静电场的环路定理

合集下载

9-5-静电场的环路定理解析

9-5-静电场的环路定理解析
•电势是标量,有正有负; •电势的单位:伏特 1V=1J.C-1; •电势具有相对意义,它决定于电势零点的选择。 在理论计算中,通常选择无穷远处的电势为零;
•在实际工作中,通常选择地面的电势为零。 •但是对于“无限大”或“无限长”的带电体, 只能在有限的范围内选取某点为电势的零点。
3、电势差
在静电场中,任意两点A和点B之间的电势之差, 称为电势差,也叫电压。
步骤:
(1)先算场强 (2)选择合适的路径L
(3) 积分(计算)
•2、利用点电荷的电势公式和电势的叠加原理
dq dV
4 0r
dq
V 4 0r
要求电荷的分布区域是已知的;
当电荷分布在有限的区域内,可以选择无穷
远点作为电势的零点的;而当激发电场的电荷分
布延伸到无穷远时,只能根据具体问题的性质,
在场中选择某点为电势的零点。
E
1
4 0
Q r2
er
B
Q
rB
r
rA
dr C r
A
dl
er
E
dW
1
4 0
Qq0 r2
er
dl
1
4 0
Qq0 r2
dr
rB
W
Qq0
dr Qq0 ( 1 1 )
rA 40r 2
40 rA rB
在点电荷的静电场中,电场力对试验电荷所作
的功与其移动时起始位置与终了位置有关,与
其所经历的路径无关。
V
p 3xy
Ey
y
4 0
x2 y2 5/2
-q
+q
电偶极子的延长线上 y 0
2p 1
E x 4 0 x 3

静电场的安培环路定理

静电场的安培环路定理

静电场的安培环路定理静电场的安培环路定理是电磁学中非常重要的一条定理,它描述了静电场中电流所沿路径的总和。

在这篇文章中,我们将会介绍什么是安培环路定理、它的应用以及如何使用它来解决问题。

什么是安培环路定理?安培环路定理是由法国物理学家安培提出的,它表明在任何一个闭合的回路中,电流的总和等于穿过该回路的磁通量的变化率。

这个定理的意义在于,它提供了一种计算电流的方法,尤其是在复杂的电路中。

安培环路定理可以简化电路分析的过程,因为它允许我们通过观察磁场的变化来推断电流的大小和方向。

应用安培环路定理在电路分析中有着广泛的应用。

在解决电路问题时,我们可以选择一个合适的回路并应用安培环路定理来计算电流。

这个回路可以是任何形状,只要它能够完全包括电流所通过的路径即可。

除了电路分析,安培环路定理还有其他应用。

例如,在磁感应强度不均匀的磁场中,我们可以通过应用安培环路定理来计算磁场的强度。

此外,它还可以用于分析电感器、变压器和电机等电磁设备。

如何使用安培环路定理?在使用安培环路定理时,首先需要选择一个合适的闭合回路。

然后,需要注意该回路中的电流方向。

如果电流方向与所选择的回路方向相同,则电流对于回路的贡献为正;如果电流方向与所选择的回路方向相反,则电流对于回路的贡献为负。

接下来,需要计算穿过回路的磁通量的变化率。

这个磁通量的变化率可以通过测量磁场强度和磁通量来计算。

如果磁场强度和磁通量之间的关系已知,则可以直接计算出磁通量的变化率。

否则,可以使用麦克斯韦方程组来计算。

将电流的总和与穿过回路的磁通量的变化率相等,即可得到安培环路定理的表达式。

总结安培环路定理是电磁学中非常重要的一条定理,它可以用于计算闭合回路中电流的总和。

它在电路分析、磁场计算以及电磁设备分析等方面有着广泛的应用。

在使用安培环路定理时,需要选择一个合适的回路并注意电流方向,计算穿过回路的磁通量的变化率,最后将电流的总和与磁通量的变化率相等。

静电场的环路定理

静电场的环路定理

例3、求均匀带电球面电场中电势的分布,已知 ,q 、求均匀带电球面电场中电势的分布,已知R 微元法) 微元法 解: 方法一 叠加法 (微元法
dq = σdS = σ 2πR2 sinθdθ π 任一圆环 dS = 2 RsinθRdθ
dq 1 σ 2πR sinθdθ du = = 4πε0l 4πε0 l
B A
1 1 dr = ( − ) 2 4πε0r 4πε0 RA RB RA
q
q
2.如图已知 、-q、R 如图已知+q 如图已知 、 移至c ①求单位正电荷沿odc 移至 ,电场力所作的功 求单位正电荷沿
d q −q A = uo − uc = 0−( ) + oc 4πε0 3R 4πε0R a b c q 0 +q −q = 6 0R πε R R R
方法二
定义法
∞ P
q 4 0r2 πε
由高斯定理求出场强分布 E =
r>R r<R
r r 由定义 u = ∫ E • dl
r<R R r r ∞r r u = ∫ E • dl + ∫ E • dl
r R
0
r>R
R

O∞θຫໍສະໝຸດ lP= 0+ ∫

q
4 0r πε R q = 4 0R πε
dr 2
u= ∫
r r uP = ∫ E • dl
P

♠由点电荷电势公式,利用电势叠加原理计算 由点电荷电势公式,
求电偶极子电场中任一点P的电势 例1 、求电偶极子电场中任一点 的电势
Y
由叠加原理
q(r2 − r1) uP = u1 + u2 = − = 4πε0r1 4πε0r2 4πε0r1r2 q q

静电场的环流定理的内容

静电场的环流定理的内容

静电场的环流定理一、静电场和环流定理的定义静电场是指空间中存在电荷而产生的电场。

电场又分为静电场和动态电场,前者指的是电荷分布不随时间变化的电场,而后者则是电荷随时间变化的电场。

环流定理是电磁学中的一个重要定理,描述了电场的环流与电荷分布的关系。

根据环流定理,静电场中的环流的散度等于该区域内的总电荷。

二、环流定理的数学表达根据环流定理,可以得到如下的数学表达式:∮ B · dl = μ0 * I其中,∮ B · dl 是环流的散度,B 是磁感应强度,dl 是环流的线元,μ0 是真空中的磁导率,I 是穿过环流的电流。

三、环流定理的推论根据环流定理,可以推导出一些重要的结论:1.根据环流定理,若给定一个闭合回路,计算回路上所有磁感应强度的环流,得到的结果应等于该回路内的总电流。

2.推论1可用于计算磁场中线圈、电流环等磁电感应问题。

3.根据环流定理,可以得到一个磁场引起的环流的流向规律:在磁场中,从磁场线进入某一导体,必然在导体上形成一环流;反过来,如果存在一个环流,那么必定有相应的磁场存在。

4.对于任意给定的闭合环路,环流定理成立,无论回路形状如何,只要该环路内没有电流,则回路上的环流必为零。

以上是环流定理的一些重要推论,它们在电磁学的研究中起到了重要的作用。

四、环流定理的应用举例环流定理作为一种基本的电磁学理论,在解决实际问题中具有广泛的应用。

下面举例说明环流定理在不同情境下的应用。

1. 电感与感应电流当一个电流在某个线圈中产生磁场时,环流定理可用于计算该线圈中的磁感应强度以及从其他线圈中感应出的电流。

2. 磁铁磁场的计算环流定理可用于计算磁铁周围空间的磁场分布。

通过将磁铁分解成若干小线圈,再计算各小线圈对周围空间的贡献,最终得到整个磁铁的磁场分布。

3. 静电场中的电场强度计算环流定理可以用于计算静电场中的电场强度分布。

通过选择一个闭合回路,计算回路上电场强度的环流,可以得到回路内的总电荷分布情况。

高等物理静电场环路定理

高等物理静电场环路定理

a
a 20

V Edl Edr pp
p
R
z
1q
y

4 0 r
xz

2 ) 定义法:

1
Vp

4 0r
dq
q

qx
x 40(R2x2)3/2dx

q 4
0
1 (R2 x2)1/2
x
o q

4 0 R2 x2
特例:
★若x = 0,
得:Vp

q
40R
W A B q 0 A B E d l E p A E p B ( E p B E p A )
试探电荷q o 在电场中某一点的静电势能在数值上等于 把试探电荷q o 由该点移到零势能点静电力所作的功。 若选 B 点为电势能零点,则
B
E P A q 0A E d l q 0A B E d l
E内 0
p
R
q
z
x
z

4 0 R2 x2
V 0
场强分布
电势分布
q
例题2均匀带电球面内外的电势分布。带电量为Q,球面半径为R

解∶由高斯定理得:
p
E外

1 4 0
Q r2
1 V
40
dV
r
1)对球内的一点P,其电势为:
r
r dWFdlq0Edl
Q
p

VEdr drrC

q0Q
1 (1)
20 20
4 0 r ra
2、电势、电势差 :
V dV (1)、定义:
电势的物理意义:

第10章静电学-3-静电场环路定理

第10章静电学-3-静电场环路定理

+q
11
(2)电荷分布如图所示, 将点电荷qo从a 经半圆b移到c的 过程中, 电场力对qo的功?
解 Aac qo (Ua Uc )
b
Ua
q
4o R
q
4o R
0
-q
a
+q R
o
c
Uc
q
4 o (3 R)
q
4o R
R
R
q
6o R
Aac
qqo
6o R
12
例10-14 一均匀带电直线段,长为L,电量为q ;取无穷远为电 势零点,求直线延长线上离一端距离为d 的P点的电势。
9
③对于电荷连续分布的带电体,可将其分割为无数多电荷元
dq,每个电荷元dq当作点电荷,其电势为
dU dq 4πε0r
根据电势叠加原理
U
V
dq
4 0r
dl dq dS
dV
积分遍及整个带电体,V是带电体的体积。
电势叠加原理也可以计算多个带电体所产生电场的总电 势,总电势应等于各带电体所产生电场的电势的代数和。
(3)电势差:
b
Uab Ua Ub E dl
a
静电场中a、b两点的电势差等于将单位正电荷由a沿任意路 径移至b过程中电场力做的功。
电势差是绝对量,与电势零点的选择无关。
6
由Wa
q
零势点 E
a
dl ,
得 Wa qUa
由Aab
q
b
E dl
a
Wa Wb ,
得 Aab q(Ua Ub )
(3)等于场强从该点沿任意路径到零势点的线积分。
说明:
(1)电势是相对量,要确定场中各点的电势必须选定电势零点。

静电场环路定理

静电场环路定理

方法二 定义法 先由高斯定理求出场强分布
q
再由定义 u E dl
rR
P

E
4 0 r 2
rR
0
rR
rR
u E dl E dl
R r R

R
O
r< R
P
r> R
0

q
2
4 0 r q 4 0 R
R
dr
u
2 2
方法二 定义法 已知轴线上的场强分布函数
E qx
2
4 0
R x
u Edx

4 0 ( x R ) qxdx
2
3
2

q
xp
xp

4 0 ( x R )
2 2
3
2
4 0 r
例4、求均匀带电球面电场中电势的分布,已知R,q 解: 方法一 叠加法 (微元法) 球面上任取一圆环
q
r1 r2 r
2
r2
l cos u 2 4 0 r
其中
q

O
r r 1
q
X
r x y
2 2
2
l
u 1 4 0
2
cos
x x y
2 2
px (x y )
3 2 2
课堂练习: 已知正方形顶点有四个等量的电点荷 q1 q 4.0 10 9 C r=5cm
静电场环路定理得
对任意大小面积S都成立。环路定理的微分形式。
( E ) dS 0
s
E 0; 或者rotE 0
旋度处处为零的矢量场,称为无旋场。静电场是无旋场。 高斯定理的微分形式。

静电场环路定理

静电场环路定理
l
i
l
结论:静电场力做功,与路径无关.
10-4 静电场的环路定理
静电场的环路定理
q0 E dl q 0
q 0 ( E dl
ABC
ABC
E dl 0
l
CDA
E dl ) 0
A
ADC
E dl
B
D
C
E
结论:沿闭合路径一 周,电场力作功为零.
q1
r1

n
n
U i
i 1
i 1
Ei dl
E3

q2
r2
E2
q3
r3
A
E1
10-4 静电场的环路定理
电荷连续分布时 dq dV
dq dU 4πε0 r
1 dq UA 4πε0 r
dq
r
A
10-4 静电场的环路定理
计算电势的方法
q
令 U 0 qdr U E dl r 2
r
4πε0 r
er
r
q U 4 πε0 r
10-4 静电场的环路定理

电势的计算
点电荷系 E Ei
i
qi UA i 1 4 π ε0 ri
n
UA

A
E dl
A
10-4 静电场的环路定理

电场的环量
E dl E cos dl
l l
环量:场强沿闭合路径的线积分称为电场的环量
dl
l
F dl q0 E cos dl

静电场的环路定理

静电场的环路定理
静电场的环路定理
➢ 本节的研究目的
研究ห้องสมุดไป่ตู้电场的旋度特性
➢ 本节的研究内容
一、静电场环路定理的微分形式 二、静电场环路定理的积分形式
一、静电场环路定理的微分形式
E ()
0
E 0
静电场是无旋场; 静电场的电力线不可能是闭合曲线;
二、静电场环路定理的积分形式
根据斯托克斯定理
L E dL S E dS L E dL 0
分析:对闭合曲线应用环路定理
a
E dL E dL E dL 0
acbda
acb
bda
c d
E dL E dL E dL
acb
bda
adb
b
说明:两点之间的电位差与积分路径无关
二、静电场环路定理的积分形式
根据斯托克斯定理
L E dL S E dS L E dL 0
静电场的环量为零; 静电场是保守力场,位场; 静电场中电场力作功与路径无关;
本节要点
➢ 本节的研究目的 研究静电场的旋度特性;
E 0
L E dL 0
静电场的环路定理

静电场的高斯定理和环路定理

静电场的高斯定理和环路定理

静电场的高斯定理和环路定理
静电场是指电荷分布静止不动的情况下所产生的电场。

在静电场中,高斯定理和环路定理是两个非常重要的定理。

高斯定理是描述电场通量的定理,它表明:在任何闭合曲面内,电场的通量等于该曲面内的电荷总量除以介质常数。

即:ΦE = ∫E · dS = Q/ε0
其中,ΦE表示电场的通量,E表示电场强度,dS表示曲面元素的面积,Q表示该曲面内的电荷总量,ε0表示真空中的介电常数。

环路定理则是描述电场中电势的变化的定理,它表明:沿着任意闭合回路的线积分等于该回路内的电荷的代数和除以电容。

即:∮Edl = 0
其中,∮Edl表示沿着回路的电场强度的线积分,E表示电场强度,dl表示回路的微元长度,如果回路内有电荷则其代数和为Q。

电容则是电荷和电势之间的比值。

高斯定理和环路定理是静电学中的基本定理,对于研究静电场的性质和计算电场强度、电势等都具有重要的意义。

- 1 -。

环路定理的公式

环路定理的公式

环路定理的公式
1. 静电场环路定理。

- 公式:∮_L→E· d→l = 0。

- 含义:
- 在静电场中,电场强度→E沿任意闭合路径L的线积分等于零。

这表明静电场是保守场,电场力做功与路径无关,只与始末位置有关。

2. 安培环路定理(真空中稳恒磁场)
- 公式:∮_L→B· d→l=μ_0∑_i = 1^nI_i。

- 含义:
- 对于稳恒磁场,磁感应强度→B沿任意闭合路径L的线积分等于真空磁导率μ_0乘以穿过以该闭合路径为边界的任意曲面的电流的代数和∑_i = 1^nI_i。

这里电流的正负由右手螺旋定则确定,当电流方向与闭合路径的绕行方向符合右手螺旋关系时,电流取正,反之取负。

08.3静电场的环路定理、电势

08.3静电场的环路定理、电势
E a E b
b
a
u 3
u 2 u 1
2.电势梯度 电势梯度 单位正电荷从 a到 b电场力的功 到 电场力的功
u+d +u
E•d = Ec sθ l =u−(u+d ) l o d u Ec sθ l =− u o d d
在 l E d 方向上的分量 电场强度沿某 一方向的分量 一般
u
E l
n
a
b
l 由电势定义得 u =∫ E•d =∫ P
r

4 ε0r π
d = r
q 4 ε0r π
讨论 大小
q>0 u>0 r ↑ u↓ r → u 小 ∞ 最 q<0 u<0 r ↑ u↑ r → u 大 ∞ 最
为球心的同一球面上的点电势相等 对称性 以q为球心的同一球面上的点电势相等
点电荷系的电势 由电势叠加原理, 的电势为 由电势叠加原理,P的电势为
单位正电荷在该点 所具有的电势能

W = ∫q E•d l a 0
a

单位正电荷从该点到无穷远 电势零)电场力所作的功 点(电势零 电场力所作的功 电势零
定义电势差 a b 定义电势差 u −u 电场中任意两点 的 电势之差(电压) 电势之差(电压)
u =u −u =∫ E•d −∫ E•d =∫ E•d l l l ab a b
d q −q A =u −u =0−( ) + oc o c 4 03R 4 0R a πε πε b c q +q 0 −q = 6 0R πε R R R
② 将单位负电荷由 ∞ O电场力所作的功
A O =u −u =0 o ∞ ∞
功、电势差、电势能之间的关系 电势差、

简述静电场的环路定律

简述静电场的环路定律

简述静电场的环路定律静电场的环路定律是静电学中的重要定律之一,它描述了静电场中沿闭合路径的电位变化。

本文将从静电场的基本概念、环路定律的表述以及应用等方面进行阐述。

一、静电场的基本概念静电场是指由电荷引起的电场,其中的电荷保持静止不动。

电荷分为正电荷和负电荷,它们之间相互作用会产生电场。

静电场的作用可以通过电场力来描述,即电荷在电场中受到的力。

二、环路定律的表述环路定律是静电场中的一个重要定律,它是基于电场的保守性质得出的。

根据环路定律,沿着一个闭合路径的电场力的矢量和,等于该路径内电场的旋度。

即沿着闭合路径的环路积分,等于该路径内电场的旋度的通量。

具体来说,设闭合路径为C,电场为E,环路定律可以表述为:∮C E·dl = 0其中,∮C 表示沿着闭合路径C的环路积分,E·dl表示电场E在路径上的切向分量与路径微元dl的点积。

三、环路定律的应用环路定律在静电场的分析和计算中具有重要的应用价值。

通过环路定律,可以推导出许多与电场有关的定理和公式,为解决静电场问题提供了有效的方法。

1. 静电势的计算根据环路定律,电场力的矢量和等于电场的旋度,而电场的旋度等于静电场的旋度。

静电场的旋度等于零,因此电场力的矢量和等于零。

由于电场力是保守力,可以定义电场势能。

根据环路定律,沿着闭合路径的电场力的矢量和等于零,因此沿着闭合路径的电场势的变化为零。

由此可以得出,在静电场中,沿着闭合路径的电场势保持不变。

2. 电场强度的计算根据环路定律,沿着闭合路径的电场力的矢量和等于零。

因此,在静电场中,可以通过计算闭合路径上的电场力来求解电场强度。

根据电场力的定义,电场强度E等于电场力F与电荷q之比。

因此,通过计算闭合路径上电场力的矢量和,并结合电荷的数值,可以求解电场强度。

3. 静电场中的电场线根据环路定律,在静电场中,沿着闭合路径的环路积分等于零。

由于电场力是保守力,可以定义电场势能,并通过电场势能计算电场力。

环路定理

环路定理


i
U =

dQ 4 πε 0 r
Q
r E =

Q
r r dQ (连续) 3 4πε 0 r
r Qi r 3 (分立) 4πε 0 ri
2、根据电势的定义
r E ⇒U
2、是否可
U =

0势
r
r r E ⋅ dr
r U ⇒E

L = x +r
2
p
2
x
P点电势: 点电势: 点电势
O r
R
dr
1 dq U =∫ 4πε0 r
= 1 4πε
0
⋅ 2πσ ∫
R
0
σ rdr 2 2 = ( R + x − x) x +r 2ε0
2 2
电势的计算例题
求一均匀带电球面的电势分布。 例3. 求一均匀带电球面的电势分布。
解:由高斯定理知,电场分布为 E = 由高斯定理知,
v r b v r b v v v r Aab = ∫ F ⋅ d r =∫ q0 E ⋅ dr = ∫ q0 ( E1 + E 2 + ⋅ ⋅ ⋅ + E n ) ⋅ dr
a
a
b
a
=∫
b
a
v b v r b v s v q0 E1 ⋅ dr + ∫a q0 E 2 ⋅ dr + ⋅ ⋅ ⋅ + ∫a q0 E n ⋅ dr
半径为R的均匀带电圆环轴线上的电势分布 例1.半径为 的均匀带电圆环轴线上的电势分布。 半径为 的均匀带电圆环轴线上的电势分布。
讨论:
(1)x = 0 处
U =
P
q 4πε R

静电场的环路定理

静电场的环路定理
a ( L2 )
b
a ( L1 )
v v b q0 E ⋅ dl − ∫
v v q0 E ⋅ dl
环路定理
=0

L
v v E ⋅ dl = 0
该定理还可表达为:电场强度的环流等于零。 该定理还可表达为:电场强度的环流等于零。 根据保守力的定义,任何力场, 根据保守力的定义,任何力场,只要其场强的环流 为零,该力场就叫保守力场 势场。 保守力场或 为零,该力场就叫保守力场或势场。可以引入相应 的势能,即电势能。 的势能,即电势能。
q 4πε 0 x
•从电荷分布求场强,再由场强分布求电势 从电荷分布求场强, 从电荷分布求场强
U P = ∫ E • d r (场强积分法) 场强积分法)
P ∞
例4 求均匀带电球面的电场中电势的分布 解 由高斯定理可以求的球面内外的场强分布为
+ P1 + + + + +
2
r <R r ≥R
对球外一点P 对球外一点
二 电势
某点电势电W 之比只取决于电场, 某点电势电 a与q0之比只取决于电场,定义电该 点的电势 单位:伏特( ) 电势. 点的电势. 单位:伏特(V) 电势电
W a = q0 ∫
"0"
a
v E ⋅ dl
电势
WA VA = q0
=∫
"0"
A
v E⋅ E⋅ dl
由上式可以看出, 由上式可以看出,静电场中某点的电势在数值上 等于单位正电荷放在该点处时的电势能, 等于单位正电荷放在该点处时的电势能,也等于单位 正电荷从该点经任意路径到电势零点处(无穷远处) 正电荷从该点经任意路径到电势零点处(无穷远处) 时电场力所做的功。 时电场力所做的功。

3.3 静电场的环路定理 大学物理

3.3 静电场的环路定理 大学物理

R
+
o + + +
4 0 r (3)确定电势分布;
2
E

er
(r R)
主讲:张国才
U P E dl E dr + r+ r r + + 1 q q r p + + 2 dr R R 4 + + 4 o R 0 r o + + (2)当r>R时 + + + + U P E dl E dr + + "P" r
主讲:张国才
3.3 静电场的环路定理
基础物理学
4
试验电荷q0在静电场中沿任意闭合路径 L运动一周时,电场力对q0做的功W=?
L
W q0 E dl 0
E dl 0
L
主讲:张国才
3.3 静电场的环路定理 静电场的 Nhomakorabea路定理基础物理学
5
在静电场中,场强沿任意闭合路径的线积 分(称为场强的环流)恒为零。
2 2
0

主讲:张国才
q 4 0 R x
2 2
基础物理学 3.3 静电场的环路定理 二、从电荷分布求场强,从场强分布求电势。 例2 计算均匀带电球面的电场中的电势分布。球面半 径为R,总带电量为q。
13
解:
q
+
+ + + +
+ +
+
(1)取无穷远处为电势零点; + (2)由高斯定律可知电场分布为; + E 0 (r R) + + 1 q

电磁学_静电场_1.4 环路定理

电磁学_静电场_1.4 环路定理


P、Q两点之间的电势差定义为
从P点到Q点移动单位正电荷时电场力所作的功 单位正电荷的电势能差

空间某点的电势值
为了确定某点的值,还需要选择零点 一般选择无穷远为势能零点,P点电势值为 AP U ( p) U P E dl P q0 两点之间电势差可表为两点电势值之差

点电荷的势能零点是否可以选在电荷上? 无限大平面板ห้องสมุดไป่ตู้势能零点能否选在无穷远?
例题10一示波器中阳极A和阴极K之间的电压是 3000 V,试求阴极发射的电子到达阳极时的速度, 设电子从阴极出发时初速为零。

[解]电子带负电,它沿电势升高的方向加速运动,即从阴极 K出发到达阳极 A. 静电场力是保守力,按能量守恒

连续带电体有
1

U P E d l dU
P

i
dq 1 dq 1 dq dU ( 2 4 0 P r 4 0 r P 4 0 rP

讨论



电势与场强一样是一个描述场本身性质的物理量, 与试探电荷无关,是标量。电势叠加是标量叠加。 电势UP:P与无穷处电势差 电势零点 选取

可以任意选取 选择零点原则:场弱、变化不太剧烈 选无穷远为零点?选地为零点即地和无穷远等电 势吗?

问题

地与无穷远的电势差


实际地球周围大气中有一个方向向下的静电场 是地球所带的负电荷和大气中的等离子体产生 的 若以无穷远为势能零点,则地球的电势为
U地 5.4 10 V
8

思考:
电势能、电势差、电势
电场力 的功 定义
Q
静电场与 q0有能量交换

7-4静电场环路定理 电势1

7-4静电场环路定理 电势1
*关于电势的讨论: ①电势是反映电场性质的量,与q0 无关。 ②电势和电势能一样具有相对意义。
③电势是标量,单位为伏特。
2、电势差(电压) 电场中两点的电势差:
Aab E dl E dl E dl q0 a b a 即: Aab q0U ab
b
U ab U a U b
U 0
[例]求一均匀带电球面的电势。已知:q , R 。
① r≤ R

(球内任意一点)
R
U E dl E内 dl E 外 dl
r r
R
q
+ +
+
+
0 q

q 4 πε r 0
+
R
dr 2
+ +
+ +
R
+
r .P
+
+ + +
+ +
4 πε R 0
二 、 静电场的环路定理 q0 E dl q0 E dl
q0 ( E dl
ABC
l
ABC
E dl ) 0
CDA
ADC
B
D
C
E
E dl 0
A
结论:沿闭合路径一 周,电场力作功为零.
3
静电场是保守场
因此可以引入势能的概念
*关于电势差的讨论: ①电势差具有绝对意义,和参考点的选择无关。 ②Uab等于将单位正电荷从a 点沿任意路径移至b 点电 场力所作的功。
五、电势的计算
1、点电荷电场的电势
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知q的电场分布 E
根据定义, P点的电势为
4
q
0r
2
er
VP


P

E dl

r
q
40r
2Pdr4q04r2qe0rrP dl
q > 0时, VP为正, r V, r处V= 0 min q < 0时, VP为负, r V, r处V = 0 max
2.电场强度与电势梯度的关系
根据电势差的定义, 把单位正电荷从P1移到P2 电场力所作的功为:
dA E dn V (V dV )
r E
dn
n
P1
P2
V V dV
E dn dV
E


dV dn
grad V
E
ቤተ መጻሕፍቲ ባይዱ

dV dn
n
r E grad V
r 即:电场中某点的场强 E 等于该点电势梯度的负值
无意义
VP

P
E
dr
rP
2 0r
dr

2 0
ln
rP
r
P
P'
令某处 r = r0(有限值) V=0,则
VP

P0
P
E
dl

P
P
E dl

P0
P
E dl
r0 P0

P
P
2
0r
dr

2 0
ln
r0 r
可见:当电荷分布到无穷远时,
22
归纳 电场强度与电势的关系
积分关系:
Va

V
a
0
E
dl
微分关系: E grad V

r
r
已知r E 可以求V , 已知V 可以求 E。
求 E 的方法又增加一个!
场强的大小取决于
E dV n dn
电势在该点的空间 变化率,与该点电
直角坐标系中,电势函数V=V(x,y,z) 势数值的大小无关!
② 电场线与等势面处处正交; ③ 电场线方向指向电势降低方向; ④ 若相邻等势面电势差相等,则
等势面密处场强大;
等势面疏处场强小。
Va
Vb

b
a
E
dl



19
二、电势梯度矢量( grad V )
Va
Vb

b
a
E
dl
表示 E 与V的积分关系 E 与V的微分关系?
r P1 E
P2 n
点电荷q的电场强度为 E
dA

F
dl qq0

qq0
4 0 r 2 cos dl
er
dl qq0
q
40r 2
dr
er
4 0 r 2
4 0 r 2
积分
A
b a
qq0
4 0 r 2
dr

qq0
4 0

1 ra

1 rb

F dl dr
b
c
8
注意
4º电势零点的选取
电荷分布在有限空间,
理论上
取无穷远为 V = 0 点。
电荷分布在无限空间, 取有限远点为V = 0 点。
一般工程上 选大地或设备外壳为V =0点
9
二、电势的计算
1. 用定义法求V
VP

V
P
0
E

dl
例. 求点电荷q电场中任意一点P 的电势V =?

qP
解: 设 r V 0
q0Vo 28.81011 J
14
例 计算电偶极子电场中任意一点P的电势。已知电偶极子中 两点电荷+q、-q的距离为l。
解:用迭加法
VP


Vi
iq
4 0
((Pr)r4) q0r r r

q
4 0r
P
r
r
r+
当 r >> l 可做如下近似
r

r

解:根据迭加法,在带电圆环上取电荷元dq
VP
q
dq
40r
其在P点产生的电势为
dq
dVP

dq
4 0r
所有电荷在P产生的电势
. R
r
qo x P x
VP

0q
dq
40r
q

0q 40
dq R2

x2
讨论
1o 2o
|x4x|00, RRV,2PVPx424q0qR0|

E
x


V x
E
y


V y
Ez


V z
E
(
V x
i

V y
j

V z
k ) V
23
例. 求均匀带电Q,半径为R的圆环轴线上任意一点的场强。
解: 已求得圆环轴线上 任意一点P的电势为
VP 40
Q R2 x2
则该点的电场
r
R
.
o
xP
x
E
P

(
V x
即:静电场中场强沿任意闭合路径的线积分恒等于零
4

1º若一矢量场的任意环路积分始终为零,则称该矢量场为无旋场。
静电场两个基本性质:
高斯定理
S
E

dS

1
0
qi
S
有源场
环路定理 LE dl 0
无旋场
2º 运动电荷的场不是保守场,而是非保守场,将在磁场部分 讨论。
5
第5节 电势差和电势
El


dV dl
电势V沿 dl 的空间变化率
20
1.电势梯度定义:
电场中某点的电势沿过该点等势面的 法线方向的空间变化率叫该点的电势 梯度。
r E
(实际上是电势在该点的最大空间变
化率)
P1
dl
P2 n
P2
梯度定义:
grad V

dV dn
n
V V dV 大小:ddVn
方向:与n 同向
21
b电场力作功:
b L2
L1
q0
a
A Lq0E dl

b
a
q0
E
dl

a
b
q0
E
dl
L1
L2

b
L1a
q0
E

dl

b
L2a
q0
E

dl
ab q0E dl ab q0E dl
L1
L2
A Lq0E dl 0
LE dl 0 静电场的环路定理
求:延长线上任意一点 P 的电势。
r

o
x

x dx
P
L
l
x
解:用迭加法,取电荷元
dq dx
dV

dq
40r

dx 40(L l

x)
P 的电势
VP dV
L
0
dx 40(L l x)

40
ln
L
l
l
VP
q
dq
40r
16
例.求一均匀带电圆环轴线上任意点P 的电势. 设圆环半径为R,总带电量为q。
l 2
cos
r

r

l 2
cos
r q l +q
VP

q
4 0
(
r r r r
)

q
4 0
(r2
l
cos l2 cos2
)
4
由 pe er ql er ql cos

VP

pe er
4 0r 2
15
例.长为L 的均匀带电导线, 电荷线密度为+.

V1q1
V2
q2
Vk
40r1 40r2
qn
4 0rn
VP
Vi
i
i
qi
4 0ri
电势叠加原理
任意带电体场中的电势
VP
q
dq
40r
13
例 点电荷q1= q2= q3= q4=4×10-9C,放置在一正方形的顶角上 ,各顶角距离中心5cm 。 求: 1)中心o点的电势;


R
E2

dr
0 Rr
P


R
q
40r2
dr

q
4 0 R
注意 E =0的区域, “V ”不一定为零
关 场 区 是 等 势 区
与 点 的 位 置 无
11
例. 求半径为R, 电荷线密度为的无限长均匀带电细线的
电势分布?
解:无限长均匀带电细线电场分布
E

20r
er
若令V= 0 则任意点P的电势为
电场力作功
A
F dl

b
a
q0E
dl
q0ab(E1E2 En) dl
结论
A q0ab E1 dl q0ab E2 dl q0ab En dl
相关文档
最新文档