江苏省苏州市2020年中考数学复习试卷(含解析)
2024年江苏省苏州市中考数学试题 (含答案)
![2024年江苏省苏州市中考数学试题 (含答案)](https://img.taocdn.com/s3/m/de0ff1b65ff7ba0d4a7302768e9951e79b8969a4.png)
2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上...........1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3- B.1 C.2 D.3【答案】B【解析】【分析】本题考查了绝对值的定义,一个数的绝对值就是表示这个数的点到原点的距离.到原点距离最远的点,即绝对值最大的点,首先求出各个数的绝对值,即可作出判断.【详解】解:∵33-=,11=,22=,33=,123<<,∴与原点距离最近的是1,故选:B .2.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、是轴对称图形,故此选项正确;B 、不是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项错误;D 、不是轴对称图形,故此选项错误.故选:A .3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯ B.1024710⨯ C.122.4710⨯ D.1224710⨯【答案】C【解析】【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10n a ⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是()A.1a b+< B.1a b -< C.a b > D.1a b+>【答案】D【解析】【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为()A.45︒B.55︒C.60︒D.65︒【答案】B【解析】【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B 6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C【解析】【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO的值为()A.12 B.14 C.33 D.13【答案】A【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形相似的判定和性质,数形结合是解题的关键.过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,证明AOC OBD △∽△,利用相似三角形的面积比等于相似比的平方求解即可.【详解】解:过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D,∴11122ACO S =⨯-= ,1422BDO S =⨯= ,90ACO ODB ∠=∠=︒,∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,∴2ACO BDO S OA S OB ⎛⎫= ⎪⎝⎭ ,即2122OA OB ⎛⎫= ⎪⎝⎭,∴12OA OB =(负值舍去),故选:A .8.如图,矩形ABCD中,AB =1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为()A.B.2C.2D.1【答案】D【解析】【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.【详解】解:连接AC ,BD 交于点O ,取OA 中点H ,连接GH,如图所示:∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB CD ,∴在Rt ABC △中,2AC ==,∴112OA OC AC ===,∵AB CD ,EAO FCO ∴∠=∠,在AOE △与COF 中,AE CF EAO FCO OA OC =⎧⎪∠=∠⎨⎪=⎩(SAS)AOE COF ∴△≌△,AOE COF ∴∠=∠,E ∴,O ,F 共线,AG EF ⊥ ,H 是OB 中点,∴在Rt AGO △中,1122GH AO ==,G ∴的轨迹为以H 为圆心,12为半径即AO 为直径的圆弧.∴AG 的最大值为AO 的长,即max 1AG AO ==.故选:D .【点睛】本题主要考查了矩形的性质、动点轨迹、与圆有关的位置关系等知识,根据矩形的性质以及直角三角形斜边中线的性质确定G 的轨迹是本题解题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置.........上..9.计算:32x x ⋅=___________.【答案】5x 【解析】【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -=______.【答案】4【解析】【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.【答案】38【解析】【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A ),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.【详解】解:∵转盘被分成八个面积相等的三角形,其中阴影部分占3份,∴指针落在阴影区域的概率为38,故答案为:38.12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠=______.【答案】62︒##62度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,连接OC ,利用等腰三角形的性质,三角形内角和定理求出BOC ∠的度数,然后利用圆周角定理求解即可.【详解】解:连接OC ,∵OB OC =,28OBC ∠=︒,∴28OCB OBC ∠=∠=︒,∴281041OC OC O B B BC ∠=∠=︒∠=︒-,∴1622A BOC =∠=︒∠,故答案为:62︒.13.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】33y x =【解析】【分析】根据题意可求得1l 与坐标轴的交点A 和点B ,可得45OAB OBA ∠=∠=︒,结合旋转得到60OAC ∠=︒,则30OCA ∠=︒,求得tan OC OC OCA =⨯∠,即有点C ,利用待定系数法即可求得直线2l 的解析式.【详解】解:依题意画出旋转前的函数图象1l 和旋转后的函数图象2l ,如图所示∶设1l 与y 轴的交点为点B ,令0x =,得1y =-;令0y =,即1x =,∴()1,0A ,()0,1B -,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒∵直线1l 绕点A 逆时针旋转15︒,得到直线2l ,∴60OAC ∠=︒,30OCA ∠=︒,∴tan OC OC OCA =⨯∠==,则点(0,C ,设直线2l 的解析式为y kx b =+,则0k b b =+⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩那么,直线2l的解析式为y =,故答案为:y =-【点睛】本题主要考查一次函数与坐标轴的交点、直线的旋转、解直角三角形以及待定系数法求一次函数解析式,解题的关键是找到旋转后对应的直角边长,即可利用待定系数法求得解析式.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB =,则花窗的周长(图中实线部分的长度)=______.(结果保留π)【答案】8π【解析】【分析】题目主要考查正多边形与圆,解三角形,求弧长,过点C 作CE AB ⊥,根据正多边形的性质得出AOB 为等边三角形,再由内心的性质确定30CAO CAE CBE ∠∠∠===︒,得出120ACB ∠=︒,利用余弦得出2cos30AE AC ==︒,再求弧长即可求解,熟练掌握这些基础知识点是解题关键.【详解】解:如图所示:过点C 作CE AB ⊥,∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA OB ∠=︒=,∴AOB 为等边三角形,∵圆心C 恰好是ABO 的内心,∴30CAO CAE CBE ∠∠∠===︒,∴120ACB ∠=︒,∵23AB =∴3AE BE ==,∴2cos30AE AC ==︒,∴ AB 的长为:1202π4π1803⨯⨯=,∴花窗的周长为:4π68π3⨯=,故答案为:8π.15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则m n的值为______.【答案】35-##0.6-【解析】【分析】本题考查了待定系数法求二次函数解析式,把A 、B 、D 的坐标代入()20y ax bx c a =++≠,求出a 、b 、c ,然后把C 的坐标代入可得出m 、n 的关系,即可求解.【详解】解:把()0,A m ,()1,B m -,()3,D m -代入()20y ax bx c a =++≠,得93c m a b c m a b c m =⎧⎪++=-⎨⎪++=-⎩,解得2383a m b m c m ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴22833y mx x m =-+,把()2,C n 代入22833y mx mx m =-+,得2282233n m m m =⨯-⨯+,∴53n m =-,∴5533m m m n ==--,故答案为:35-.16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD =______.【答案】103##133【解析】【分析】本题考查了相似三角形的判定与性质、折叠性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形的面积公式等知识,是综合性强的填空压轴题,熟练掌握相关知识的联系与运用是解答的关键.设AD x =,AE =,根据折叠性质得DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M ,证明AHE ACB ∽得到EH AH AE BC AC AB==,进而得到EH x =,2AH x =,证明Rt EHD 是等腰直角三角形得到45HDE HED ∠=∠=︒,可得90FDM ∠=︒,证明()AAS FDM EHM ≌得到12DM MH x ==,则3102CM AC AD DM x =--=-,根据三角形的面积公式结合已知可得()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,然后解一元二次方程求解x 值即可.【详解】解:∵AE =,∴设AD x =,AE =,∵ADE V 沿DE 翻折,得到FDE V ,∴DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M,则90AHE ACB ︒∠=∠=,又A A ∠=∠,∴AHE ACB ∽,∴EH AH AEBC AC AB ==,∵5CB =,10CA =,AB ===∴510EH AH ==∴EH x =,2AH x ==,则DH AH AD x EH =-==,∴Rt EHD 是等腰直角三角形,∴45HDE HED ∠=∠=︒,则135ADE EDF ∠=∠=︒,∴1354590FDM ∠=︒-︒=︒,在FDM 和EHM 中,90FDM EHM DMF HME DF EH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS FDM EHM ≌,∴12DM MH x ==,3102CM AC AD DM x =--=-,∴111331*********CEF CME CMF S S S CM EH CM DF x x x x ⎛⎫⎛⎫=+=⋅+⋅=-⋅⨯=-⋅ ⎪ ⎪⎝⎭⎝⎭ ,111051025522BEC ABC AEC S S S x x =-=⨯⨯-⨯⋅=- ,∵CEF △的面积是BEC 面积的2倍,∴()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,则23401000x x -+=,解得1103x =,210x =(舍去),即103AD =,故答案为:103.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上..........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.计算:()042-+-.【答案】2【解析】【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【解析】【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.【答案】2x x +,13【解析】【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式()()()21122222x x x x x x x x -+-⎛⎫=+÷ ⎪--+-⎝⎭()()()2221·221x x x x x x +--=--x 2x+=.当3x =-时,原式32133-+==-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.【答案】(1)见解析(2)BC =【解析】【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关键是:(1)直接利用SSS 证明ABD ACD △≌△即可;(2)利用全等三角形的性质可求出60BDA CDA ∠=∠=︒,利用三线合一性质得出DA BC ⊥,BE CE =,在Rt BDE △中,利用正弦定义求出BE ,即可求解.【小问1详解】证明:由作图知:BD CD =.在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,.ABD ACD ∴≌△△.【小问2详解】解:ABD ACD ≌,120BDC ∠=︒,60BDA CDA ∴∠=∠=︒.又BD CD = ,DA BC ∴⊥,BE CE =.2BD =,sin 22BE BD BDA ∴=⋅∠=⨯=,2BC BE ∴==21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【答案】(1)14(2)16【解析】【分析】本题考查了利用画树状图或列表的方法求两次事件的概率,解题的关键是:(1)用标有“夏”书签的张数除以书签的总张数即得结果;(2)利用树状图画出所有出现的结果数,再找出1张为“春”,1张为“秋”的结果数,然后利用概率公式计算即可.【小问1详解】解:∵有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴恰好抽到“夏”的概率为14,故答案为:14;【小问2详解】解:用树状图列出所有等可的结果:等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春),(夏,秋),(夏,冬),(秋,春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋).在12个等可能的结果中,抽取的书签1张为“春”,1张为“秋”出现了2次,∴P (抽取的书签价好1张为“春”,张为“秋”)16=.22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A (羽毛球),B (乒乓球),C (篮球),D (排球),E (足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【解析】【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.【小问1详解】÷=,解:总人数为915%60----=,D组人数为6061891215补图如下:【小问2详解】解:123607260︒⨯=︒,故答案为:72;【小问3详解】解:1880024060⨯=(人).答:本校七年级800名学生中选择项目B (乒乓球)的人数约为240人.23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩...支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).【答案】(1)CD =(2)CD =【解析】【分析】本题考查了解直角三角形的应用,解题的关键是:(1)过点C 作CE AD ⊥,垂足为E ,判断四边形ABCE 为矩形,可求出CE ,DE ,然后在在Rt CED 中,根据勾股定理求出CD 即可;(2)过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .判断四边形ABFG 为矩形,得出90AGD =︒△.在Rt AGD 中,利用正切定义求出34DG AG =.利用勾股定理求出54AD AG =,由50AD =,可求出40BF AG ==,10FG AB ==,20CF =,40DF =.在Rt CFD 中,根据勾股定理求出CD 即可.【小问1详解】解:如图,过点C 作CE AD ⊥,垂足为E ,由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.10AB = ,20BC =,20AE ∴=,10CE =.50AD = ,30ED ∴=.∴在Rt CED 中,2222103010CD CE ED =+=+=.即可伸缩支撑杆CD 的长度为10cm ;【小问2详解】解:过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,3tan 4DGAG α==,34DG AG ∴=.2254AD AG DG AG ∴=+=,50AD = ,40AG ∴=,30DG =.40BF AG ∴==,10FG AB ==,20CF ∴=,40DF =.∴在Rt CFD 中,CD ===即可伸缩支撑杆CD 的长度为.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),1D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)2m =,8k =(2)PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭【解析】【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM QP =,设点P 的坐标为8,t t ⎛⎫ ⎪⎝⎭,()26t <<,则可求出()162PMN S t t =⋅-⋅ ,然后利用二次函数的性质求解即可.【小问1详解】解:()2,0A - ,()6,0C ,8AC ∴=.又AC BC = ,8BC ∴=.90ACB ∠=︒ ,∴点()6,8B .设直线AB 的函数表达式为y ax b =+,将()2,0A -,()6,8B 代入y ax b =+,得2068a b a b -+=⎧⎨+=⎩,解得12a b =⎧⎨=⎩,∴直线AB 的函数表达式为2y x =+.将点(),4D m 代入2y x =+,得2m =.()2,4D ∴.将()2,4D 代入ky x =,得8k =.【小问2详解】解:延长NP 交y 轴于点Q ,交AB 于点L .AC BC = ,90BCA ∠=︒,45BAC ∴∠=︒.PN x ∥轴,45BLN BAC ∴∠=∠=︒,90∠=︒NQM .PM AB ∥ ,45MPL BLP ∴∠=∠=︒,45QMP QPM ∴∠=∠=︒,QM QP ∴=.设点P 的坐标为8,t t ⎛⎫⎪⎝⎭,()26t <<,则PQ t =,6PN t =-.MQ PQ t ∴==.()()21119632222PMN S PN MQ t t t ∴=⋅⋅=⋅-⋅=--+ .∴当3t =时,PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭.25.如图,ABC 中,AB =,D 为AB 中点,BAC BCD ∠=∠,2cos 4ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.【答案】(1)4BC =(2)O 的半径为477【解析】【分析】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理.(1)易证BAC BCD ∽,得到BC BA BD BC=,即可解答;(2)过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,在Rt AED △中,通过解直角三角形得到1DE =,AE =由BAC BCD ∽得到AC AB CD BC ==.设CD x =,则AC =,1CE x =-,在Rt ACE 中,根据勾股定理构造方程,求得2CD =,AC =,由AFC ADC ∠=∠得到sin sin AFC ADC ∠=∠,根据正弦的定义即可求解.【小问1详解】解:BAC BCD ∠=∠ ,B B ∠=∠,BAC BCD ∴ ∽.BCBABD BC ∴=,即2BC AB BD=⋅AB =,D 为AB 中点,12BD AD AB ∴===,∴216BC AB BD =⋅==4BC ∴=.【小问2详解】解:过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,在Rt AED △中,cos 4DE CDA AD ∠==.又AD = ,1DE =∴.∴在Rt AED △中,AE ==BAC BCD △∽△,ACABCD BC ∴==.设CD x =,则AC =,1CE CD DE x =-=-.∵在Rt ACE 中,222AC CE AE =+,)()2221x ∴=-+,即2280x x +-=,解得12x =,24x =-(舍去).2CD ∴=,AC =∵ AC AC=,AFC ADC ∴∠=∠.CF 为⊙O 的直径,90CAF ∴∠=︒.sin sin 4AC AE AFC CDA CF AD ∴∠==∠==.7CF ∴=,即⊙O 的半径为477.26.某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A 站B 站C 站发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.【答案】(1)90,60(2)①56;②75t =或125【解析】【分析】本题考查了一元一次方程的应用,速度、时间、路程的关系,明确题意,合理分类讨论是解题的关键.(1)直接根据表中数据解答即可;(2)①分别求出D 1001次列车、G 1002次列车从A 站到C 站的时间,然后根据路程等于速度乘以时间求解即可;②先求出2v ,A 与B 站之间的路程,G 1002次列车经过B 站时,对应t 的值,从而得出当90110t ≤≤时,D 1001次列车在B 站停车.G 1002次列车经过B 站时,D 1001次列车正在B 站停车,然后分2590t ≤<,90100t ≤≤,100110t <≤,110150t <≤讨论,根据题意列出关于t 的方程求解即可.【小问1详解】解:D 1001次列车从A 站到B 站行驶了90分钟,从B 站到C 站行驶了60分钟,故答案为:90,60;【小问2详解】解:①根据题意得:D 1001次列车从A 站到C 站共需9060150+=分钟,G 1002次列车从A 站到C 站共需356030125++=分钟,∴12150125v v =,∴1256v v =,故答案为:56;②14v = (千米/分钟),1256v v =,2 4.8v ∴=(千米/分钟).490360⨯=Q ,∴A 与B 站之间的路程为360.360 4.875÷= ,∴当100t =时,G 1002次列车经过B 站.由题意可如,当90110t ≤≤时,D 1001次列车在B 站停车.∴G 1002次列车经过B 站时,D 1001次列车正在B 站停车.ⅰ.当2590t ≤<时,12d d >,1212d d d d ∴-=-,()4 4.82560t t ∴--=,75t =(分钟);ⅱ.当90100t ≤≤时,12d d ≥,1212d d d d ∴-=-,()360 4.82560t ∴--=,87.5t =(分钟),不合题意,舍去;ⅲ.当100110t <≤时,12d d <,1221d d d d ∴-=-,()4.82536060t ∴--=,112.5t =(分钟),不合题意,舍去;ⅳ.当110150t <≤时,12d d <,1221d d d d ∴-=-,()()4.825360411060t t ∴--+-=⎡⎤⎣⎦,125t =(分钟).综上所述,当75t =或125时,1260d d -=.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.【答案】(1)2=23y x x --(2)点P 的坐标为)1,4+(3)25515424y x x =-++【解析】【分析】(1)运用待定系数法求函数解析式即可;(2)可求2C 对应的函数表达式为:()()213y x x =-+-,其对称轴为直线1x =.作直线1x =,交直线l 于点H .(如答图①)由二次函数的对称性得,QH PH =,PM NQ =,由PQ MP QN =+,得到PH PM =,设()02PH t t =<<,则点P 的横坐标为1t +,点M 的横坐标为21t +,()()222P y t t =-+-,()()2222M y t t =+-,故有()()()()2222222t t t t -+-=+-,解得1t =,2t =,故点P 的坐标为)1,4+;(3)连接DE ,交x 轴于点G ,过点F 作FIED ⊥于点I ,过点F 作FJ x ⊥轴于点J ,(如答图②),则四边形IGJF 为矩形,设2C 对应的函数表达式为()()()130y a x x a =+-<,可求()1,4D -,()1,4E a -,则4DG =,2AG =,4EG a =-,而21tan 42AG ADG DG ∠===,则1tan tan 2FJ FAB ADG AJ ∠=∠==.设()02GJ m m =<<,则FI m =,2AJ m =+,22m FJ +=,即21,2m F m +⎛⎫+ ⎪⎝⎭,可得1tan tan 2FI FEI ADG EI ∠=∠==,故2EI m =,则2242m m a ++=-,则258m a +=-①,由点F 在2C 上,得到()()211132m a m m ++++-=,化简得()122a m -=②,由①,②可得()251282m m +--=,解得85m =,因此54a =-,故2C 的函数表达式为25515424y x x =-++.【小问1详解】解:(1)将()1,0A -,()3,0B 代入2y x bx c =++,得,10930b c b c -+=⎧⎨++=⎩,解得:23b c =-⎧⎨=-⎩1C ∴对应的函数表达式为:223y x x =--;【小问2详解】解:设2C 对应的函数表达式为()()()130y a x x a =+-<,将点()0,6C 代入得:36a -=,解得:2a =-.2C ∴对应的函数表达式为:()()213y x x =-+-,其对称轴为直线1312x -+==.又 图象1C 的对称轴也为直线1x =,作直线1x =,交直线l 于点H (如答图①)由二次函数的对称性得,QH PH =,NH MH=∴PM NQ =.又PQ MP QN =+ ,而PQ HP QH=+PH PM ∴=.设()02PH t t =<<,则点P 的横坐标为1t +,点M 的横坐标为21t +.将1x t =+代入()()213y x x =-+-,得()()222P y t t =-+-,将21x t =+代入()()13y x x =+-,得()()2222M y t t =+-.P M y y = ,()()()()2222222t t t t ∴-+-=+-,即2612t =,解得1t =,2t =(舍去).∴点P 的坐标为)1,4+;【小问3详解】解:连接DE ,交x 轴于点G ,过点F 作FI ED ⊥于点I ,过点F 作FJ x ⊥轴于点J .(如答图②)FI ED ⊥ ,FJ x ⊥轴,ED x ⊥轴,∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为()()()130y a x x a =+-<,点D ,E 分别为二次函数图象1C ,2C 的顶点,将1x =分别代入223y x x =--,()()()130y a x x a =+-<得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,4EG a =-.∴在Rt AGD 中,21tan 42AGADG DG ∠===.AF AD ⊥ ,90FAB DAB ∴∠+∠=︒.又90DAG ADG ∠+∠=︒ ,ADG FAB ∴∠=∠.1tan tan 2FJFAB ADG AJ ∴∠=∠==.设()02GJ m m =<<,则FI m =,2AJ m =+.22m FJ +∴=,21,2m F m +⎛⎫∴+ ⎪⎝⎭.EF AD ∥,FEI ADG ∴∠=∠.1tan tan 2FI FEI ADG EI ∴∠=∠==,2EI m ∴=.又EG EI IG =+ ,2242m m a +∴+=-,258m a +∴=-① 点F 在2C 上,()()211132m a m m +∴+++-=,即()()2222m a m m ++-=.20m +≠ ,()122a m ∴-=②由①,②可得()251282m m +--=.解得10m =(舍去),285m =,54a ∴=-.2C ∴的函数表达式为()()255515134424y x x x x =-+-=-++.【点睛】本题考查了二次函数的图像与性质,待定系数法求函数解析式,二次函数的对称性,矩形的判定与性质,解直角三角形的相关运算,熟练掌握知识点,正确添加辅助线是解决本题的关键.。
2020年江苏省苏州市中考数学试卷
![2020年江苏省苏州市中考数学试卷](https://img.taocdn.com/s3/m/111fd0160b1c59eef8c7b4a2.png)
2020年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.2.(3分)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.63.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.034.(3分)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣25.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.23706.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣27.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°10.(3分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)计算:(a2)2=.12.(3分)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为°.13.(3分)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.(3分)分解因式:4a2﹣4a+1=.15.(3分)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B 的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).18.(3分)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:|﹣1|+﹣(π﹣3)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣2.22.(6分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.23.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.(8分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.(10分)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s (即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.27.(10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.28.(10分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2020年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2020•苏州)(﹣21)÷7的结果是()A.3 B.﹣3 C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选B.【点评】本题考查有理数的除法法则,属于基础题.2.(3分)(2020•苏州)有一组数据:2,5,5,6,7,这组数据的平均数为()A.3 B.4 C.5 D.6【分析】把给出的这5个数据加起来,再除以数据个数5,就是此组数据的平均数.【解答】解:(2+5+5+6+7)÷5=25÷5=5答:这组数据的平均数是5.故选C【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起来,再除以数据个数5.3.(3分)(2020•苏州)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0 C.2.02 D.2.03【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:2.026≈2.03,故选D.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的表示方法.4.(3分)(2020•苏州)关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4k=0,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=(﹣2)2﹣4k=4﹣4k=0,解得:k=1.故选A.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)(2020•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【分析】先求出100名学生中持“赞成”意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故选C.【点评】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.6.(3分)(2020•苏州)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选D.【点评】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征结合3m﹣n>2,找出﹣b>2是解题的关键.7.(3分)(2020•苏州)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选B.【点评】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.8.(3分)(2020•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x 的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.9.(3分)(2020•苏州)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.10.(3分)(2020•苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.28B.24C.32D.32﹣8【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=4,∴DH=4﹣=,∴平行四边形PP′CD的面积=×8=28.故选A.【点评】本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)(2020•苏州)计算:(a2)2=a4.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.故答案为:a4.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.(3分)(2020•苏州)如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED的度数为50°.【分析】根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,等量代换得到∠2=∠3,由三角形的外角的性质即可得到结论.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.【点评】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.13.(3分)(2020•苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是8环.【分析】11名成员射击成绩处在第6位的是8,则中位数为8.【解答】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为:8.【点评】本题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2020•苏州)分解因式:4a2﹣4a+1=(2a﹣1)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=(2a﹣1)2.故答案为:(2a﹣1)2.【点评】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.15.(3分)(2020•苏州)如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是.【分析】根据轴对称的性质设计出图案即可.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.16.(3分)(2020•苏州)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【分析】根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)(2020•苏州)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC的长,然后根据=求解.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.18.(3分)(2020•苏州)如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则=(结果保留根号).【分析】先连接AC,AG,AC',构造直角三角形以及相似三角形,根据△ABB'∽△ACC',可得到=,设AB=AB'=x,则AG=x,DG=x﹣4,Rt△ADG中,根据勾股定理可得方程72+(x﹣4)2=(x)2,求得AB的长以及AC的长,即可得到所求的比值.【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,则AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC===,∴==,故答案为:.【点评】本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.三、解答题(本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)(2020•苏州)计算:|﹣1|+﹣(π﹣3)0.【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简求出答案.【解答】解:原式=1+2﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)(2020•苏州)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由x+1≥4,解得x≥3,由2(x﹣1)>3x﹣6,解得x<4,所以不等式组的解集是3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2020•苏州)先化简,再求值:(1﹣)÷,其中x=﹣2.【分析】把分式进行化简,再把x的值代入即可求出结果.【解答】解:原式=.当时,原式=.【点评】本题主要考查了分式的混合运算﹣化简求值问题,在解题时要乘法公式的应用进行化简.22.(6分)(2020•苏州)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量.【分析】(1)根据(20,2)、(50,8)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【解答】解:(1)设y与x的函数表达式为y=kx+b.将(20,2)、(50,8)代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.(2)当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出y与x之间的函数表达式;(2)令y=0,求出x值.23.(8分)(2020•苏州)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=8,n=3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【分析】(1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m的值可求出,从而n的值也可求出;(2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是第可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.24.(8分)(2020•苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.25.(8分)(2020•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA 的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.【点评】此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键.26.(10分)(2020•苏州)某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.【分析】(1)作AT⊥BD,垂足为T,由题意得到AB=8,AT=,在Rt△ABT中,根据勾股定理得到BT=,根据三角函数的定义即可得到结论;(2)如图,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.根据平行线的性质得到d1=d2,得到P1Q1=P2Q2.根据平行线分线段成比例定理得到.设M,N的横坐标分别为t1,t2,于是得到结论.【解答】解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=15﹣t1,CP2=t2﹣16,∴t1=12,t2=20.【点评】本题考查了动点问题的函数图象,勾股定理矩形的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.27.(10分)(2020•苏州)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.【分析】(1)根据圆周角定理和垂直求出∠DEO=∠ACB,根据平行得出∠DOE=∠ABC,根据相似三角形的判定得出即可;(2)根据相似三角形的性质得出∠ODE=∠A,根据圆周角定理得出∠A=∠BDC,推出∠ODE=∠BDC即可;=4S△DOE=4S1,求出S△BOC=2S1,求出2BE=OE,(3)根据△DOE~△ABC求出S△ABC解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE~△ABC,∴,=4S△DOE=4S1,即S△ABC∵OA=OB,=2S1,∴,即S△BOC∵,∴,∴,即,∴.【点评】本题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积等知识点,能综合运用知识点进行推理是解此题的关键.28.(10分)(2020•苏州)如图,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c 表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.【点评】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.。
2020年江苏省苏州市中考数学试卷(Word解析版)-精选.docx
![2020年江苏省苏州市中考数学试卷(Word解析版)-精选.docx](https://img.taocdn.com/s3/m/66d0ff485fbfc77da269b1c8.png)
2019年江苏省苏州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.5的相反数是()A. 15B. −15C. 5D. −52.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2B. 4C. 5D. 73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. 0.26×108B. 2.6×108C. 26×106D.2.6×1074.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A. 126∘B. 134∘C. 136∘D. 144∘5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A. 54∘B. 36∘C. 32∘D. 27∘6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A. 15x =24x+3B. 15x=24x−3C. 15x+3=24xD. 15x−3=24x7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解为()A. x<0B. x>0C. x<1D. x>18.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18√3m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A. 55.5mB. 54mC. 19.5mD. 18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()1A. 6B. 8C. 10D. 1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A. 4√2B. 4C. 2√5D. 8二、填空题(本大题共8小题,共24.0分)11.计算:a2•a3=______.12.因式分解:x2-xy=______.13.若√x−6在实数范围内有意义,则x的取值范围为______.14.若a+2b=8,3a+4b=18,则a+b的值为______.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为______.17.18.23 19. 如图,扇形OAB 中,∠AOB =90°.P 为弧AB 上的一点,过点P 作PC ⊥OA ,垂足为C ,PC 与AB 交于点D .若PD =2,CD =1,则该扇形的半径长为______.20.21.22.23.24. 如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm ,三角板的外框线和与其平行的内框线之间的距离均为√2cm ,则图中阴影部分的面积为______cm 2(结果保留根号).三、计算题(本大题共1小题,共6.0分)25.先化简,再求值:x−3x 2+6x+9÷(1-6x+3),其中,x =√2-3. 26.27.28.29.30.31.32.四、解答题(本大题共9小题,共70.0分)33.计算:(√3)2+|-2|-(π-2)0 34.35.36.37.38.39.40.41.解不等式组:{2(x +4)>3x +7x+1<5 42.43.44.45.46.47.48.49.在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀. 50.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是______; 51.(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解). 52.53.54.55.56.57.58.59.某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:60.(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);61.(2)m=______,n=______;62.(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?63.64.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.65.(1)求证:EF=BC;66.(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.67.如图,A为反比例函数y=kx(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2√10.68.(1)求k的值;69.(2)过点B作BC⊥OB,交反比例函数y=kx(其中x>0)的图象于点C,连接OC交AB于点D,求ADDB 的值.70.71.72.4573. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 是弧BC 的中点,BC 与AD 、OD 分别交于点E 、F .74. (1)求证:DO ∥AC ;75. (2)求证:DE •DA =DC 2;76. (3)若tan ∠CAD =12,求sin ∠CDA 的值.77.78.79.80. 已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =2√5cm .如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示.81. (1)直接写出动点M 的运动速度为______cm /s ,BC 的长度为______cm ;82. (2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D →C →B 的方向匀速运动,设动点N 的运动速度为v (cm /s ).已知两动点M ,N 经过时间x (s )在线段BC 上相遇(不包含点C ),动点M ,N 相遇后立即同时停止运动,记此时△APM 与△DPN 的面积分别为S 1(cm 2),S 2(cm 2)83. ①求动点N 运动速度v (cm /s )的取值范围;84. ②试探究S 1•S 2是否存在最大值,若存在,求出S 1•S 2的最大值并确定运动时间x 的值;若不存在,请说明理由85. .86.87.如图①,抛物线y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.88.(1)求a的值;89.(2)求△ABC外接圆圆心的坐标;90.(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.91.6答案和解析1.【答案】D【解析】解:5的相反数是-5.故选:D.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.将数据从小到大重新排列后根据中位数的定义求解可得.本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【答案】D【解析】解:将26000000用科学记数法表示为:2.6×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°-54°=126°.故选:A.直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.7由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【答案】A【解析】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【答案】D【解析】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.直接利用已知点画出函数图象,利用图象得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【答案】C【解析】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.根据三角函数和直角三角形的性质解答即可.此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.810.【答案】B【解析】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE =×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.11.【答案】a5【解析】解:a2•a3=a2+3=a5.故答案为:a5.根据同底数的幂的乘法,底数不变,指数相加,计算即可.熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【答案】x(x-y)【解析】解:x2-xy=x(x-y).故答案为:x(x-y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】x≥6【解析】解:若在实数范围内有意义,则x-6≥0,解得:x≥6.故答案为:x≥6.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.【答案】5【解析】解:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,9则a=2,故a+b=5.故答案为:5.直接利用已知解方程组进而得出答案.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】5√22【解析】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【答案】827【解析】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.【答案】5【解析】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r-1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r-1)2+9,解得:r=5.故答案为:5.连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r-1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.10本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键. 18.【答案】(10+12√2) 【解析】 解:如图,EF=DG=CH=,∵含有45°角的直角三角板, ∴BC=,GH=2, ∴FG=8--2-=6-2, ∴图中阴影部分的面积为:8×8÷2-(6-2)×(6-2)÷2 =32-22+12=10+12(cm 2)答:图中阴影部分的面积为(10)cm 2.故答案为:(10).图中阴影部分的面积=外框大直角三角板的面积-内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.19.【答案】解:原式=x−3(x+3)2÷(x+3x+3-6x+3) =x−3(x+3)2÷x−3x+3=x−3(x+3)2•x+3x−3=1x+3,当x =√2-3时,原式=1√2−3+3=1√2=√22. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 20.【答案】解:原式=3+2-1=4.【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:解不等式x +1<5,得:x <4,解不等式2(x +4)>3x +7,得:x <1,则不等式组的解集为x <1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】12【解析】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.题意列表得:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【答案】36 16【解析】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150-(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:∵∠CAF =∠BAE ,∴∠BAC =∠EAF .∵将线段AC 绕A 点旋转到AF 的位置,∴AC =AF .在△ABC 与△AEF 中,{AB =AE ∠BAC =∠EAF AC =AF ,∴△ABC ≌△AEF (SAS ),∴EF =BC ;(2)解:∵AB =AE ,∠ABC =65°,∴∠BAE =180°-65°×2=50°,∴∠FAG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°,∴∠FGC =∠FAG +∠F =50°+28°=78°.【解析】(1)由旋转的性质可得AC=AF ,利用SAS 证明△ABC ≌△AEF ,根据全等三角形的对应边相等即可得出EF=BC ;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°-65°×2=50°,那么∠FAG=50°.由△ABC ≌△AEF ,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°. 本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC ≌△AEF 是解题的关键.25.【答案】解:(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,如图所示. ∵OA =AB ,AH ⊥OB , ∴OH =BH =12OB =2, ∴AH =√OA 2−OH 2=6,∴点A 的坐标为(2,6).∵A 为反比例函数y =k x图象上的一点,∴k =2×6=12. (2)∵BC ⊥x 轴,OB =4,点C 在反比例函数y =12x 上,∴BC =k OB =3.∵AH ∥BC ,OH =BH ,∴MH =12BC =32,∴AM =AH -MH =92.∵AM ∥BC ,∴△ADM ∽△BDC , ∴AD DB =AM BC =32.【解析】(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,利用等腰三角形的性质可得出DH 的长,利用勾股定理可得出AH 的长,进而可得出点A 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由OB 的长,利用反比例函数图象上点的坐标特征可得出BC 的长,利用三角形中位线定理可求出MH 的长,进而可得出AM 的长,由AM ∥BC 可得出△ADM ∽△BDC ,利用相似三角形的性质即可求出的值.本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A 的坐标;(2)利用相似三角形的性质求出的值. 26.【答案】解:(1)∵点D 是BC⏜中点,OD 是圆的半径, ∴OD ⊥BC ,∵AB 是圆的直径,∴∠ACB =90°,∴AC ∥OD ;(2)∵CD⏜=BD ⏜, ∴∠CAD =∠DCB ,∴△DCE ∽△DCA ,∴CD 2=DE •DA ; (3)∵tan ∠CAD =12, ∴△DCE 和△DAC 的相似比为:12,设:DE =a ,则CD =2a ,AD =4a ,AE =3a ,∴AE DE =3,即△AEC 和△DEF 的相似比为3,设:EF =k ,则CE =3k ,BC =8k ,tan ∠CAD =12,∴AC =6k ,AB =10k , ∴sin ∠CDA =35.【解析】(1)点D 是中点,OD 是圆的半径,又OD ⊥BC ,而AB 是圆的直径,则∠ACB=90°,故:AC ∥OD ;(2)证明△DCE ∽△DCA ,即可求解;(3)=3,即△AEC 和△DEF 的相似比为3,设:EF=k ,则CE=3k ,BC=8k ,tan ∠CAD=,则AC=6k ,AB=10k ,即可求解.本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【答案】2 10【解析】解:(1)∵t=2.5s 时,函数图象发生改变,∴t=2.5s 时,M 运动到点B 处,∴动点M 的运动速度为:=2cm/s ,∵t=7.5s 时,S=0,∴t=7.5s 时,M 运动到点C 处,∴BC=(7.5-2.5)×2=10(cm ),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF-PF=6,∴S1=S△APM=S△APF+S梯形PFBM-S△ABM=×4×2+(4+2x-5)×3-×5×(2x-5)=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=×2×6+(6+15-2x)×3-×5×(15-2x)=2x,∴S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M 的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM-S△ABM=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=2x,得出S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,即可得出结果.本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【答案】解:(1)∵y =-x 2+(a +1)x -a令y =0,即-x 2+(a +1)x -a =0解得x 1=a ,x 2=1由图象知:a <0∴A (a ,0),B (1,0)∵s △ABC =6 ∴12(1−a)(−a)=6解得:a =-3,(a =4舍去)(2)设直线AC :y =kx +b ,由A (-3,0),C (0,3),可得-3k +b =0,且b =3∴k =1即直线AC :y =x +3,A 、C 的中点D 坐标为(-32,32)∴线段AC 的垂直平分线解析式为:y =-x ,线段AB 的垂直平分线为x =-1代入y =-x ,解得:y =1∴△ABC 外接圆圆心的坐标(-1,1)(3)作PM ⊥x 轴,则s △BAP =12AB ⋅PM =12×4×d∵s △PQB =S△PAB ∴A 、Q 到PB 的距离相等,∴AQ ∥PB设直线PB 解析式为:y =x +b∵直线经过点B (1,0)所以:直线PB 的解析式为y =x -1联立{y =x −1y=−x 2−2x+3x=−4解得:{y=−5∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=-4,m=-8(舍去)∴Q坐标为(-4,-1)【解析】(1)由y=-x2+(a+1)x-a,令y=0,即-x2+(a+1)x-a=0,可求出A、B坐标结合三角形的面积,解出a=-3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。
2023年苏州市中考数学试卷(含答案解析)
![2023年苏州市中考数学试卷(含答案解析)](https://img.taocdn.com/s3/m/b99b87092a160b4e767f5acfa1c7aa00b42a9d59.png)
2023年苏州市中考数学试卷(含答案解析)第一部分选择题1. 一件商品原价600元,现降价25%, 现价是多少元?A. 150B. 375C. 450D. 480答案:D解析:现价 = 原价 × (1 - 折扣) = 600 × (1 - 0.25) = 4802. 若x=2,y=-2,则xy的值是?A. 4B. -4C. -1/4D. 1/4答案:B解析:xy = 2 × (-2) = -43. 已知等式:(x+a)(x+b)=0,其中a,b均不等于0,则x的值为?A. -aB. -bC. 0D. a或b答案:D解析:当(x+a)(x+b)=0时,有x=-a或x=-b第二部分简答题1. 已知三角形ABC,其中∠B=90°,AB=l,AC=m,(l>m) 。
找出不等式关系。
答案:l>m解析:直角边对应的斜边最长2. 市政府决定,将现有室内篮球场地上的木板铺上塑胶面层,从而不再限制场地的使用。
该改变有多少好处?答案:至少两个好处解析:1.场地不受天气影响。
2.场地通用性增加。
3. 下列属于无理数的是()A. 4/5B. 0C. 1/2D. $\sqrt{2}$答案:D解析:$\sqrt{2}$ 不是有理数第三部分计算题1. 已知等差数列的前n项和为$S_n=\dfrac{3n^2+5n}{2}$ ,求该等差数列的首项和公差。
答案:首项为1,公差为2解析:将$S_n=\dfrac{3n^2+5n}{2}$ 代入$S_n=\dfrac{n(a_1+a_n)}{2}$,得到$a_1 = 1,d= 2$2. 若${a_n}$满足递推式$a_{n+2}+a_{n+1}-2a_n=10$ ,已知$a_1=2$,$a_2=-1$ ,则$a_7$的值是?答案:$-111$解析:先确定${a_n}$的通项公式,得到$a_n = 3 \cdot 2^n - (-1)^n$ ,再计算出$a_7$的值。
2020年全国中考数学试卷分类汇编(一)专题2 实数(无理数,平方根,立方根)(含解析)
![2020年全国中考数学试卷分类汇编(一)专题2 实数(无理数,平方根,立方根)(含解析)](https://img.taocdn.com/s3/m/747df12ff46527d3240ce0e9.png)
实数(无理数,平方根,立方根)一.选择题1.(2020•湖北武汉•3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2 D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.(2020•江苏省盐城市•3分)实数a,b在数轴上表示的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|【分析】根据在数轴上表示的两个实数,右边的总比左边的大,即可判断.【解答】解:根据实数a,b在数轴上表示的位置可知:a<0,b>0,∴a<b.故选:C.【点评】本题考查了实数与数轴、绝对值,解决本题的关键是掌握数轴.3.(2020•湖北武汉•3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2 D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4. (2020•江苏省常州市•2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:m6÷m2=m6﹣2=m4.故选:B.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.5. (2020•江苏省常州市•2分)8的立方根为()A.B.C.2 D.±2【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选:C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.6 (2020•江苏省淮安市•3分)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.520【分析】设较小的奇数为x,较大的为x+2,根据题意列出方程,求出解判断即可.【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7. (2020•江苏省连云港市•3分)3的绝对值是()A.﹣3 B.3 C.D.【分析】根据绝对值的意义,可得答案.【解答】解:|3|=3,故选:B.【点评】本题考查了实数的性质,利用绝对值的意义是解题关键.8. (2020•江苏省苏州市•3分)在下列四个实数中,最小的数是()A. 2B. 13C. 0D. 3【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13<3,所以四个实数中,最小的数是-2.故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9. (2020•江苏省南京市•2分)3的平方根是()A.9 B.C.﹣D.±【分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.【解答】解:∵()2=3,∴3的平方根.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10. (2020•湖南省怀化市•3分)下列数中,是无理数的是()A.﹣3 B.0 C.D.【分析】根据无理数的三种形式求解即可.【解答】解:﹣3,0,是有理数,是无理数.故选:D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.11. (2020•湖南省株洲市·4分)下列不等式错误的是()A.﹣2<﹣1 B.π<C.D.>0.3【分析】对于选项A,根据两个负数绝对值大的反而小即可得﹣2<﹣1;对于选项B,由3<π<4,,即可得;对于选项C,由,6.25<10,可得;对于选项D,由实数大小的比较可得.由此可得只有选项C错误.【解答】解:A.根据两个负数绝对值大的反而小可得﹣2<﹣1,原不等式正确,故此选项不符合题意;B.由3<π<4,可得,原不等式正确,故此选项不符合题意;C.由,6.25<10,可得,原不等式错误,故此选项符合题意;D.由=0.3333…,可得,原不等式正确,故此选项不符合题意.故选:C.【点评】本题考查了实数的大小比较及无理数的估算,熟练运用实数大小的比较方法及无理数的估算方法是解决问题的关键.12. (2020•湖南省长沙市·3分)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③B.①③C.①④D.②④【分析】根据实数的分类和π的特点进行解答即可得出答案.【解答】解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A.【点评】此题考查了实数,熟练掌握实数的分类和“π”的意义是解题的关键.二.填空题1.(2020•湖北武汉•3分)计算的结果是3.【分析】根据二次根式的性质解答.【解答】解:==3.故答案为:3.【点评】解答此题利用如下性质:=|a|.2.(2020•湖北襄阳•3分)函数y=中自变量x的取值范围是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.3.(2020•湖南省常德•3分)若代数式在实数范围内有意义,则x的取值范围是x>3.【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.【解答】解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.4.(2020•湖南省常德•3分)计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=﹣+2=3.故答案为:3.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.5.(2020•湖北省黄冈市•3分)计算=﹣2.【分析】依据立方根的定义求解即可.【解答】解:=﹣2.故答案为:﹣2.【点评】本题主要考查的是立方根的性质,熟练掌握立方根的性质是解题的关键.6.(2020•湖北省黄冈市•3分)若|x﹣2|+=0,则﹣xy=2.【分析】根据非负数的性质进行解答即可.【解答】解:∵|x﹣2|+=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴,故答案为2.【点评】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.。
2020年江苏省苏州市中考数学试卷(最全解析)
![2020年江苏省苏州市中考数学试卷(最全解析)](https://img.taocdn.com/s3/m/db9162bfc281e53a5902ff66.png)
2020年江苏省苏州市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.(3分)在下列四个实数中,最小的数是( )A .2-B .13C .0D .32.(3分)某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( )A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.(3分)下列运算正确的是( )A .236a a a =B .33a a a ÷=C .235()a a =D .2242()a b a b =4.(3分)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A .B .C .D .5.(3分)不等式213x -的解集在数轴上表示正确的是( )A .B .C .D .6.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:):s日走时误差0 1 2 3 只数3 4 2 1则这10只手表的平均日走时误差(单位:)s 是( )A .0B .0.6C .0.8D .1.17.(3分)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan b a α+D .sin b a α+ 8.(3分)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A .1π-B .12π- C .12π- D .122π- 9.(3分)如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到△AB C ''.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A .18︒B .20︒C .24︒D .28︒10.(3分)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点(3,2)D 在对角线OB 上,反比例函数(0,0)k y k x x =>>的图象经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A .8(4,)3B .9(2,3)C .10(5,)3D .24(5,16)5二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)使13x -在实数范围内有意义的x 的取值范围是 . 12.(3分)若一次函数36y x =-的图象与x 轴交于点(,0)m ,则m = .13.(3分)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是 .14.(3分)如图,已知AB 是O 的直径,AC 是O 的切线,连接OC 交O 于点D ,连接BD .若40C ∠=︒,则B ∠的度数是 ︒.15.(3分)若单项式122m x y -与单项式2113n x y +是同类项,则m n += . 16.(3分)如图,在ABC ∆中,已知2AB =,AD BC ⊥,垂足为D ,2BD CD =.若E 是AD 的中点,则EC = .17.(3分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(4,0)-、(0,4),点(3,)C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n = .18.(3分)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作//AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠= .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(5分)计算:209(2)(3)π+---.20.(5分)解方程:2111x x x +=--. 21.(6分)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ,求b 的取值范围.22.(6分)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是 .(填“方案一”、“方案二”或“方案三” )(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格” ):样本容量平均分 及格率 优秀率 最高分 最低分 100 93.5 100% 70% 100 80分数段统计(学生成绩记为)x分数段080x < 8085x < 8590x < 9095x < 95100x 频数 0 5 25 30 40请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A 的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A 的纵坐标.请用树状图或表格列出点A 所有可能的坐标,并求出点A 在坐标轴上的概率.24.(8分)如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA ∆∆∽;(2)若6AB =,4BC =,求DF 的长.25.(8分)如图,二次函数2y x bx =+的图象与x 轴正半轴交于点A ,平行于x 轴的直线l 与该抛物线交于B 、C 两点(点B 位于点C 左侧),与抛物线对称轴交于点(2,3)D -.(1)求b 的值;(2)设P 、Q 是x 轴上的点(点P 位于点Q 左侧),四边形PBCQ 为平行四边形.过点P 、Q 分别作x 轴的垂线,与抛物线交于点1(P x ',1)y 、2(Q x ',2)y .若12||2y y -=,求1x 、2x 的值.26.(10分)问题1:如图①,在四边形ABCD中,90B C∠=∠=︒,P是BC上一点,PA PD=,90APD∠=︒.求证:AB CD BC+=.问题2:如图②,在四边形ABCD中,45B C∠=∠=︒,P是BC上一点,PA PD=,90 APD∠=︒.求AB CDBC+的值.27.(10分)某商店代理销售一种水果,六月份的销售利润y(元)与销售量()x kg之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.28.(10分)如图,已知90MON∠=︒,OT是MON∠的平分线,A是射线OM上一点,8OA cm=.动点P从点A出发,以1/cm s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1/cm s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为()t s,其中08t<<.(1)求OP OQ+的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.2020年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.(3分)在下列四个实数中,最小的数是( )A .2-B .13C .0D .3【分析】将2-,13,0,3在数轴上表示,根据数轴表示数的大小规律可得答案. 【解答】解:将2-,13,0,3在数轴上表示如图所示:于是有12033-<<< 故选:A .【点评】本题考查实数的大小比较,数轴表示数,掌握实数大小比较的方法是解决问题的关键.2.(3分)某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( )A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯ 【分析】根据负指数次幂的意义,将一个较小的数写成10n a ⨯的形式,其中010a <<,n 为整数即可.【解答】解:60.00000164 1.6410-=⨯,故选:B .【点评】本题考查用科学记数法表示较小数的方法,写成10n a ⨯的形式是关键.3.(3分)下列运算正确的是( )A .236a a a =B .33a a a ÷=C .235()a a =D .2242()a b a b =【分析】根据同底数幂的乘除法、幂的乘方,积的乘方的意义和计算方法,分别进行计算,做出判断和选择.【解答】解:23235a a a a +==,因此选项A 不符合题意;3312a a a a -÷==,因此选项B 不符合题意;23236()a a a ⨯==;因此选项C 不符合题意;2242()a b a b =,因此选项D 符合题意;故选:D .【点评】本题考查同底数幂的乘除法、幂的乘方,积的乘方的意义和计算方法,掌握计算法则是正确计算的前提.4.(3分)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A .B .C .D .【分析】根据俯视图是从上面看到的图形结合几何体判定则可.【解答】解:从上面看,是一行三个小正方形.故选:C .【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)不等式213x -的解集在数轴上表示正确的是( )A .B .C .D .【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,231x +,合并同类项得,24x ,x 的系数化为1得,2x .在数轴上表示为:.故选:C .【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.6.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:):s 日走时误差 0 1 2 3 只数 3 4 2 1则这10只手表的平均日走时误差(单位:)s 是( )A .0B .0.6C .0.8D .1.1【分析】利用加权平均数的计算方法进行计算即可.【解答】解:142231 1.13421x ⨯+⨯+⨯==+++, 故选:D .【点评】本题考查加权平均数的意义和计算方法,掌握计算方法是正确计算的前提.7.(3分)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan b a α+D .sin b a α+ 【分析】过C 作CF AB ⊥于F ,则四边形BFCD 是矩形,根据三角函数的定义即可得到结论.【解答】解:过C 作CF AB ⊥于F ,则四边形BFCD 是矩形,BF CD a ∴==,CF BD b ==,ACF α∠=,tan AF AF CF bα∴==, tan AF b α∴=,tan AB AF BF a b α∴=+=+,故选:A .【点评】本题主要考查解直角三角形的应用-仰角俯角问题,掌握仰角俯角的定义,并根据题意构建合适的直角三角形是解题的关键.8.(3分)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A .1π-B .12π- C .12π- D .122π- 【分析】根据矩形的判定定理得到四边形CDOE 是矩形,连接OC ,根据全等三角形的性质得到OD OE =,得到矩形CDOE 是正方形,根据扇形和正方形的面积公式即可得到结论.【解答】解:CD OA ⊥,CE OB ⊥,90CDO CEO AOB ∴∠=∠=∠=︒,∴四边形CDOE 是矩形,连接OC ,点C 是AB 的中点,AOC BOC ∴∠=∠,OC OC =,()COD COE AAS ∴∆≅∆,OD OE ∴=,∴矩形CDOE 是正方形, 2OC OA ==,1OE ∴=,∴图中阴影部分的面积9021113602ππ⨯=-⨯=-, 故选:B .【点评】本题考查了扇形面积的计算,正方形的判定和性质,全等三角形的判定和性质,正确识别图形是解题的关键.9.(3分)如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到△AB C ''.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A .18︒B .20︒C .24︒D .28︒【分析】由旋转的性质可得C C '∠=∠,AB AB '=,由等腰三角形的性质可得C CAB '∠=∠,B AB B '∠=∠,由三角形的外角性质和三角形内角和定理可求解.【解答】解:AB CB ''=,C CAB '∴∠=∠,2AB B C CAB C ''∴∠=∠+∠=∠,将ABC ∆绕点A 按逆时针方向旋转得到△AB C '',C C '∴∠=∠,AB AB '=,2B AB B C '∴∠=∠=∠,180B C CAB ∠+∠+∠=︒,3180108C ∴∠=︒-︒,24C ∴∠=︒,24C C '∴∠=∠=︒,故选:C .【点评】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.10.(3分)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点(3,2)D 在对角线OB 上,反比例函数(0,0)k y k x x =>>的图象经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A .8(4,)3B .9(2,3)C .10(5,)3D .24(5,16)5【分析】求出反比例函数6y x =,设OB 的解析式为y mx b =+,由OB 经过点(0,0)O 、(3,2)D ,得出OB 的解析式为23y x =,设6(,)C a a ,且0a >,由平行四边形的性质得//BC OA ,2OBC OABC S S ∆=平行四边形,则9(B a ,6)a ,9BC a a=-,代入面积公式即可得出结果. 【解答】解:反比例函数(0,0)k y k x x=>>的图象经过点(3,2)D , 23k ∴=, 6k ∴=,∴反比例函数6y x=, 设OB 的解析式为y mx b =+, OB 经过点(0,0)O 、(3,2)D ,∴023b m b =⎧⎨=+⎩, 解得:230m b ⎧=⎪⎨⎪=⎩,OB ∴的解析式为23y x =, 反比例函数6y x =经过点C , ∴设6(,)C a a ,且0a >,四边形OABC 是平行四边形,//BC OA ∴,2OBC OABC S S ∆=平行四边形,∴点B 的纵坐标为6a, OB 的解析式为23y x =, 9(B a ∴,6)a, 9BC a a∴=-, 169()2OBC S a a a∆∴=⨯⨯-, 169152()22a a a ∴⨯⨯⨯-=, 解得:2a =,9(2B ∴,3), 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、平行四边形的性质、三角形面积计算等知识,熟练掌握平行四边形的性质是解题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3在实数范围内有意义的x 的取值范围是 1x .【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,10x -,解得,1x ,故答案为:1x .【点评】本题考查了二次根式的意义和性质,二次根式中的被开方数必须是非负数.12.(3分)若一次函数36y x =-的图象与x 轴交于点(,0)m ,则m = 2 .【分析】把点(,0)m 代入36y x =-即可求得m 的值.【解答】解:一次函数36y x =-的图象与x 轴交于点(,0)m ,360m ∴-=,解得2m =,故答案为2.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键.13.(3分)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是 38.【分析】若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,再根据概率公式求解可得.【解答】解:若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,所以该小球停留在黑色区域的概率是63168=, 故答案为:38. 【点评】本题主要考查概率公式,解题的关键是掌握求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.14.(3分)如图,已知AB 是O 的直径,AC 是O 的切线,连接OC 交O 于点D ,连接BD .若40C ∠=︒,则B ∠的度数是 25 ︒.【分析】先根据切线的性质得90OAC ∠=︒,再利用互余计算出9050AOC C ∠=︒-∠=︒,由于OBD ODB ∠=∠,利用三角形的外角性质得1252OBD AOC ∠=∠=︒. 【解答】解:AC 是O 的切线,OA AC ∴⊥, 90OAC ∴∠=︒,90904050AOC C ∴∠=︒-∠=︒-︒=︒,OB OD =,OBD ODB ∴∠=∠,而AOC OBD ODB ∠=∠+∠,1252OBD AOC ∴∠=∠=︒, 即ABD ∠的度数为25︒,故答案为:25.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.15.(3分)若单项式122m x y -与单项式2113n x y +是同类项,则m n += 4 . 【分析】根据同类项的意义,列方程求解即可.【解答】解:单项式122m x y -与单项式2113n x y +是同类项, ∴1212m n -=⎧⎨+=⎩, 4m n ∴+=,故答案为:4.【点评】本题考查同类项的意义,理解同类项的意义是正确解答的前提.16.(3分)如图,在ABC ∆中,已知2AB =,AD BC ⊥,垂足为D ,2BD CD =.若E 是AD 的中点,则EC = 1 .【分析】设AE ED x ==,CD y =,根据勾股定理即可求出答案.【解答】解:设AE ED x ==,CD y =,2BD y ∴=,AD BC ⊥,90ADB ADC ∴∠=∠=︒,在Rt ABD ∆中,22244AB x y ∴=+,221x y ∴+=,在Rt CDE ∆中,2221EC x y ∴=+=,1EC ∴=,故答案为:1【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.17.(3分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(4,0)-、(0,4),点(3,)C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n = 145.【分析】作CD x ⊥轴于D ,CE y ⊥轴于E ,则4BE n =-,3CE =,CD n =,7AD =,根据平行线的性质得出ECA CAO ∠=∠,根据题意得出BCE CAO ∠=∠,通过解直角三角形得到tan tan CD BE CAO BCE AD CE ∠==∠=,即可得到4343n n -=+,解得即可. 【解答】解:作CD x ⊥轴于D ,CE y ⊥轴于E ,点A 、B 的坐标分别为(4,0)-、(0,4),点(3,)C n 在第一象限内,则(0,)E n ,(3,0)D , 4BE n ∴=-,3CE =,CD n =,7AD =,//CE OA ,ECA CAO ∴∠=∠,2BCA CAO ∠=∠,BCE CAO ∴∠=∠,在Rt CAD ∆中,tan CD CAO AD ∠=,在Rt CBE ∆中,tan BE BCE CE ∠=, ∴CD BE AD CE =,即4343n n -=+, 解得145n =, 故答案为145.【点评】本题考查了坐标与图形的性质,平行线的性质,解直角三角形等,求得BCE CAO ∠=∠,得出CD BE AD CE =是解题的关键. 18.(3分)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作//AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠= 2425.【分析】如图,连接DB ,过点D 作DH ON ⊥于H .首先证明四边形AOBD 是菱形,解直角三角形求出DH 即可解决问题.【解答】解:如图,连接DB ,过点D 作DH ON ⊥于H .由作图可知,AOD DOE ∠=∠,OA OB =,//AD EO ,ADO DOE ∴∠=∠,AOD ADO ∴∠=∠,AO AD ∴=,AD OB ∴=,//AD OB ,∴四边形AOBD 是平行四边形,OA OB =,∴四边形AOBD 是菱形,10OB BD OA ∴===,//BD OA ,MON DBE ∴∠=∠,BOD BDO ∠=∠,DE OD ⊥,90BOD DEO ∴∠+∠=︒,90ODB BDE ∠+∠=︒,BDE BED ∴∠=∠,10BD BE ∴==, 220OE OB ∴==,16OD ∴===, DH OE ⊥, 161248205OD DE DH EO ⨯∴===, 48245sin sin 1025DH MON DBH DB ∴∠=∠===. 故答案为2425. 【点评】本题考查作图-复杂作图,平行线的性质,角平分线的定义,菱形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(520(2)(3)π+---.【分析】根据实数的计算法则进行计算即可,如何不为0的零次幂为1.【解答】20(2)(3)π---. 341=+-, 6=.【点评】本题考查零次幂的性质、实数的运算,掌握计算法则是正确计算的前提. 20.(5分)解方程:2111x x x +=--. 【分析】根据解分式方程的步骤解答即可.【解答】解:方程的两边同乘1x -,得(1)2x x +-=, 解这个一元一次方程,得32x =, 经检验,32x =是原方程的解. 【点评】本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.21.(6分)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m . (1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ,求b 的取值范围.【分析】(1)由护栏的总长度为50m ,可得出关于b 的一元一次方程,解之即可得出结论; (2)由a 的取值范围结合502a b =-,即可得出关于b 的一元一次不等式,解之即可得出结论.【解答】解:(1)依题意,得:20250b +=, 解得:15b =.(2)1826a ,502a b =-, ∴5021850226b b -⎧⎨-⎩,解得:1216b .答:b 的取值范围为1216b .【点评】本题考查了一元一次方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(6分)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析. (1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是方案三.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):080x<8085x<8590x<9095x<052530请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.【分析】(1)工具抽样的代表性、普遍性和可操作性可知,方案三符合题意;(2)①根据样本的中位数,估计总体中位数所在的范围;②样本中“优秀”人数占调查人数的3040100+,因此估计总体1200人的70%是“优秀”.【解答】解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析,是最符合题意的.故答案为:方案三;(2)①样本100人中,成绩从小到大排列后,处在中间位置的两个数都在9095x<,因此中位数在9095x<组中;②由题意得,120070%840⨯=(人),答:该校1200名学生中达到“优秀”的有840人.【点评】考查平均数、中位数的意义和计算方法,样本估计总体是统计中常用的方法.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.【分析】用树状图或列表法表示所有可能出现的结果,进而求出相应的概率.【解答】解:用列表格法表示点A所有可能的情况如下:共有9种可能出现的结果,其中点A在坐标轴上有5种,P∴(点A在坐标轴上)59 =.【点评】考查树状图或列表法求随机事件发生的概率,列举出所有可能出现的结果是解决问题的关键.24.(8分)如图,在矩形ABCD中,E是BC的中点,DF AE⊥,垂足为F.(1)求证:ABE DFA∆∆∽;(2)若6AB=,4BC=,求DF的长.【分析】(1)由矩形性质得//AD BC,进而由平行线的性质得AEB DAF∠=∠,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似三角形的比例线段求得DF.【解答】解:(1)四边形ABCD是矩形,//AD BC∴,90B∠=︒,DAF AEB∴∠=∠,DF AE⊥,90AFD B∴∠=∠=︒,ADF EAB∴∆∆∽,ABE DFA ∴∆∆∽;(2)E 是BC 的中点,4BC =,2BE ∴=,6AB =,222262210AE AB BE ∴=+=+=, 四边形ABCD 是矩形, 4AD BC ∴==,ABE DFA ∆∆∽,∴AB AEDF AD=, ∴646105210AB AD DF AE ⨯===.【点评】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键是证明三角形相似.25.(8分)如图,二次函数2y x bx =+的图象与x 轴正半轴交于点A ,平行于x 轴的直线l 与该抛物线交于B 、C 两点(点B 位于点C 左侧),与抛物线对称轴交于点(2,3)D -. (1)求b 的值;(2)设P 、Q 是x 轴上的点(点P 位于点Q 左侧),四边形PBCQ 为平行四边形.过点P 、Q 分别作x 轴的垂线,与抛物线交于点1(P x ',1)y 、2(Q x ',2)y .若12||2y y -=,求1x 、2x 的值.【分析】(1)抛物线的对称轴为2x =,即122b =,解得:4b =-,即可求解;(2)求出点B 、C 的坐标分别为(1,3)-、(3,3)-,则2BC =,而四边形PBCQ 为平行四边形,则2PQ BC ==,故212x x -=,即可求解.【解答】解:(1)直线与抛物线的对称轴交于点(2,3)D -, 故抛物线的对称轴为2x =,即122b =,解得:4b =-,故抛物线的表达式为:24y x x =-;(2)把3y =-代入24y x x =-并解得1x =或3, 故点B 、C 的坐标分别为(1,3)-、(3,3)-,则2BC =, 四边形PBCQ 为平行四边形, 2PQ BC ∴==,故212x x -=,又21114y x x =-,22224y x x =-,12||2y y -=,故221122|(4)(4)2x x x x ---=,12|4|1x x +-=. 125x x ∴+=或123x x +=-,由211225x x x x -=⎧⎨+=⎩,解得123272x x ⎧=⎪⎪⎨⎪=⎪⎩;由211223x x x x -=⎧⎨+=⎩,解得121252x x ⎧=⎪⎪⎨⎪=⎪⎩.【点评】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 26.(10分)问题1:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求证:AB CD BC +=.问题2:如图②,在四边形ABCD 中,45B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求AB CDBC+的值.【分析】(1)由“AAS ”可知BAP CPD ∆≅∆,可得BP CD =,AB PC =,可得结论; (2)过点A 作AE BC ⊥于E ,过点D 作DF BC ⊥于F ,由(1)可知EF AE DF =+,由等腰直角三角形的性质可得BE AE =,CF DF =,2AB AE =,2CD DF =,即可求解. 【解答】证明:(1)90B APD ∠=∠=︒, 90BAP APB ∴∠+∠=︒,90APB DPC ∠+∠=︒, BAP DPC ∴∠=∠,又PA PD =,90B C ∠=∠=︒, ()BAP CPD AAS ∴∆≅∆, BP CD ∴=,AB PC =, BC BP PC AB CD ∴=+=+;(2)如图2,过点A 作AE BC ⊥于E ,过点D 作DF BC ⊥于F ,由(1)可知,EF AE DF=+,45B C∠=∠=︒,AE BC⊥,DF BC⊥,45B BAE∴∠=∠=︒,45C CDF∠=∠=︒,BE AE∴=,CF DF=,AB=,CD=,2()BC BE EF CF AE DF∴=++=+,∴2AB CDBC+==.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.27.(10分)某商店代理销售一种水果,六月份的销售利润y(元)与销售量()x kg之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.【分析】(1)由表格信息可知,从6月1日到6月9日,成本价8元/kg ,售价10元/kg ,一共售出200kg ,根据利润=每千克的利润⨯销售量列式计算即可;(2)设B 点坐标为(,400)a ,根据题意列方程求出点B 的坐标,设线段BC 所在直线对应的函数表达式为y kx b =+,利用待定系数法解答即可. 【解答】解:(1)200(108)400⨯-=(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B 坐标为(,400)a ,根据题意得: (108)(600)(108.5)2001200400a -⨯-+-⨯=-,解这个方程,得350a =,∴点B 坐标为(350,400),设线段BC 所在直线对应的函数表达式为y kx b =+,则: 3504008001200k b k b +=⎧⎨+=⎩,解得16920009k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴线段BC 所在直线对应的函数表达式为16200099y x =-. 【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.28.(10分)如图,已知90MON ∠=︒,OT 是MON ∠的平分线,A 是射线OM 上一点,8OA cm =.动点P 从点A 出发,以1/cm s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1/cm s 的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O 、P 、Q 三点作圆,交OT 于点C ,连接PC 、QC .设运动时间为()t s ,其中08t <<. (1)求OP OQ +的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)求四边形OPCQ 的面积.【分析】(1)由题意得出8OP t =-,OQ t =,则可得出答案;(2)如图,过点B 作BD OP ⊥,垂足为D ,则//BD OQ .设线段BD 的长为x ,则BD OD x ==,22OB BD x ==,8PD t x =--,得出PD BD OP OQ =,则88t x xt t--=-,解出288t t x -=.由二次函数的性质可得出答案; (3)证明PCQ ∆是等腰直角三角形.则21122122224PCQ S PC QC PQ PQ PQ ∆==⨯=.在Rt POQ ∆中,22222(8)PQ OP OQ t t =+=-+.由四边形OPCQ 的面积POQ PCQ S S S ∆∆=+可得出答案.【解答】解:(1)由题意可得,8OP t =-,OQ t =, 88()OP OQ t t cm ∴+=-+=.(2)当4t =时,线段OB 的长度最大.如图,过点B 作BD OP ⊥,垂足为D ,则//BD OQ .OT 平分MON ∠, 45BOD OBD ∴∠=∠=︒, BD OD ∴=,2OB BD =.设线段BD的长为x,则BD OD x==,OB=,8PD t x=--,//BD OQ,∴PD BD OP OQ=,∴88t x xt t--=-,288t tx-∴=.2284)8t tOB t-∴==-+当4t=时,线段OB的长度最大,最大为.(3)90POQ∠=︒,PQ∴是圆的直径.90PCQ∴∠=︒.45PQC POC∠=∠=︒,PCQ∴∆是等腰直角三角形.21122122224PCQS PC QC PQ PQ PQ∆∴==⨯=.在Rt POQ∆中,22222(8)PQ OP OQ t t=+=-+.∴四边形OPCQ的面积21124POQ PCQS S S OP OQ PQ∆∆=+=+,2211(8)[(8)]24t t t t=-+-+,221141641622t t t t=-++-=.∴四边形OPCQ的面积为216cm.【点评】本题是圆的综合题,考查了圆周角定理,等腰直角三角形的性质,平行线分线段成比例定理,三角形的面积,二次函数的性质等知识,熟练掌握圆的性质定理是解题的关键.第31页(共31页)。
2020年江苏省苏州市中考数学模拟试卷解析版
![2020年江苏省苏州市中考数学模拟试卷解析版](https://img.taocdn.com/s3/m/a31e6a763968011ca3009176.png)
2020年江苏省苏州市中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用28铅笔涂在答题卡相位置上1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣12.(3分)移动互联网已经全面进入人们的日常生活,截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109 3.(3分)如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°4.(3分)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44B.43C.42D.405.(3分)如图,点A、B、C是⊙O上的点,OA=AB,则∠C的度数为()A.30°B.45°C.60°D.30°或60°6.(3分)某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.7.(3分)已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0B.b>0C.b>﹣1D.b<﹣18.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m 9.(3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1B.﹣3C.4D.1或﹣310.(3分)边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为()A.4﹣2B.2﹣2C.﹣1D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)分解因式:a2﹣4b2=.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=度.14.(3分)某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为名.15.(3分)一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)16.(3分)当x=1时,代数式ax3+bx+1的值为5,则代数式4﹣a﹣b的值=.17.(3分)如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.18.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔. 19.(5分)计算:+()﹣1﹣2019020.(5分)解不等式组:21.(6分)先化简,再求值:﹣÷,其中x=﹣3+2.22.(6分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.23.(8分)为了提高农民抵御大病风险的能力,全国农村推行了新型农村合作医疗政策,农民只需每人每年交10元钱,就可以加入合作医疗.若农民患病住院治疗,出院后到新型农村合作医疗办公室按一定比例报销医疗费.小军与同学随机调查了他们镇的一些村民,根据收集到的数据绘制成了如图所示的统计图.根据以上信息,解答下列问题:(1)本次共调查了多少村民被调查的村民中,有多少人参加合作医疗得到了报销款?(2)若该镇有村民10000人,请你计算有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率.24.(8分)已知:如图,四边形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BE=CF;(2)若AD=DC=2,求AB的长.25.(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x <0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.26.(10分)如图1,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥CO.连接AE,CD相交于点F,点B是直径DE下方半圆上的任意一点,连接AB交CD 于点G,连接CB交AE于点H.(1)∠ABC=;(2)证明:△CFH∽△CBG;(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2,求的值.27.(10分)在直角坐标系xOy中,A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化后得到如图1所示的△BCD.(1)求经过A、B、C三点的抛物线的解析式;(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD重叠部分面积的最大值.28.(10分)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用28铅笔涂在答题卡相位置上1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.(3分)移动互联网已经全面进入人们的日常生活,截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.62亿=16200 0000=1.62×108,故选:C.3.(3分)如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°【分析】根据对顶角相等和利用三角形的内角和定理列式计算即可得解.【解答】解:如图:∵∠4=∠2=40°,∠5=∠1=60°,∴∠3=180°﹣60°﹣40°=80°,故选:C.4.(3分)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44B.43C.42D.40【分析】先将这组数据从小到大重新排列,再根据中位数的概念求解可得.【解答】解:将这组数据从小到大重新排列为35、38、40、42、44、45、45、47,所以这组数据的中位数为=43,故选:B.5.(3分)如图,点A、B、C是⊙O上的点,OA=AB,则∠C的度数为()A.30°B.45°C.60°D.30°或60°【分析】先证明△OAB为等边三角形得到∠AOB=60°,然后根据圆周角定理求解.【解答】解:∵OA=OB=AB,∴△OAB为等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:A.6.(3分)某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.【分析】用初一3班的学生数除以所有报名学生数的和即可求得答案.【解答】解:∵共有6名同学,初一3班有2人,∴P(初一3班)==,故选:B.7.(3分)已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0B.b>0C.b>﹣1D.b<﹣1【分析】先根据题意判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣x+b+1中,k=﹣1<0,∴函数图象经过二、四象限.∵x1<0,y1<0,∴函数图象经过第三象限,∴b+1<0,即b<﹣1.故选:D.8.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m 【分析】将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识表示出线段CG的长,根据三角函数值求得CG的长,代入FG=x•tanβ即可求得.【解答】解:设CG=xm,由图可知:EF=(x+20)•tan45°,FG=x•tan60°,则(x+20)tan45°+30=x tan60°,解得x==25(+1),则FG=x•tan60°=25(+1)×=(75+25)m.故选:C.9.(3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1B.﹣3C.4D.1或﹣3【分析】设C(x,y).根据矩形的性质、点A的坐标分别求出B(﹣2,y)、D(x,﹣2);根据“矩形ABCD的对角线BD经过坐标原点”及相似三角形的性质求得xy=4①,又点C在反比例函数的图象上,所以将点C的坐标代入其中求得xy=k2+2k+1②;联立①②解关于k的一元二次方程即可.【解答】解:设C(x,y).∵四边形ABCD是矩形,点A的坐标为(﹣2,﹣2),∴B(﹣2,y)、D(x,﹣2);∵矩形ABCD的对角线BD经过坐标原点,∴设直线BD的函数关系式为:y=kx,∵B(﹣2,y)、D(x,﹣2),∴k=,k=,∴=,即xy=4;①又∵点C在反比例函数的图象上,∴xy=k2+2k+1,②由①②,得k2+2k﹣3=0,即(k﹣1)(k+3)=0,∴k=1或k=﹣3,故选:D.10.(3分)边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为()A.4﹣2B.2﹣2C.﹣1D.【分析】首先延长DC与A′D′交于点M,由四边形ABCD是菱形与折叠的性质,易求得CB=CM,△D′FM是含30°角的直角三角形,利用正切函数的知识,即可求得答案.【解答】解:延长FC、A′D′交于M,设CF=x,FD=2﹣x,∵四边形ABCD为菱形,∠A=60°,∴AB∥CD,∠DCB=∠A=60°,∴∠A+∠D=180°,∴∠D=120°,由折叠得:∠BD′F=∠D=120°,∴∠FD′M=180°﹣120°=60°,∵D′F⊥CD,∴∠D′FC=90°,∴∠M=90°﹣60°=30°,在Rt△FOC中,∠DCB=60°,∵∠DCB=∠CBM+∠M,∴∠CBM=60°﹣30°=30°,∵∠BCD=∠CBM+∠M=60°,∴∠CBM=∠M=30°,∴CB=CM=2,由折叠得:D′F=DF=2﹣x,tan M=tan30°===,∴x=4﹣2,∴CF=4﹣2,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.(3分)分解因式:a2﹣4b2=(a+2b)(a﹣2b).【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).12.(3分)函数y=中,自变量x的取值范围是x≤且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:由题意得,2﹣3x≥0且x≠0,解得,x≤且x≠0.故答案为:x≤且x≠0.13.(3分)如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=270度.【分析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.【解答】解:∵∠A=90°,∴∠B+∠C=90°.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故答案为:270.14.(3分)某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为60名.【分析】设被调查的总人数是x人,根据最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,即可列方程求解.【解答】解:设被调查的总人数是x人,则40%x﹣30%x=6,解得:x=60.故答案是:60.15.(3分)一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为2πcm.(结果保留π)【分析】利用弧长公式是l=,代入就可以求出弧长.【解答】解:弧长是:=2πcm.故答案为:2π.16.(3分)当x=1时,代数式ax3+bx+1的值为5,则代数式4﹣a﹣b的值=0.【分析】先由已知条件列出方程,求得a+b的值,再整体代入求原式的值.【解答】解:由题意得,a+b+1=5,∴a+b=4,当a+b=4时,原式=4﹣(a+b)=4﹣4=0.故答案为0.17.(3分)如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为2.【分析】由∠BAD的度数结合角平分线的定理可得出∠BAC=∠DAC=30°,利用平行线的性质及三角形外角的性质可得出∠FEC=30°、∠DEC=60°,进而可得出∠FED =90°,在Rt△DEF中利用勾股定理可求出DF的长.【解答】解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=∠BAD=30°.∵点E、F分别是AC、BC的中点,∴EF∥AB,AE=DE,∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,∴∠FED=90°.∵AC=4,∴DE=EF=2,∴DF===2,故答案为:2.18.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.【分析】过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E.则OB=.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.【解答】解:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x 轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OF A=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,,∴△OAF≌△BCD.∴BD=OF=1,∴OE=4+1=5,∴OB=.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=5.故答案为:5.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔. 19.(5分)计算:+()﹣1﹣20190【分析】直接利用二次根式的性质以及负整指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=3+6﹣1=8.20.(5分)解不等式组:【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【解答】解:,解①得:x>﹣1,解②得:x≤6,则不等式的解集为:﹣1<x≤6.21.(6分)先化简,再求值:﹣÷,其中x=﹣3+2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=﹣•=﹣=﹣,当x=﹣3+2时,原式=﹣=﹣.22.(6分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,∴P(牌面是偶数)==;(2)根据题意,画树状图:由树状图可知,共有16种等可能的结果:其中恰好是4的倍数的共有4种,∴P(4的倍数)==.23.(8分)为了提高农民抵御大病风险的能力,全国农村推行了新型农村合作医疗政策,农民只需每人每年交10元钱,就可以加入合作医疗.若农民患病住院治疗,出院后到新型农村合作医疗办公室按一定比例报销医疗费.小军与同学随机调查了他们镇的一些村民,根据收集到的数据绘制成了如图所示的统计图.根据以上信息,解答下列问题:(1)本次共调查了多少村民被调查的村民中,有多少人参加合作医疗得到了报销款?(2)若该镇有村民10000人,请你计算有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率.【分析】(1)调查村民数=参加合作医疗的人数+未参加合作医疗的人数得到了报销款人数=参加合作医疗的人数×3%;(2)全村参加合作医疗人数=10000×参加合作医疗的百分率设年增长率为x,则8000(1+x)2=9680.【解答】解:(1)400+100=500(人),400×3%=12(人).所以,本次共调查了500人,有12人参加合作医疗得到报销款.(2)参加合作医疗的百分率为,所以该镇参加合作医疗的村民有10000×80%=8000(人).设年增长率为x,由题意:得8000(1+x)2=9680,解得x1=0.1,x2=﹣2.1(舍去),即年增长率为10%.24.(8分)已知:如图,四边形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BE=CF;(2)若AD=DC=2,求AB的长.【分析】(1)由题中可求得AE和AC所在的三角形全等,进而得到BG和FG所在三角形全等的条件;(2)求得AF长即可求得AB长.利用等腰三角形的三线合一定理可得AF=AC=AE,进而求得一些角是30°,主要利用AD长,直角三角形勾股定理来求解.【解答】(1)证明:连接AG,∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.在△ABC和△AFE中,,∴△ABC≌△AFE(AAS),∴AB=AF.∵AE=AC,∴BE=CF;(2)解:∵AD=DC,DF⊥AC,∴F为AC中点,∵AC=AE,∴AF=AC=AE.∴∠E=30°.∵∠EAD=90°,∴∠ADE=60°,∴∠F AD=∠E=30°,∴AF=.∴AB=AF=.25.(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x <0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.【分析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数y=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC、延长DE交AB于点F,证△DBE≌△FBE 得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【解答】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数y=(x<0)的图象上,∴,解得:.(2)由(1)知反比例函数解析式为y=﹣,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴y=﹣x+2.26.(10分)如图1,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥CO.连接AE,CD相交于点F,点B是直径DE下方半圆上的任意一点,连接AB交CD 于点G,连接CB交AE于点H.(1)∠ABC=45°;(2)证明:△CFH∽△CBG;(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2,求的值.【分析】(1)∠AOC=90°,则∠ABC=45°;(2)如图1,∠CFH=∠CDE+∠AED=(180°﹣∠AOC)=45°=∠ABC,∠FCH =∠GCB,即可求解;(3)设HK=EK=x,则x+=R,OH=x tan∠HKO=(2﹣)R,则CH=CO ﹣OH=(﹣1)R,同理可得:FC=R,由△CFH∽△CBG,则=.【解答】解:(1)∵∠AOC=90°,∴∠ABC=45°,故答案为45°(2)如图1,∠CFH=∠CDE+∠AED=(180°﹣∠AOC)=45°=∠ABC,∠FCH=∠GCB,∴△CFH∽△CBG;(3)设∠AOD为∠1,∠COE为∠2,∠OEA=∠OAE=α,圆的半径为R,AO⊥CO,则∠1+∠2=90°,∠1=2α,弧DB为半圆的三分之一,则∠OEA=∠OAE=30°则∠2=60°,α=30°,在△OEH中,∠2=60°,α=30°,OE=R,在OE上取一点K,使HK=EK,则∠HKO=2α=30°,设HK=EK=x,则x+=R,则x=,OH=x tan∠HKO=(2﹣)R,则CH=CO﹣OH=(﹣1)R,在△FHC中,∠DCB=30°,∠HFC=45°,CH=(﹣1)R,同理可得:FC=R,∵△CFH∽△CBG,∴=.27.(10分)在直角坐标系xOy中,A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化后得到如图1所示的△BCD.(1)求经过A、B、C三点的抛物线的解析式;(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD重叠部分面积的最大值.【分析】(1)由旋转,平移得到C(1,1),用待定系数法求出抛物线解析式;(2)先判断出△BEF∽△BAO,再分两种情况进行计算,由面积比建立方程求解即可;(3)先由平移得到A1B1的解析式为y=2x+2﹣t,A1B1与x轴交点坐标为(,0).C1B2的解析式为y=x+t+,C1B2与y轴交点坐标为(0,t+),再分两种情况进行计算即可.【解答】解:(1)∵A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化得到△BCD,∴BD=OA=2,CD=OB=1,∠BDC=∠AOB=90°.∴C(1,1).设经过A、B、C三点的抛物线解析式为y=ax2+bx+c,则有,∴∴抛物线解析式为y=﹣x2+x+2,(2)如图1所示,设直线PC与AB交于点E.∵直线PC将△ABC的面积分成1:3两部分,∴=或=3,过E作EF⊥OB于点F,则EF∥OA.∴△BEF∽△BAO,∴.∴当=时,,∴EF=,BF=,∴E(﹣,)∴直线PC解析式为y=﹣x+,∴﹣x2+x+2=﹣x+,∴x1=﹣,x2=1(舍去),∴P(﹣,),当时,同理可得,P(﹣,).(3)设△ABO平移的距离为t,△A1B1O1与△B2C1D1重叠部分的面积为S.由平移得,A1B1的解析式为y=2x+2﹣t,A1B1与x轴交点坐标为M(,0).C1B2的解析式为y=x+t+,C1B2与y轴交点坐标为N(0,t+).∴点C1的坐标为(1﹣2t,1),点D1的坐标为(1﹣2t,0).当点C1在线段A1B1上时,重叠部分从四边形变成三角形,把点C1的坐标代入直线A1B1的解析式y=2x+2﹣t中,得t=;当点D1在线段A1B1上时,就没有重叠部分了,把点D1的坐标代入直线A1B1的解析式y=2x+2﹣t中,得t=,①当0<t<时,△A1B1O1与△B2C1D1重叠部分为四边形.Ⅰ、如图2,当C1D1在y轴右侧时,即0<t<时,重叠部分是现四边形ONQM,设A1B1与x轴交于点M,C1B2与y轴交于点N,A1B1与C1B2交于点Q,连结OQ.由,∴,∴Q(,).∴S=S△QMO+S△QON=××+×(t+)×=﹣t2+t+=﹣(t﹣)2+.∵0<t≤,∴当t=时,S的最大值为.Ⅱ、如图4,当C'D'在y轴左侧,即:≤t<时,点C'在△A'MO内部,其重叠部分是四边形C'QMD',同(Ⅰ)的方法得出:Q(,).∴S=S△QMD'+S△QON=×[﹣(2t﹣1)]×+×1×[﹣(2t﹣1)]=﹣t2+1∵≤t<,∴当t=时,S最大=∴S<<②如图3所示,当≤t<时,△A1B1O1与△B2C1D1重叠部分为直角三角形.设A1B1与x轴交于点H,A1B1与C1D1交于点G.∴G(1﹣2t,4﹣5t),∴D1H=+1﹣2t=,D1G=4﹣5t.∴S=D1H×D1G=××(4﹣5t)=(5t﹣4)2.∴当≤t<时,S的最大值为.综上所述,在此运动过程中△ABO与△BCD重叠部分面积的最大值为.28.(10分)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.【分析】(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算.【解答】解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.∵S△ABD=BD•AE=AB•AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD﹣B′D=﹣3=,即m=.(3)存在.理由如下:假设存在,在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣;②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,∴∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,∵PD∥BC,∴此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=﹣=;③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.。
2020年江苏省苏州市中考数学精编试卷附解析
![2020年江苏省苏州市中考数学精编试卷附解析](https://img.taocdn.com/s3/m/089bcacb4793daef5ef7ba0d4a7302768e996f38.png)
2020年江苏省苏州市中考数学精编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.样本频数分布反映了()A.样本数据的多少 B.样本数据的平均水平C.样本数据的离散程度 D.样本数据在各个小范围内数量的多少2.代数式32377a a a-++与23323a a a-+-的和是()A.奇数 B.偶数 C.5 的倍数D.以上都不能确定3.有A、B、C三座城市,已知A、B两市的距离为50 km,B、C两市的距离是30 km,那么A.C两市问的距离是()A.80 km B.20 km C.40 km D.介于20 km至80 km之间4.已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是()A.6 B.2 m-8 C.2 m D.-2 m5.从 1、2、3、…、9这九个数字中,任取一个数字是偶数的概率是()A. 0 B.49C.12D.596.以l、3为根的一元二次方程是()A.x2+4x―3=0 B.x2―4x+3=0 C.x2+4x+3=0 D.―x2+4x+3=0 7.如果两数的和为负数,那么()A.两数都是负B.一数为负,一数为0C.两数一正、一负,且负数的绝对值比正数的绝对值大D.以上三种都有可能8.关于菱形的说法中,不正确的是()A.菱形的四个角相等B.菱形的一条对角线是另一条对角线的中垂线C.菱形的一条对角线平分这组对角D.菱形的对称轴是对角线所在的直线9.下列说法中,不正确的是()A.两圆有且只有两个公共点,这两圆相交B.两圆有唯一公共点,这两圆相切C.两圆有无数公共点,这两圆重合D.两圆没有公共点,这两圆外离10.已知O为□ABCD对角线的交点,且△AOB的面积为1,则□ABCD的面积为()A.1 B.2 C.3 D.411.等腰梯形的上、下底边分别为1和3,一条对角线长为4,则这个梯形的面积是()A.163B.83C.43D.2312.如果抛物线 y=ax2+bx+c经过点(-1,12),(0,5)和(2,-3),则a+b+c的值为()A.-4 B.-2 C.0 D.113.如图,有两个形状相同的星星图案,则x的值为()A.15 B.12 C.10 D.814.在 Rt△ABC 中,∠C= 90°,b= 2,c=22,那么sinB 的值等于()A.2B.22C.1 D.2415.计算器显示结果 sin-10.9816 =78.9918 的意思正确的是()A.计算已知正弦值的对应角度B.计算已知余弦值的对应角度C.计算一个角的正弦值D.计算一个角的余弦值16.如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,下列结论中错误的是()A.AE=EC′B.BE=DE C.C′B=AD D.∠C′DE=∠EDB二、填空题17.已知二次函数y=kx2+(2k-1)x-1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:①当x=-2时,y=1;②当x> x2时,y>0;③方程kx2+(2k-1)x-1=0有两个不相等的实数根x1,x2;④ x1<-1,x2>-1;⑤ x2-x1 =1+4k2k ,其中正确的结论有_______(只需填写序号).解答题18.如图,以△ABC两边AB,AC向外作正三角形△ABD,△ACE,四边形ADFE是平行四边形,当∠BAC= 时,□ADFE是矩形.19.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 米,则根据题意,可列出方程为 . 20.关于x 的方程230x x m-=-有增根.则m = . 21.已知BD 是ΔABC 的一条中线, 如果ΔABD 和ΔBCD 的周长分别是21,12,则BC AB -的长是 .22.23-的倒数是 ,23-的绝对值是 .23. 已知23100A a a a a =++++,则当a=1时,2A = ,当1a =-时,A = .三、解答题24.已知,如图,⊙O 中 弦AB 、CD 相交于 P ,且.求证:AP=DP .25.已如图所示,一次函数y=kx+b(k ≠0)的图象与 x 轴、y 轴分别交于A 、B 两点,且与反比例函数(0)my m x=≠的图象在第一象限交于C 点,CD ⊥x 轴于 D . 若 OA=OB=OD=1. (1)求点A 、B 、D 三点的坐标; (2)求一次函数与反比例函数的表达式.26.已知:如图,□ABCD 中,DF ⊥AC ,BE ⊥AC ,M ,N 分别是AB ,DC 的中点. 求证:四边形MENF 是平行四边形.27.小王上周五在股市以收盘价 ( 收市时的价格)每股 25 元买进某公司的股票1000股.在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况(单位:元):星期一二三四五每股涨跌(元)+2-0. 5+1. 5-1.8+0.8根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费. 若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?28.如图,已知∠A=∠D,AB=DE.AF=DC,图中有哪几对全等三角形?并选取其中一对说明理由.29.有一根长 20m 的绳子,第一天截去一半,第二天截去剩下的一半,如此截下去,第五天后还剩多少?30.将2627-,206207-,20062007-按从小到大的顺序排列起来.200620626 200720727 -<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.D4.D5.B6.B7.D8.A9.D10.D11.C12.C13.D14.B15.A16.D二、填空题 17. ①③18.150°19.312312126x x -=+20. 921.922.32-,2323.10000,0三、解答题 24.作 OE ⊥AB 于E ,OF ⊥CD 于F ,连结OP .∴AE=12AB ,DF=12CD .∵⌒AC = ⌒BD ,∴⌒AB =⌒CD ,∴AB=CD ,OE=OF ,∴AE=DF .在Rt △OPE 和 Rt △OPF 中,∵OE= OF ,OP= OP , ∴Rt △OPE ≌Rt △OPF,∴PE=PF,∴AE+PE=DF+PF,即AP=DP.25.(1)∵OA=OB=OD=1,∴A( -1 ,0) ,B(0, 1) ,D(1 ,0) ;(2)∵ 点A 、B 在直线y=kx+b ,∴ 将 A(—1,0)、B(0,1)代入,得k=1,b=1. ∴ 一次函数的表达式为1y x =+,又∵C 点的横坐标为 1,代入1y x =+得y=2, 即 C(1,2).从而=2m xy =,故反比例函数的表达式为2y x=26.提示:证明FN //EM .27.(1)26.5元/股 (2)28元/股;26.2元/股 (3)1740元28.△ABF ≌△DEC ,△FCB ≌△CFE ,△ABC ≌△DEF ,证明略29.58m 30.200620626200720727-<-<-。
2020年全国中考数学试卷分类汇编(一)专题35 尺规作图(含解析)
![2020年全国中考数学试卷分类汇编(一)专题35 尺规作图(含解析)](https://img.taocdn.com/s3/m/41a5f7f1be23482fb5da4c2d.png)
尺规作图一.选择题1.(2020年内蒙古通辽市3分)6.根据圆规作图的痕迹,可用直尺成功地找到三角形内心的是()A. B.C. D.【答案】B【解析】【分析】根据三角形内心的定义,三角形内心为三边的垂直平分线的交点,然后利用基本作图和选项进行判断.【详解】解:三角形内心为三个角的角平分线的交点,由基本作图得到B选项作了两个角的角平分线,而三角形三条角平分线交于一点,从而可用直尺成功找到三角形内心.故选:B.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的内心.2. (2020•湖北襄阳•3分)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C 【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC =∠BAC即可.【解答】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3(2020•贵州省贵阳市•3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4(2020•河北省•3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长【分析】根据角平分线的画法判断即可.【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于DE ,否则没有交点,故选:B .【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.5.6.7.8.9.10.二.填空题1. (2020•江苏省苏州市•3分)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=________.【答案】2425【解析】【分析】 连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,根据等腰三角形的性质得OH ⊥AB ,AH =BH ,从而得四边形ABED 是平行四边形,利用勾股定理和三角形的面积法,求得AG 的值,进而即可求解.【详解】连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,由尺规作图步骤,可得:OD 是∠MON 的平分线,OA =OB ,∴OH ⊥AB ,AH =BH ,∵DE OC ⊥,∴DE ∥AB ,∵AD ON ,∴四边形ABED 是平行四边形,∴AB =DE =12,∴AH =6,∴OH =22221068AO AH -=-=,∵OB ∙AG =AB ∙OH ,∴AG =AB OH OB ⋅=12810⨯=485, ∴sin MON ∠=AG OA =2425. 故答案是:2425.【点睛】本题主要考查等腰三角形的性质,平行四边形的判定和性质定理,勾股定理,锐角三角函数的定义,添加合适的辅助线,构造直角三角形是解题的关键.2.(2020•湖南省郴州•3分)如图,在矩形ABCD 中,4,8AD AB ==.分别以点,B D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点E 和F .作直线EF 分别与,,DC DB AB 交于点,,M O N ,则MN =__________.【答案】25.【解析】【分析】连接DN,在矩形ABCD中,AD=4,AB=8,根据勾股定理可得BD的长,根据作图过程可得,MN是BD的垂直平分线,所以DN=BN,在Rt△ADN中,根据勾股定理得DN的长,在Rt△DON中,根据勾股定理得ON的长,进而可得MN的长.【详解】如图,连接DN,在矩形ABCD中,AD=4,AB=8,∴BD2245+=,AB AD根据作图过程可知:MN是BD的垂直平分线,∴DN=BN,OB=OD5∴AN=AB-BN=AB-DN=8-DN,在Rt△ADN中,根据勾股定理,得DN2=AN2+AD2,∴DN2=(8-DN)2+42,解得DN=5,在Rt△DON中,根据勾股定理,得ON225DN OD-=,∵CD∥AB,∴∠MDO=∠NBO,∠DMO=∠BNO,∵OD=OB,∴△DMO≌△BNO(AAS),∴OM=ON=5,∴MN=25.故答案为:25.【点睛】本题考查了作图-基本作图、线段垂直平分线的性质、勾股定理、矩形的性质,解决本题的关键是掌握线段垂直平分线的性质.3(2020•江苏省扬州市•3分)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E.②分别以点D,E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为27.【分析】过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.【解答】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴AB×GM=18,∴4GM=18,∴GM=,∴△CBG的面积为:BC×GN=12×=27.故答案为27.【点评】本题考查了作图-基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.4(2020年辽宁省辽阳市)16.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为5.【分析】设BE=AE=x,在Rt△BEC中,利用勾股定理构建方程即可解决问题.【解答】解:由作图可知,MN垂直平分线段AB,∴AE=EB,设AE=EB=x,∵EC=3,AC=2BC,∴BC=(x+3),在Rt△BCE中,∵BE2=BC2+EC2,∴x2=32+[(x+3)]2,解得,x=5或﹣3(舍弃),∴BE=5,故答案为5.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.6.7.8.9.10.三.解答题1.(2020•黑龙江省哈尔滨市•7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG 的周长为10+.连接EG,请直接写出线段EG的长.【分析】(1)画出边长为的正方形即可.(2)画出两腰为10,底为的等腰三角形即可.【解答】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.【点评】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.2. (2020•湖北武汉•8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.3 (2020•湖南省长沙市·6分)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.【分析】(1)直接利用角平分线的作法得出基本依据;(2)直接利用全等三角形的判定与与性质得出答案.【解答】解:(1)这种作已知角的平分线的方法的依据是①SSS.故答案为:①(2)由基本作图方法可得:OM=ON,OC=OC,MC=NC,则在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠AOC=∠BOC,即OC为∠AOB的平分线.【点评】此题主要考查了应用设计与作图,正确掌握全等三角形的判定方法是解题关键.4.(2020•湖北孝感•8分)如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为(2,﹣4);(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos ∠BCE的值为;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为(0,4).【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A',连接A'B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A'B的解析式,令x =0,进而得到点F的坐标.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,﹣4);(2)如图所示,线段AE即为所求,cos∠BCE===;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,﹣4);;(0,4).【点评】本题主要考查了利用平移变换和旋转变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5 (2020•江苏省泰州市•10分)如图,已知线段a,点A在平面直角坐标系xOy内.(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a≈2,A点的坐标为(3,1),求P点的坐标.【分析】(1)根据角平分线的性质即可用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a;(2)在(1)的条件下,根据a≈2,A点的坐标为(3,1),利用勾股定理即可求P点的坐标.【解答】解:(1)如图,点P即为所求;(2)由(1)可得OP是角平分线,设点P(x,x),过点P作PE⊥x轴于点E,过点A作AF⊥x 轴于点F,AD⊥PE于点D,∵P A=a≈2,A点的坐标为(3,1),∴PD=x-1,AD=x-3,根据勾股定理,得P A2=PD2+AD2,∴(2)2=(x-1)2+(x-3)2,解得x1=5,x2=-1(舍去).所以P点的坐标为(5,5).【点评】本题考查了作图-复杂作图、坐标与图形的性质、角平分线的性质、勾股定理,解决本题的关键是掌握角平分线的性质.6(2020•江苏省无锡市•8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B.C两点的距离相等;设直线l与A B.BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边A B.BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.【分析】(1)作线段BC的垂直平分线交AB于M,交BC于N,作∠ABC的角平分线交MN 于点O,以O为圆心,ON为半径作⊙O即可.(2)过点O作OE⊥AB于E.设OE=ON=r,利用面积法构建方程求解即可.【解答】解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵S△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得r=.故答案为.【点评】本题考查作图-复杂作图,角平分线的性质,线段的垂直平分线的性质,切线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7(2020•江苏省盐城市•8分)如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接E B.E C.EO,求证:∠BEO=∠CEO.【分析】(1)作BC的垂直平分线,在BC的垂直平分线上(正方形内部异于点O)的点E即为所求;(2)根据等腰三角形的性质和角的和差关系即可求解.【解答】解:(1)如图所示,点E即为所求(2)证明:连结OB,OC,∵点O是正方形ABCD的中心,∴OB=OC,∴∠OBC=∠OCB,∵EB=EC,∴∠EBC=∠ECB,∴∠BEO=∠CEO.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.9.10.。
2024年江苏省苏州市中考真题数学试卷含答案解析
![2024年江苏省苏州市中考真题数学试卷含答案解析](https://img.taocdn.com/s3/m/0409c84c54270722192e453610661ed9ad515536.png)
2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。
2024年江苏省苏州市中考数学试卷(附答案解析)
![2024年江苏省苏州市中考数学试卷(附答案解析)](https://img.taocdn.com/s3/m/dcc2b198d4bbfd0a79563c1ec5da50e2524dd10e.png)
2024年江苏省苏州市中考数学试卷(附答案解析)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.(3分)用数轴上的点表示下列各数,其中与原点距离最近的是()A.﹣3B.1C.2D.3【解答】解:∵|﹣3|=3,|1|=1,|2|=2,|3|=3,而3<2<1,∴1与原点距离最近,故选:B.2.(3分)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A.3.(3分)苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.2.47×1010B.247×1010C.2.47×1012D.247×1012【答案】C.4.(3分)若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b【解答】解:若a>b﹣1,不等式两边加1可得a+1>b,故A不合题意,D符合题意,根据a>b﹣1,得不到a﹣1<b,a>b,故B、C不符合题意.故选:D.5.(3分)如图,AB∥CD,若∠1=65°,∠2=120°,则∠3的度数为()A.45B.55°C.60°D.65°【解答】解:∵AB∥CD,∠1=65°,∴∠ACD=∠1=65°,∵∠2=∠ACD+∠3,∠2=120°,∴∠3=55°,故选:B.6.(3分)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C.7.(3分)如图,点A为反比例函数y=﹣(x<0)图象上的一点,连接AO,过点O作OA的垂线与反比例函数y=(x>0)的图象交于点B,则的值为()A.B.C.D.【分析】作AG⊥x轴,BH⊥x轴,可证明△AGO∽△OHB,利用面积比等于相似比的平方解答即可.【解答】解:作AG⊥x轴,垂足为G,BH⊥x轴,垂足为H,∵点A在函数y=﹣图象上,点B在反比例函数y=图象上,=,S△BOH=2,∴S△AGO∵∠AOB=90°,∴∠AOG=∠HBO,∠AGO=∠OHB,∴△AGO∽△OHB,∴,∴.故选:A.8.(3分)如图,矩形ABCD中,AB=,BC=1,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则AG的最大值为()A.B.C.2D.1【解答】解:连接AC,交EF于O,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,∵AB=,BC=1,∴AC===2,∵动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,∴CF=AE,∵AB∥CD,∴∠ACD=∠CAB,又∵∠COF=∠AOE,∴△COF≌△AOE(AAS),∴AO=CO=1,∵AG⊥EF,∴点G在以AO为直径的圆上运动,∴AG为直径时,AG有最大值为1,故选:D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.(3分)计算:x3•x2=.【解答】解:x3•x2=x5,故答案为:x5.10.(3分)若a=b+2,则(b﹣a)2=.【解答】解:∵a=b+2,∴b﹣a=﹣2,∴(b﹣a)2=(﹣2)2=4,故答案为:4.11.(3分)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是.【解答】解:根据题意可知,正八边形转盘被分成八个面积相等的三角形,其中阴影部分的面积为3个面积相等的三角形,∴指针落在阴影部分的概率等于阴影部分的面积除以正八边形的面积,即,故答案为:.12.(3分)如图,△ABC是⊙O的内接三角形,若∠OBC=28°,则∠A=°.【解答】解:连接OC,∵OB=OC,∠OBC=28°,∴∠OCB=∠OBC=28°,∴∠BOC=180°﹣∠OCB﹣∠OBC=124°,∴,故答案为:62.13.(3分)直线l1:y=x﹣1与x轴交于点A,将直线l1绕点A逆时针旋转15°,得到直线l2,则直线l2对应的函数表达式是.【分析】根据题意画出示意图,结合特殊角的三角函数值即可解决问题.【解答】解:如图所示,将x=0代入y=x﹣1得,y=﹣1,所以点B坐标为(0,﹣1).将y=0代入y=x﹣1得,x=1,所以点A的坐标为(1,0),所以OA=OB=1,所以∠OBA=∠OAB=45°.由旋转可知,∠BAC=15°,∴∠OAC=45°+15°=60°.在Rt△AOC中,tan∠OAC=,所以OC=,则点C的坐标为(0,).令直线l2的函数表达式为y=kx+b,则,解得,所以直线l2的函数表达式为y=.故答案为:y=.14.(3分)铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是△ABO的内心,若AB=2,则花窗的周长(图中实线部分的长度)=.(结果保留π)【解答】解:如图,过点C作CM⊥AB于点M,则AM=BM=AB=,∵六条等弧所对应的弦构成一个正六边形,中心为点O,∴∠AOB==60°,∵OA=OB,∴△AOB是正三角形,∵点O是△AOB的内心,∴∠CAB=∠CBA=×60°=30°,∠ACB=2∠AOB=120°,在Rt△ACM中,AM=,∠CAM=30°,∴AC==2,∴的长为=π,∴花窗的周长为π×6=8π.故答案为:8π.15.(3分)二次函数y=ax2+bx+c(a≠0)的图象过点A(0,m),B(1,﹣m),C(2,n),D(3,﹣m),其中m,n为常数,则的值为.【解答】解:将A(0,m),B(1,﹣m),D(3,﹣m)代入y=ax2+bx+c(a≠0),得:,∴,把C(2,n)代入,∴,∴,故答案为:.16.(3分)如图,△ABC中,∠ACB=90°,CB=5,CA=10,点D,E分别在AC,AB边上,AE=AD,连接DE,将△ADE沿DE翻折,得到△FDE,连接CE,CF.若△CEF的面积是△BEC面积的2倍,则AD=.【解答】解:∵,∴设AD=x,,∵△ADE沿DE翻折,得到△FDE,∴DF=AD=x,∠ADE=∠FDE,过E作EH⊥AC于H,设EF与AC相交于M,则∠AHE=∠ACB=90°,又∵∠A=∠A,∴△AHE∽△ACB,∴,∵CB=5,CA=10,,∴,∴EH=x,,则DH=AH﹣AD=x=EH,∴Rt△EHD是等腰直角三角形,∴∠HDE=∠HED=45°,则∠ADE=∠EDF=135°,∴∠FDM=135°﹣45°=90°,在△FDM和△EHM中,,∴△FDM≌△EHM(AAS),∴,,∴,=25﹣5x,∵△CEF的面积是△BEC的面积的2倍,∴,则3x2﹣40x+100=0,解得,x2=10(舍去),则,故答案为:.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(5分)计算:|﹣4|+(﹣2)0﹣.【分析】先化简,然后计算加减法即可.【解答】解:|﹣4|+(﹣2)0﹣=4+1﹣3=2.18.(5分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①﹣②得:4y=4,即y=1,将y=1代入①得:x=3,则方程组的解为.19.(6分)先化简,再求值:(+1)÷,其中x=﹣3.【解答】解:(+1)÷=•=•=,当x=﹣3时,原式==.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.20.(6分)如图,△ABC中,AB=AC,分别以B,C为圆心,大于BC长为半径画弧,两弧交于点D,连接BD,CD,AD,AD与BC交于点E.(1)求证:△ABD≌△ACD;(2)若BD=2,∠BDC=120°,求BC的长.【解答】(1)证明:由作图知:BD=CD.在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);(2)解:∵△ABD≌△ACD,∠BDC=120°,∴∠BDA=∠CDA=∠BDC=×120°=60°,又∵BD=CD,∴DA⊥BC,BE=CE.∵BD=2,∴BE=BD•sin∠BDA=2×=,∴.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.21.(6分)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,再由概率公式求解即可.【解答】解:(1)∵一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴从盒子中任意抽取1张书签,恰好抽到“夏”的概率为,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,∴抽取的书签恰好1张为“春”,1张为“秋”的概率为=.22.(8分)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年身全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【解答】解:(1)此次调查的总人数为9÷15%=60(人),D项目的人数有60﹣6﹣18﹣9﹣12=15(人),补全条形统计图如下:(2)图②中项目E对应的圆心角的度数为360°×=72°;故答案为:72;(3)800×=240(名),答:估计本校七年级800名学生中选择项目B(乒乓球)的人数为240名.23.(8分)图①是某种可调节支撑架,BC为水平固定杆,竖直固定杆AB⊥BC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB=10cm,BC=20cm,AD=50cm.(1)如图②,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度(结果保留根号);(2)如图③,当活动杆AD绕点A由水平状态按逆时针方向旋转角度α,且tanα=(α为锐角),求此时可伸缩支撑杆CD的长度(结果保留根号).【解答】解:(1)过点C作CE⊥AD,垂足为E,由题意得:AB=CE=10cm,BC=AE=20cm,∵AD=50cm,∴ED=AD﹣AE=50﹣20=30(cm),在Rt△CED中,CD===10(cm),∴可伸缩支撑杆CD的长度为10cm;(2)过点D作DF⊥BC,交BC的延长线于点F,交AD′于点G,由题意得:AB=FG=10cm,AG=BF,∠AGD=90°,在Rt△ADG中,tanα==,∴设DG=3x cm,则AG=4x cm,∴AD===5x(cm),∵AD=50cm,∴5x=50,解得:x=10,∴AG=40cm,DG=30cm,∴DF=DG+FG=30+10=40(cm),∴BF=AG=40cm,∵BC=20cm,∴CF=BF﹣BC=40﹣20=20(cm),在Rt△CFD中,CD===20(cm),∴此时可伸缩支撑杆CD的长度为20cm.【点评】本题考查了解直角三角形的应用,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.(8分)如图,△ABC中,AC=BC,∠ACB=90°,A(﹣2,0),C(6,0),反比例函数y=(k ≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.【分析】(1)根据条件先求出点B坐标,再利用待定系数法求出直线AB解析式,将D坐标代入两个函数解析式得到mk的值;(2)先求出PQ=MQ,再设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,利用三角形==﹣,利用最值求出t和面积最大值及点P坐标即面积列出函数S△PMN可.【解答】解:(1)∵A(﹣2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(﹣2,0),B(6,8)代入y=ax+b得:,解得,∴直线AB的函数表达式为y=x+2.∴将点D(m,4)代入y=x+2,得m=2.∴D(2,4),将D(2,4)代入反比例函数解析式y=得:4=,解得k=8.(2)延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°,∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°,∵AB∥MP,∴∠MPL=∠BLP=45°,∠QMP=∠QPM=45°,∴QM=QP,设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,===﹣,∴S△PMN有最大值,此时P(3,).∴当t=3时,S△PMN【点评】本题考查了反比例函数k值的几何意义、反比例函数图象上点的坐标特征、等腰直角三角形的性质,熟练掌握二次函数顶点式求最值是关键.25.(10分)如图,△ABC中,AB=4,D为AB中点,∠BAC=∠BCD,cos∠ADC=,⊙O是△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【分析】(1)先证明△BAC∽△BCD,得到,即可解答;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,在Rt△AED中,通过解直角三角形得到DE=1,,由△BAC∽△BCD得到,设CD=x,则,CE=x﹣1,在Rt△ACE中,根据勾股定理构造方程,求得CD=2,,由∠AFC=∠ADC得到sin∠AFC=sin∠ADC,根据正弦的定义即可求解.【解答】解:(1)∵∠BAC=∠BCD,∠B=∠B,∴△BAC∽△BCD,∴,∵,D为AB中点,∴,∴BC2=16,∴BC=4;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,∵在Rt△AED中,,,∴DE=1,∴,∵△BAC∽△BCD,∴,设CD=x,则AC=x,CE=x﹣1,∵在Rt△ACE中,AC2=CE2+AE2,∴,即x2+2x﹣8=0,解得x=2,x=﹣4(舍去),∴CD=2,AC=,∵∠AFC与∠ADC都是所对的圆周角,∴∠AFC=∠ADC,∵CF为⊙O的直径,∴∠CAF=90°,∴,∴,即⊙O的半径为.【点评】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理,掌握各种定理和判定方法是解题的关键.26.(10分)某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了分钟,从B站到C站行驶了分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①=.②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1﹣d2|=60,求t的值.【分析】(1)直接根据表中数据解答即可;(2)①分别求出D1001次列车、G1002次列车从A站到C站的时间,然后根据路程等于速度乘以时间求解即可;②先求出v2,A与B站之间的路程,G1002次列车经过B站时,对应t的值,从而得出当90≤t≤110时,D1001次列车在B站停车,G1002次列车经过B站时,D1001次列车正在B站停车,然后分25≤t <90,90≤t≤100,100<t≤110,110<t≤150讨论,根据题意列出关于t的方程求解即可.【解答】解:(1)D1001次列车从A站到B站行驶了90分钟,从B站到C站行驶了60分钟,故答案为:90,60;(2)①根据题意得:D1001次列车从A站到C站共需90+60=150分钟,G1002次列车从A站到C站共需35+60+30=125分钟,∴150v1=125v2,∴,故答案为:;②∵v1=4(千米/分钟),,∴v2=4.8(千米/分钟),∵4×90=360(千米),∴A与B站之间的路程为360千米,∵360÷4.8=75(分钟),∴当t=100时,G1002次列车经过B站,由题意可知,当90≤t≤110时,D1001次列车在B站停车,∴G1002次列车经过B站时,D1001次列车正在B站停车,i.当25≤t<90时,d1>d2,∴|d1﹣d2|=d1﹣d2,∴4t﹣4.8(t﹣25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1﹣d2|=d1﹣d2,∴360﹣4.8(t﹣25)=60,t=87.5(分钟),不合题意,舍去;ⅱi.当100<t≤110时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣360=60,t=112.5(分钟),不合题意,舍去;iv.当110<t≤150时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣[360+4(t﹣110)]=60,t=125(分钟);综上所述,当t=75或125时,|d1﹣d2|=60.【点评】本题考查了一元一次方程的应用,速度、时间、路程的关系,明确题意,合理分类讨论是解题的关键.27.(10分)如图①,二次函数y=x2+bx+c的图象C1与开口向下的二次函数图象C2均过点A(﹣1,0),B(3,0).(1)求图象C1对应的函数表达式;(2)若图象C2过点C(0,6),点P位于第一象限,且在图象C2上,直线l过点P且与x轴平行,与图象C2的另一个交点为Q(Q在P左侧),直线l与图象C1的交点为M,N(N在M左侧).当PQ=MP+QN时,求点P的坐标;(3)如图②,D,E分别为二次函数图象C1,C2的顶点,连接AD,过点A作AF⊥AD,交图象C2于点F,连接EF,当EF∥AD时,求图象C2对应的函数表达式.【解答】解:(1)将A(1,0),B(3,0代入y=x2+bx+c得,解得,∴图象C1对应的函数表达式:y=x2﹣2x﹣3;(2)设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),将点C(0,6)代入得,a=﹣2.∴C2对应的函数表达式为:y=﹣2(x+1)(x﹣3),其对称轴为直线x=1.又∵图象C1的对称轴也为直线x=1.作直线x=1,交直线l于点H(如答图①)由二次函数的对称性得,QH=PH,PM=NQ,又∵PQ=MP+QM,∴PH=PM.设PH=t(0<l<2),则点P的横坐标为t+1,点M的横坐标为2t+1,将x=t+1代入y=﹣2(x+1)(x﹣3),得y P=﹣2(t+2)(t﹣2),将x=2t+1代入y=(x+1)(x﹣3),得y M=(2t+2)(2t﹣2),∵y P=y M,∴﹣2(t+2)(t﹣2)=(2t+2)(2t﹣2),即6t2=12,解得,(舍去).∴点P的坐标为(+1,4);(3)连接DE,交x轴于点G,过点F作FI⊥ED于点I,过点F作FJ⊥x轴于点J,(如答图②),∵FI⊥ED,FJ⊥x轴,∴四边形IGJF为矩形,∴IF=GJ,IG=FJ,设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),∵点D,E分别为二次函数图象C1,C2的顶点,∴D(1,﹣4),E(1,﹣4a).∴DG=4,AG=2,EG=﹣4a,在Rt△AGD中,,∵AF⊥AD,∴∠FAB+∠DAB=90°,又∵∠DAG+∠ADG=90°,∴∠ADG=∠FAB,∴tmn∠FAB=tm∠ADG=,设GJ=m(0<m<2),则AJ=2+m,∴FJ=,F(m+1,),∵EF∥AD,∴∠FEl=∠ADG,∴tan∠FEl=tan∠ADG==,∴EI=2m,∵EG=EI+IG,∴,∴①,∵点F在C2上,a(m+1+1)(m+1﹣3)=,即a(m+2)(m﹣2)=,∵m+2≠0,∴a(m﹣2)=②,由①,②可得,解得m1=0(舍去),m2=,∴a=﹣,∴图象C2对应的函数表达式为.。
2020年江苏省苏州市中考数学试卷
![2020年江苏省苏州市中考数学试卷](https://img.taocdn.com/s3/m/eafc44fc192e45361166f5bf.png)
2020年江苏省苏州市中考数学试卷一、选择题(每题3分,共30分)1.2的倒数是()A.2B.−2C.12D.−122.下列计算中正确的是()A.x3+x3=x6B.√4=±2C.y5÷y2=y3D.(xy3)2=xy63.如图,既是轴对称图形又是中心对称图形的个数是()A.4个B.3个C.2个D.1个4.已知反比例函数y=2x,在下列结论中,不正确的是()A.y随x的增大而减少B.图象必经过点(1, 2)C.图象在第一、三象限D.若x>1,则y<25.由完全相同小正方体组成的立体图形如图所示,则这个几何体的左视图为()A. B. C. D.6.某品牌冰箱去年国庆节开始季节性降低20%,到今年五一节又季节性涨价20%后,现售价为2400元/台,则该品牌冰箱去年国庆节之前的售价为每台()A.2000元B.2200元C.2400元D.2500元7.已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ,如图所示,则sinθ的值为()A.512B.513C.1013D.12138.下列二次函数中,图象以直线x=2为对称轴、且经过点(0, 1)的是()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2−39.如图,三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的E处,那么下列等式成立的是()A.AC=AD+BDB.AC=AB+BDC.AC=AD+CDD.AC=AB+CD10.已知每一个小时有一列速度相同的动车从甲地开往乙地,图中OA、MN分别是第一列动车和第二列动车离甲地的路程S(km)与运行时间t(ℎ)的函数图象,折线DB−BC是一列从乙地开往甲地速度为100km/ℎ的普通快车距甲地的路程S(km)与运行时间t(ℎ)的函数图象.以下说法错误的是()A.普通快车比第一列动车晚发车0.5ℎB.普通快车比第一列动车晚到达终点1.5ℎC.第二列动车出发后1ℎ与普通快车相遇D.普通快车与迎面的相邻两动车相遇的时间间隔为0.7ℎ二、填空题(每题3分,共30分)11.2002年我国普通高校计划招生2 750 000人,将这个数用科学记数法表示为________人.12.函数y=√x+2x的自变量x的取值范围是________.13.不等式组{2x>4x−6≤−1的解集是________.14.把x3−2x2y+xy2分解因式,结果正确的是________15.小聪的不透明笔袋里有2支红色签字笔和3支黑色签字笔,每支笔除颜色外均相同、小聪想用红色签字笔标注复习重点,则他从此笔袋中随机拿出一支红色签字笔的概率是________.16.如图,在平行四边形ABCD中,AD // BC,AB // CD,AB=6cm,AD=8cm,DE平分∠ADC交BC边于点E,则线段BE的长度是________cm.17.平面直角坐标系中,已知A(−1, 4),B(4, 9),点P(n, 0)为x轴上一点,若∠APB=45∘,则n=________.18.如图,在⊙O中,弦AB垂直于直径CD,若∠D=30∘,CH=1cm,则AB=________cm.19.如图,正方形ABCD的边长为6,AC和BD交于点O,点E在OA上,且OE=√2,延长BE交线段AD于点F,则DF的长为________.20.如图,四边形ABCD中,AD // BC,∠BCD的平分线CE⊥AB于点E,BE=2AE.若四边形AECD 的面积为7,则四边形ABCD的面积为________.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分.))21.先化简,再求值:3xx2−4÷(1−2x+2),其中x=3tan30∘+2.22.图1、图2分别是6×5的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1的网格中,画一个以线段AB为一边的等腰△ABC,所画△ABC的顶点C在小正方形的顶点上;(2)在图2中网格中,画一个以线段AB为一边的平行四边形ABDE,所画平行四边形ABDE的顶点D、E都在小正方形的顶点上,且所画平行四边形ABDE的面积为7.23.已知如图,在△ABC中,∠BAC的平分线交△ABC外接圆⊙O于点D,DE // AC交AB于点M,求证:BM=EM.24.△ABC是边长为2的等边三角形,点P、Q分别是边AC与边BC上的两点,QC=2AP,设AP=x,△PQC的面积为S.(1)直接写出S与x之间的函数关系式(不要求写出自变量的取值范围);(2)当x为何值时,S有最大值,并求出最大值.25.我区某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校560名考生中抽取部分学生的体育测试成绩绘制了如下条形统计图.试根据统计图提供的信息,回答下列问题: (1)本次调查共抽取了多少名学生的体育测试成绩;(2)求本次调查抽取的这部分学生中男生体育成绩的平均分是多少?(3)若将不低于27分的成绩评为优秀,估计学校这560名考生中,成绩为优秀的学生大约是多少?26.为了更好治理和净化运河,保护环境,运河综合治理指挥部决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格、月处理污水量如下表.经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元. (1)求a ,b 的值;(2)由于受资金限制,运河综合治理指挥部决定购买污水处理设备的资金不超过110万元,问每月最多能处理污水多少吨?27.如图,在平面直角坐标系中,直线y =−3x +9交x 轴于点A ,交y 轴于点B ,以AB 为一边在其右侧A 型B 型 价格(万元/台) a b 处理污水量(吨/月)220180作矩形ABCD,AB=2BC.(1)求点D的坐标;(2)作∠AOB的平分线交CD边于E,点P从点O出发,以3√2个单位每秒的速度向终点E运动,过点P 作x轴的平行线,交边AB于点M,交矩形另一边于点N,连接EM、EN,点P运动时间为t秒,△EMN的面积为S,求S关于t的函数关系式,并直接写出自变量取值范围;(3)在(2)的条件下,连接CM、CN,当t为何值时,CM=CN.28.在矩形ABCD中,连接AC,已知AD:AC=4:5,点E在CB的延长线上,连接AE,过点A作AF⊥AE交射线DC于点F.BE+CF=AB;(1)当点F在DC上时,如图1所示,求证:43(2)当点F在DC的延长线上时,如图2所示,AF交BC于点K,连接EF交射线AB于点G,将△ACF沿着直线AF翻折,翻折后直线AC交EF于点H,若AG=48,GF:AC=4√2:7,求KH的长.7。
2020年江苏省苏州市中考数学试卷原卷附解析
![2020年江苏省苏州市中考数学试卷原卷附解析](https://img.taocdn.com/s3/m/3005872aa31614791711cc7931b765ce05087a22.png)
2020年江苏省苏州市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.菱形和矩形一定都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .每条对角线平分一组对角2.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .21D .1或1-3.给出下列运算:①326()a a -=-;②224-=-;③22()()x y x y y x ---=-;④0(31)1-=.其中运算正确的是( )A . ①和②B . ①和③C . ②和④D . ③和④ 4.△ABC 中,AC=AB ,BC=8 cm ,且|AC -BC|=2 cm ,则AC 的长为( )A .10 cm 或6 cmB .10 cmC .6 cmD .8 cm 或6 cm 5.在下图右侧的四个三角形中不能由△ABC 经过旋转或平移得到的是 ( )6.下列说法中正确的是( )A .圆是轴对称图形,对称轴是圆的直径B .正方形有两条对称轴C .线段的对称轴是线段的中点D .任意一个图形,若沿某直线对折能重合,则此图形就是轴对称图形7.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子,我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最小步数为( )A .2步B .3步C .4步D .5步二、填空题 8.已知⊙O 1和⊙O 2的圆心距为7,两圆半径是方程27120x x -+=的两根,则⊙O 1和⊙O 2的位置关系是__________.9.若直角三角形中两边的长分别是3和5,则斜边上的中线长是 .10.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2 m ,其侧面图如图所示,则购买地毯至少需要 元.11.某中学举行歌咏比赛,六位评委对某位选手打分如下:8.5,8.9,8.0,8.0,9.5,9.2,去掉一个最高分和一个最低分后的平均分是 .12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点8200 m ,结果他在水中实际游了520 m ,则该河流的宽度为 .13.如图,若AB CD ∥,EF 与AB CD ,分别相交于点E F EP EF EFD ∠,,,⊥的平分线与EP 相交于点P ,且40BEP ∠=,则EPF ∠= 度.14.在Rt △ABC 中,∠C=90°,CE 是△ABC 的中线,若AC=2.4 cm ,BC=1.5 cm ,则△AE 的面积为 .解答题15.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义) .16.宋体的汉字“王”、“中”、“田”等都是轴对称图形,•请再写出三个这样的汉字:_________.三、解答题17.如图,PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,PA=10cm ,PB =5cm ,求⊙O 的直径.B C A P O18.如图,甲站在墙前,乙在墙后,为了不被甲看到,请你在图中画出乙的活动区域.19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.20.如图,从点P 向⊙O 引两条切线PA ,PB ,切点为A ,B ,AC 为弦,BC 为⊙O•的直径,若∠P=60°,PB=2cm ,求AC 的长.21.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落在点E 处.求证:EF=DF .22.根据下列关系列不等式:(1)x 的2倍大于一5;(2)4 减去 2x 的差是负数;(3)y 与 3 的和不大于0. 5.23.一个氧原子约重23⨯g,问 20 个氧原子重多少 g?2.65710-24.某公司用白铁皮做盒子,每张铁皮可生产12 个盒身或 18 个盒盖,用 7 张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才能使生产的盒身与盒盖配套 (一张铁皮只能生产一种产品,一个盒身配两个盒盖)?若用x 表示安排生产盒身的铁皮张数,y 表示生产盒盖的铁皮张数,请根据问题中的条件列出关于 x,y 的方程组,并用尝试列表的方法求其解.25.如图,一长方形的长为12,宽为8.(1)将其四周往内各减少1,得一新的小长方形,则原长方形与新长方形是相似图形吗?为什么?(2)如果将宽增加l,则长增加多少后,所得长方形与原长方形为相似图形?26.如图所示,已知AB=AE,∠B=∠E,BC=ED,F是CD的中点,说出AF是CD的中垂线的理由.解:连结AC,AD,在△ABC和△AED中,AB=AE(已知),∠B=∠E(已知),BC=ED(已知),∴△ABC≌△AED(SAS).∴AC=AD(全等三角形的对应边相等).请把后面的过程补充完整:27.求下列每对数在数轴上对应点之间的距离.(1)3 与-2. 2(2)142与124(3)-4 与-4. 5(4)132-与123你能发现两点之间的距离与这两数的差有什么关系吗?28.计算:(1)0-(+5)-(-3. 6)+(-4);(2)(-5.3 (+ 4.8 )+ (-3.2)-(-2. 5)(3)31321 52452 --+-+(4)581139 11 1215121520 -++--29.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连结CC′,设AB=a,BC=b,AC=c,请利用四边形BCC′D′的面积证明勾股定理222a b c+=.优秀及格不及格30.某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如图的统计图,试结合图形信息回答下列问题:(1)这32名学生培训前后考试成绩的中位数所在的等级分别是 、 ; (2)估计该校整个八年级320名学生中,培训后考试成绩的等级为“及格”与“优秀”的学生共有多少名?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.A5.B6.D7.B二、填空题8.外切9.2.510.480°8.6512.480 m13.6514.0.9cm 215. 211x +(答案不惟一) 16.略三、解答题17.连结 OA .设⊙O 的半径为r ,∵PA 为⊙O 的切线,PA=10 cm ,PB=5 cm. ∴∠OAP=90°, OP= (r+5) cm ,∵22210(5)r r +=+,r=7.5 cm , 2r=15cm ,∴⊙O 的直径是 15.18.如图中斜线区.19.解法一:设口袋中有x 个白球, 由题意,得200501010=+x , 解得x =30. 答:口袋中约有30个白球.解法二:∵P (50次摸到红球)=4120050=,∴10÷41=40 .∴ 40-10=30 . 答:口袋中大约有30个白球.3.21.证AF=FC,AD=EC22.(1)2x>-5;(2)4-2x<0;(3)y+3≤0.5 23.225.31410-⨯g24.由题意,得方程组721218x yx y+=⎧⎨⨯=⎩,用列表尝试可得34xy=⎧⎨=⎩25.(1)不是相似图形,理由略;(2)1.5 26.略27.(1)5.2 (2)124(3)0. 5 (4)556两点之间的距离等于两数之差的绝对值28.(1)-5.4 (2)-10.8 (3)14- (4)7160-29.略30.(1)不及格、及格;(2)及格有160人,优秀80人。
2020年江苏省苏州市中考数学试卷 (解析版)
![2020年江苏省苏州市中考数学试卷 (解析版)](https://img.taocdn.com/s3/m/250d1248e009581b6bd9ebe8.png)
2020年苏州市中考数学试卷一、选择题1.在下列四个实数中,最小的数是()A.﹣2B.C.0D.2.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10﹣5B.1.64×10﹣6C.16.4×10﹣7D.0.164×10﹣5 3.下列运算正确的是()A.a2•a3=a6B.a3÷a=a3C.(a2)3=a5D.(a2b)2=a4b24.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.5.不等式2x﹣1≤3的解集在数轴上表示正确的是()A.B.C.D.6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差(单位:s)是()A.0B.0.6C.0.8D.1.17.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A.a+b tanαB.a+b sinαC.a+D.a+8.如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE ⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1B.﹣1C.π﹣D.﹣9.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°10.如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.使在实数范围内有意义的x的取值范围是.12.若一次函数y=3x﹣6的图象与x轴交于点(m,0),则m=.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.14.如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是°.15.若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=.16.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=.17.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=.18.如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON 于点A、B,再分别以点A、B为圆心,大于AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA=10,DE=12,则sin∠MON=.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:+(﹣2)2﹣(π﹣3)0.20.解方程:+1=.21.如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.22.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分10093.5100%70%10080分数段统计(学生成绩记为x)分数段0≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100频数05253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.23.在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.24.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.25.如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.26.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA=PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD=90°.求的值.27.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11这两天以成本价促销,之后售价恢复到10元日/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.28.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.在下列四个实数中,最小的数是()A.﹣2B.C.0D.【分析】将﹣2,,0,在数轴上表示,根据数轴表示数的大小规律可得答案.解:将﹣2,,0,在数轴上表示如图所示:于是有﹣2<0<<,故选:A.2.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10﹣5B.1.64×10﹣6C.16.4×10﹣7D.0.164×10﹣5【分析】根据负指数次幂的意义,将一个较小的数写成a×10n的形式,其中0<a<10,n为整数即可.解:0.00000164=1.64×10﹣6,故选:B.3.下列运算正确的是()A.a2•a3=a6B.a3÷a=a3C.(a2)3=a5D.(a2b)2=a4b2【分析】根据同底数幂的乘除法、幂的乘方,积的乘方的意义和计算方法,分别进行计算,做出判断和选择.解:a2•a3=a2+3=a5,因此选项A不符合题意;a3÷a=a3﹣1=a2,因此选项B不符合题意;(a2)3=a2×3=a6;因此选项C不符合题意;(a2b)2=a4b2,因此选项D符合题意;故选:D.4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形结合几何体判定则可.解:从上面看,是一行三个小正方形.故选:C.5.不等式2x﹣1≤3的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.解:移项得,2x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.故选:C.6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差(单位:s)是()A.0B.0.6C.0.8D.1.1【分析】利用加权平均数的计算方法进行计算即可.解:==1.1,故选:D.7.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A.a+b tanαB.a+b sinαC.a+D.a+【分析】过C作CF⊥AB于F,则四边形BFCD是矩形,根据三角函数的定义即可得到结论.解:过C作CF⊥AB于F,则四边形BFCD是矩形,∴BF=CD=a,CF=BD=b,∵∠ACF=α,∴tanα==,∴AF=b•tanα,∴AB=AF+BF=a+b tanα,故选:A.8.如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE ⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1B.﹣1C.π﹣D.﹣【分析】根据矩形的判定定理得到四边形CDOE是矩形,连接OC,根据全等三角形的性质得到OD=OE,得到矩形CDOE是正方形,根据扇形和正方形的面积公式即可得到结论.解:∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=∠AOB=90°,∴四边形CDOE是矩形,连接OC,∵点C是的中点,∴∠AOC=∠BOC,∵OC=OC,∴△COD≌△COE(AAS),∴OD=OE,∴矩形CDOE是正方形,∵OC=OA=,∴OE=1,∴图中阴影部分的面积=﹣1×1=﹣1,故选:B.9.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B,由三角形的外角性质和三角形内角和定理可求解.解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故选:C.10.如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)【分析】求出反比例函数y=,设OB的解析式为y=mx+b,由OB经过点O(0,0)、D(3,2),得出OB的解析式为y=x,设C(a,),且a>0,由平行四边形的性质得BC∥OA,S平行四边形OABC=2S△OBC,则B(,),BC=﹣a,代入面积公式即可得出结果.解:∵反比例函数y=(k>0,x>0)的图象经过点D(3,2),∴2=,∴k=6,∴反比例函数y=,设OB的解析式为y=mx+b,∵OB经过点O(0,0)、D(3,2),∴,解得:,∴OB的解析式为y=x,∵反比例函数y=经过点C,∴设C(a,),且a>0,∵四边形OABC是平行四边形,∴BC∥OA,S平行四边形OABC=2S△OBC,∴点B的纵坐标为,∵OB的解析式为y=x,∴B(,),∴BC=﹣a,∴S△OBC=××(﹣a),∴2×××(﹣a)=,解得:a=2,∴B(,3),故选:B.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.使在实数范围内有意义的x的取值范围是x≥1.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式得到答案.解:由题意得,x﹣1≥0,解得,x≥1,故答案为:x≥1.12.若一次函数y=3x﹣6的图象与x轴交于点(m,0),则m=2.【分析】把点(m,0)代入y=3x﹣6即可求得m的值.解:∵一次函数y=3x﹣6的图象与x轴交于点(m,0),∴3m﹣6=0,解得m=2,故答案为2.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.【分析】若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,再根据概率公式求解可得.解:若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,所以该小球停留在黑色区域的概率是=,故答案为:.14.如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是25°.【分析】先根据切线的性质得∠OAC=90°,再利用互余计算出∠AOC=90°﹣∠C=50°,由于∠OBD=∠ODB,利用三角形的外角性质得∠OBD=∠AOC=25°.解:∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,∴∠AOC=90°﹣∠C=90°﹣40°=50°,∵OB=OD,∴∠OBD=∠ODB,而∠AOC=∠OBD+∠ODB,∴∠OBD=∠AOC=25°,即∠ABD的度数为25°,故答案为:25.15.若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=4.【分析】根据同类项的意义,列方程求解即可.解:∵单项式2x m﹣1y2与单项式x2y n+1是同类项,∴,∴m+n=4,故答案为:4.16.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=1.【分析】设AE=ED=x,CD=y,根据勾股定理即可求出答案.解:设AE=ED=x,CD=y,∴BD=2y,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∴AB2=4x2+4y2,∴x2+y2=1,在Rt△CDE中,∴EC2=x2+y2=1,∴EC=1,故答案为:117.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=.【分析】作CD⊥x轴于D,CE⊥y轴于E,则BE=4﹣n,CE=3,CD=n,AD=7,根据平行线的性质得出∠ECA=∠CAO,根据题意得出∠BCE=∠CAO,通过解直角三角形得到tan∠CAO==tan∠BCE=,即可得到,解得即可.解:作CD⊥x轴于D,CE⊥y轴于E,∵点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,则E(0,n),D(3,0),∴BE=4﹣n,CE=3,CD=n,AD=7,∵CE∥OA,∴∠ECA=∠CAO,∵∠BCA=2∠CAO,∴∠BCE=∠CAO,在Rt△CAD中,tan∠CAO=,在Rt△CBE中,tan∠BCE=,∴=,即,解得n=,故答案为.18.如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON 于点A、B,再分别以点A、B为圆心,大于AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA=10,DE=12,则sin∠MON=.【分析】如图,连接DB,过点D作DH⊥ON于H.首先证明四边形AOBD是菱形,解直角三角形求出DH即可解决问题.解:如图,连接DB,过点D作DH⊥ON于H.由作图可知,∠AOD=∠DOE,OA=OB,∵AD∥EO,∴∠ADO=∠DOE,∴∠AOD=∠ADO,∴AO=AD,∴AD=OB,AD∥OB,∴四边形AOBD是平行四边形,∵OA=OB,∴四边形AOBD是菱形,∴OB=BD=OA=10,BD∥OA,∴∠MON=∠DBE,∠BOD=∠BDO,∵DE⊥OD,∴∠BOD+∠DEO=90°,∠ODB+∠BDE=90°,∴∠BDE=∠BED,∴BD=BE=10,∴OE=2OB=20,∴OD===16,∵DH⊥OE,∴DH===,∴sin∠MON=sin∠DBH===.故答案为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:+(﹣2)2﹣(π﹣3)0.【分析】根据实数的计算法则进行计算即可,如何不为0的零次幂为1.解:+(﹣2)2﹣(π﹣3)0.=3+4﹣1,=6.20.解方程:+1=.【分析】根据解分式方程的步骤解答即可.解:方程的两边同乘x﹣1,得x+(x﹣1)=2,解这个一元一次方程,得,经检验,是原方程的解.21.如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.【分析】(1)由护栏的总长度为50m,可得出关于b的一元一次方程,解之即可得出结论;(2)由a的取值范围结合a=50﹣2b,即可得出关于b的一元一次不等式,解之即可得出结论.解:(1)依题意,得:20+2b=50,解得:b=15.(2)∵18≤a≤26,a=50﹣2b,∴,解得:12≤b≤16.答:b的取值范围为12≤b≤16.22.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是方案三.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分10093.5100%70%10080分数段统计(学生成绩记为x)分数段0≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100频数05253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.【分析】(1)工具抽样的代表性、普遍性和可操作性可知,方案三符合题意;(2)①根据样本的中位数,估计总体中位数所在的范围;②样本中“优秀”人数占调查人数的,因此估计总体1200人的70%是“优秀”.解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析,是最符合题意的.故答案为:方案三;(2)①样本100人中,成绩从小到大排列后,处在中间位置的两个数都在90≤x<95,因此中位数在90≤x<95组中;②由题意得,1200×70%=840(人),答:该校1200名学生中达到“优秀”的有840人.23.在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.【分析】用树状图或列表法表示所有可能出现的结果,进而求出相应的概率.解:用列表格法表示点A所有可能的情况如下:共有9种可能出现的结果,其中点A在坐标轴上有5种,∴P(点A在坐标轴上)=.24.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.【分析】(1)由矩形性质得AD∥BC,进而由平行线的性质得∠AEB=∠DAF,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似三角形的比例线段求得DF.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ADF∽△EAB,∴△ABE∽△DFA;(2)∵E是BC的中点,BC=4,∴BE=2,∵AB=6,∴AE=,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DFA,∴,∴.25.如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.【分析】(1)抛物线的对称轴为x=2,即b=2,解得:b=﹣4,即可求解;(2)求出点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,而四边形PBCQ 为平行四边形,则PQ=BC=2,故x2﹣x1=2,即可求解.解:(1)直线与抛物线的对称轴交于点D(2,﹣3),故抛物线的对称轴为x=2,即b=2,解得:b=﹣4,故抛物线的表达式为:y=x2﹣4x;(2)把y=﹣3代入y=x2﹣4x并解得x=1或3,故点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,∵四边形PBCQ为平行四边形,∴PQ=BC=2,故x2﹣x1=2,又∵y1=x12﹣4x1,y2=x22﹣4x2,|y1﹣y2|=2,故|(x12﹣4x1)﹣(x22﹣4x2)=2,|x1+x2﹣4|=1.∴x1+x2=5或x1+x2=﹣3,由,解得;由,解得.26.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA=PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD=90°.求的值.【分析】(1)由“AAS”可知△BAP≌△CPD,可得BP=CD,AB=PC,可得结论;(2)过点A作AE⊥BC于E,过点D作DF⊥BC于F,由(1)可知EF=AE+DF,由等腰直角三角形的性质可得BE=AE,CF=DF,AB=AE,CD=DF,即可求解.【解答】证明:(1)∵∠B=∠APD=90°,∴∠BAP+∠APB=90°,∠APB+∠DPC=90°,∴∠BAP=∠DPC,又PA=PD,∠B=∠C=90°,∴△BAP≌△CPD(AAS),∴BP=CD,AB=PC,∴BC=BP+PC=AB+CD;(2)如图2,过点A作AE⊥BC于E,过点D作DF⊥BC于F,由(1)可知,EF=AE+DF,∵∠B=∠C=45°,AE⊥BC,DF⊥BC,∴∠B=∠BAE=45°,∠C=∠CDF=45°,∴BE=AE,CF=DF,AB=AE,CD=DF,∴BC=BE+EF+CF=2(AE+DF),∴==.27.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.【分析】(1)由表格信息可知,从6月1日到6月9日,成本价8元/kg,售价10元/kg,一共售出200kg,根据利润=每千克的利润×销售量列式计算即可;(2)设B点坐标为(a,400),根据题意列方程求出点B的坐标,设线段BC所在直线对应的函数表达式为y=kx+b,利用待定系数法解答即可.解:(1)200×(10﹣8)=400(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B坐标为(a,400),根据题意得:(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,解这个方程,得a=350,∴点B坐标为(350,400),设线段BC所在直线对应的函数表达式为y=kx+b,则:,解得,∴线段BC 所在直线对应的函数表达式为.28.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.【分析】(1)由题意得出OP=8﹣t,OQ=t,则可得出答案;(2)如图,过点B作BD⊥OP,垂足为D,则BD∥OQ.设线段BD的长为x,则BD =OD=x,OB=BD=x,PD=8﹣t﹣x,得出,则,解出x=.由二次函数的性质可得出答案;(3)证明△PCQ是等腰直角三角形.则S△PCQ=PC•QC=PQ=PQ2.在Rt△POQ中,PQ2=OP2+OQ2=(8﹣t)2+t2.由四边形OPCQ的面积S=S△POQ+S△PCQ可得出答案.解:(1)由题意可得,OP=8﹣t,OQ=t,∴OP+OQ=8﹣t+t=8(cm).(2)当t=4时,线段OB的长度最大.如图,过点B作BD⊥OP,垂足为D,则BD∥OQ.∵OT平分∠MON,∴∠BOD=∠OBD=45°,∴BD=OD,OB=BD.设线段BD的长为x,则BD=OD=x,OB=BD=x,PD=8﹣t﹣x,∵BD∥OQ,∴,∴,∴x=.∴OB==﹣.当t=4时,线段OB的长度最大,最大为2cm.(3)∵∠POQ=90°,∴PQ是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ是等腰直角三角形.∴S△PCQ=PC•QC=PQ=PQ2.在Rt△POQ中,PQ2=OP2+OQ2=(8﹣t)2+t2.∴四边形OPCQ的面积S=S△POQ+S△PCQ=,=,=4t﹣+16﹣4t=16.∴四边形OPCQ的面积为16cm2.。
江苏省苏州市中考数学试卷及答案解析()
![江苏省苏州市中考数学试卷及答案解析()](https://img.taocdn.com/s3/m/0005003ce3bd960590c69ec3d5bbfd0a7956d5ab.png)
江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A. B. C. D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B. C. D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=.12.当x=时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC 内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP 所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A. B. C. D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B. C. D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△AB C=•AB•AC=×2×2=4,∴S△ADC=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△B EF=•EF•BH=×2×=,故选C.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.当x=2时,分式的值为0.【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.13.要从甲、乙两名运动员中选出一名参加“里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【考点】条形统计图;扇形统计图.【分析】根据文学类人数和所占百分比,求出总人数,然后用总人数乘以艺术类读物所占的百分比即可得出答案.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.15.不等式组的最大整数解是3.【考点】一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【考点】切线的性质;圆周角定理;扇形面积的计算.【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC 内),连接AB′,则AB′的长为2.【考点】翻折变换(折叠问题).【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP 所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【考点】坐标与图形性质;平行线分线段成比例;相似三角形的判定与性质.【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.【考点】实数的运算;零指数幂.【分析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案.【解答】解:原式=5+3﹣1=7.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据分式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:21.先化简,再求值:÷(1﹣),其中x=.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式=÷=•=,当x=时,原式==.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【考点】二元一次方程组的应用.【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【考点】列表法与树状图法;坐标与图形性质;概率公式.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】菱形的性质;平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【考点】反比例函数与一次函数的交点问题.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n 的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【考点】圆的综合题.【分析】(1)直接利用圆周角定理得出AD⊥BC,劲儿利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,再求出AE的长,进而得出△AEG∽△DEA,求出答案即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【考点】圆的综合题.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得=列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,∴t=,故答案为.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD 交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8,∴MH=0.8(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴0.8(+1)≠,矛盾,∴假设不成立.∴直线MQ与⊙O不相切.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【考点】二次函数综合题.【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)过点M作ME⊥y轴于点E,交AB于点D,所以△ABM的面积为DM•OB,设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,即可求出S的最大值,其中m的取值范围是0<m<3;(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,所以d1+d2=BF,所以求出BF 的最小值即可,由题意可知,点F在以BM′为直径的圆上,所以当点F与M′重合时,BF可取得最大值.【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=,∴D的坐标为(,﹣m2+2m+3),∴DM=m﹣=,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°6月30日。
2020年江苏省苏州市中考数学试卷
![2020年江苏省苏州市中考数学试卷](https://img.taocdn.com/s3/m/c362f92302d276a200292ef6.png)
2020年江苏省苏州市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(3分)在下列四个实数中,最小的数是()A.﹣2B.C.0D.2.(3分)某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10﹣5B.1.64×10﹣6C.16.4×10﹣7D.0.164×10﹣5 3.(3分)下列运算正确的是()A.a2•a3=a6B.a3÷a=a3C.(a2)3=a5D.(a2b)2=a4b24.(3分)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.5.(3分)不等式2x﹣1≤3的解集在数轴上表示正确的是()A.B.C.D.6.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差(单位:s)是()A.0B.0.6C.0.8D.1.17.(3分)如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A.a+b tanαB.a+b sinαC.a+D.a+8.(3分)如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1B.﹣1C.π﹣D.﹣9.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°10.(3分)如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)使在实数范围内有意义的x的取值范围是.12.(3分)若一次函数y=3x﹣6的图象与x轴交于点(m,0),则m=.13.(3分)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.14.(3分)如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是°.15.(3分)若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=.16.(3分)如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD 的中点,则EC=.17.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣4,0)、(0,4),点C (3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=.18.(3分)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再分别以点A、B为圆心,大于AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA=10,DE=12,则sin∠MON=.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(5分)计算:+(﹣2)2﹣(π﹣3)0.20.(5分)解方程:+1=.21.(6分)如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.22.(6分)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分10093.5100%70%10080分数段统计(学生成绩记为x)分数段0≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100频数05253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A 的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.24.(8分)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.25.(8分)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l 与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.26.(10分)问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA =PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD=90°.求的值.27.(10分)某商店代理销售一种水果,六月份的销售利润y (元)与销售量x (kg )之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC 所在直线对应的函数表达式.日期销售记录6月1日库存600kg ,成本价8元/kg ,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg .6月10、11日这两天以成本价促销,之后售价恢复到10元/kg .6月12日补充进货200kg ,成本价8.5元/kg .6月30日800kg 水果全部售完,一共获利1200元.28.(10分)如图,已知∠MON =90°,OT 是∠MON 的平分线,A 是射线OM 上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.2020年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(3分)在下列四个实数中,最小的数是()A.﹣2B.C.0D.【分析】将﹣2,,0,在数轴上表示,根据数轴表示数的大小规律可得答案.【解答】解:将﹣2,,0,在数轴上表示如图所示:于是有﹣2<0<<,故选:A.【点评】本题考查实数的大小比较,数轴表示数,掌握实数大小比较的方法是解决问题的关键.2.(3分)某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10﹣5B.1.64×10﹣6C.16.4×10﹣7D.0.164×10﹣5【分析】根据负指数次幂的意义,将一个较小的数写成a×10n的形式,其中0<|a|<10,n为整数即可.【解答】解:0.00000164=1.64×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小数的方法,写成a×10n的形式是关键.3.(3分)下列运算正确的是()A.a2•a3=a6B.a3÷a=a3C.(a2)3=a5D.(a2b)2=a4b2【分析】根据同底数幂的乘除法、幂的乘方,积的乘方的意义和计算方法,分别进行计算,做出判断和选择.【解答】解:a2•a3=a2+3=a5,因此选项A不符合题意;a3÷a=a3﹣1=a2,因此选项B不符合题意;(a2)3=a2×3=a6;因此选项C不符合题意;(a2b)2=a4b2,因此选项D符合题意;故选:D.【点评】本题考查同底数幂的乘除法、幂的乘方,积的乘方的意义和计算方法,掌握计算法则是正确计算的前提.4.(3分)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形结合几何体判定则可.【解答】解:从上面看,是一行三个小正方形.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)不等式2x﹣1≤3的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,2x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.6.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差(单位:s)是()A.0B.0.6C.0.8D.1.1【分析】利用加权平均数的计算方法进行计算即可.【解答】解:==1.1,故选:D.【点评】本题考查加权平均数的意义和计算方法,掌握计算方法是正确计算的前提.7.(3分)如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A.a+b tanαB.a+b sinαC.a+D.a+【分析】过C作CF⊥AB于F,则四边形BFCD是矩形,根据三角函数的定义即可得到结论.【解答】解:过C作CF⊥AB于F,则四边形BFCD是矩形,∴BF=CD=a,CF=BD=b,∵∠ACF=α,∴tanα==,∴AF=b•tanα,∴AB=AF+BF=a+b tanα,故选:A.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的定义,并根据题意构建合适的直角三角形是解题的关键.8.(3分)如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1B.﹣1C.π﹣D.﹣【分析】根据矩形的判定定理得到四边形CDOE是矩形,连接OC,根据全等三角形的性质得到OD=OE,得到矩形CDOE是正方形,根据扇形和正方形的面积公式即可得到结论.【解答】解:∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=∠AOB=90°,∴四边形CDOE是矩形,连接OC,∵点C是的中点,∴∠AOC=∠BOC,∵OC=OC,∴△COD≌△COE(AAS),∴OD=OE,∴矩形CDOE是正方形,∵OC=OA=,∴OE=1,∴图中阴影部分的面积=﹣1×1=﹣1,故选:B.【点评】本题考查了扇形面积的计算,正方形的判定和性质,全等三角形的判定和性质,正确识别图形是解题的关键.9.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B,由三角形的外角性质和三角形内角和定理可求解.【解答】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故选:C.【点评】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.10.(3分)如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)【分析】求出反比例函数y=,设OB的解析式为y=mx+b,由OB经过点O(0,0)、D(3,2),得出OB的解析式为y=x,设C(a,),且a>0,由平行四边形的性质=2S△OBC,则B(,),BC=﹣a,代入面积公式即可得得BC∥OA,S平行四边形OABC出结果.【解答】解:∵反比例函数y=(k>0,x>0)的图象经过点D(3,2),∴2=,∴k=6,∴反比例函数y=,设OB的解析式为y=mx+b,∵OB经过点O(0,0)、D(3,2),∴,解得:,∴OB的解析式为y=x,∵反比例函数y=经过点C,∴设C(a,),且a>0,∵四边形OABC是平行四边形,=2S△OBC,∴BC∥OA,S平行四边形OABC∴点B的纵坐标为,∵OB的解析式为y=x,∴B(,),∴BC=﹣a,=××(﹣a),∴S△OBC∴2×××(﹣a)=,解得:a=2,∴B(,3),故选:B.【点评】本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、平行四边形的性质、三角形面积计算等知识,熟练掌握平行四边形的性质是解题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)使在实数范围内有意义的x的取值范围是x≥1.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,x﹣1≥0,解得,x≥1,故答案为:x≥1.【点评】本题考查了二次根式的意义和性质,二次根式中的被开方数必须是非负数.12.(3分)若一次函数y=3x﹣6的图象与x轴交于点(m,0),则m=2.【分析】把点(m,0)代入y=3x﹣6即可求得m的值.【解答】解:∵一次函数y=3x﹣6的图象与x轴交于点(m,0),∴3m﹣6=0,解得m=2,故答案为2.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键.13.(3分)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.【分析】若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,再根据概率公式求解可得.【解答】解:若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,所以该小球停留在黑色区域的概率是=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.14.(3分)如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是25°.【分析】先根据切线的性质得∠OAC=90°,再利用互余计算出∠AOC=90°﹣∠C=50°,由于∠OBD=∠ODB,利用三角形的外角性质得∠OBD=∠AOC=25°.【解答】解:∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,∴∠AOC=90°﹣∠C=90°﹣40°=50°,∵OB=OD,∴∠OBD=∠ODB,而∠AOC=∠OBD+∠ODB,∴∠OBD=∠AOC=25°,即∠ABD的度数为25°,故答案为:25.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.15.(3分)若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=4.【分析】根据同类项的意义,列方程求解即可.【解答】解:∵单项式2x m﹣1y2与单项式x2y n+1是同类项,∴,∴m+n=4,故答案为:4.【点评】本题考查同类项的意义,理解同类项的意义是正确解答的前提.16.(3分)如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD 的中点,则EC=1.【分析】设AE=ED=x,CD=y,根据勾股定理即可求出答案.【解答】解:设AE=ED=x,CD=y,∴BD=2y,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∴AB2=4x2+4y2,∴x2+y2=1,在Rt△CDE中,∴EC2=x2+y2=1,∴EC=1,故答案为:1【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.17.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=.【分析】作CD⊥x轴于D,CE⊥y轴于E,则BE=4﹣n,CE=3,CD=n,AD=7,根据平行线的性质得出∠ECA=∠CAO,根据题意得出∠BCE=∠CAO,通过解直角三角形得到tan∠CAO==tan∠BCE=,即可得到,解得即可.【解答】解:作CD⊥x轴于D,CE⊥y轴于E,∵点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,则E(0,n),D(3,0),∴BE=4﹣n,CE=3,CD=n,AD=7,∵CE∥OA,∴∠ECA=∠CAO,∵∠BCA=2∠CAO,∴∠BCE=∠CAO,在Rt△CAD中,tan∠CAO=,在Rt△CBE中,tan∠BCE=,∴=,即,解得n=,故答案为.【点评】本题考查了坐标与图形的性质,平行线的性质,解直角三角形等,求得∠BCE=∠CAO,得出=是解题的关键.18.(3分)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再分别以点A、B为圆心,大于AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA=10,DE=12,则sin∠MON=.【分析】如图,连接DB,过点D作DH⊥ON于H.首先证明四边形AOBD是菱形,解直角三角形求出DH即可解决问题.【解答】解:如图,连接DB,过点D作DH⊥ON于H.由作图可知,∠AOD=∠DOE,OA=OB,∵AD∥EO,∴∠ADO=∠DOE,∴∠AOD=∠ADO,∴AO=AD,∴AD=OB,AD∥OB,∴四边形AOBD是平行四边形,∵OA=OB,∴四边形AOBD是菱形,∴OB=BD=OA=10,BD∥OA,∴∠MON=∠DBE,∠BOD=∠BDO,∵DE⊥OD,∴∠BOD+∠DEO=90°,∠ODB+∠BDE=90°,∴∠BDE=∠BED,∴BD=BE=10,∴OE=2OB=20,∴OD===16,∵DH⊥OE,∴DH===,∴sin∠MON=sin∠DBH===.故答案为.【点评】本题考查作图﹣复杂作图,平行线的性质,角平分线的定义,菱形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(5分)计算:+(﹣2)2﹣(π﹣3)0.【分析】根据实数的计算法则进行计算即可,如何不为0的零次幂为1.【解答】解:+(﹣2)2﹣(π﹣3)0.=3+4﹣1,=6.【点评】本题考查零次幂的性质、实数的运算,掌握计算法则是正确计算的前提.20.(5分)解方程:+1=.【分析】根据解分式方程的步骤解答即可.【解答】解:方程的两边同乘x﹣1,得x+(x﹣1)=2,解这个一元一次方程,得,经检验,是原方程的解.【点评】本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.21.(6分)如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.【分析】(1)由护栏的总长度为50m,可得出关于b的一元一次方程,解之即可得出结论;(2)由a的取值范围结合a=50﹣2b,即可得出关于b的一元一次不等式,解之即可得出结论.【解答】解:(1)依题意,得:20+2b=50,解得:b=15.(2)∵18≤a≤26,a=50﹣2b,∴,解得:12≤b≤16.答:b的取值范围为12≤b≤16.【点评】本题考查了一元一次方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(6分)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是方案三.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分10093.5100%70%10080分数段统计(学生成绩记为x)分数段0≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100频数05253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.【分析】(1)工具抽样的代表性、普遍性和可操作性可知,方案三符合题意;(2)①根据样本的中位数,估计总体中位数所在的范围;②样本中“优秀”人数占调查人数的,因此估计总体1200人的70%是“优秀”.【解答】解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析,是最符合题意的.故答案为:方案三;(2)①样本100人中,成绩从小到大排列后,处在中间位置的两个数都在90≤x<95,因此中位数在90≤x<95组中;②由题意得,1200×70%=840(人),答:该校1200名学生中达到“优秀”的有840人.【点评】考查平均数、中位数的意义和计算方法,样本估计总体是统计中常用的方法.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A 的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.【分析】用树状图或列表法表示所有可能出现的结果,进而求出相应的概率.【解答】解:用列表格法表示点A所有可能的情况如下:共有9种可能出现的结果,其中点A在坐标轴上有5种,∴P(点A在坐标轴上)=.【点评】考查树状图或列表法求随机事件发生的概率,列举出所有可能出现的结果是解决问题的关键.24.(8分)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.【分析】(1)由矩形性质得AD∥BC,进而由平行线的性质得∠AEB=∠DAF,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似三角形的比例线段求得DF.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ADF∽△EAB,∴△ABE∽△DFA;(2)∵E是BC的中点,BC=4,∴BE=2,∵AB=6,∴AE=,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DFA,∴,∴.【点评】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键是证明三角形相似.25.(8分)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l 与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.【分析】(1)抛物线的对称轴为x=2,即b=2,解得:b=﹣4,即可求解;(2)求出点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,而四边形PBCQ为平行四边形,则PQ=BC=2,故x2﹣x1=2,即可求解.【解答】解:(1)直线与抛物线的对称轴交于点D(2,﹣3),故抛物线的对称轴为x=2,即b=2,解得:b=﹣4,故抛物线的表达式为:y=x2﹣4x;(2)把y=﹣3代入y=x2﹣4x并解得x=1或3,故点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,∵四边形PBCQ为平行四边形,∴PQ=BC=2,故x2﹣x1=2,又∵y1=x12﹣4x1,y2=x22﹣4x2,|y1﹣y2|=2,故|(x12﹣4x1)﹣(x22﹣4x2)=2,|x1+x2﹣4|=1.∴x1+x2=5或x1+x2=﹣3,由,解得;由,解得.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.26.(10分)问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA =PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD=90°.求的值.【分析】(1)由“AAS”可知△BAP≌△CPD,可得BP=CD,AB=PC,可得结论;(2)过点A作AE⊥BC于E,过点D作DF⊥BC于F,由(1)可知EF=AE+DF,由等腰直角三角形的性质可得BE=AE,CF=DF,AB=AE,CD=DF,即可求解.【解答】证明:(1)∵∠B=∠APD=90°,∴∠BAP+∠APB=90°,∠APB+∠DPC=90°,∴∠BAP=∠DPC,又PA=PD,∠B=∠C=90°,∴△BAP≌△CPD(AAS),∴BP=CD,AB=PC,∴BC=BP+PC=AB+CD;(2)如图2,过点A作AE⊥BC于E,过点D作DF⊥BC于F,由(1)可知,EF=AE+DF,∵∠B=∠C=45°,AE⊥BC,DF⊥BC,∴∠B=∠BAE=45°,∠C=∠CDF=45°,∴BE=AE,CF=DF,AB =AE,CD =DF,∴BC=BE+EF+CF=2(AE+DF),∴==.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.27.(10分)某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30800kg水果全部售完,一共获利1200元.日【分析】(1)由表格信息可知,从6月1日到6月9日,成本价8元/kg,售价10元/kg,一共售出200kg,根据利润=每千克的利润×销售量列式计算即可;(2)设B点坐标为(a,400),根据题意列方程求出点B的坐标,设线段BC所在直线对应的函数表达式为y=kx+b,利用待定系数法解答即可.【解答】解:(1)200×(10﹣8)=400(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B坐标为(a,400),根据题意得:(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,解这个方程,得a=350,∴点B坐标为(350,400),设线段BC所在直线对应的函数表达式为y=kx+b,则:,解得,∴线段BC所在直线对应的函数表达式为.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.28.(10分)如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.【分析】(1)由题意得出OP=8﹣t,OQ=t,则可得出答案;(2)如图,过点B作BD⊥OP,垂足为D,则BD∥OQ.设线段BD的长为x,则BD=OD=x,OB=BD=x,PD=8﹣t﹣x,得出,则,解出x=.由二次函数的性质可得出答案;=PC•QC=PQ=PQ2.(3)证明△PCQ是等腰直角三角形.则S△PCQ在Rt△POQ中,PQ2=OP2+OQ2=(8﹣t)2+t2.由四边形OPCQ的面积S=S△POQ+S△PCQ可得出答案.【解答】解:(1)由题意可得,OP=8﹣t,OQ=t,∴OP+OQ=8﹣t+t=8(cm).(2)当t=4时,线段OB的长度最大.如图,过点B作BD⊥OP,垂足为D,则BD∥OQ.∵OT平分∠MON,∴∠BOD=∠OBD=45°,。