锅炉控制系统设计

合集下载

燃气锅炉集散式控制系统设计方案

燃气锅炉集散式控制系统设计方案

燃气锅炉集散式控制系统设计方案一、系统概述0、前言根据常规设计原则和用户特殊要求,对35t/h燃气自然循环蒸汽锅炉的集散式控制系统(DCS)原理程序及配置方案进行介绍和论证。

该系统主要包括锅炉数据采集和自动负荷调节控制,公用系统(水、气)数据采集,补水泄压及水箱自动上水控制,水泵等自动设备控制。

同时系统提供远程访问支持。

1、控制目的作为锅炉控制装置,其主要任务是保证锅炉的安全、稳定、经济运行。

通过高水平和高可靠性的自动化控制系统,以节能为中心,提高热效率,降低耗气量;同时控制系统提供全参数的超限报警、联锁保护等系列安全保护措施,最大限度得保障人民及设备安全,锅炉的安全性对燃气而言尤为重要。

2、控制方式锅炉控制采用BANG-MDCS微型集散式控制系统,可以将燃烧控制、公用系统等几个既密切联系又相互独立的子系统的测控参数集中显示,分散控制。

BANG-MDCS微型集散式控制系统的系统自动化程度高,设置好各种参数后,系统可以全自动进行,不需要人工干预,大大降低了操作人员的劳动程度。

控制系统还提供全系统手动运行方式和局部手动运行方式。

对锅炉的运行不仅实现了全方位,全自动的控制,同时也实现了全功能的安全保护报警及保护停车。

3、控制系统特点BANG-MDCS集散式控制系统具有以下几个特点:①控制功能完善。

可以完成从简单的单回路到复杂的对变量模型化控制,通过控制策略,实现控制、显示监测、流量累计积算、打印、报警、历史数据存储查询等日常操作要求。

②完善的人机联系和控制功能。

操作人员通过CRT和操作键盘,可以监视生产装置以及整个工厂的生产情况,按预定的控制策略组态不同的控制回路,并调整回路的任一参数,还可对机电设备进行控制,实现真正的集中操作和分散控制。

③系统扩展灵活。

集散系统采用模块式结构,用户可根据要求方便地扩大或缩小系统的规模,或改变系统控制级别。

系统采用组台方法构成各种控制回路,很容易对方案进行修改。

④安装调试简单。

火电厂锅炉自动化控制系统设计

火电厂锅炉自动化控制系统设计

火电厂锅炉自动化控制系统设计火电厂锅炉是电力发电的核心设备,其重要性不言而喻。

自动化控制系统是保证锅炉正常运行和安全稳定的关键。

本文将一步步介绍火电厂锅炉自动化控制系统的设计过程。

一、控制目标及原理选型在设计火电厂锅炉自动化控制系统时,首先需要确定控制目标和原理选型。

常见的控制目标有以下几种:1.温度控制:对于锅炉来说,温度控制是非常重要的一个控制目标。

通过控制来保证锅炉内部温度在一定范围内,避免高温烧毁设备或者低温影响发电效率。

2.压力控制:锅炉内部压力高低控制也是控制目标之一。

通过控制压力来实现热水流动速度和水蒸气压力的平衡。

3.流量控制:锅炉内部热水流速控制也是一个非常重要的控制目标。

4.阀门控制:对于火电厂锅炉来说,阀门控制是一个比较重要的控制策略。

通过控制阀门开合,可以实现流量调控和压力平衡等。

在选择控制原理时,需要考虑控制系统的响应速度,稳态精度,以及设备成本。

常见的控制原理有PID控制器、模糊控制器、神经网络控制器等。

二、运行状态识别在设计火电厂锅炉自动化控制系统时,需要考虑锅炉的各种运行状态,对不同的运行状态进行识别和分类,以便针对不同状态采取不同的控制策略。

常见的运行状态分类有以下几种:1.启动状态:在锅炉启动阶段,需要通过控制热水流入速度和阀门开合来调节内部的压力和温度;2.稳态状态:当锅炉运行稳定时,需要通过控制温度、压力和流量等参数来保证锅炉的正常运行;3.冷却状态:当锅炉停止运行时,需要关掉热水流入阀门,开始进行冷却。

针对不同的运行状态,需要设计不同的控制模型和控制参数。

三、系统架构设计在确定好控制目标和运行状态识别后,需要进行系统架构设计,包括控制系统的硬件和软件两个方面。

1.硬件设计:硬件设计主要包括传感器、执行器、控制器等方面。

对于火电厂锅炉自动化控制系统,传感器主要用于测量锅炉内部的温度、压力、流量等参数;执行器主要用于控制阀门的开合和水泵的开关;控制器主要用于控制系统的数据传输和控制逻辑等。

基于plc的锅炉控制系统的设计方案

基于plc的锅炉控制系统的设计方案

设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。

以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。

-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。

2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。

-压力传感器:监测锅炉的压力情况。

-液位传感器:监测水箱水位,确保水位在安全范围内。

-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。

3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。

-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。

4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。

-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。

5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。

-设置报警系统,当参数超出设定范围时及时警示操作员。

6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。

7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。

-测试程序逻辑,确保系统稳定可靠,符合设计要求。

以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。

在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。

作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。

本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。

文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。

然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。

在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。

通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。

也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。

二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。

该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。

锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。

其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。

锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。

燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。

燃烧器的性能直接影响到锅炉的热效率和污染物排放。

燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。

热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。

热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。

锅炉温度控制系统设计

锅炉温度控制系统设计

XXXXXXXX大学本科生过程控制课程设计说明书题目:热电厂锅炉炉膛温度控制系统的设计学生姓名:学号:专业:班级:指导教师:摘要锅炉是热电厂重要且基本的设备 ,其最主要的输出变量之一就是主蒸汽温度。

主汽温度自动调节的任务是维持过热器出口汽温在允许范围内 ,以确保机组运行的安全性和经济性。

如果该温度过高 ,会使锅炉受热面及蒸汽管道金属材料的蠕变速度加快 ,降低使用寿命。

若长期超温 ,则会导致过热器爆管 ,在汽机侧还会导致汽轮机的汽缸、汽阀、前几级喷嘴和叶片、高压缸前轴承等部件的寿命缩短 ,甚至损坏;假如该汽温过低 ,会降低机组的循环热效率 ,一般汽温每降低5 ℃~10 ℃,效率约降低1 % ,同时会使通过汽轮机最后几级的蒸汽湿度增加 ,引起叶片磨损;当汽温变化过大时 ,将导致锅炉和汽轮机金属管材及部件的疲劳 ,还将引起汽轮机汽缸和转子的胀差变化 ,甚至产生剧烈振动 ,危及机组的安全 ,所以有效精准的控制策略是十分必要的锅炉炉膛温度的控制效果直接影响着产品的质量,温度低于或者高于要求时都不能达到生产质量指标,有时甚至会发生生产事故,此设计控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变量设计热电厂锅炉温度控制系统,以达到精度在正负5 ℃范围内。

关键词:热电厂;锅炉;炉膛温度;串级控制目录引言 (4)第一章热电厂的工艺流程及要求 (5)第二章锅炉的工艺流程及控制要求 (7)2.1锅炉的工艺流程 (7)2.2锅炉的控制要求 (8)第三章锅炉炉膛温度的分析 (8)第四章锅炉炉膛温度控制系统的设计 (12)4.1炉膛温度控制的理论数学模型 (12)4.2炉膛温度控制方法的选择 (12)4.3 系统单元元件的选择 (12)4.3.1温度检测变送器的选择 (12)4.3.2流量检测变送器的选择 (14)4.3.3主、副调节器正反作用的选择 (15)4.3.4主、副回路调节器调节规律的选择 (16)4.3.5控制器仪表的选择 (16)4.3.6控制阀的选择 (18)第五章锅炉炉膛温度控制系统的工作原理 (19)第六章总结 (20)参考文献 (21)引言随着现代工业生产的迅速发展,对工艺操作条件的要求更加严格,对安全运行及对控制质量的要求也更高。

锅炉控制系统课程设计

锅炉控制系统课程设计

锅炉控制系统课程设计一、课程目标知识目标:1. 让学生掌握锅炉控制系统的基础理论知识,包括系统组成、工作原理和关键参数;2. 使学生了解并掌握锅炉控制系统中主要控制环节的作用及相互关系;3. 引导学生掌握锅炉控制系统的故障分析及处理方法。

技能目标:1. 培养学生运用所学知识进行锅炉控制系统的设计、调试和优化的能力;2. 培养学生运用现代自动化控制技术对锅炉控制系统进行创新改造的能力;3. 提高学生团队协作、沟通表达和实际操作的能力。

情感态度价值观目标:1. 培养学生对锅炉控制系统及自动化技术的兴趣,激发学生探究精神和创新意识;2. 增强学生的环保意识,使其认识到锅炉控制系统在节能减排方面的重要性;3. 培养学生严谨、负责的工作态度,提高学生的职业素养。

课程性质分析:本课程为专业技术课程,具有较强的理论性和实践性。

通过本课程的学习,学生应能将所学知识应用于实际锅炉控制系统的设计、调试和维护。

学生特点分析:学生具备一定的电气、自动化基础知识,具有较强的学习能力和动手能力,但对锅炉控制系统的了解相对较少,需要通过本课程的学习来提高。

教学要求:1. 理论与实践相结合,注重培养学生的实际操作能力;2. 采用案例教学、分组讨论、现场教学等多种教学方法,提高学生的参与度和积极性;3. 结合行业发展趋势,注重培养学生的创新能力和职业素养。

二、教学内容1. 锅炉控制系统概述- 锅炉控制系统的作用与意义- 锅炉控制系统的基本组成与分类2. 锅炉控制系统工作原理及关键参数- 锅炉控制系统的工作原理- 锅炉控制系统的关键参数及其影响因素3. 锅炉控制系统主要控制环节- 蒸汽压力控制- 水位控制- 燃烧控制- 空气预热器控制4. 锅炉控制系统的设计、调试与优化- 控制器选型与参数整定- 控制系统的设计与实施- 控制系统的调试与优化方法5. 锅炉控制系统的故障分析及处理- 常见故障现象及其原因- 故障诊断与处理方法- 预防性维护措施6. 现代自动化技术在锅炉控制系统中的应用- PLC在锅炉控制系统中的应用- DCS在锅炉控制系统中的应用- 人工智能及大数据技术在锅炉控制系统的应用教学大纲安排:第1-2周:锅炉控制系统概述及工作原理第3-4周:锅炉控制系统主要控制环节及关键参数第5-6周:锅炉控制系统的设计、调试与优化第7-8周:锅炉控制系统的故障分析及处理第9-10周:现代自动化技术在锅炉控制系统中的应用教学内容关联教材章节:《锅炉设备及运行》第3章 锅炉自动控制系统《自动控制原理》第5章 简单控制系统《PLC原理与应用》第6章 PLC在工业控制中的应用实例教学内容注重科学性和系统性,结合行业发展趋势,旨在培养学生的实际操作能力和创新能力。

锅炉供暖控制系统设计

锅炉供暖控制系统设计

锅炉供暖控制系统设计摘要:随着经济和各行各业的快速发展,在我国部分偏远地区普遍使用的锅炉供暖技术中,相当多的锅炉仍旧采用传统方式对整个供暖过程进行控制,整个过程能源浪费严重,设备的启停、燃料的投放等都过度依赖操作员人工操作,无论是从工作效率还是工作安全角度,都不是很好的选择。

整个供暖系统全部由计算机实现自动控制,系统的操作除了工程师外,操作员也可以很容易操作整个系统的运行,这样就节省了大量的人力资源,并且整个操作过程可以在操作室进行,保证了整个操作的安全性[1]。

关键词:既有;供暖;调研;问题;改造引言随着经济和科技水平的快速发展,为有效降低燃气锅炉氮氧化物排放浓度,提升锅炉利用效率达到烟气低污染排放目标,提出基于吸收式换热的烟气低污染排放方案。

对燃气锅炉进行正、反平衡检测,检测不同工况下稳定运行时的数据;分析燃气锅炉烟气中氮氧化物转化和扩散过程,组建吸收式换热的烟气余热利用系统,引入基于遗传算法,将各变量最佳个体相对的改变区域作为参变量新的初始化区间,完成低污染排放任务[2]。

1锅炉供暖系统工艺简介整个燃气锅炉供暖系统的工作流程为:向燃烧器内供应天然气与空气的混合燃料,点燃后对锅炉内的水进行一次加热,同时,锅炉内的进口与出口的水是通过水温造成的重度差进行循环,将热水传输给需要供暖的区域,对循环回来的冷水进行加热。

整个系统主要由管道内水循环和锅炉燃烧两部分构成:1)管道内水循环:自来水经过过滤软化处理以后,经由分水器进入供暖管道内部,送入锅炉中,进行加热后,经由换热泵管网送至用户处用于取暖。

经由用户出散热后,经过换热站,再次经由循环泵管网送至锅炉内加热。

2)锅炉燃烧系统:由鼓风机向燃烧炉内输送一定比例的天然气和空气,进行点燃后,对锅炉内的水进行加热。

2锅炉供暖控制系统设计2.1控制中心硬件设计对码键是控制中心和多个子系统组网时的配对按键,只有和控制中心配对成功的子系统才能和控制中心进行通信,配对的原理是配对双方都按下对码键,控制中心向子系统发送子系统的地址,子系统接收到地址后将地址保存到flash内部,以后启动时首先读取地址,子系统接收数据后首先对比地址是否和自己相同,相同的话对数据进行处理,否则不做任何处理,控制中心和下一个子系统配对时,发送的地址自动增加,以此来区分是给谁的数据。

锅炉自动控制系统的设计与调试

锅炉自动控制系统的设计与调试

锅炉自动控制系统的设计与调试锅炉自动控制系统是现代工业中常见的关键设备之一,它能够确保锅炉能够高效、安全地运行。

设计和调试这样一个复杂的系统需要综合考虑多个因素,包括控制策略、传感器选择、控制器配置等等。

本文将深入探讨锅炉自动控制系统的设计与调试过程。

首先,设计一个合理的控制策略是锅炉自动控制系统的关键。

常见的控制策略包括比例控制、比例积分控制、模糊控制和模型预测控制等。

在选择控制策略时,需要考虑锅炉的特性、工艺要求以及可用的控制器等因素。

比例控制是最简单的控制策略,它根据当前错误信号的大小来控制执行机构输出。

比例积分控制在比例控制的基础上增加了积分部分,用于消除静态偏差。

模糊控制则通过模糊规则和模糊集合来实现控制,它能够应对非线性系统。

模型预测控制基于数学模型预测未来的系统行为,并制定最优的控制策略。

根据具体的需求和实际情况选择合适的控制策略非常重要。

其次,选择合适的传感器对于控制系统的稳定性和精确度来说也至关重要。

常用的锅炉传感器包括压力传感器、温度传感器、流量传感器等。

压力传感器用于监测锅炉内部压力的变化,温度传感器则用于测量锅炉内部温度的变化。

流量传感器可用于测量锅炉进出口的流量,以便精确控制水的供给。

传感器的选择需要考虑其精确度、响应速度和适应环境等因素。

同时,还需要考虑传感器与控制器之间的数据传输方式,如4-20mA信号或数字信号等,以确保数据准确传递。

控制器的配置也是锅炉自动控制系统设计中不可忽视的一环。

现代控制器提供了更多的功能和选项,如PID参数调整、通信接口、报警功能等。

PID控制器是最常见的控制器类型,通过调整比例、积分和微分参数来实现控制。

在配置PID控制器时,需要首先根据实际情况调整比例、积分和微分参数,以达到理想的控制效果。

另外,现代控制器通常具有通信接口,可以与上位机或网络连接,以实现远程监控和数据采集。

此外,控制器还应具备相应的报警功能,在发生异常情况时及时报警,保障安全运行。

基于PLC的工业蒸汽锅炉控制系统设计

基于PLC的工业蒸汽锅炉控制系统设计

控制要求
蒸汽锅炉控制系统的主要控制要求包括:
1、控制目标:通过控制燃料供应和空气供应,达到对蒸汽压力和蒸汽温度的 稳定控制。
2、被控对象:蒸汽锅炉的燃料系统和空气系统,以及相应的阀门和传感器。
3、控制算法:采用PID控制算法,通过比较实际值与设定值的差异,调整燃料 和空气的供应量。
3、控制算法:采用PID控制算法
对于蒸汽锅炉的控制,需要的参数包括压力、温度、液位等。因此,控制算法 的设计重点在于如何通过对这些参数的监测和控制,保证蒸汽锅炉的正常运行。 常见的控制算法有PID(比例-积分-微分)控制、模糊控制等,可根据实际情 况选择合适的控制算法。
2、输入输出接口
输入输出接口的设计是PLC控制系统的重要环节。输入接口负责采集蒸汽锅炉 的各种运行参数,如压力、温度、液位等;输出接口则将控制信号传递给相应 的执行机构,如调节阀、泵、风机等。在设计时,需要充分考虑蒸汽锅炉的工 艺流程、设备选型等因素,保证接口的合理配置。
关键词
PLC、工业蒸汽锅炉、控制系统、 设计
内容概述
本次演示主要介绍如何将PLC应用于工业蒸汽锅炉的控制系统,包括控制算法 的选择、输入输出接口的设计以及设备的选型等方面的内容。通过PLC的控制, 可以实现蒸汽锅炉的自动化运行,提高生产效率,降低能源消耗,保证生产安 全。
设计思路
1、控制算法
1、品牌选择:选用某知名品牌的PLC,具有较高的可靠性和稳定性。 2、型号选择:根据蒸汽锅炉控制系统的规模和复杂度,选择中高端型号的PLC。
3、内存容量:选用具有较大内存容量的PLC,以支持复杂的控制算法和数据处 理。
4、输入输出点数:根据控制系统的需求,选择适当的输入输出点数。
4、输入输出点数:根据控制系 统的需求,选择适当的输入输出 点数。

基于PLC的锅炉控制系统的设计

基于PLC的锅炉控制系统的设计

基于PLC的锅炉控制系统的设计本文介绍基于PLC的锅炉控制系统的设计的背景和目的。

锅炉控制系统是基于PLC(可编程逻辑控制器)的设计,采用了分布式控制策略。

整体架构包括以下几个组成部分:1.控制器控制器是锅炉控制系统的核心部分,由PLC实现。

PLC具备高速计算能力和强大的输入输出功能,可以对各个设备进行监控和控制。

它接收来自传感器的输入信号,并根据预设的逻辑和算法进行实时处理,向执行器发送输出信号以控制设备运行。

2.传感器传感器负责将锅炉系统的各个参数转化为电信号,并传输给PLC进行处理。

常见的传感器包括温度传感器、压力传感器、流量传感器等。

3.执行器执行器根据PLC的控制信号来执行相应的操作,如调节燃料供给、控制排放阀等。

它们与PLC之间通过信号线或总线进行连接。

4.人机界面人机界面提供给操作员与锅炉控制系统进行交互的界面。

它可以是触摸屏、计算机软件等形式,用于监视系统运行状态、设定参数以及显示报警信息等。

5.通信模块通信模块用于实现锅炉控制系统与外部设备的数据传输和通信。

它可以连接到局域网或远程服务器,实现与其他系统或监控中心的数据交互。

6.电源供应为了保证锅炉控制系统的稳定运行,需要提供可靠的电源供应。

这可以通过备用电源或UPS(不间断电源)来实现。

综上所述,基于PLC的锅炉控制系统采用分布式控制策略,通过控制器、传感器、执行器、人机界面、通信模块和电源供应等组成部分协同工作,实现对锅炉设备的监控和控制。

本文介绍基于PLC的锅炉控制系统所采用的控制策略和算法。

控制策略是指通过采取不同的控制方法和算法,在锅炉运行中实现温度、压力、流量等参数的稳定控制。

基于PLC的锅炉控制系统采用了以下主要的控制策略:PID控制:PID(比例、积分、微分)控制是一种常用的控制方法。

它通过根据控制对象的偏差来调节控制器的输出,使得偏差逐渐趋向于零,从而实现控制目标。

在锅炉控制系统中,PID控制常用于调节温度、压力和流量等参数。

锅炉控制方案

锅炉控制方案

锅炉控制方案为了确保锅炉运行的安全稳定以及提高能源利用效率,设计一个有效的锅炉控制方案是至关重要的。

本文将详细介绍一个可行的锅炉控制方案,从控制策略、传感器配置到控制系统的搭建,旨在实现锅炉的智能化控制。

1.控制策略在锅炉控制方案中,选择合适的控制策略是基础。

一种常用的控制策略是PID控制,其中P代表比例控制、I代表积分控制、D代表微分控制。

PID控制通过对锅炉的输出进行调整,使得温度、压力等参数能够稳定在设定值附近。

除了PID控制,还可以应用先进的模型预测控制(MPC)策略。

MPC利用数学模型预测未来的系统行为,并通过对控制输入进行优化,使得系统能够更准确地达到设定要求。

MPC相比于传统的PID控制,更加灵活且具有更好的响应速度和控制精度。

2.传感器配置为了实现对锅炉进行精确控制,适当配置传感器是必不可少的。

常用的锅炉传感器包括温度传感器、压力传感器和流量传感器。

温度传感器主要用于监测锅炉内的温度变化,确保锅炉工作在安全温度范围内。

压力传感器用于监测锅炉的压力变化,避免压力过高或过低对设备造成的损坏。

流量传感器则用于监测介质流量,调节锅炉的供给量。

此外,还可以增加其他特殊传感器,如氧气含量传感器、烟气成分传感器等,以全面了解和控制锅炉的工作状态。

3.控制系统搭建构建一个高效的锅炉控制系统需要结合控制算法和可靠的硬件实施。

控制器的选择应根据具体的需求和控制策略来决定,可以使用单片机、PLC(可编程逻辑控制器)或者DCS(分布式控制系统)。

在选择硬件时,要考虑控制系统的稳定性和可靠性。

控制系统应具备良好的抗干扰能力和实时性,以应对各种工况变化。

同时,还需要采用可靠的通信网络和数据存储设备,确保控制系统的数据传输和存储的安全性和稳定性。

4.远程监控与管理随着互联网技术的发展,远程监控和管理系统在锅炉控制中扮演着越来越重要的角色。

通过互联网连接,可以实现对锅炉的实时监控和远程操作。

远程监控和管理系统能够提供更加便捷和高效的运维方式。

(完整版)锅炉燃烧系统的控制系统设计

(完整版)锅炉燃烧系统的控制系统设计

(完整版)锅炉燃烧系统的控制系统设计⽬录1锅炉⼯艺简介 (1)1.1锅炉的基本结构 (1)1.2⼯艺流程 (2)1.2煤粉制备常⽤系统 (3)2 锅炉燃烧控制 (4)2.1燃烧控制系统简介 (4)2.2燃料控制 (4)2.2.1燃料燃烧的调整 (4)2.2.2燃烧调节的⽬的 (5)2.2.3直吹式制粉系统锅炉的燃料量的调节 (5)2.2.4影响炉内燃烧的因素 (6)2.3锅炉燃烧的控制要求 (11)2.3.1 锅炉汽压的调整 (11)3锅炉燃烧控制系统设计 (14)3.1锅炉燃烧系统蒸汽压⼒控制 (14)3.1.1该⽅案采⽤串级控制来完成对锅炉蒸汽压⼒的控制 (14)3.2燃烧过程中烟⽓氧含量闭环控制 (17)3.2.1 锅炉的热效率 (18)3.2.2反作⽤及控制阀的开闭形式选择 (20)3.2.3 控制系统参数整定 (20)3.3炉膛的负压控制与有关安全保护保护系统 (21)3.3.1炉膛负压控制系统 (22)3.3.2防⽌回⽕的连锁控制系统 (23)3.3.3防⽌脱⽕的选择控制系统 (24)3.4控制系统单元元件的选择(选型) (24)3.4.1蒸汽压⼒变送器选择 (24)3.4.2 燃料流量变送器的选⽤ (24)4 DCS控制系统控制锅炉燃烧 (26)4.1DCS集散控制系统 (26)4.2基本构成 (27)锅炉燃烧系统的控制4.3锅炉⾃动燃烧控制系统 (31)总结 (33)致谢 (34)参考⽂献 (35)1锅炉⼯艺简介1.1锅炉的基本结构锅炉整体的结构包括锅炉本体和辅助设备两⼤部分。

1、锅炉本体锅炉中的炉膛、锅筒、燃烧器、⽔冷壁、过热器、省煤器、空⽓预热器、构架和炉墙等主要部件构成⽣产蒸汽的核⼼部分,称为锅炉本体。

锅炉本体中两个最主要的部件是炉膛和锅筒。

炉膛⼜称燃烧室,是供燃料燃烧的空间。

将固体燃料放在炉排上进⾏⽕床燃烧的炉膛称为层燃炉,⼜称⽕床炉;将液体、⽓体或磨成粉状的固体燃料喷⼊⽕室燃烧的炉膛称为室燃炉,⼜称⽕室炉;空⽓将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,⼜称流化床炉;利⽤空⽓流使煤粒⾼速旋转并强烈⽕烧的圆筒形炉膛称为旋风炉。

毕业论文——锅炉温度控制系统设计

毕业论文——锅炉温度控制系统设计

XX XX 大学毕业设计说明书学院、系:专业:学生姓名:学号:设计题目:锅炉温度控制系统设计起迄日期: 20**年2月13日~20**年6月10日指导教师:教授系主任:发任务书日期:20**年1月7日目录第1章绪论 (1)1.1课题背景 (3)1.2 课题目的及意义 (4)1.3设计指标 (4)1.4 论文工作 (5)第2章系统设计方案与论证 (5)2.1 系统设计方案 (6)2.2 方案选定 (7)第3章锅炉温度控制系统硬件电路设计 (7)3.1 系统供电电源电路设计 (8)3.2单片机最小系统 (9)3.3 温度测量电路 (13)3.4 A/D转换单元 (16)3.5 输出模块 (20)3.6 键盘电路 (23)第四章锅炉温度控制系统软件设计 (24)4.1 主程序流程图及分析 (24)4.2 子程序流程图及分析 (25)第5章调试 (28)结论 (29)第1章绪论1.1课题背景根据国内实际情况和环保问题的考虑和要求,燃烧锅炉由于污染并效率不高,已经逐渐被淘汰;燃油和燃气锅炉也存在着燃料供应不方便和安全性等问题。

因些在人口密集的居民区、旅馆、医院和学校,电加热锅炉完全替代燃煤、燃油、燃气锅炉。

自70年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国内外温度控制系统的发展迅速,并在智能化,自适应、参数整定等方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪表,并在各行广泛应用。

电加热锅炉采用全新加热方式,它具有许多优点,使其比其他形式的锅炉更具有吸引力:(1)无污染。

不会排放出有害气体、飞尘、灰渣,完全符合环保方面的要求。

(2)能量转化效率高。

加热元件直接与水接触,能量转换效率很高,可达95%以上。

(3)锅炉本体结构简单,安全性好。

不需要布管路,没有燃烧室、烟道,不会出现燃煤、燃油、燃气的泄漏和爆炸危险。

供暖锅炉变频控制系统的设计

供暖锅炉变频控制系统的设计

XX XX XX XX 大学**届本科毕业设计(论文)论文题目:供暖锅炉变频控制系统的设计学生姓名:学号:系(部、院):专业:班级:指导教师:【摘要】随着社会经济的飞速发展,城市规模的不断扩大,以及人们生活水平的不断提高,对城市生活供暖的用户数量和供暖质量提出了越来越高的要求。

目前,我国北方地区冬季供暖仍然以锅炉供暖为主,锅炉房自动控制系统配置相对落后,风机和水泵等电机的控制主要依赖值班人员的手工操作,控制过程繁琐,耗电耗煤,而且手动控制无法对锅炉供水温度和管网压力变化及时做出适当的反应。

本文设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。

该控制系统由可编程控制器、变频器、风机和水泵电机组、传感器、工控机以及控制柜等构成。

系统通过变频器控制电动机的启动、运行和调速。

系统以两台研华IPC610工控机作为上位机,以西门子S7-200可编程控制器为下位机。

本文设计的变频控制系统实现了锅炉燃烧过程的自动控制,有效地降低了能耗,提高了生产管理水平。

系统安装维护方便,运行稳定、可靠;监控软件功能齐全,人机界面友好,使用方便。

关键词:锅炉控制;变频调速技术;PLC;组态软件AbstractWith the rapid development of social economy and the increasingly improved living standard of people, the scale of city construction is unprecedentedly expanded, arousing第一章绪论1.1 研究意义随着社会经济的飞速发展,城市规模的不断扩大,以及人们生活水平的不断提高,对城市生活供暖的用户数量和供暖质量提出了越来越高的要求。

目前,我国北方地区冬季生活供暖仍然以锅炉供暖为主,锅炉房自动控制系统配置相对落后,风机和水泵等电机的控制主要依赖值班人员的手工操作,控制过程繁琐,耗电耗煤,而且手动控制无法对锅炉供水温度和管网压力变化及时做出适当的反应。

电锅炉温度控制系统的设计

电锅炉温度控制系统的设计

电锅炉温度控制系统的设计一、系统组成1.传感器:用于实时采集电锅炉的温度信号;2.控制器:根据传感器采集到的温度信号进行处理,并输出控制信号;3.执行器:接收控制信号,控制电锅炉的加热功率;4.用户界面:用于操作和监视系统的运行情况。

二、控制原理电锅炉温度控制系统的基本原理是通过调整电锅炉的加热功率以控制水温。

根据电锅炉的加热功率与水温的关系,可以得到一个传输函数,用于描述系统的动态特性。

通过对传输函数进行数学建模,可以采用各种控制方法进行控制。

三、控制策略1.比例控制:根据电锅炉的温度偏差与设定值之间的差距,输出一个与偏差成比例关系的控制信号,用以控制加热功率;2.比例-积分控制:在比例控制的基础上增加积分作用,用于消除稳态误差,提高系统的稳定性和静态精度;3.比例-微分控制:在比例控制的基础上增加微分作用,用于预测系统的未来状态,并提前做出调整,以减小温度超调和响应时间;4.比例-积分-微分控制:综合利用比例、积分和微分控制的优点,以达到更好的控制效果。

四、系统优化为了进一步提高电锅炉温度控制系统的性能,可以通过以下方式进行系统优化:1.根据实际情况选择合适的控制策略,并进行参数调整,以获得最佳的系统响应;2.在传感器和控制器之间增加信号滤波模块,以消除传感器信号中的噪声和干扰;3.引入自适应控制算法,以根据系统当前的工作状态和性能要求,动态调整控制参数;4.在控制器中增加故障诊断和报警功能,以监测和预测系统的故障状态,并及时采取措施排除故障。

综上所述,电锅炉温度控制系统的设计应综合考虑系统组成、控制原理、控制策略和系统优化等因素,以实现稳定、高效的供热或蒸汽输出。

在实际工程中,还需要结合具体情况进行系统参数调整和优化,以满足用户的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书课题名称:锅炉装置自动控制系统设计专业班级:************学生学号:******学生姓名:**学生成绩:指导教师:*****课题工作时间:2012.12.17 至2012.12.211武汉工程大学教务处填写说明:1. 表中第一、二、三、六项由指导教师填写;第四、五两项由学生填写。

2. 表中第一、二、三在在课程设计开始前填写,第四、五、六项在课程设计完成后填写。

3. 本表格填写完整后连同正文装订成册。

目录1.锅炉流程 (1)1.1工艺流程介绍 (1)1.2工艺过程简介 (2)1.3仪表及操作设备说明 (3)2.控制要求及操作步骤 (4)2.1主要控制要求 (4)2.2主要操作步骤与运行指标 (4)3.控制系统说明 (6)3.1烟气含氧量的控制 (6)3.2烟气温度的控制 (7)3.3蒸汽温度的控制 (7)3.4蒸汽压力的控制 (7)3.5炉膛压力的控制 (7)3.6燃料气压的控制 (8)3.7除氧器的压力的控制 (8)3.8除氧器的液位的控制 (8)3.9汽包水位的控制 (9)4.自控设备的选型及其计算 (9)4.1检测类仪表 (9)4.2 分电盘的选型 (10)4.3调节阀的选型 (10)5.设计施工图说明 (11)5.1仪表管道流程图(见附录1) (11)5.2仪表盘正面布置图(见附录2) (11)5.3仪表盘背面电气接线图(见附录3) (11)附录1 (12)附录2 ··············································································错误!未定义书签。

附录3 (15)1.锅炉流程1.1工艺流程介绍所选被控对象为工业领域广泛应用的自然循环锅炉。

经处理的软化水进入除氧器V1101上部的除氧头,进行热力除氧,除氧蒸汽由除氧头底部通入。

除氧的目的是防止锅炉给水中溶解有氧气和二氧化碳,对锅炉造成腐蚀。

热力除氧是用蒸汽将给水加热到饱和温度,将水中溶解的氧气和二氧化碳放出。

在除氧器V1101下水箱底部也通入除氧蒸汽,进一步去除软化水中的氧气和二氧化碳。

除氧后的软化水经由上水泵P1101泵出,分两路,其中一路进入减温器E1101与过热蒸汽换热后,与另外一路混合,进入省煤器E1102。

进入减温器E1101的锅炉上水走1管程,一方面对最终产品(过热蒸汽)的温度起到微调(减温)的作用,另一方面也能对锅炉上水起到一定的预热作用。

省煤器E1102由多段盘管组成,燃料燃烧产生的高温烟气自上而下通过管间,与管内的锅炉上水换热,回收烟气中的余热并使锅炉上水进一步预热。

被烟气加热成饱和水的锅炉上水全部进入汽包V1102,再经过对流管束和下降管进入锅炉水冷壁,吸收炉膛辐射热在水冷壁里变成汽水混合物,然后返回汽包V1102进行汽水分离。

锅炉上汽包为卧式圆筒形承压容器,内部装有给水分布槽、汽水分离器等,汽水分离是上汽包的重要作用之一。

分离出的饱和蒸汽再次进入炉膛F1101进行汽相升温,成为过热蒸汽。

出炉膛的过热蒸汽进入减温器E1101壳程,进行温度的微调并为锅炉上水预热,最后以工艺所要求的过热蒸汽压力、过热蒸汽温度输送给下一生产单元。

燃料经由燃料泵P1102泵入炉膛F1101的燃烧器;空气经由变频鼓风机K1101送入燃烧器。

燃料与空气在燃烧器混合燃烧,产生热量使锅炉水汽化。

燃烧产生的烟气带有大量余热,对省煤器E1102中的锅炉上水进行预热。

1.2工艺过程简介软化水流量为F1106,温度为常温20℃,经由调节阀V1106进入除氧器V1101顶部。

除氧蒸汽分两路,一路进入热力除氧头,管线上设有调节阀PV1101;另外一路进入除氧器下水箱,管线上设有开关阀XV1106。

除氧器压力为P1106,除氧器液位为L1101。

软化水在除氧器底部经由上水泵P1101泵出。

锅炉上水流量为F1101,锅炉上水管线上设有上水泵出口阀XV1101,上水管线调节阀V1101,以及旁路阀HV1101。

锅炉上水被分为两路。

一路进入减温器E1101预热,预热后与另外一路混合进入省煤器E1102。

两路锅炉上水管道上分别设有调节阀V1102和V1103。

正常工况时,大部分锅炉上水直接流向省煤器,少部分锅炉上水流向减温器,其流量为F1102。

汽包V1102顶部设放空阀XV1104,汽包压力为P1103。

汽包中部设水位检测点L1102。

在汽包中通过汽水分离得到的饱和蒸汽温度为T1102,经过炉膛汽相升温得到的过热蒸汽温度为T1103。

过热蒸汽进入减温器E1101,进行温度的微调。

最终过热蒸汽压力为P1104,温度为T1104,流量为F1105。

过热蒸汽出口管道上设调节阀V1105。

2燃料经由燃料泵P1102泵入炉膛F1101的燃烧器,燃料流量为F1103,燃料压力为P1101,燃料流量管线设调节阀V1104,燃料泵出口阀XV1102。

空气经由变频风机K1101送入燃烧器,变频器频率为S1101(被归一化到0~100%之间),空气量为F1104。

省煤器烟气出口处的烟气流量为F1107,温度为T1105。

烟气含氧量A1101设有在线分析检测仪表。

烟道内设有挡板DO1101。

炉膛压力为P1102,炉膛中心火焰温度为T1101,为红外非接触式测量,仅提供大致温度的参考。

1.3仪表及操作设备说明(1)检测仪表(2)执行机构3(3)开关阀(4)手操阀2.控制要求及操作步骤2.1主要控制要求(1)生产指标在过热蒸汽产量稳定的前提下,保证蒸汽的温度与压力达到工艺要求,并维持在允许的波动范围之内。

(2)安全指标锅炉汽包水位、除氧器水位、炉膛压力、烟气含氧量等与系统安全相关的指标必须全程在允许范围之内。

所有操作要保证有序进行,工况要保持全程稳定。

各类生产过程中可能产生的异常要充分予以考虑。

(3)优化指标出于对效能、环境等因素的考虑,要求在控制系统的设计和实施中对能耗、碳排放等指标予以充分考虑。

2.2主要操作步骤与运行指标1、启动前阀位检查检查所有的阀门和开关都处于关闭状态。

2、除氧器投运1) 将软化水管线调节阀V1106打开,手动向除氧器充水,使液位指示达到400(mm),并保持稳定。

开除氧器下水箱蒸汽管线阀XV1106加热到100℃后关闭2) 打开除氧蒸汽管线调节阀PV1101,将除氧器压力升至1000mmHO。

23、锅炉上水1) 打开汽包放空阀XV1104。

2) 开启上水泵出口阀XV1101,全开去省煤器锅炉上水管线调节阀V1102。

3) 缓开给水调节阀的小旁路阀HV1101,手控上水(注意上水流量不得大于10t/h,因为上水过快,排气不畅,会导致局部受压,损坏设备)。

待水位升至250mm,关闭旁路阀HV1101。

4) 调节V1101,使汽包水位达到300mm,并保持稳定。

O,并保持稳定。

5) 调节PV1101,将除氧器压力达到2000 mmH24、锅炉点火升压1) 检查汽包放空阀XV1104是否打开。

2) 全开烟道挡板DO1101,开启风机S1101通风5分钟,使炉膛不含可燃气体。

3) 将烟道挡板DO1101调至20%左右。

4) 打开点火器,点燃开工烧嘴。

5) 打开油路截止阀XV1102,开调节阀V1104,投入主燃料系统。

6) 升压过程应缓慢平稳,时间应严格控制不得小于10分钟,以免过热器管壁温度急剧上升和对流管束胀口渗水等现象发生。

当蒸汽压力达到1.5MPa时,关闭汽包放空阀XV1104。

7) 过热蒸汽温度达到400℃时,投入减温器,打开V1103,开度为50%。

8) 当压力升至3.6MPa之后,保持此压力达到平稳。

5、锅炉负荷提升1) 检查蒸汽温度不低于420℃。

2) 调整汽包水位为250~300mm。

3) 调整过热蒸汽压力在3.6~3.65MPa。

4) 缓慢开蒸汽管线调节阀V1105,约5%。

5) 调节蒸汽压力达到3.8MPa,并保持稳定。

6) 缓慢调节蒸汽管线调节阀V1105,提升燃烧负荷,使产汽量达到20t/h左右。

7) 检查燃油管线调节阀V1104位于小开度,调节蒸汽管线调节阀V1105,使负荷提至35t/h。

8) 缓慢调节V1105继续提升负荷,提升速度每分钟不得超过3-5t/h,同时注意调节燃油管线调节阀V1104补充燃油量,直至负荷升至65t/h。

9) 调整蒸汽温度达到440℃,并使其保持稳定。

6、锅炉正常运行工况1) 调整烟道挡板DO1101,使烟气含氧量维持在2%左右。

2) 蒸汽温度保持在(440±5) ℃范围内。

3) 均衡进水,保持正常水位,使给水量和蒸汽负荷达到平衡。

汽包水位控制在(300±30)mm。

4) 过热蒸汽压力保持在(3.8±0.05) MPa范围内。

5) 给水压力保持在4.8~5.5MPa。

O。

6) 炉膛压力小于400mmH27) 排烟温度在200℃左右。

8) 燃料气压力在0.29~0.31MPa。

9) 除氧器的压力在(2000±100) mmHO。

除氧器的液位在(400±30)mm。

23.控制系统说明3.1烟气含氧量的控制(1)控制要求:烟气含量维持在2%左右。

(2)分析:烟道起初需要全开,故DO1011为气关阀。

氧气含量↑→AT1101↑→AC1101(正作用)↑→DO1101(气关阀)→氧气含量↓(3)控制方案为:用AC1101通过挡板DO1101对烟气含氧量实施反馈控制,2%对应于AC1101的给定值。

3.2烟气温度的控制(1)控制要求:排烟温度在200℃左右。

(2)分析:V1102起初全开,故V1102为气关阀。

排烟温度↑→TT1105↑→TC1105(反作用)↓→V1102(气关阀)↑→软化水从省煤器中带带走烟气的热量↑→排烟温度↓(3)控制方案:用TC1105通过控制V1102的开度来控制软化水的量,从而对排烟温度实现反馈控制,200℃对应TC1105的给定值。

相关文档
最新文档