA =6S △PHN ,求直线MN 的方程.31. (2020·泰安·一模)21.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,直线l:y =kx +m 与椭圆C 相交于P,Q 两点;当直线l 经过椭圆C 的下顶点A 和右焦点F 2时,ΔF 1PQ 的周长为l 与椭圆C 的另一个交点的横坐标为43 (1)求椭圆C 的方程;(2)点M 为△POQ 内一点,O 为坐标原点,满足MP MO MQ ++=0,若点M 恰好在圆O :x 2+y 2=49上,求实数m 的取值范围.32. (2020·青岛·一模)21. 已知O 为坐标原点,椭圆C:x 2a 2+y2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,F 2点又恰为抛物线D:y 2=4x 的焦点,以F 1F 2为直径的圆与椭圆C 仅有两个公共点. (1)求椭圆C 的标准方程;(2)若直线l 与D 相交于A ,B 两点,记点A ,B 到直线x =−1的距离分别为d 1,d 2,|AB|=d 1+d 2.直线l 与C 相交于E ,F 两点,记△OAB ,△OEF 的面积分别为S 1,2S . (ⅰ)证明:△EFF 1的周长为定值; (ⅱ)求S 2S 1的最大值.33. (2020·临沂·一模)20.动点P 在椭圆C:x 2a 2+y 2b 2=1(a >b >0)上,过点P 作x 轴的垂线,垂足为A ,点B 满足AB →=3AP →,已知点B 的轨迹是过点Q (0,3)的圆. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于M ,N 两点(M ,N 在x 轴的同侧),F 1,F 2为椭圆的左、右焦点,若F 1M//F 2N ,求四边形F 1F 2NM 面积的最大值.34. (2020·聊城·一模)20.已知椭圆的长轴长为4,右焦点为,且椭圆上的点到点的距离的最小值与最大值的积为1,圆与轴交于两点. (1)求椭圆的方程;(2)动直线与椭圆交于两点,且直线与圆相切,求的面积与的面积乘积的取值范围.2222:1(0)x y C a b a b+=>>F C F 22:1O x y +=x ,A B C :l y kx m =+C ,P Q l O APQ BPQ35. (2020·济宁·一模)21.已知函数.(1)求函数的单调区间;(2)是否存在一个正实数,满足当时,恒成立,若存在,求出的值;若不存在,请说明理由.36. (2020·济宁·一模)22.已知椭圆与抛物线在第一象限的交点为,椭圆的左、右焦点分别为,其中也是抛物线的焦点,且. (1)求椭圆的方程;(2)过的直线(不与轴重合)交椭圆于两点,点为椭圆的左顶点,直线分别交直线于点,求证:为定值.37. (2020·济南·一模)21.在平面直角坐标系中,①已知点,直线:()()()1xf x ax e a R =-∈()f x a x ∈R ()1f x ≤a ()22122:10x y E a b a b+=>>22:4E y x=P 1E 12,F F 2F 2E 253PF =1E 2F l x 1E M N 、A 1E AM AN 、4x =B C 、2BF C ∠xOy A l,动点满足到点的距离与到直线的距离之比为;②已知圆的方程为,直线为圆的切线,记点到直线的距离分别为,动点满足;③点,分别在轴,轴上运动,且,动点满足. (1)在①,②,③这三个条件中任选一个,求动点的轨迹方程;(2)记(1)中的轨迹为,经过点的直线交于,两点,若线段的垂直平分线与轴相交于点,求点纵坐标的取值范围.38. (2020·菏泽·一模)21.已知椭圆的左、右焦点分别为,,以,,和,面积为(1)求椭圆的标准方程;(2)设,为椭圆上的任意两点,若直线与圆相切,求面积的取值范围.39. (2020·东营一中·一模)21.已知直线过椭圆的右3x =P A l 2C 224x y +=l C A l 12,d d P 12,PA d PB d ==S T x y 3ST =P 21+33OP OS OT =P E (1,0)D l 'E M N MN y Q Q 2222:1(0)x y C a b a b+=>>1F 2F (,)M a b -(,)N a b 2F 1F C A B C AB 2212:7O x y +=AOB 1x y +=()222210x y a b a b+=>>焦点,且交椭圆于A ,B 两点,线段AB 的中点是, (1)求椭圆的方程;(2)过原点的直线l 与线段AB 相交(不含端点)且交椭圆于C ,D 两点,求四边形面积的最大值.40. (2020·德州·一模)20.已知抛物线的焦点为,圆的方程为:,若直线与轴交于点,与抛物线交于点,且. (1)求出抛物线和圆的方程.(2)过焦点的直线与抛物线交于、两点,与圆交于、两点(,在轴同侧),求证:是定值.41. (2020·日照·一模)20. 已知椭圆的左、右焦点分别为21,33M ⎛⎫ ⎪⎝⎭ACBD ()2:20E x py p =>F M 220x y py +-=4x =x R Q 54QF RQ =E M F l E A B M C D A C y AC DB ⋅()2222:10x y C a b a b+=>>,,以为圆心过椭圆左顶点的圆与直线相切于,且满足. (1)求椭圆的标准方程;(2)过椭圆右焦点的直线与椭圆交于不同的两点,,问内切圆面积是否有最大值?若有,求出最大值;若没有,说明理由.42. (2020·烟台·一模)22.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(2,√2),且焦距为4.(1)求椭圆C 的标准方程(2)设P 为直线l :y =2√2上一点,Q 为椭圆C 上一点,以PQ 为直径的圆恒过坐标原点O .(i )求|OP |2+4|OQ |2的取值范围:(ii )是否存在圆心在原点的定圆恒与直线PQ 相切?若存在,求出该定圆的方程;若不存在,说明理由.1F 2F 2F M 34120x y -+=N 11212MF F F =C C 2F l C A B 1F AB。
【附15套精选模拟试卷】山东省潍坊市2020届高三下学期第一次模拟考试数学(文)试卷含解析
山东省潍坊市2020届高三下学期第一次模拟考试数学(文)试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设抛物线C :()220y px p =>的焦点为F(1,0),过点P(1,1)的直线l 与抛物线C 交于A ,B 两点,若P 恰好为线段AB的中点,则AB = A . 2B .15C .4D .52. 下列函数中,图象的一部分如图所示的是 ( )A .sin 6y x π⎛⎫=+ ⎪⎝⎭B .sin 26y x π⎛⎫=- ⎪⎝⎭C .cos 43y x π⎛⎫=- ⎪⎝⎭ D .cos 26y x π⎛⎫=- ⎪⎝⎭ 3.已知直线是双曲线的一条渐近线,若的最大值为1,则该双曲线离心率的最大值为( ) A .2B .C .D .4.在正方体,点P 是侧面内的一动点,若点P 到直线BC 与到直线的距离相等,则动点P 的轨迹所在的曲线是() A .直线 B .圆C .双曲线D .抛物线5.某几何体的三视图如图所示(单位:cm ),图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积(单位:3cm )是( )A .163B .203 C .86π-D .83π-6.设,,a b c 为实数,且0a b <<,则下列不等式正确的是( )A .11a b <B .22ac bc <C .b aa b > D .22a ab b >> 7.已知复数z 满足()2z i i i -=+,则z =( ) A .2 B .3 C .5 D .108.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2B .3C .2D .2339.在ABC V 中,AB 2=,BC 3=,ABC 60∠=o ,AD 为BC 边上的高,O 为AD 的中点,若AO λAB μBC =+u u u r u u u r u u u r,则λμ(+= )A .1B .12C .13D .2310.函数的零点所在的区间是( ) A .B .C .D . 11.已知向量,满足,,且,与的夹角为( )A .B .C .D .12.三棱锥D ABC -的四个顶点都在球O 的球面上,ABC ∆是边长为3的正三角形.若球O 的表面积为16π,则三棱锥D ABC -体积的最大值为( )A .93B .332C .23.33二、填空题:本题共4小题,每小题5分,共20分。
山东省临沂市2024届高三下学期5月高考模拟考试(二模)数学试卷(含解析)
山东省临沂市2024届高三下学期5月高考模拟考试(二模)数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知i为虚数单位,( )2.若,,则的元素个数为( )A.0B.1C.2D.33.一组数据按从小到大的顺序排列为1,4,m,12,14,21,若该组数据的中位数是,则该组数据的第百分位数是( )A.4B.6C.8D.124.若有2名女生和4名男生到“山东旅发”大会的两个志愿服务站参加服务活动,分配时每个服务站均要求既有女生又有男生,则不同的分配方案种数为( )A.16B.20C.28D.405.已知函数,则( )A.在区间上单调递增B.图象的一条对称轴C.在上的值域为D.将6.若实数a,b,c满足,,则( )A. B. C. D.7.已知正方体中,M,N分别为,的中点,则( )()211i2z-⋅=+28xA xx⎧-⎫=∈≤⎨⎬-⎩⎭Z{}5log1B x x=<A B45()(sin2f x xϕ=+π,06⎫⎪⎭()f xππ,83⎡⎤-⎢⎥⎣⎦x=()f x()f xππ,64⎡⎤-⎢⎥⎣⎦⎡-⎢⎣(f x2sina=37=310c=a b c<<b c a<<a c b<<b a c<<1111ABCD A B C D-1CC1C DA.直线MN 与B.平面与平面C.在上存在点Q ,使得D.在上存在点P ,使得平面的左、右焦点分别为,,P 为椭圆上第一象限内的一点,且,与y 轴相交于点Q ,离心率,则( )二、多项选择题9.已知是等差数列,是其前n 项和,则下列命题为真命题的是( )A.若,,则B.若,则C.若,则D.若和都为递增数列,则10.设,是抛物线上两个不同的点,以A ,B 为切点的切线交于点.若弦AB 过焦点F ,则( )A. B.若PA 的方程为,则C.点P 始终满足 D.面积的最小值为1611.已知定义在R 上的函数满足,,且A.的最小正周期为4 B.C.函数是奇函数 D.三、填空题1AC BMN 1BC D 1BC 11B Q BD ⊥1B D //PA BMN()2210y a b b+=>>1F 2F 12PF PF ⊥1PF e =11PF λ=λ={}n a n S 349a a +=7818a a +=125a a +=2134a a +=1428S =150S <78S S >{}n a {}1n n a a +⋅0n a >()11,A x y ()22,B x y 2:8C x y =()00,P x y 1202x x x +=210x y --=24x =-0PA PB ⋅=PAB △()f x ()()()132024f x f x f +++=()()2f x f x -=+12f ⎛⎫= ⎪⎝⎭()f x ()20f =()1f x -20241120242k k f k =⎛⎫⋅-=- ⎪⎝⎭∑12.展开式中项的系数为__________________.13.若直线与曲线相切,则的取值范围为_________________.四、双空题14.根据统计数据,某种植物感染病毒之后,其存活日数X 满足:对于任意的,的样本在的样本里的数量占比与的样本在全体样本中的数量占比_________________,设,的前n 项和为,则________________.五、解答题15.在中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知.(1)求C ;(2)若点D在线段AB 上,且16.“赶大集”出圈彰显了传统民俗的独特魅力.为了解年轻人对“赶大集”的态度,随机调查了200位年轻人,得到的统计数据如下面的不完整的列联表所示(单位:人).的独立性检验,能否认为年轻人对“赶大集”的态度与性别有关;(2)从样本中筛选出5名男性和3名女性共8人作为代表,这8名代表中有2名男性和2名女性非常喜欢“赶大集”.现从这8名代表中任选3名男性和2名女性进一步交流,记X 为这()73111x x ⎛⎫++ ⎪⎝⎭2x 1y ax =+ln y b x =+ab *n ∈N 1X n =+X n >1X =()()11P X n X n P X =+>===()X n >=()n a nP X n =={}n a n S n S =ABC △()cos sin cos cos c A B B C c C -=-2BD =22⨯5人中非常喜欢“赶大集”的人数,求X 的分布列及数学期望.参考公式:.ABCD 中,底面ABCD 为菱形,,平面AMHN ,点M ,N ,H 分别在棱PB ,PD ,PC 上,且.(1)证明:;(2)若H 为PC 的中点,,PA 与平面PBD 所成角为,四棱锥被平面AMHN 截为两部分,记四棱锥体积为,另一部分体积为18.已知向量,,点,,直线PD ,QD 的方向向量分别为,,其中,记动点D 的轨迹为E .(1)求E 的方程;(2)直线l 与E 相交于A ,B 两点,(ⅰ)若l 过原点,点C 为E 上异于A ,B 的一点,且直线AC ,BC 的斜率,均存在,求证:为定值;(ⅱ)若l 与圆O :径r .19.已知函数.(1)当时,求证:存在唯一的极大值点,且;()E X 2χ=a b c d =+++60BAD ∠=︒//BD MN PC ⊥PB PD =PA PC =60︒P ABCD -P AMHN -1V V ()0,1a = ()1,0b =()1,0P ()1,0Q -2a b λ+ 2a b λ+λ∈R AC k BC k AC BC k k ⋅22x y r +=()()()ln 1e x ax f a x x =+--1a =()f x 0x ()02f x <-(2)若存在两个零点,记较小的零点为,t 是关于x 的方程的根,证明:.()f x 1x ()1ln 132cos x ax x ++=+1e 12e x t +>参考答案1.答案:B解析:,故选:B.2.答案:C解析:根据题意,可得集合或,,则,所以的元素个数为2个.故选:C.3.答案:A,根据极差的定义,该组数据的极差是,,,根据百分位数的定义,该组数据的第45百分位数是从小到大排列的第3个数,即4.故选:A.4.答案:C解析:第一步,先分组,分为一组2人,另一组4人,有种;分为每组各3人,种,分组方法共有14种.第二步,将两组志愿者分配到两个服务站共有种.所以,总的分配方案有种.故选:C.5.答案:D1i 4z ======+14=-={|2A x x =∈≤Z 8}x >{}05B x x =<<{}1,2A B = A B 21120-=20=4=60.45 2.7⨯=∉Z 1124C C 8=6=22A 2=14228⨯=解析:由题意可得(),解得(),;对A :当时,,由函数在上不为单调递增,故在区间上不为单调递增,故A 错误;对B :当不是函数的对称轴,故图象的对称轴,故B 错误;对C :当时,,则,故C 错误;对D :将图象个长度单位后,得,函数关于y 轴对称,故D 正确.故选:D.6.答案:A 解析:因为,又,则,且,即,因为,所以,所以.故选:A.7.答案:C解析:以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为1,所以,,,,,,,,,,对于A,,,π2π6k ϕ⨯+=k ∈Z ππ3k ϕ=-+k ∈Z =()πsin 23f x x ⎛⎫=- ⎪⎝⎭ππ,83x ⎡⎤∈-⎢⎥⎣⎦π7ππ2,3123x ⎡⎤-∈-⎢⎥⎣⎦sin y x =7ππ,123⎡⎤-⎢⎥⎣⎦()f x ππ,83⎡⎤-⎢⎥⎣⎦x =π3x -=4π3x =sin y x =x =()f x ππ,64x ⎡⎤∈-⎢⎥⎣⎦π2ππ2,336x ⎡⎤-∈-⎢⎥⎣⎦()11,2f x ⎡⎤∈-⎢⎥⎣⎦()f x 5πππsin 22sin 2cos 21232y x x x ⎛⎫⎛⎫=+⨯-=+= ⎪ ⎪⎝⎭⎝⎭ππ2sin2sin 1126a =<=37b =b =12<<=12b <<310c =33log 10log 92c =>=c b a >>()1,0,0A ()0,0,0D ()1,1,0B ()0,1,0C ()11,0,1A ()10,0,1D ()11,1,1B ()10,1,1C 10,1,2M ⎛⎫ ⎪⎝⎭110,,22N ⎛⎫ ⎪⎝⎭10,,02MN ⎛⎫=- ⎪⎝⎭ ()11,1,1A C =--直线MN 与对于B,,,设平面的法向量为,则,取,可得,,所以,,,设平面的法向量为,则,取,可得,,所以,平面与平面夹角的余弦值为:对于C,因为Q 在上,设,所以,,则,,所以,,所以,,,所以,解得:故上存在点,使得,故C 正确;对于D,因为,所以N,M,B,A 四点共面,而平面,所以上不存在点P ,使得平面,故D 错误.故选:C.1AC 111,MN A CMN A C MN A C ⋅===10,,02MN ⎛⎫=- ⎪⎝⎭ 11,0,2BM ⎛⎫=- ⎪⎝⎭ BMN (),,n x y z = 102102n MN y n BM x z ⎧⋅=-=⎪⎪⎨⎪⋅=-+=⎪⎩1x =0y =2z =()1,0,2n =()110,1,0C D =- ()11,0,1BC =-11BC D ()111,,m x y z = 1111110n C D y n BC x z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩11x =10y =11z =()1,0,1m =BMN 11BC D cos ,m n m n m n⋅<>===⋅1BC ()00,1,Q x z 11C Q C B λ=01λ≥≤()100,0,1C Q x z =- ()11,0,1C B =-0x λ=01z λ=-+(),1,1Q λλ-+()11,0,B Q λλ=-- ()11,1,1BD =--1110B Q BD λλ⋅=--= λ=1BC 11,1,22Q ⎛⎫⎪⎝⎭11B Q BD ⊥////MN DC AB A ∈BMN 1B D //PA BMN8.答案:B,则有,,则,即,则,即,即,,则有,整理得,即故选:B.9.答案:BC解析:对于A 中,由,,可得,所以n 2224m n c +=22m n a +===()22223625m n m n mn c +=++=22236162455mn c c c =-=()2222221642455m n m n mn c c c -=+-=-=m n -=m ==n ==1PF m c λλ== 222c c ⎫⎫⎫=-+⎪⎪⎪⎪⎪⎪⎭⎭⎭85λ=λ=349a a +=7818a a +=()()378489d a a a a +-==+d =又由对于B 中,由,所以B 正确;对于C 中,由,所以,又因为,则,所以C 正确;对于D 中,因为为递增数列,可得公差,因为为递增数列,可得,所以对任意的,但的正负不确定,所以D 错误.故选:BC.10.答案:ACD解析:依题意设,,由方程,可得,则,由导数的几何意义知,直线的斜率为,同理直线的斜率为,可得A 处的切线方程为:,即,化简可得的方程为同理可得:直线BP 的方程为因为,解得即,所以A 正确;若PA 的方程为,根据直线的方程为,()123494948a a a a d +=+-=-⨯=()()1142131414142822a a a a S ++===11515815()1502a a S a +==<80a <8780S S a -=<78S S >{}n a 0d >{}1n n a a +211120n n n n n a a a a a d ++++⋅-=>2,0n n a ≥>1a ()11,A x y ()22,B x y 28x y =218y x =14y x '=AP 114AP k x =BP 214BP k x =()11114y y x x x -=-()2111184x y x x x -=-14x y x =AP 14x y x =24x y x =21284x x x x -=-)21128x x x x -=-12x x ≠x =y =1202x x x +=210x y --=AP 14x y x =12=设直线,联立方程组,整理得,则,且,,所以,,所以B 错误;因为,所以,故C 正确;取的中点H ,连接,根据中点坐标公式得,从而平行y 轴,由前可知,所以因为,,所以,代入可得当时,,所以D 正确.故选:ACD11.答案:AB:2AB y kx =+228y kx x y =+⎧⎨=⎩28160x kx --=()22Δ(8)646410k k =-+=+>128x x k +=1216x x =-28x =-02y =-21221PA PBx x p k k p p p-⋅=⋅==-0PA PB ⋅= AB PH 1212,22x x y y H ++⎛⎫⎪⎝⎭PH 12,22x x P +⎛⎫- ⎪⎝⎭221212121212111882222222x x y y S PH x x x x x x ⎛⎫+ ⎪+⎛⎫=⋅-=+⋅-=+⋅- ⎪ ⎪⎝⎭⎪ ⎪⎝⎭22121212216x x x x ⎛⎫+=+⋅- ⎪⎝⎭128x x k +=1216x x =-()222212*********x x x x x x k +=+-=+12x x -==()(222811643221612164k k S k +⎛⎫+=+⋅==+ ⎪⎝⎭0k =min 16S =解析:对于A,因为,所以,,所以,故的最小正周期为4,A 正确;对于B,因为,令,则,所以,由A 可知,,故B 正确;对于C, 因为,①令,则,所以,所以,②由①②,所以,即,故为奇函数,若函数是奇函数,则,所以,即,所以,所以的最小正周期为2,与选项A 矛盾,故C 错误;对于D,因为为奇函数,且又因为的最小正周期为4,所以因为所以,所以,()()()132024f x f x f +++=()()()22024f x f x f ++=()()()242024f x f x f +++=()()4f x f x +=()f x ()()()132024f x f x f +++=2021x =()()()202220242024f f f +=()20220f =()()()20224505220f f f =⨯+==()()2f x f x -=+0x =()()020f f ==()()()2024450600f f f =⨯==()()()220240f x f x f ++==()()0f x f x +-=()()f x f x -=-()f x ()1f x -()()11f x f x --=--()()()111f x f x f x --=-+=-+⎡⎤⎣⎦()()11f x f x -=+()()()()21111f x f x f x f x +=++=+-=⎡⎤⎡⎤⎣⎦⎣⎦()f x ()f x 12f ⎛⎫= ⎪⎝⎭12f ⎛⎫-= ⎪⎝⎭()f x 7122f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭()()2f x f x -=+3112222f f f ⎛⎫⎛⎫⎛⎫=-+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭53312224f f f ⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4111357123422222k k f k f f f f =⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-=⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑1111123414444⎛⎫⎛⎫=⨯+⨯+⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭,以此类推,所以,故D 错误.故选:AB.12.答案:42解析:对,有,则有.故答案为:.13.答案:解析:函数的导数为设切点为,则又因为在上,所以,所以,即,所以,所以,令,,令,可得,可得所以在上单调递减,在上单调递增,所以8519111315567822222k k f k f f f f =⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-=⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑135756782222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111567814444⎛⎫⎛⎫=⨯+⨯+⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭()20241150615062k k f k =⎛⎫⋅-=⨯-=- ⎪⎝⎭∑()71x +17C r rr T x +=()225525222277777311C C C C 2C 42x x x x x x⨯+⨯=+==4231,e ⎡⎫-+∞⎪⎢⎣⎭ln y b x =+y '=(00,1x ax +a =0ax =0x =()00,1x ax +ln y b x =+001ln ax b x +=+0ln 2b x +=ln 2b a -=2ln b a =+()()2ln 2ln 0ab a a a a a a =+=+>()2ln g a a a a =+1()2ln ln 3g a a a a a=++⋅=+'()0g a '>a >()0a '<0a <<()g a 310,e ⎛⎫ ⎪⎝⎭31,e ⎛⎫+∞ ⎪⎝⎭min 333333121123()ln e e ee e e g a g ⎛⎫==+=-= ⎪⎝⎭当a 趋近正无穷时,趋近正无穷.所以的取值范围为:.故答案为:.14.答案:;解析:因为所以,将n 换成,此时,两式相减可得,,又,都成立,此时的等比数列,所以,故,,,()g a ab 31,e ⎡⎫-+∞⎪⎢⎣⎭31,e ⎡⎫-+∞⎪⎢⎣⎭45n ⎛⎫ ⎪⎝⎭()4555nn ⎛⎫-+ ⎪⎝⎭()()11P X n X n P X =+>===(1)(1|)()P X n P X n X n P X n =+=+>==>1(1)()5P X n P X n =+=>1n -1()(1)5P X n P X n ==>-()()()1111(1)()555P X n P X n P X n P X n P X n =-=+=>-->==4(2)5n =≥114(2)(1)(1(1))(1)555P X P X P X P X ==>=⨯-====*∈N {(P X n =114()55n P X n -⎛⎫==⨯ ⎪⎝⎭144()5(1)5555n nP X n P X n ⎛⎫⎛⎫>==+=⨯⨯= ⎪ ⎪⎝⎭⎝⎭()11455n n a nP X n n -⎛⎫===⨯ ⎪⎝⎭1211444412(1)55555n n n S n n --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦12141444412(1)555555n nn S n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 12114444155555n nn S n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,故答案为:,.15.答案:(1)解析:(1)由得,,即,即,即,又,.(2)D 点在线段AB 上,且,,,当且仅当时,等号成立.4115445(5)45515n n nn S n n ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=-⨯=-+⨯ ⎪ ⎪⎝⎭⎝⎭-45n⎛⎫ ⎪⎝⎭45(5)5nn ⎛⎫-+⨯ ⎪⎝⎭π3C =()cos sin cos cos c A B B C c C -=-()cos cos sin cos c A B c C B C -+=()()()cos cos sin cos c A B A B B C --+=2sin sin sin cos c A B B C =sin sin sin sin cos C A B A B C =sin C C =∴tan C = ()0,πC ∈∴π3C =2BD DA =∴2133CD CA CB =+ ∴222414999CD CA CB CA CB=++⋅()222222224124112599999999b a ab b a a b a b =++≤+++=+a b =∴22222222592525a b CD a b a b +≤=++16.答案:(1)年轻人对“赶大集”的态度与性别有关,此推断犯错误的概率不大于0.01.(2)分布列见解析,解析:(1)由题意可知:,解得,列联表如下:.根据小概率值的独立性检验,认为年轻人对“赶大集”的态度与性别有关,此推断犯错误的概率不大于0.01.(2)设进一步交流的男性中非常喜欢“赶大集”的人数为m ,女性中非常喜欢“赶大集”的人数为n ,则,且X 的所有可能取值为1,2,3,4.()3815E X =()360100t t +-=20t =22⨯()22006020804014060100100χ⨯⨯-⨯=⨯⨯⨯220020009.524 6.63514060100100⨯=≈>⨯⨯⨯0.01α=X m n =+()()3113213253C C C 210,1C C 30P X P m n =======()()()12113223213232325353C C C C C C 21,10,2C C C C P X P m n P m n ====+===+=()()()2111122232123232325353C C C C C C C 1232,11,2C C C C 30P X P m n P m n ====+===+==()()2122323253C C C 342,2C C 30P X P m n =======X的分布列为17.答案:(1)证明见解析解析:(1)连接AC交BD于点O,连接OP,因为平面AMHN,且平面平面,所以.因为,所以,因为为菱形,所以,,因为,且PC,平面PAC,所以平面PAC,平面PAC,所以,所以.(2)因为,且O为AC中点,所以,由(1)得,且,所以平面ABCD,又因为为菱形,,∴∴()213123123430303030E X=⨯+⨯+⨯+⨯=//BD ABD AMHN MN=//BD MNMN PC⊥BD PC⊥ABCDBD AC⊥OB OD=PC AC C=AC⊂BD⊥PO⊂BD PO⊥PB PD=PA PC=OP AC⊥OP BD⊥BD AC O=OP⊥ABCD60BAD∠=︒令.所以,.又因为PA 与平面PBD 所成角为60°,平面PBD ,所以,,所以,所以又因为H 为PC 中点,所以,在中,记,易知点G 在MN 上,且点G 为重心,又因为,所以又所以所以(法二):关于求的第二种方法(建系法),以O 为原点,OA ,OB ,OP 分别为x ,y ,z 轴建系,所以,,,,,,设平面AMHN 的法向量为,2AB =AC BD ⊥AO =1=AO ⊥60APO ∠=︒30PAC ∠=︒1OP AO ==13P ABCD ABCD V S OP -=⋅⋅=□112PH PC ==PAC △AH OP G = PAC △//MN BD 23MN BD ==11sin1202122APH S PA PH =⋅⋅︒=⨯⨯=△1123M APH APH V V S MN -==⋅⋅=△21P ABCD V V V -=-===1V )A ()0,1,0B ()0,0,1P 12H ⎛⎫ ⎪ ⎪⎝⎭210,,33M ⎛⎫ ⎪⎝⎭210,,33N ⎛⎫- ⎪⎝⎭()000,,n x y z =,即,解得,令,则.因为,所以P 到平面AMHN 的距离记中,,所以所以所以18.答案:(1)解析:(1)设,则,,又因为,,所以,,由已知得,,00n AH n MN ⎧⋅=⎪⎨⋅=⎪⎩00102403x z y ⎧+=⎪⎪⎨⎪=⎪⎩0000z y ⎧-=⎪⎨=⎪⎩01x =(n =)1PA =- n PB h n⋅== APH △2222cos 7AH PA PH PA PH APH =+-⋅⋅∠=AH =111143323AMHN V S h =⋅⋅=⨯=□21P ABCD V V V -=-==2214y x -=(),D x y ()1,PD x y =- ()1,QD x y =+()0,1a = ()1,0b =()21,2a b λλ+= ()2,2a b λλ+=()()210210x y x y λλ--=⎧⎪⎨+-=⎪⎩消得:,所以点D 的轨迹方程为.(2)设直线l 与E 的两个交点为,,(ⅰ)因为直线l 过原点,所以点A ,B 关于原点成中心对称.设,所以由,得,所以.所以.①当直线l 的斜率不存在时,l 的方程为,此时点A,B 关于x 轴对称,不妨设点A 在第一象限,所以,因为,所以所以.②当直线l 的斜率存在时,设l 的方程为,由,得,λ2214y x -=2214y x -=()11,A x y ()22,B x y (),C x y 12111211AC BCy y y y y y y y k k x x x x x x x x ---+⋅=⋅=⋅=---+2211221414y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩()2222114y y x x -=-2212214AC BCy y k k x x -⋅==-0OA OB ⋅=x r =±11x y r ==221114x x -=221x r ==r =y kx b =+2214y kx b y x =+⎧⎪⎨-=⎪⎩()()2224240k x kbx b ---+=所以因为,所以,即,整理得:.又因为l 与圆相切,所以综上可得,19.答案:(1)证明见解析(2)证明见解析解析:(1)当时,,,所以,所以在上单调递减,且,,则,使得当时,,当时,,且,所以在上单调递增,在上单调递减,所以存在唯一的极大值点,而,所以.12x x +=12x x =0OA OB ⋅= 12120x x y y +=()()22121210k x x kb x x b ++++=22344b k =+r ===r =1a =()ln e x f x x =-()0,x ∈+∞()1e x f x x'=-()f x '()0,+∞1212e 02f ⎛⎫=-> ⎪⎝⎭'()11e 0f '=-<01,12x ⎛⎫∃∈ ⎪⎝⎭()00,x x ∈()0'f x >()0,x x ∈+∞()0f x '<()0f x '=0e x =()f x ()00,x ()0,x +∞()f x 0x ()()02000000112ln e 220x x f x x x x x -+=-+=--+=-<()02f x <-(2)令,得,设,显然在定义域上单调递增,而,则有,所以.依题意,方程有两个不等的实根,即函数在定义域上有两个零点,显然,当时,的定义域为,在上单调递增,最多一个零点,不合题意,所以,的定义域为,所以求导,得当时,,当时,,所以在上单调递减,在上单调递增,,要使有两个零点,必有,即,此时,即在有一个零点,,令,,求导得,显然在上单调递增,所以,所以在上单调递增,,所以,则函数在上存在唯一零点.由为的两个根中较小的根,得,,()()ln 1e 0x ax a x +--=()ln e x ax ax x +=+()e x g x x =+()g x ()()()ln ln eln ax ax ax ax +=+()()ln g ax g x =()ln x ax =()ln x ax =()()ln h x x ax =-0a ≠0a <()h x (),0-∞()h x (),0-∞()h x 0a >()h x ()0,+∞()1h x '=01x <<()0h x '<1x >()0h x '>()h x ()0,1()1,+∞()()min 11ln h x h a ==-()h x 1ln 0a -<e a >110h a a⎛⎫ ⎪⎝⎭=>()h x ()0,1()223ln h a a a =-()23ln u x x x =-e x >()23u x x x '=-()u x '()e,+∞()()32e 0u x u e e>=-'>'()u x ()e,+∞()()2e e 30u x u >=->()20h a >()h x ()1,+∞1x ()ln x ax =11e x ax =10x >又由已知得,从而,因为,所以,所以.设(),当时,,,则符合题意,当时,,则在上单调递增,所以不合题意,所以所以设,.求导,得,当时,令,,则,,所以,在上单调递增,从而,,即,,从而,即在单调递增,则,于是,即,即.()12ln 1cos 3ax t t =+-+()12e ln 1cos 3x t t =+-+10x >12e 2x >()ln 1cos 10t t +-+>()()ln 1cos 1t t t ϕ=+-+1t >-0t >()ln 10t +>1cos 1t -≤≤()0t ϕ>10t -<≤()1sin 01t t tϕ=+>+'()t ϕ(]1,0-()()00t ϕϕ<=0t >()()e ln 1cos 2x m x x x =-++-0x >()1e sin 1x x m x x=--'+0x >()e 1x p x x =--()sin x x q x =-()e 10x x p =->'()1cos 0x q x =-≥'()p x ()q x ()0,+∞()0p x >()0q x >e 1x x >+sin x x >()11110111x m x x x x xx >+--=-=>+++'()m x ()0,+∞()()00m x m >=()e 1ln 1cos 3x x x +>+-+()1e 1ln 1cos 32e x t t t +>+-+=1e 12e x t +>。
山东省各地市2020年高考数学 最新试题分类大汇编 11 圆锥曲线(1) 理
山东省各地市2020年高考数学(理科)最新试题分类大汇编:第11部分:圆锥曲线(1)一、选择题【山东省青州市2020届高三2月月考理】10. 设双曲线)0,0(12222>>=-b a bx a y 的渐近线与抛物线12+=x y 相切,则该双曲线的离心率等于A .5B .25C .6D .26 【答案】B滕州二中【山东省微山一中2020届高三10月月考理】8. 若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为 ( )A .(2,)+∞B .[2,)+∞C .(1,2]D .(1,2)答案:C解析:这里给出否定形式,直接思考比较困难,按照正难则反,考虑存在点P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,因此只要在这个双曲线上存在点P 使得OP 斜率为1即可,所以只要渐进线的斜率大于1,也就是离心率大于2,求其在大于1的补集;该题通过否定形式考查反证法的思想,又考查数形结合、双曲线的方程及其几何性质,是中档题.【山东省临沭一中2020届高三12月理】8.已知双曲线22221x y a b -=的一个焦点与抛物线24y x =的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A.224515y x -= B.22154x y -= C.22154y x -= D.225514y x -= 【答案】D【山东省实验中学2020届高三上学期第一次诊断性考试理】12. 点P 在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是(A) .2 (B) .3(C) .4(D) .5【答案】D【山东省滕州二中2020届高三上学期期中理】11: 已知直线l 是椭圆)0(12222>>=+b a by a x 的右准线,如果在直线l 上存在一点M ,使得线段OM (O 为坐标原点)的垂直平分线过右焦点,则椭圆的离心率的取值范围是( )A .)1,23[B . )1,22[C .)1,22( D . )1,21[【答案】B【山东省青岛市2020届高三期末检测 理】10.以坐标轴为对称轴,原点为顶点,且过圆222690x y x y +-++=圆心的抛物线方程是A .23x y =或23x y -= B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=【答案】D【山东省青岛市2020届高三期末检测 理】11.以双曲线22221x y a b-=(0,0)a b >>的左焦点F为圆心,作半径为b 的圆F ,则圆F 与双曲线的渐近线 A .相交B .相离C .相切D .不确定【答案】C【山东省莱芜市2020届高三上学期期末检测 理】正三角形一个顶点是抛物线)0(22>=p py x 的焦点,另两个顶点在抛物线上,则满足此条件的正三角形共有A.0个B.1个C.2个D.4个 【答案】C【山东省莱芜市2020届高三上学期期末检测 理】若点O 和点F 分别为椭圆15922=+y x 的中心和左焦点,点P 为椭圆上任意一点,则OP FP ⋅u u u r u u r的最小值为A.411B.3C.8D.15 【答案】A【山东省烟台市2020届高三期末检测理】7.直线022=+-y x 经过椭圆)0(12222>>=+b a b y a x 的一个焦点和一个顶点,则该椭圆的离心率为 A.55 B.21 C.552 D.32 【答案】C【山东省潍坊市重点中学2020届高三2月月考理】11.若双曲线)0(12222>>=-b a by a x 的左右焦点分别为1F 、2F ,线段21F F 被抛物线212x y b=的焦点分成3:2的两段,则此双曲线的离心率为A .98 B .63737 C . 533 D . 52121【答案】D【山东省潍坊市三县2020届高三12月联考理】10.若椭圆mx 2+ny 2=1与直线x+y-1=0交于A 、B 两点,过原点与线段AB 中点的直线的斜率为22则nm=( ) A 2 B 22 C 23 D 92【答案】B【山东省潍坊市三县2020届高三12月联考理】11.过双曲线2222by a x -=1(a >0,b >0)的左焦点F (-c ,0)(c >0),作圆4222a y x =+的切线,切点为E ,延长FE 交双曲线右支于点P ,若()OP OF OE +=21,则双曲线的离心率为( ) A .10 B .510C .210D .2【答案】C【山东省枣庄市2020届高三上学期期末理】11.已知双曲线12222=-b y a x 的一个焦点与抛物线x y 42=的焦点重合,且该双曲线的离心率为5,则该双曲线的渐近线方程为A.x y 21±= 2 B.x y 2±= 4C.x y 2±=D.x y 22±= 【答案】C【山东实验中学2020届高三第一次诊断性考试理】12. 点P 在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是(A) .2 (B) .3(C) .4(D) .5【答案】D【解析】解:设|PF 2|,|PF 1|,|F 1F 2|成等差数列,且分别设为m-d,m,m+d,则由双曲线定义和勾股定理可知:m-(m-d)=2a,m+d=2c, (m-d)2+m 2=(m+d)2,解得m=4d=8a,5252d ce da ∴===故选项为D【山东省聊城市五校2020届高三上学期期末联考】6.已知P 是以F 1、F 2为焦点的椭圆,0,)0(1212222=⋅>>=+PF PF b a b y a x 且上一点 ,21tan 21=∠F PF 则该椭圆的离心率为( )A .21B .32 C .31 D .35 【答案】D【山东济宁梁山二中2020届高三12月月考理】12.设F 是抛物线()02:21>=p px y C 的焦点,点A 是抛物线1C 与双曲线1:22222=-by a x C ()0,0>>b a 的一条渐近线的一个公共点,且AF x ⊥轴,则双曲线的离心率为A . 25B . 5C . 3D . 2【答案】B【莱州一中2020高三第三次质量检测理】10.已知点P 是抛物线28y x =-上一点,设P 到此抛物线准线的距离是1d ,到直线100x y +-=的距离是2d ,则12d d +的最小值是 3B.362D. 3【答案】C【山东省滨州市沾化一中2020届高三上学期期末理】9.若椭圆221x y m n+=(m >n >0)和双曲线221x y a b-=(a >b >0)有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -aB .1()2m a -C .m 2-a 2D m a -【答案】A【山东济宁邹城二中2020届高三上学期期中】2.已知双曲线2212y x -=的焦点为F 1、F 2, 点M 在双曲线上且120,MF MF ⋅=u u u u r u u u u r则点M 到x 轴的距离为( )A .43B .53 CD【答案】C【山东济南市2020界高三下学期二月月考理】已知点1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若2ABF ∆为锐角三角形,则该双曲线的离心率e 的取值范围是 A .(1,)+∞B.C .(1,2)D.(1,1+【答案】D【山东济南市2020界高三下学期二月月考理】抛物线214y x =的焦点坐标是 A .,0161() B .(1,0)C .1-,016()D . 0,1()【答案】D【山东省济宁市2020届高三上学期期末检测理】2.抛物线y x 42=的焦点坐标为 A.(1,0) B.(2,0)C.(0,1)D.(0,2)【答案】C【山东省济南一中2020届高三上学期期末理】10. 已知抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,双曲线221x y a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是 A .19 B .125C .15D .13 【答案】A【山东省苍山县2020届高三上学期期末检测理】2.抛物线28x y =的焦点到准线的距离是 ( ) A .1 B .2C .4D .8【答案】C【山东省潍坊市2020届高三上学期期末考试理】10.已知点P 是抛物线x y 82-=上一点,设P 到此抛物线准线的距离是d 1,到直线010=-+y x 的距离是d 2,则d l +d 2的最小值是 A. 3 B. 32 C. 26 D .3 【答案】C【山东省苍山县2020届高三上学期期末检测理】12.已知圆22:6480C x y x y +--+=,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 ( )A .221124x y -= B .221412x y -= C .22124x y -= D .22142x y -= 【答案】B 二、填空题【山东省潍坊市2020届高三上学期期末考试理】15.已知双曲线)0,0(12222>>=-b a by a x 的离心率为332,焦距为2c ,且2a 2=3c ,双曲线 上一点P 满足为左右焦点)、2121(2F F PF PF =•,则=•||||21PF PF . 【答案】4【山东省莱芜市2020届高三上学期期末检测 理】若双曲线12222=-by a x 的一条渐近线与抛物线122+=x y 只有一个公共点,则双曲线的离心率等于 .【答案】3【山东省潍坊市三县2020届高三12月联考理】13. 已知AB 是过抛物线22y x =焦点的弦,||4AB =,则AB 中点的横坐标是 .【答案】23【莱州一中2020高三第三次质量检测理】15.已知双曲线22221(0,0)x y a b a b-=>>的离心率,焦距为2c ,且223a c =,双曲线上一点P 满足1212(PF PF F =u u u r u u u r g 、2F 为左、右焦点),则12||||PF PF =u u u r u u u r g .【答案】4【山东省东营市2020届高三上学期期末(理)】15.已知双曲线)0,0(12222>>=-b a b y a x 的离心率为332,焦距为2c ,且2a 2=3c ,双曲线 上一点P 满足为左右焦点)、2121(2F F PF PF =•,则=•||||21PF PF. 【答案】4【山东省济宁市汶上一中2020届高三11月月考理】12.已知点P 是以12,F F 为焦点的椭圆22221(0)x y a b a b +=>>上一点,且120,PF PF ⋅=u u u r u u u u r 121tan ,2PF F ∠=则该椭圆的离心率等于________. 【答案】35【山东省临沭一中2020届高三12月理】16. 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是F 1,F 2,过F 2作倾斜角为120︒的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为 【答案】32-三、解答题【山东实验中学2020届高三第一次诊断性考试理】22.(本小题满分14分)己知椭圆C :旳离心率e =,左、.右焦点分别为,点.,点尽在线段PF 1的中垂线i. (1) 求椭圆C 的方程; (2) 设直线与椭圆C 交于M ,N 两点,直线、的倾斜角分别为,且,求证:直线/过定点,并求该定点的坐标.【解题说明】本试题主要考察椭圆的标准方程,以及恒过定点的直线,直线与圆锥曲线的综合运用。
2020年山东新高考数列精选模拟试题(含解析)
专题8 数列数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系;解答题的难度中等或稍难,将稳定在中等难度.往往在利用方程思想解决数列基本问题后,进一步数列求和,在求和后可与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要. 预测2020年将保持稳定,注意主观题与不等式、函数等相结合.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC.D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3-B .1-C .3D .13.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路若存在两项,m n a a32=,则14m n+的最小值为 A .34B .910C .32D .955.(2020届山东省青岛市高三上期末)已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a =( ) A .23B .32C .43D .34二、多选题6.(2020届山东省潍坊市高三模拟一)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则下列正确的是( ) A .12a =-B .12a =C .4d =D .4d =-7.(2020·山东曲阜一中高三3月月考)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路8.(2020届山东省潍坊市高三模拟二)将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 9.(2020届山东省济宁市第一中学高三一轮检测)等差数列{}n a 是递增数列,满足753a a =,前n 项和为n S ,下列选择项正确的是( ) A . 0d >B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为810.(2020·山东滕州市第一中学高三3月模拟)已知数列{}{},n n a b 满足1111312,2ln(),0n n n n n n n a a b b a b n N a b n*+++=+=++∈+> 给出下列四个命题,其中的真命题是( ) A .数列{}n n a b -单调递增; B .数列{}n n a b + 单调递增; C .数{}n a 从某项以后单调递增; D .数列{}n b 从某项以后单调递增.三、填空题11.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.12.(2020届山东省潍坊市高三模拟一)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用n a 表示解下()*9,n n n N≤∈个圆环所需移动的最少次数,{}na 满足11a=,且()()112122n n n a n a a n --⎧-⎪=⎨+⎪⎩为偶数为奇数,则解下5个圆环需最少移动________次.四、解答题13.(2020·山东高三模拟)已知各项均不相等的等差数列{}n a 的前4项和为414S =, 且137,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .14.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 15.(2020届山东省高考模拟)已知数列{}n a 的前n 项和为n S ,且12n n S a a =-(*n N ∈),数列{}n b 满足16b =,14n n nb S a =++(*n N ∈). (Ⅰ)求数列{}n a 通项公式; (Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12nT <. 16.(2020届山东省济宁市第一中学高三一轮检测)已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =.(1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.17.(2020届山东省济宁市第一中学高三二轮检测)已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+.(1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .18.(2020·山东滕州市第一中学高三3月模拟)已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)若12111n n T S S S =+++,证明:34n T <. 19.(2020届山东省泰安市肥城市一模)记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.20.(2020届山东省济宁市高三3月月考)已知数列{}n a 为公差不为0的等差数列,且139a a a 、、成等比数列,246a a +=.(1)求数列{}n a 的通项n a ; (2)设()21cos3n n n a b a π+=,求数列{}nb 的前2020项的和2020S.21.(2020届山东省菏泽一中高三2月月考)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N . (1)证明:{}1n S +为等比数列,求出{}n a 的通项公式; (2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.22.(2020届山东省潍坊市高三模拟一)已知等差数列{}n a 的前n 项和为n S ,34a =,627S =. (1)求{}n a 的通项公式;(2)设2n an b =,记n T 为数列{}n b 的前n 项和.若124m T =,求m .23.(2020届山东省潍坊市高三模拟二)已知数列{a n }的首项为a 1=1,且*12(1)()n n a a n N +=+∈.(Ⅰ)证明:数列{a n +2}是等比数列,并求数列{a n }的通项公式; (Ⅱ)设b n =log 2(a n +2)﹣log 23,求数列32n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .24.(2020届山东省六地市部分学校高三3月线考)数列{}n a 满足:123a a a +++()1312nn a +=- (1)求{}n a 的通项公式; (2)若数列{}n b 满足3n na b n a =,求{}n b 的前n 项和n T .25.(2020届山东省潍坊市高三下学期开学考试)已知函数()log k f x x =(k 为常数,0k >且1k ≠). (1)在下列条件中选择一个________使数列{}n a 是等比数列,说明理由; ①数列(){}n f a 是首项为2,公比为2的等比数列; ②数列(){}n f a 是首项为4,公差为2的等差数列;③数列(){}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =12241+=-n n n a b n ,求数列{}n b 的前n 项和n T . 26.(2020届山东济宁市兖州区高三网络模拟考)在①325256a a a b =+=,;②234323b a a b =+=,;③345298S a a b =+=,,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b d q ==,,____________.(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}n c ,的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 27.(2020·山东高三下学期开学)已知数列{}n a 满足123123252525253n n na a a a ++++=----….(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:11226n T ≤<. 28.(2020届山东省淄博市高三二模)已知数列{}n a 满足132a =,且()1112,22n n n a a n n *--=+≥∈N .(1)求证:数列{}2nn a 是等差数列,并求出数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .29.(2020届山东省淄博市部分学校高三3月检测)已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+.(1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和.30.(2020·2020届山东省淄博市高三二模)(本小题满分12分)设函数()()22ln 11x f x x x =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)如果对所有的x ≥0,都有()f x ≤ax ,求a 的最小值;(Ⅲ)已知数列{}n a 中, 11a =,且()()1111n n a a +-+=,若数列{}n a 的前n 项和为n S ,求证:11ln 2n n n na S a a ++>-.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC. D.【答案】D 【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以1(2,)n n a n n N -+=≥∈, 又1a f =,则7781a a q f === 故选D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3- B .1-C .3D .1【答案】C 【解析】当2n ≥ 时,1121,,33n n n n n n S a S a --++== 两式作差可得:11211213311n n n n n a n n n a a a a n n --+++=-⇒==+-- , 据此可得,当2n = 时,1nn a a -的最大值为33.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( )A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路【答案】C 【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由S 6=378求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.4.(2020届山东省济宁市第一中学高三二轮检测)已知正项等比数列{}n a 满足:2853516,20a a a a a =+=,若存在两项,m n a a 32=,则14m n+的最小值为 A .34B .910C .32D .95【答案】A 【解析】因为数列{}n a 是正项等比数列,28516a a a ,3520a a +=,所以2285516a a a a ,516a =,34a =,所以253a a q =,2q ,451a a q ,11a =,1112n n n a a q --==,32=,所以1110222m n,12m n +=,414114112125n m mnm n mnm n431124520,0n m mnm n ,当且仅当2n m =时“=”成立, 所以14mn的最小值为34,故选A 。
【市级联考】山东省临沂市2024届高三5月第三次模拟考试理综全真演练物理试题
【市级联考】山东省临沂市2024届高三5月第三次模拟考试理综全真演练物理试题一、单项选择题:本题共8小题,每小题3分,共24分,在每小题给出的答案中,只有一个符合题目要求。
(共8题)第(1)题在下图中,标出了磁场感应强度B的方向、通电直导线中电流l的方向,以及通电直导线所受磁场力F的方向,其中正确的是( )A.B.C.D.第(2)题如图甲所示,是国产某型号手机无线充电装置,其工作原理图如图乙所示,其中送电线圈和受电线圈匝数比n1:n2=5:1。
送电线圈和受电线圈所接电阻的阻值均为R。
当ab间接上220V的正弦交变电源后,受电线圈中产生交变电流给手机快速充电,这时手机两端的电压为5V,充电电流为5A,把送电线圈和受电线圈构成的装置视为理想变压器,不计线圈及导线电阻,则下列说法正确的是( )A.阻值R=195ΩB.快速充电时,送电线圈的输入电压U1=212.5VC.快速充电时,送电线圈的输入功率为25WD.持续进行快速充电时,充满容量为4000mA·h的电池至少需要80min第(3)题质量为的凹槽静止在水平地面上,内壁为半圆柱面,截面如图所示,为半圆的最低点,为半圆水平直径的端点。
凹槽恰好与竖直墙面接触,内有一质量为的小滑块。
用推力推动小滑块由A点向点缓慢移动,力的方向始终沿圆弧的切线方向,在此过程中所有摩擦均可忽略,下列说法正确的是( )A.推力先增大后减小B.凹槽对滑块的支持力先减小后增大C.墙面对凹槽的压力先增大后减小D.水平地面对凹槽的支持力先减小后增大第(4)题在现代杂技类节目中,以高空绸吊为代表的高空杂技正在逐渐受到观众的追捧。
某杂技演员的手抓着长长的绸带,在空中做着精彩的表演。
杂技演员的运动可以等效为圆锥摆,如图所示,长为L的细绳一端固定,另一端系一质量为m的小球,给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆。
设细绳与竖直方向的夹角为,不计空气阻力,则下列说法中正确的是()A.小球受重力、绳的拉力和向心力共三个力的作用B.细绳的拉力是小球做圆周运动的向心力C.越大,小球运动的周期越小D.越大;小球运动的线速度越小第(5)题如图,距离为d的两平行金属板P、Q之间有一匀强磁场,磁感应强度大小为,一束速度大小为v的等离子体垂直于磁场喷入板间,相距为L的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为,导轨平面与水平面夹角为,两导轨分别与P、Q相连,质量为m、电阻为R的金属棒垂直导轨放置,恰好静止,重力加速度为g,不计导轨电阻、板间电阻和等离子体中的粒子重力,下列说法正确的是( )A.导轨处磁场的方向垂直导轨平面向上,B.导轨处磁场的方向垂直导轨平面向下,C.导轨处磁场的方向垂直导轨平面向上,D.导轨处磁场的方向垂直导轨平面向下,第(6)题我国第一台空间莱曼阿尔法太阳望远镜可探测波长为121.6nm的氢原子谱线,该谱线对应的光子能量为10.2eV。
2020届山东省新高考高三优质数学试卷分项解析 专题02 相等关系与不等关系,计数原理(原卷版)
专题2 相等关系与不等关系高考试题不等式的考查有两类,一是涉及不等式的性质、不等式的解法、绝对值不等式;二是基本不等式及其应用等,一般不独立命题,而是以工具的形式,与充要条件、函数与导数、解析几何、三角函数、数列等综合考查.预测2020年独立考查的内容将是不等式的性质或基本不等式的应用问题,不等式的解法将与集合、函数等其它知识点综合考查.第一部分 相等关系与不等关系一、单选题1.(2020届山东省日照市高三上期末联考)如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(一丈10=尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高是( )A .2.55尺B .4.55尺C .5.55尺D .6.55尺2.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,23.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .1634.(2020·全国高三专题练习(文))“[]1,2x ∀∈,210ax +≤”为真命题的充分必要条件是( )A .1a ≤-B .14a -≤ C .2a ≤- D.0a ≤5.(2020届山东省枣庄、滕州市高三上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( )A .22a b >B .1ba<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.(2020届山东省枣庄市高三上学期统考)不等式220ax bx ++>的解集为{12}x x -<<,则不等式220x bx a ++>的解集为( )A .{1x <-或1}2x > B .1{1}2x x -<<C .{21}x x -<<D .{2x <-或1}x >9.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .1810.(2020届山东省枣庄市高三上学期统考)如图,在△ABC 中,点,D E 是线段BC 上两个动点,且AD AE +u u u r u u u rx AB y AC =+u u u r u u u r ,则14x y+的最小值为( )A .32B .2C .52D .9211.(2020届山东省枣庄市高三上学期统考)不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( )A .(,1]e -∞-B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-12.(2020届山东省滨州市三校高三上学期联考)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .913.(2020届山东师范大学附中高三月考)若0a >,0b >,()lg lg lg 2a b a b +=+,则2a b +的最小值为( ) A .9B .8C .7D .614.(2020届山东实验中学高三上期中)设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集个数有 A .2B .3C .4D .815.(2020届山东实验中学高三上期中)已知定义在R 上的函数()f x 满足()()22f x f x +=-,且当2x >时,有()()()()2,11xf x f x f x f ''+>=若,则不等式()12f x x <-的解集是( ) A .(2,3) B .(),1-∞C .()()1,22,3⋃D .()(),13,-∞⋃+∞二、多选题16.(2020届山东省泰安市高三上期末)已知a b c d ,,,均为实数,则下列命题正确的是( ) A .若,a b c d >>,则ac bd > B .若0,0ab bc ad >->,则0c da b-> C .若,,a b c d >>则a d b c ->- D .若,0,a b c d >>>则a b d c> 17.(2020届山东省滨州市三校高三上学期联考)设11a b >>>-,0b ≠,则下列不等式中恒成立的是( ) A .11a b< B .11a b> C .2a b > D .22a b >18.(2020届山东省潍坊市高三上期中)若x y ≥,则下列不等式中正确的是( ) A .22x y ≥B .2x yxy +≥ C .22x y ≥ D .222x y xy +≥19.(2020届山东省九校高三上学期联考)下列结论正确的是( )A .x R ∀∈,12x x+≥B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若()20x x -<,则()2log 0,1x ∈D .若0a >,0b >,1a b +≤,则104ab <≤20.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h 三、填空题21.(20201x x +x =______. 22.(2020届山东省枣庄市高三上学期统考)函数2245()(1)1x x f x x x -+=>-的最小值是__________.23.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________.24.(2020·全国高三专题练习(理))谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数13与115的和表示25等.从11111,,,,,234100101⋅⋅⋅这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)25.(2020·全国高三专题练习(理))已知圆()()22212x y -+-=关于直线()10,0ax by a b +=>>对称,则21a b+的最小值为__________. 26.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________.27.(2020·山东省淄博实验中学高三上期末)设()()201x a x f x x x x ⎧-≤⎪=⎨+⎪⎩,,>. (1)当12a =时,f (x )的最小值是_____; (2)若f (0)是f (x )的最小值,则a 的取值范围是_____. 四、解答题28.(2020届山东师范大学附中高三月考)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是21()5004R x x x =-+(元),()P x 为每天生产x 件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件a 元进货后又以每件b 元销售, ()b a c a λ=+-,其中c 为最高限价()a b c <<,λ为销售乐观系数,据市场调查,λ是由当b a -是c b -,c a -的比例中项时来确定.(1)每天生产量x 为多少时,平均利润()P x 取得最大值?并求()P x 的最大值; (2)求乐观系数λ的值;(3)若600c =,当厂家平均利润最大时,求a 与b 的值.29.(2020届山东省潍坊市高三上期中)在经济学中,函数()f x 的边际函数()Mf x 定义为()()()1Mf x f x f x =+-.某医疗设备公司生产某医疗器材,已知每月生产x 台()x N *∈的收益函数为()2300020R x x x =- (单位:万元),成本函数()5004000C x x =+(单位:万元),该公司每月最多生产100台该医疗器材.(利润函数=收益函数-成本函数)(1)求利润函数()P x 及边际利润函数()MP x ;(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少?(精确到0.1) (3)求x 为何值时利润函数()P x 取得最大值,并解释边际利润函数()MP x 的实际意义. 30.(2020届山东省枣庄市高三上学期统考)非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<(Ⅰ)当3a =时,求A B I ;(Ⅱ)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.第二部分 计数原理一、单选题1.(2020届山东省烟台市高三上期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为( ) A .216B .480C .504D .6242.(2020届山东省九校高三上学期联考)汽车维修师傅在安装好汽车轮胎后,需要紧固轮胎的五个螺栓,记为A 、B 、C 、D 、E (在正五边形的顶点上),紧固时需要按一定的顺序固定每一个螺栓,但不能连续固定相邻的两个,则不同固定螺栓顺序的种数为( ) A .20 B .15 C .10D .53.(2020·全国高三专题练习(理))已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲.乙结账方式不同,丁用哪种结账方式都可以若甲乙丙丁购物后依次结账,那么他们结账方式的组合种数共有( ) A .36种B .30种C .24种D .20种4.(2020·山东省淄博实验中学高三上期末)“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )A .59B .49C .716D .9165.(2020届山东省潍坊市高三上学期统考)6本不同的书摆放在书架的同一层上,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有( )种 A .24B .36C .48D .606.(2020届山东省滨州市高三上期末)展开式中项的系数为( )A .B .C .D .7.(2020届山东省九校高三上学期联考)吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15 B .815 C .35D .3208.(2020届山东省临沂市高三上期末)6324x x ⎛⎝的展开式的中间项为( ) A .-40B .240x -C .40D .240x9.(2020届山东省潍坊市高三上期中)(82x 展开式中3x 的系数为( )A .-112B .28C .56D .112二、多选题 三、填空题10.(2020届山东省日照市高三上期末联考)二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)11.(2020届山东省潍坊市高三上学期统考)在32nx x ⎛ ⎝的展开式中,只有第五项的二项式系数最大,则展开式中的常数项是 .12.(2020届山东省德州市高三上期末)6212x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______;系数最大的项是______. 13.(2020届山东省临沂市高三上期末)现将七本相同的书分给甲、乙、丙三人,每人至少一本,则甲分得的书不少于3本的概率是______.14.(2020·全国高三专题练习(理))在()8x 的展开式中,含44x y 项的系数是_______.。
高三试卷数学-山东省临沂市2023届高三上学期期中考试数学试卷及参考答案
临沂市高三教学质量检测考试数㊀学注意事项:1.答卷前,考生务必将自己的姓名㊁考生号等填写在答题卡和试卷指定位置上㊂2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑㊂如需改动,用橡皮擦干净后,再选涂其他答案标号㊂回答非选择题时,将答案写在答题卡上㊂写在本试卷上无效㊂3.考试结束后,将本试卷和答题卡一并交回㊂一㊁选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|3-x<2},B={1,2,4,5},则Bɘ∁RA=A.{1}㊀㊀㊀㊀㊀㊀B.{1,2}㊀㊀㊀㊀㊀㊀C.{1,2,4}㊀㊀㊀㊀㊀㊀D.{4,5}2.若z=5ii-2,则z=A.2+iB.-2+iC.1+2iD.1-2i3.若扇形的弧长与面积都是6,则这个扇形的圆心角的弧度数是A.2B.3C.4D.54.为了保护水资源,提倡节约用水,某城市对居民用水实行 阶梯水价 .计费方法如下表:每户每月用水量水价不超过12m34元/m3超过12m3但不超过18m36元/m3超过18m38元/m3若某户居民上月交纳的水费为66元,则该户居民上月用水量为A.13m3B.14m3C.15m3D.16m35.已知p:x2+x-2>0,q:x>a,若p是q的必要不充分条件,则A.aȡ1B.aɤ1C.aȡ-2D.aɤ-26.已知向量OAң=(1,7),OBң=(5,1),OMң=(2,1),若点P是直线OM上的一个动点,则PAң㊃PBң的最小值为A.-4B.-6C.-8D.-10㊀7.已知a=54ln54,b=14,c=2ln(sin18+cos18),则A.b<c<aB.a<c<bC.c<a<bD.c<b<a8.函数f(x)是定义在(0,+ɕ)上的单调函数,且对定义域内的任意x,均有f(f(x)-lnx-x)=2,则f(e)=A.e+1B.e+2C.e2+1D.e2+2二㊁选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.欧拉公式exi=cosx+isinx(其中i为虚数单位,xɪR)将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论中占有非常重要的地位,被誉为数学中的天桥.依据欧拉公式,则A.eπi=1B.eπi2为纯虚数C.exi3+i=12D.复数e2i对应的点位于第三象限10.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则A.ω+φ=π2B.f(-2)=-22C.f(x)的图象关于点(2022,0)对称D.f(2x)在[3,4]上单调递增11.南宋数学家杨辉所著的‘详解九章算法㊃商功“中出现了如图所示的形状,后人称之为 三角垛 . 三角垛 最上层有1个球,第二层有3个球,第三层有6个球, ,以此类推.设从上到下各层球数构成一个数列{an},则A.a4=9B.an+1-an=n+1C.a10=55D.ðni=11ai=2nn+112.若a>b>0,且a+b=1,则A.alnb>blnaB.2a+abȡ2+22C.(a2+1)(b2+1)<32D.a2a+2+b2b+1ȡ14三㊁填空题:本题共4小题,每小题5分,共20分.13.已知向量a在b方向上的投影向量是-2e(e是与b同方向的单位向量),|b|=3,则a㊃b=㊀㊀㊀㊀.14.已知tan(π8-α)=23,则sin(π4+2α)=㊀㊀㊀㊀.15.设函数f(x)=log12(-x)-1,x<0log2x+1,x>0{,若f(a)>f(-a),则a的取值范围是㊀㊀㊀㊀.16.摩天轮是一种大型转轮状的机械建筑设施,某摩天轮最高点距离地面高度128米,转盘直径为120米,设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周需要30分钟.若游客甲坐上摩天轮的座舱,开始旋转t分钟后距离地面的高度为h米,则h关于t的函数解析式为㊀㊀㊀㊀㊀㊀;若游客甲在t1,t2时刻距离地面的高度相等,则t1+t2的最小值为㊀㊀㊀㊀.四㊁解答题:本题共6小题,共70分.解答应写出文字说明㊁证明过程或演算步骤.17.(10分)已知函数f(x)=x2+bx+c的图象过点(0,2),且满足f(-1)=f(3).(1)求f(x)的解析式;(2)解关于x的不等式f(x)<(2a-2)x.18.(12分)已知函数f(x)=cos4x+2sinxcosx-sin4x.(1)求f(x)的最小正周期;(2)将f(x)的图象向右平移π4个单位,得到函数g(x)的图象,若g(x)在[0,m]上的最小值为g(0),求m的最大值.19.(12分)已知函数f(x)=aex+bsinx-2x,曲线y=f(x)在点(0,f(0))处的切线为y=1.(1)求a,b;(2)求f(x)的最小值.㊀20.(12分)已知正项数列{an}的前n项和Sn,且an+1an=2Sn.(1)证明:数列{Sn2}为等差数列;(2)记Tn=1S1+1S2+1S3+ +1Sn,证明Tn<2n.21.(12分)әABC中,AB=4,cosA=78,AC>AB.(1)若ABң㊃BCң=12,求BC;(2)若cos(B-C)=14,求әABC的面积.22.(12分)已知函数f(x)=lnxx和g(x)=axex有相同的最大值.(1)求a,并说明函数h(x)=f(x)-g(x)在(1,e)上有且仅有一个零点;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.临沂市高三教学质量检测考试数学试题参考答案及评分标准2022.11说明:一㊁本解答只给出了一种解法供参考,如考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准酌情赋分.二㊁当考生的解答在某一步出错误时,如果后继部分的解答未改该题的内容与难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确答案应得分数一半;如果后继部分的解答有较严重的错误或又出现错误,就不再给分.三㊁解答右端所注分数,表示考生正确做到这一步应得的累加分数.四㊁只给整数分数,选择题和填空题不给中间分.一㊁选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D㊀2.C㊀3.B㊀4.C㊀5.A㊀6.C㊀7.D㊀8.B㊀二㊁选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.BC㊀10.ABD㊀11.BCD㊀12.BD㊀三㊁填空题:本大题共4小题,每小题5分,共20分.13.-6㊀14.513㊀15.(-12,0)ɣ(12,+ɕ)㊀16.h(t)=60sin(π15t-π2)+68,tɪ[0,+ɕ)㊀30(第一空3分,第二空2分)四㊁解答题:本题共6小题,共70分.解答应写出文字说明㊁证明过程或演算步骤.17.(10分)解:(1)ȵf(x)的图象过点(0,2),即f(0)=2,ʑc=2.1分又f(-1)=f(3),ʑf(x)图象的对称轴为x=-1+32=1,2分 ʑ-b2=1,ʑb=-2.4分故f(x)=x2-2x+2.5分 (2)不等式f(x)<(2a-2)x,可化为x2-2ax+2<0.6分①当Δ=4a2-8ɤ0,即-2ɤaɤ2时,不等式x2-2ax+2ȡ0恒成立,此时不等式x2-2ax+2<0的解集为Ø.7分 ②当Δ=4a2-8>0,即a<-2或a>2时,㊀方程x2-2ax+2=0有两个根为x1=a-a2-2,x2=a+a2-2,8分此时不等式x-2ax+2<0的解集为{x|a-a2-2<x<a+a2-2}.9分综上,当-2ɤaɤ2时,不等式的解集为Ø;当a<-2或a>2时,不等式的解集为{x|a-a2-2<x<a+a2-2}.10分18.(12分)解:(1)f(x)=(cos2x+sin2x)(cos2x-sin2x)+2sinxcosx=cos2x+sin2x2分=2sin(2x+π4)4分ʑ最小正周期T=2π2=π.5分(2)g(x)=2sin[2(x-π4)+π4],7分即g(x)=2sin(2x-π4),8分ȵ0ɤxɤm,ʑ-π4ɤ2x-π4ɤ2m-π4.9分由g(x)在[0,m]上最小值为g(0),ʑ2m-π4ɤ5π4.ʑmɤ3π4.10分ʑ0<mɤ3π4.11分即m的最大值为3π4.12分19.(12分)解:(1)由已知:fᶄ(x)=aex+bcosx-2,1分ȵ曲线y=f(x)在点(0,f(0))处的切线方程为y=1,ʑf(0)=1,fᶄ(0)=0,{即a=1,a+b-2=0,{ʑa=1,b=1.{5分(2)由(1)知,fᶄ(x)=ex+cosx-2,6分当x<0时,ȵex<1,cosx<1,ʑfᶄ(x)ɤ0,ʑf(x)单调递减.8分当x>0时,令g(x)=fᶄ(x),则gᶄ(x)=ex-sinx,ȵex>1,sinxɤ1ʑgᶄ(x)>0,ʑfᶄ(x)单调递增,ʑfᶄ(x)>fᶄ(0)=0.10分ʑ当x>0时,f(x)单调递增.11分ʑf(x)min=f(0)=1.ʑf(x)的最小值为1.12分20.(12分)解:(1)证明:ȵan+1an=2Sn,ʑ当nȡ2时,Sn-Sn-1+1Sn-Sn-1=2Sn,1分ʑ1Sn-Sn-1=Sn+Sn-1),ʑSn2-Sn-12=1.3分当n=1时,a1+1a1=2a1,ʑa12=1,即S12=1,4分 故{Sn2}是首项为1,公差为1的等差数列,5分 (2)证明:由(1)知Sn2=n,Sn=n;7分 1Sn=1n=22n<2n+n-1=2(n-n-1),9分 ʑTn=1S1+1S2+1S3+ +1Sn<2(1-0+2-1+3-2+ +n-n-1)=2n.11分 即Tn<2n.12分21.(12分)解:(1)ȵABң㊃BCң=ABң㊃(ACң-ABң)=ABң㊃ACң-|ABң|21分=|ABң|㊃|ACң|㊃cosA-42=4ˑACˑ78-16=72AC-16,2分 由72AC-16=12,得AC=8.3分 ʑBC2=AB2+AC2-2AB㊃ACcosA=24,4分 ʑBC=26.5分 (2)法一:ȵcos(B-C)=14,ʑπ3<B-C<π2,2π3<2(B-C)<π,6分又cos2(B-C)=2cos2(B-C)-1=-78,又cosA=78,0<A<π3,ʑ2(B-C)=π-A,㊀ʑ2(B-C)=B+C,ʑB=3C,7分ʑA=π-4C,ʑcosA=cos(π-4C)=78,ʑcos4C=-78,ʑ2cos22C-1=-78,8分ʑcos2C=14,ʑ1-2sin2C=14,ʑsinC=64,9分由正弦定理得,ABsinC=BCsinA,又sinA=1-cos2A=158,AB=4,ʑBC=4ˑ158ˑ46=10,10分又sin2C=154,cosC=104,ʑsinB=sin3C=sin(C+2C)=sinCcos2C+cosCsin2C=64ˑ14+104ˑ154=368,11分ʑSәABC=12AB㊃BCsinB=12ˑ4ˑ10ˑ368=3152.12分法二:在AC上取点D,使得øCBD=øC,ȵcos(B-C)=14,ʑcosøABD=14,6分ʑsinøABD=1-cos2øABD=154,又sinA=1-cos2A=158,7分ʑcosøADB=cos[π-(øA+øABD)]=-cos(øA+øABD)=sinA㊃sinøABD-cosAcosøABD=158ˑ154-78ˑ14=14,8分ʑcosøADB=cosøABD,ʑøADB=øABD.ʑAD=AB=4.9分 又BD2=AB2+AD2-2AB㊃AD㊃cosA=16+16-2ˑ4ˑ4ˑ78=4,ʑBD=2,10分 ʑDC=BD=2,AC=AD+DC=6,11分 ʑSәABC=12AB㊃AC㊃sinA=12ˑ4ˑ6ˑ158=3152.12分22.(12分)解:(1)fᶄ(x)=1-lnxx2,1分 当xɪ(0,e)时,fᶄ(x)>0,f(x)单调递增;当xɪ(e,+ɕ)时,fᶄ(x)<0,f(x)单调递减,ʑx=e时,f(x)取得最大值.即f(x)max=f(e)=1e.2分 gᶄ(x)=a(1-x)ex,当a>0时,xɪ(-ɕ,1)时,gᶄ(x)>0,g(x)单调递增;xɪ(1,+ɕ)时,gᶄ(x)<0,g(x)单调递减,ʑg(x)max=g(1)=ae.3分 当a=0时,g(x)=0,不合题意;当a<0时,可知g(x)min=g(1),不合题意.故ae=1e,即a=1.4分 ʑh(x)=f(x)-g(x)=lnxx-xex.5分 ȵhᶄ(x)=1-lnxx2-1-xex,当1<x<e时,1-lnx>0,1-x<0,ʑhᶄ(x)>0,ʑh(x)在[1,e]上单调递增,又h(1)=-1e<0,h(e)=1e-eee=1e-1ee-1=ee-1-eee>0,ʑh(x)在(1,e)上有且仅有一个零点.6分(2)由(1)知,y=f(x),y=g(x)的图象大致如下图:㊀7分直线y=b与曲线y=f(x),y=g(x)三个交点的横坐标从左至右依次为x1,x2,x3,且0<x1<1<x2<e<x3,8分 ʑ0<lnx2<1<lnx3且lnx3x3=lnx2x2=x1ex1=b.9分 由x1ex1=lnx2x2=lnx2elnx2即g(x1)=g(lnx2),x1,lnx2ɪ(0,1),ʑx1=lnx2即x2=ex1.① 10分 由x2ex2=lnx3x3=lnx3elnx3即g(x2)=g(lnx3),ʑx2=lnx3.② 11分 由①,②,x22=ex1lnx3,又lnx3x3=x1ex1即ex1lnx3=x1x3,ʑx22=x1x3.12分。
2020届山东省聊城市高考模拟考试(三模)数学试题解析
A. 为 的周期
B.对于任意 ,函数 都满足
C.函数 在 上单调递减
D. 的最小值为
答案:ABC
A.由函数周期定义判断是否满足 ;B根据诱导公式判断是否满足 ;C.根据定义域 ,化简函数,并判断函数的单调性;D.在一个周期内,分 和 两种情况讨论函数,并判断函数的最小值.
解:
A. ,即 ,所以 为 的周期,故A正确;
bcqnh为qn的中点点c到直线qn的距离最大为ch由题中数据求出cnq重合时pnqmaxmaxmaxpnqpnqcc的中点连接pq交bbcc的中心取左侧面aadd的中心为点f连接ef记ef的中点abcdabc的中心连接mg则mgef得到pnq的外接圆圆心为点e根据球的结构特征得到三棱锥外接球的球心在直线ef上记作点o连接om外接球的半径为r根据题中条件列出方程求解即可得出bc交qn于点h因为四边形bbcc是正方形nbb的中点所以易得bcqnabcdabc重合时pnqabcdabcab平面bbcc所以mb平面pnqmaxmaxmaxpnqpnqcc的中点连接pqbbcc的中心取左侧面aadd的中心为点f连接ef记ef的中点为gabcdabc的中心连接mg则mgefcc的中点所以npqnpq因此npnq所以pnqefabab平面bbcc因此三棱锥外接球的球心在直线ef上记作点mbge且mbgeefbcmbeg为矩形因此ogommgneccgeogoeef点评
答案:B
根据题中条件,求出 ,再由向量夹角公式,即可求出结果.
解:
因为向量 , , ,
所以 ,即 ,即 ,
因此 ,所以 .
故选:B.
点评:
本题主要考查求向量的夹角,熟记向量夹角公式,以及向量数量积的运算法则即可,属于基础题型.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年普通高考模拟考试理科数学一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】B【解析】【分析】首先求得集合A,然后进行交集运算即可.【详解】求解对数不等式可得,结合题意和交集的定义可知:.故选:B.【点睛】本题主要考查对数不等式的解法,交集的运算等知识,意在考查学生的转化能力和计算求解能力.2.已知复数满足,则()A. B. C. D.【答案】A【解析】【分析】首先求得复数z,然后求解其共轭复数并确定模即可.【详解】由题意可得:,则.故选:A.【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力.3.2020年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业增长呈现加速状态.根据该折线图,下列结论正确的个数为()①每年市场规模量逐年增加;②增长最快的一年为2020~2020;③这8年的增长率约为40%;④2020年至2020年每年的市场规模相对于2020年至2020年每年的市场规模,数据方差更小,变化比较平稳A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由题意观察所给的折线图考查所给的结论是否正确即可.【详解】考查所给的结论:①2020年的市场规模量有所下降,该说法错误;②增长最快的一年为2020~2020,该说法正确;③这8年的增长率约为40%,该说法正确;④2020年至2020年每年的市场规模相对于2020年至2020年每年的市场规模,数据方差更小,变化比较平稳,该说法正确.综上可得:正确的结论有3个.故选:C.【点睛】本题主要考查折线图的识别,属于基础题.4.已知满足约束条件,则的最大值与最小值之和为()A. 4B. 6C. 8D. 10 【答案】C【解析】【分析】首先画出可行域,然后求得最大值和最小值,最后求解两者之和即可.【详解】绘制不等式组表示的平面区域如图所示,目标函数即:,其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点处取得最大值,据此可知目标函数的最大值为:,其中z取得最小值时,其几何意义表示直线系在y轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点A处取得最小值,联立直线方程:,可得点的坐标为:,据此可知目标函数的最小值为:.综上可得:的最大值与最小值之和为8.故选:C.【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y 轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.5.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A. B. C. D.【答案】D【解析】【分析】由题意列出所有可能的结果,然后结合古典概型计算公式可得概率值.【详解】能组成两位数有:10,12,13,20,21,23,30,31,32,总共有9种情况.其中偶数有5种情况,故组成的两位数是偶数的概率为.故选:D.【点睛】本题主要考查古典概型计算公式,属于中等题.6.函数的定义域都为,且是奇函数,是偶函数,设,则下列结论中正确的是()A.的图象关于对称B.的图象关于对称C.的图象关于对称D.的图象关于对称【答案】D【解析】【分析】由题意结合函数的奇偶性和函数的平移特性即可确定后函数的性质【详解】首先考查函数,其定义域为,且,则函数为偶函数,其图像关于轴对称,将的图像向左平移一个单位可得函数的图像,据此可知的图象关于对称.故选:D.【点睛】本题主要考查函数的奇偶性,函数图像的平移变换等知识,意在考查学生的转化能力和计算求解能力.7.秦九韶,中国古代数学家,对中国数学乃至世界数学的发展做出了杰出贡献.他所创立的秦几韶算法,直到今天,仍是多项式求值比较先进的算法.用秦九韶算法是将化为再进行运算,在计算的值时,设计了如下程序框图,则在◇和中可分别填入()A.和B.和C.和D.和【答案】C【解析】【分析】由题意结合秦九韶算法和流程图确定所需填入的程序语句即可.【详解】由题意可知,当时程序循环过程应该继续进行,时程序跳出循环,故判断框中应填入,由秦九韶算法的递推关系可知矩形框中应填入的递推关系式为:,故选:C.【点睛】本题主要考查流程图问题,流程图与秦九韶算法的综合运用等知识,意在考查学生的转化能力和计算求解能力.8.在中,,是边上一点,,,,则的长为()A. B. C. D.【答案】D【解析】【分析】首先求得的值,然后利用正弦定理解三角形即可.【详解】由题意,在△ADC中,由余弦定理可得:,则,在中,由正弦定理可得:,即:,据此可得:.故选:D.【点睛】本题主要考查正弦定理、余弦定理解三角形的方法等知识,意在考查学生的转化能力和计算求解能力.9.若双曲线的一条渐近线被圆所截得的弦长为2,则双曲线的离心率为()A. B. 2C. D.【答案】B【解析】【分析】由题意首先求得圆心到直线的距离,然后结合点到直线距离公式整理计算可得双曲线的离心率.【详解】设圆心到直线的距离为,由弦长公式可得:,解得:,双曲线的渐近线方程为:,圆心坐标为,故:,即:,双曲线的离心率.故选:B.【点睛】本题主要考查圆的弦长公式,点到直线距离公式,双曲线离心率的求解等知识,意在考查学生的转化能力和计算求解能力.10.如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大截面的面积是()A. 2B.C.D. 1【答案】A【解析】【分析】首先确定几何体的空间结构特征,然后结合面积公式求解面积的最大值即可.【详解】由三视图可知其对应的几何体是一个半圆锥,且圆锥的底面半径为,高,故俯视图是一个腰长为2,顶角为的等腰三角形,易知过该几何体顶点的所有截面均为等腰三角形,且腰长为2,顶角的范围为,设顶角为,则截面的面积:,当时,面积取得最大值.故选:A.【点睛】本题主要考查三视图还原几何体的方法,三角形面积公式及其应用等知识,意在考查学生的转化能力和计算求解能力.11.若函数在上单调递减,则的取值范围为()A. B. C. D.【答案】C【解析】【分析】将原问题进行等价转化为恒成立的问题,然后利用导数的性质可得实数k的取值范围. 【详解】由函数的解析式可得:,函数在上单调递减,则恒成立,即:,据此可得:恒成立,令,则,故函数在区间上单调递增,在区间上单调递减,函数的最大值为,由恒成立的结论可得:,表示为区间形式即.故选:C.【点睛】本题主要考查导函数研究函数的单调性,函数最值的求解,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.12.已知函数,若方程的解为,(),则()A. B. C. D.【答案】B【解析】【分析】由题意首先确定函数的对称轴,然后结合题意和三角函数的性质、同角三角函数基本关系和诱导公式即可确定的值.【详解】函数的对称轴满足:,即,令可得函数在区间上的一条对称轴为,结合三角函数的对称性可知,则:,,由题意:,且,故,,由同角三角函数基本关系可知:.故选:B.【点睛】本题主要考查三角函数的对称性,诱导公式的应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题.13.已知向量,满足:,,,则_____.【答案】3【解析】【分析】由题意结合平行四边形的性质可得的值.【详解】由平行四边形的性质结合平面向量的运算法则可得:,即:,据此可得:.【点睛】本题主要考查向量模的计算,平行四边形的性质等知识,意在考查学生的转化能力和计算求解能力.14.已知函数(,且)的图象恒过点,若点在角的终边上,则=__________.【答案】【解析】【分析】首先确定点A的坐标,然后由三角函数的定义求得的值,最后结合二倍角公式可得三角函数式的值.【详解】由函数的解析式可知点A的坐标为,由三角函数定义可得:,故.【点睛】本题主要考查对数函数恒过定点问题,由终边点的坐标求解三角函数值的方法等知识,意在考查学生的转化能力和计算求解能力.15.在的展开式中,项的系数为____.【答案】40【解析】【分析】由题意利用排列组合的性质可得项的系数.【详解】由题中的多项式可知,若出现,可能的组合只有:和,结合排列组合的性质和二项式展开式的过程可得系数为:.【点睛】本题主要考查二项式展开式与排列组合的综合运用,属于中等题.16.已知抛物线的焦点为,直线与交于,两点,,线段的中点为,过点作抛物线的准线的垂线,垂足为,则的最小值为____.【答案】【解析】【分析】由题意结合抛物线的定义和均值不等式的结论整理计算即可求得最终结果.【详解】如图所示,设抛物线的准线为,作于点,于点,由抛物线的定义可设:,由勾股定理可知:,由梯形中位线的性质可得:,则:.当且仅当时等号成立.即的最小值为.【点睛】本题主要考查抛物线的定义及其应用,均值不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列满足.(1)判断数列是否为等差数列,并说明理由;(2)记为数列的前项和,求.【答案】(1)见解析;(2)【解析】【分析】(1)由题意结合等差数列的定义和数列的递推关系即可确定数列为等差数列;(2)结合(1)中的结论首先确定数列的通项公式,然后分组求和确定其前n项和即可.【详解】(1)∵,∴,∴数列为公差为2的等差数列(2)∵,∴,由(1)可得:,∴,∴,.【点睛】本题主要考查由递推关系式证明数列为等差数列的方法,分组求和的方法等知识,意在考查学生的转化能力和计算求解能力.18.如图,已知矩形中,,点是的中点,将沿折起到的位置,使二面角是直二面角.(1)证明:平面;(2)求二面角的余弦值.【答案】(1)见证明;(2)【解析】【分析】(1)由题意利用几何关系结合线面垂直的判定定理即可证得题中的结论;(2)由几何体的空间结构特征建立空间直角坐标系,分别求得两个半平面的法向量,利用所得的法向量整理计算可得二面角的余弦值.【详解】(1)∵,点是的中点,∴,都是等腰直角三角形,∴,即..又∵二面角是直二面角,即平面平面,平面平面,平面,∴平面,又∵平面,∴,又∵,平面,,∴平面.(2)如图,取的中点,连接,∵,∴,∵平面平面,平面平面,平面,∴平面,过点作,交于,∵,∴,以,,所在直线为轴、轴、轴,建立如图所示坐标系,则,,,,∴,,,设为平面的一个法向量,则,即,取,则,∴,又平面,∴为平面的一个法向量,所以,即二面角的余弦值为.【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设分别为平面α,β的法向量,则二面角θ与互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.19.已知椭圆:的离心率为,且与抛物线交于,两点,(为坐标原点)的面积为.(1)求椭圆的方程;(2)如图,点为椭圆上一动点(非长轴端点),为左、右焦点,的延长线与椭圆交于点,的延长线与椭圆交于点,求面积的最大值.【答案】(1)(2)【解析】【分析】(1)由题意求得a,b,c的值即可确定椭圆方程;(2)分类讨论直线的斜率存在和斜率不存在两种情况,联立直线方程与椭圆方程,结合韦达定理和均值不等式即可确定三角形面积的最大值.【详解】(1)椭圆与抛物线交于,两点,可设,,∵的面积为,∴,解得,∴,,由已知得,解得,,,∴椭圆的方程为.(2)①当直线的斜率不存在时,不妨取,,,故;②当直线的斜率存在时,设直线的方程为,,,联立方程,化简得,则,,,,点到直线的距离,因为是线段的中点,所以点到直线的距离为,∴∵,又,所以等号不成立.∴,综上,面积的最大值为.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.20.在中国移动的赞助下,某大学就业部从该大学2020年已就业的、两个专业的大学本科毕业生中随机抽取了200人进行月薪情况的问卷调查,经统计发现,他们的月薪收入在3000元到9000元之间,具体统计数据如下表:将月薪不低于7000元的毕业生视为“高薪收入群体”,并将样本的频率视为总体的概率,巳知该校2020届大学本科毕业生李阳参与了本次调查问卷,其月薪为3500元.(1)请根据上述表格中的统计数据填写下面的列联表,并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“高薪收入群体”与所学专业有关?(2)经统计发现,该大学2020届的大学本科毕业生月薪(单位:百元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值).若落在区间的左侧,则可认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,为以后的毕业生就业提供更好的指导.①试判断李阳是否属于“就业不理想”的学生;②中国移动为这次参与调查的大学本科毕业生制定了赠送话费的活动,赠送方式为:月薪低于的获赠两次随机话费,月薪不低于的获赠一次随机话费,每次赠送的话赞及对应的概率分别为:则李阳预期获得的话费为多少元?附:,其中,.【答案】(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)首先写出列联表,然后计算的值给出结论即可;(2)由题意求得的值然后判定学生就业是否理想即可;由题意首先确定Z可能的取值,然后求得概率可得分布列,最后利用分布列计算数学期望可得其预期获得的话费.【详解】(1)列出列联表如下:,所以在犯错误的概率不超过0.025的前提下能够判断“高薪收入群体”与所学专业有关. (2)①月薪频率分布表如下:将样本的频率视为总体的概率,该大学2020届的大学本科毕业生平均工资为:,∵月薪,∴,,∴,2020届大学本科毕业生李某的月薪为3500元百元百元,故李阳不属于“就业不理想”的学生;②由①知百元元,故李阳的工资为3500元,低于,可获赠两次随机话费,所获得的话费的取值分别为120,180,240,300,360,,,,,.故的分布列为:则李阳预期获得的话费为(元).【点睛】本题主要考查独立性检验的应用,离散型随机变量及其分布列的计算与期望的计算等知识,意在考查学生的转化能力和计算求解能力.21.已知函数.(1)若,求函数的单调区间;(2)若,则当时,函数的图象是否总在不等式所表示的平面区域内,请写出判断过程.【答案】(1)见解析;(2)见解析【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)将原问题进行等价转化,分别考查所构造函数的最大值和最小值即可判定题中的结果是否成立.【详解】(1)解:∵,∴,∴恒成立,∴函数定义域为,,①当时,即,此时,在上单调递增,②当时,即,时,,单调递增,时,,单调递减,时,,单调递增;③时,即时,,,单调递增,时,,单调递减,,,单调递增,综上所述,①时,在上递增,②时,在和上递增,在上递减;③时,在和上递增,在上递减.(2)当时,由(1)知在递增,在递减,令,则在上为增函数,函数的图象总在不等式所表示的平面区域内,等价于函数图象总在图象的上方,①当时,,,所以函数图象在图象上方;②当时,函数单调递减,所以最小值为,最大值为,所以下面判断与的大小,即判断与的大小,因为,所以即判断与的大小,令,∵,.∴,即判断与大小,作差比较如下:令,,则,令,则,因为,所以恒成立,在上单调递增;又因为,,所以存在,使得,所以在上单调递减,在上单调递增,所以,因为二次函数的图象开口向下,其对称轴为,所以在上单调递减..因为时,,所以,即,也即,所以函数的图象总在直线上方,所以函数的图象总在不等式所表示的平面区域内【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求的极坐标方程和直线的直角坐标方程;(2)射线与圆的交点为,,与直线的交点为,求的取值范围.【答案】(1)圆的极坐标方程为.直线的直角坐标方程为.(2)【解析】【分析】(1)首先化为直角坐标方程,然后转化为极坐标方程可得C的极坐标方程,展开三角函数式可得l的普通方程;(2)利用极坐标方程的几何意义,将原问题转化为三角函数求值域的问题,据此整理计算可得的取值范围.【详解】(1)圆的普通方程是,将,代入上式:,化简得:,所以圆的极坐标方程为.直线的极坐标方程为,将,代人上式,得:,∴直线的直角坐标方程为.(2)设,因为点在圆上,则有,设,因为点在直线,则有,所以,∵,∴,∴,∴,即,故的范围为.【点睛】本题主要考查极坐标方程与普通方程的转化,极坐标的几何意义与应用等知识,意在考查学生的转化能力和计算求解能力.23.已知函数.(1)求不等式的解集;(2)若对任意都存在,使得成立,求实数的取值范围.【答案】(1)(2)【解析】【分析】(1)由题意求解绝对值不等式可得不等式的解集;(2)将原问题转化为函数值域之间的包含关系问题,然后分类讨论可得实数a的取值范围. 【详解】(1)由得,∴,∴,∴,∴不等式解集为.(2)设函数的值域为,函数的值域为,∵对任意都存在,使得成立,. ∴,∵,∴,①当时,,此时,不合题意;②当时,,此时,∵,∴,解得;③当时,,此时,∵,∴,解得.综上所述,实数的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。