模糊数学基本知识

合集下载

模糊数学总结

模糊数学总结

集合与特征函数在运算上的关系
A B CA (u) CB (u), u U A B CA (u) CB (u), u U
(1)包含 (2)相等 (3)并集
(4)交集
(5)补集
CAB (u) max CA (u), CB (u) CA (u) CB (u) CAB (u) min CA (u), CB (u) CA (u) CB (u) CAC (u) 1 CA (u)


不要把上式右端当做分式求和。“+”号不表 示求和,而是表示将各项汇总,表示集合概念。
ui 项可省略。
1 0.7 0.4 0 1 0.7 0.4 A “圆块”模糊子集: a b c d a b c
普通集合与模糊子集的区别与联系

明确外延:经典数学

外延不明确:模糊数学
C
1 1 1 C A A U, A A u1 u2 un
C
普通集合与模糊子集的区别与联系
运算性质对比 (u ) B (u ), u U A B C A (u ) CB (u ), u U A B A A B C A (u ) CB (u ), u U A B A (u ) B (u ), u U A B (u ) A (u ) B (u ) C A B (u ) C A (u ) CB (u)
U
a =1 b =0.7
d =0 c =0.4
“d”和“a”具有很大的差异, 但从“d”到“a”不是具有 突变的差异,而是采取了 一个又一个中间过渡状态 “b”和“c”。处于中间过 渡的差异“b”和“c” ,便 具有了“亦此亦彼”性。

模糊数学例题大全

模糊数学例题大全

模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。

它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。

下面,我们将通过一些具体的例题来展示模糊数学的应用。

例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。

然而,在现实世界中,很多情况并不是绝对的0或1。

例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。

例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。

然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。

这时,模糊聚类分析就派上用场了。

它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。

例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。

然而,在某些情况下,我们无法用精确的规则来描述决策过程。

这时,模糊决策树就派上用场了。

它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。

例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。

然而,在某些情况下,系统的输入和输出并不是绝对的0或1。

这时,模糊控制系统就派上用场了。

它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。

例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。

然而,在某些情况下,图像中的对象边界并不清晰。

这时,模糊图像处理就派上用场了。

它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。

以上只是模糊数学众多应用的一小部分。

这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。

通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。

第四章计算智能(2)-模糊推理1

第四章计算智能(2)-模糊推理1
模糊计算和模糊推理
经典二值(布尔)逻辑



在经典二值(布尔)逻辑体系中,所有的分类 都被假定为有明确的边界;(突变) 任一被讨论的对象,要么属于这一类,要么不 属于这一类; 一个命题不是真即是假,不存在亦真亦假或非 真非伪的情况。(确定)
1
天气冷热
雨的大小
风的强弱
人的胖瘦
年龄大小
个子高低
2
模糊数学
•模糊概念 模糊概念:从属于该概念到不属于该概念之间 无明显分界线 年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨。 模糊数学就是用数学方法研究模糊现象。
3
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
5
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种 • 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU • 涉及学科 模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支 分类、识别、评判、预测、控制、排序、选择;
并以此数作为 R1°R2 第i行第j列的元素。
R2=
0.2 0.4 0.6
0.8 0.6 0.4
求 R1°R2
42
模糊推理
模糊命题 模糊概念 1 张三是一个年轻人。 2 李四的身高为1.75m左右。模糊数据 3 他考上大学的可能性在60%左右。 对相应事件发生 的可能性或确信 4 明天八成是个好天气。 程度作出判断。 5 今年冬天不会太冷的可能性很大。
33
模糊二元关 系R是以 U×V为论域 的一个模糊 子集,序偶 (u,v)的隶属 度为uR(u,v)

人工智能与模糊数学

人工智能与模糊数学

• 1956年6月,达特茅斯会议 发起者: 约翰.迈卡锡(John McCarthy)(普林斯顿大学数 学博士 ) 马文.明斯基(Marvin Minsky) (人工智能大师, 《心智社会》的作者) 纳撒尼尔.罗彻斯特(Nathaniel Rochester)(IBM 计算机设计者之一)
克劳德.香农(Claude Shannon)(信息论创立者)
• 涉及学科 哲学,脑科学,认知科学,数学,神经生理 学,心理学,计算机科学,信息论,控制 论,仿生学,人类学,语言学等多个自然 科学和社会科学的交叉。
家庭智能机器人
类人形机器人
机器龙虾 宝石般的机器鱼,可以执行 搜寻水中污染物的巡逻任务
真正认识人类大脑是开发智能机器的必由之 路。—杰夫.霍金斯
认为模糊知识必定是靠不住的,这种看法是 大错特错了。
传统逻辑都习惯于假设使用的是精确的符号, 因此,它不适用于尘世生活,而仅仅适用于想 象的天堂。
罗素
大脑的语言不是数学语言。 冯.诺伊曼
同计算机相比,人脑的一个优越性似乎是 “能够掌握尚未明确的含糊概念”。 诺伯特.维纳
自然语言的不确定性
• 自然语言的不确定性是知识不确定性的一 个重要研究内容,而自然语言理解又是人 工智能研究的重要内容。
• 麦卡锡(John McCarthy): 人工智能是使一部 机器的反应方式就象是一个人在行动时所依据的 智能。
• 尼尔逊(美国斯坦福大学人工智能研究中心教 授):人工智能是关于知识的学科――怎样表示 知识以及怎样获得知识并使用知识的科学。 • 温斯顿(麻省理工学院教授):人工智能就是研 究如何使计算机去做过去只有人才能做的智能工 作。
4.模糊系统与模糊控制教程 王立新(著) 王迎军(译) 清华大学出版社 2003-06-01

模糊数学中的模糊综合评判-教案

模糊数学中的模糊综合评判-教案

模糊数学中的模糊综合评判-教案一、引言1.1模糊数学的背景与重要性1.1.1模糊数学的产生与发展1.1.2模糊数学在现代科技中的应用1.1.3模糊数学与传统数学的区别与联系1.1.4模糊数学的研究对象与方法1.2模糊综合评判的概述1.2.1模糊综合评判的定义1.2.2模糊综合评判的基本思想1.2.3模糊综合评判的应用领域1.2.4模糊综合评判的意义与价值1.3教学目标与意义1.3.1培养学生的模糊数学思维1.3.2提高学生解决实际问题的能力1.3.3拓宽学生的知识视野1.3.4增强学生的创新意识二、知识点讲解2.1模糊集合与隶属度2.1.1模糊集合的定义与表示2.1.2隶属度的概念与计算方法2.1.3模糊集合的运算2.1.4模糊集合的性质与应用2.2模糊关系与模糊矩阵2.2.1模糊关系的定义与表示2.2.2模糊矩阵的概念与运算2.2.3模糊关系的合成2.2.4模糊关系在模糊综合评判中的应用2.3模糊综合评判方法2.3.1模糊综合评判的数学模型2.3.2模糊综合评判的步骤与方法2.3.3模糊综合评判结果的解释与分析2.3.4模糊综合评判的改进与发展三、教学内容3.1模糊综合评判的理论基础3.1.1模糊集合论3.1.2模糊关系与模糊矩阵3.1.3模糊逻辑与模糊推理3.1.4模糊综合评判的基本原理3.2模糊综合评判的应用案例3.2.1经济管理领域的应用3.2.2工程技术领域的应用3.2.3医疗诊断领域的应用3.2.4社会科学领域的应用3.3模糊综合评判的教学方法与策略3.3.1理论教学与实践教学相结合3.3.2案例分析与讨论3.3.3课后作业与练习3.3.4教学评价与反馈四、教学目标4.1知识与技能目标4.1.1理解模糊综合评判的基本概念和原理4.1.2掌握模糊综合评判的计算方法和步骤4.1.3能够运用模糊综合评判解决实际问题4.1.4能够分析和解释模糊综合评判的结果4.2过程与方法目标4.2.1培养学生的逻辑思维和抽象思维能力4.2.2提高学生的数据分析和处理能力4.2.3增强学生的团队合作和沟通能力4.2.4培养学生的创新意识和解决问题的能力4.3情感、态度与价值观目标4.3.1培养学生对模糊数学的兴趣和热情4.3.2增强学生对数学应用的认识和理解4.3.3培养学生的批判性思维和科学态度4.3.4培养学生的社会责任感和职业道德五、教学难点与重点5.1教学难点5.1.1模糊集合和隶属度的理解5.1.2模糊关系的合成和应用5.1.3模糊综合评判的计算步骤和方法5.1.4模糊综合评判结果的分析和解释5.2教学重点5.2.1模糊集合的表示和运算5.2.2模糊关系的定义和性质5.2.3模糊综合评判的数学模型和步骤5.2.4模糊综合评判在实际问题中的应用5.3教学策略5.3.1采用直观的图示和实例讲解模糊集合和隶属度5.3.2通过案例分析和讨论加深对模糊关系的理解5.3.3运用实际数据演示模糊综合评判的计算过程5.3.4引导学生进行问题讨论和小组合作,提高解决问题的能力六、教具与学具准备6.1教具准备6.1.1多媒体设备(如投影仪、电脑等)6.1.2教学软件(如MATLAB、Excel等)6.1.3教学模型或实物(如模糊控制器等)6.1.4教学课件或讲义6.2学具准备6.2.1笔记本或草稿纸6.2.2计算器或手机6.2.3相关教材或参考书籍6.2.4小组讨论材料(如案例研究、数据集等)6.3教学环境准备6.3.1安静、舒适的教学环境6.3.3适当的座位安排和教学布局6.3.4网络连接和必要的软件安装七、教学过程7.1导入新课7.1.1引入模糊综合评判的概念和应用背景7.1.2通过实例激发学生对模糊综合评判的兴趣7.1.3明确教学目标和要求7.1.4检查学生的基础知识准备情况7.2知识讲解与演示7.2.1讲解模糊集合和隶属度的概念和运算7.2.2通过实例演示模糊关系的合成和应用7.2.3介绍模糊综合评判的数学模型和步骤7.2.4分析和解释模糊综合评判的结果7.3练习与讨论7.3.1布置练习题,让学生独立完成7.3.2组织小组讨论,分享解题思路和答案7.3.3引导学生提出问题和疑惑,进行解答7.4案例分析与应用7.4.1提供实际案例,让学生运用模糊综合评判方法进行分析7.4.2引导学生讨论案例中的问题和解决方案7.4.3分享和展示学生的案例分析成果7.5.1回顾本节课的主要内容和知识点7.5.3提供反馈和评价,鼓励学生的进步和努力7.5.4布置课后作业和预习任务八、板书设计8.1知识框架8.1.1模糊集合与隶属度8.1.2模糊关系与模糊矩阵8.1.3模糊综合评判方法8.1.4模糊综合评判的应用8.2教学重点与难点8.2.1模糊集合的表示和运算8.2.2模糊关系的合成和应用8.2.3模糊综合评判的计算步骤和方法8.2.4模糊综合评判结果的分析和解释8.3教学案例与实例8.3.1经济管理领域的应用案例8.3.2工程技术领域的应用案例8.3.3医疗诊断领域的应用案例8.3.4社会科学领域的应用案例九、作业设计9.1基础练习题9.1.1模糊集合的运算9.1.2模糊关系的合成9.1.3模糊综合评判的计算9.1.4模糊综合评判结果的分析9.2案例分析题9.2.1经济管理领域的案例分析9.2.2工程技术领域的案例分析9.2.3医疗诊断领域的案例分析9.2.4社会科学领域的案例分析9.3思考与讨论题9.3.1模糊集合与经典集合的区别与联系9.3.2模糊关系在模糊综合评判中的作用9.3.3模糊综合评判方法的优势与局限性9.3.4模糊综合评判在现实生活中的应用前景十、课后反思及拓展延伸10.1教学反思10.1.1教学目标的达成情况10.1.2教学难点与重点的处理情况10.1.3教学方法与策略的有效性10.1.4学生的学习情况和反馈10.2拓展延伸10.2.1模糊数学在其他领域的应用10.2.2模糊综合评判与其他评判方法的比较10.2.3模糊综合评判的改进与发展10.2.4模糊数学的研究前沿与趋势重点关注环节的补充和说明:1.教学难点与重点的处理:在教学过程中,应注重讲解模糊集合和隶属度的概念,通过实例演示和练习加深学生的理解。

模糊数学-模糊数学基本知识

模糊数学-模糊数学基本知识

隶属函数参数化
1. 三角形隶属函数
0
trig ( x;
a,
b,
c)
x a ba
cx
cb
0
xa a xb b xc
cx
trig(x; a,b, c) max(min( x a , c x), 0) ba cb
参数a,b,c确定了三角形MF三个顶点的x坐标。
2. 梯形隶属函数
0
xa
trap(x, a, b, c, d )
g(x;50,20)
bell(x:20,4,50)
❖ (2)模糊子集运算的基本性质
模糊集合间的并、交、补(余)运算 具有如下的性质.
1)幂等律 A~ A~ A~, A~ A~ A~
2)交换律 A~ B~ B~ A~; A~ B~ B~ A~
3)结合律 ( A~ B~) C~ A~ (B~ C~),
论域U上的模糊集A由隶属函数uA来表征, uA的大小反映了x对于模糊子集的从属程度。 模糊子集完全由隶属函数来描述。
❖ 模糊子集的表示方法 (1)向量法
(2)查德表示法 有限集 无限集
模糊集举例 例4 设U={1,2,3,4,5,6}, A表示“靠近4”的数,则 AF (U),各数属于A的程度A(ui) 如表。
经典集合论的例子: 设U={ 红桃,方块,黑桃,梅花 }
V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V
解: U×V={ (红桃,A),(红 桃, 2),……,(
梅花, K) }
35
模糊关系论例子: 设有一组学生U:
U={ 张三,李四,王五 } 他们对球类运动V:
( A~ B~) C~ A~ (B~ C~).

最新最全模糊数学方法综合整理

最新最全模糊数学方法综合整理

模糊数学方法模糊数学是从量的角度研究和处理模糊现象的科学.这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性.比如用某种方法治疗某病的疗效“显效”与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高”与“较高”等等.从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡.由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性.在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。

这里所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候对农业产量的影响程度为“较重、严重、很严重”,等等。

这些通常是本来就属于模糊的概念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。

根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一,且仅居其一。

这样的集合论本身并无法处理具体的模糊概念。

为处理这些模糊概念而进行的种种努力,催生了模糊数学。

模糊数学的理论基础是模糊集。

模糊集的理论是1965年美国自动控制专家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。

模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。

实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。

从该学科的发展趋势来看,它具有极其强大的生命力和渗透力。

在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别和综合评判等方法。

在DPS系统中,我们将模糊数学的分析方法与一般常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能模块程序的操作要领,供用户参考和使用。

补充知识-模糊推理

补充知识-模糊推理

简单模糊推理
• 知识中只含有简单条件,且不带可信度因子的模糊推理称为简单模糊推 理。 • 合成推理规则:对于知识 IF x is A THEN y is B 首先构造出A与B之间的模糊关系R,然后通过R与证据的合 成求出结论。 如果已知证据是 x is A’ 且A与A’可以模糊匹配,则通过下述合成运算求取B’: B’=A’◦R 如果已知证据是 y is B’ 且B与B’可以模糊匹配,则通过下述合成运算求出A’: A’=R◦B’
贴近度: A∙B=(0.3∧0.2)∨(0.4∧0.5)∨(0.6∧0.6)∨(0.8∧0.7)=0.7 A⊙B=(0.3∨0.2)∧(0.4∨0.5)∧(0.6∨0.6)∧(0.8∨0.7)=0.3 (A,B)=1/2[A∙B+(1-A⊙B)]=1/2[0.7+(1-0.3)]=0.7
海明距离: d(A,B)=1/4×(|0.3-0.2|+|0.4-0.5|+|0.6-0.6|+|0.8-0.7|)=0.075 (A,B)=1-d(A,B)=1-0.075=0.925
按这种方法,对δmatch(A,D)与δmatch(B,D)可以得到: 0.8/1+0.5/1+0.1/1+0.5/1+0.5/1+0.1/0+0.1/1+0.1/0+0.1/0 =0.8/1+0.1/0 由于μ1=0.8>μ0=0.1,所以得到: δmatch(A,D) ≥δmatch(B,D) 同理可得: δmatch(A,D) ≥δmatch(C,D) δmatch(B,D) ≥δmatch(C,D) 最后得到: δmatch(A,D) ≥δmatch(B,D)≥δmatch(C,D) 由此可知R1应该是首先被选用的知识。

模糊数学基本知识

模糊数学基本知识

一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。

普通集合A ,对x ∀,有A x ∈或A x ∉。

如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。

模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。

即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。

(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射:))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。

)(u A 称为元素u 属于模糊集A 的隶属度。

映射所表示的函数称为隶属函数。

例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。

(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。

或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =,(3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂,补集:)}(1),.....,(1),(1{21n c u A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,,2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集; 称})(,{λλ>∈=u A U u u A s 为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。

第一章 模糊数学预备知识

第一章 模糊数学预备知识

三、关系的运算 设R, R1, R2 P( X Y ),定义: 并:R1 R2 {(x, y) | (x, y) R1或(x, y) R2} 交:R1 R2 {(x, y) | (x, y) R1且(x, y) R2} 余:Rc {(x, y) | (x, y) R} 逆:R1 {( y, x) | (x, y) R} P(Y X )
在例2.3中,从X到Y的小于关系为 R1, 则: (R1)1 (3,2),(4,3),(4,2)}为从Y到X的大于关系
合成:设R1 P( X Y ), R2 P(Y Z ),则R1与R2的合成 R1 R2 P( X Z )定义为:
R1 R2 {(x, z) | y Y ,(x, y) R1且( y, z) R2} 例2.5 X {1,2,3},Y {a,b,c,d}, Z {甲,乙}
例如: 在例3.1中,f1({1,2}) {a,b}, f2 ({1,2}) {a}.
2. 特殊映射 单射(injection):x1 x2 f (x1) f (x2 ) 或f (x1) f (x2 ) x1 x2
设R P( X X ),若R满足: (1)自反性(reflexivity):x X ,(x, x) R;
(2)对称性(symmetry):(x, y) R,则( y, x) R;
(3)传递性(transitivity):(x, y) R,( y, z) R 则(x, z) R,
则称是R一个X上的等价关系。
例2.6 X {a,b,c,d,e}, 则X上的关系
R {(a,a),(b,b),(c,c),(d,d ),(e,e),(a,b),(a,c),(b,a),(b,c), (c,a),(c,b),(d,e),(e,d )}
是一个等价关系。

什么是模糊数学

什么是模糊数学

•人工智能的要求
• 取得精确数据不可能或很困难
•没有必要获取精确数据
结语: 模糊数学的产生不仅形成了一门崭新的数学 学科,而且也形成了一种崭新的思维方法, 它告诉我们存在亦真亦假的命题,从而打破 了以二值逻辑为基础的传统思维,使得模糊 推理成为严格的数学方法。随着模糊数学的 发展,模糊理论和模糊技术将对于人类社会 的进步发挥更大的作用。
参考书目 1. 模糊数学基础,张文修,西交大出版社 3. 模糊理论及其应用,刘普寅等,国防科大出版社
• 涉及学科 模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支
分类、识别、评判、预测、控制、排序、选择;
人工智能、控制、决策、专家系统、医学、土木、 农业、气象、信息、经济、文学、音乐
• 模糊产品 洗衣机、摄象机、照相机、电饭锅、空调、电梯
• 研究项目 European Network of Excellence 120个子项目与模糊有关 LIFE (Laboratory for International Fuzzy Engineering Research)
Int. J. Uncertainty, Fuzziness, knowledge-based Systems
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种
• 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU
NSF 应用数学:大规模数据处理、不确定性建模
•国内状况
1976年,潘学海,弗齐集合论,计算机应用 及应用数学; 1980年,汪培庄,模糊数学简介,数学的 实践与认识.
1981年,模糊数学创刊

模糊集合基础知识您需要知道的五个概念

模糊集合基础知识您需要知道的五个概念

模糊集合基础知识您需要知道的五个概念模糊集合是模糊数学的一个重要分支,广泛应用于信息处理、人工智能、控制科学等领域。

本文将介绍五个重要的概念,帮助读者更好地理解模糊集合。

概念一:模糊集合模糊集合是指具有模糊性质的集合,即其中的元素不是非黑即白,而是具有一定的灰色程度。

模糊集合用μ(x)表示,表示元素x属于该集合的程度,取值范围在[0,1]之间。

如果μ(x)等于0,表示元素x不属于该集合;如果μ(x)等于1,表示元素x完全属于该集合。

概念二:隶属函数隶属函数是指用来描述元素x隶属于模糊集合的程度的函数,也称为隶属度函数或者隶属度值函数。

通常用符号μ(x)表示,μ(x)的大小反映了元素x在模糊集合中的隶属程度。

概念三:模糊关系模糊关系是指一个元素与另一个元素之间存在的模糊连接,其定义可以用一个矩阵来表示。

该矩阵的每个元素都是一个隶属于[0,1]之间的值,描述了两个元素之间的某种程度上的相互作用关系。

概念四:模糊逻辑运算模糊逻辑运算是指在模糊集合上进行的逻辑运算。

常用的模糊逻辑运算包括取反、交集和并集等。

在模糊集合上进行逻辑运算时,需要对隶属度函数进行计算。

概念五:模糊系统模糊系统是指以模糊逻辑为基础的控制系统,其输入和输出可以是模糊集合,通过模糊逻辑的运算和推理,实现对过程的模糊控制。

模糊系统广泛应用于自动控制、模式识别等领域。

结语了解模糊集合的基本概念对于理解和研究模糊数学具有重要的意义。

在实际应用中,模糊集合可以用于处理具有模糊性质的信息,提高信息处理的精度和效率。

在模糊集合的基础上,人们还可以进一步研究模糊度量、模糊拓扑、模糊代数等方面的内容,从而推进模糊数学的不断发展和应用。

第一讲 模糊数学基本知识

第一讲 模糊数学基本知识

§1.2 模糊集的基本定理
λ-截集: 截集: (A)λ = Aλ= {x | A(x) ≥ λ }
模糊集的λ 截集 是一个经典集合, 模糊集的λ-截集Aλ是一个经典集合,由隶属 度不小于λ的成员构成. 度不小于λ的成员构成. 论域U={u1, u2, u3, u4 , u5 , u6}(学生集), 例:论域 (学生集) 他们的成绩依次为50,60,70,80,90,95 50,60,70,80,90,95, 他们的成绩依次为50,60,70,80,90,95,A=“学习 学习 成绩好的学生” 成绩好的学生”的隶属度分别为 0.9,0.95, 0.5,0.6,0.7,0.8, 0.9,0.95,则 A0.9 (90分以上者 = {u5 , u6}, 分以上者) 分以上者 A0.6 (60分以上者 = {u2, u3, u4 , u5 , u6}. 分以上者) 分以上者
第一讲 模糊数学基本概念
1. 1 模糊集合的基本定义 1.2 模糊集合的截集 1.3 模糊关系 1.4 模糊等价关系与经典等价关系
§1.1 模糊子集及其运算
模糊子集与隶属函数 是论域, 设U是论域,称映射 是论域 A(x):U→[0,1] : 确定了一个U上的模糊子集A,映射A(x)称为 的 上的模糊子集 称为A的 确定了一个 上的模糊子集 ,映射 称为 隶属函数,它表示x对 的隶属程度 的隶属程度. 隶属函数,它表示 对A的隶属程度 当映射A(x)只取 或1时,模糊子集 就是经 只取0或 时 模糊子集A就是经 当映射 只取 典子集, 就是它的特征函数. 典子集,而A(x)就是它的特征函数 可见经典子 就是它的特征函数 集就是模糊子集的特殊情形. 集就是模糊子集的特殊情形
模糊关系的合成 的关系, 的关系, 设 R1 是 X 到 Y 的关系 R2 是 Y 到 Z 的关系 上的一个关系. 则R1与 R2的合成 R1 ° R2是 X 到 Z 上的一个关系 (R1°R2) (x, z) = ∨{[R1 (x, y)∧R2 (y, z)]| y∈Y } ∧ ∈ 当论域为有限时, 当论域为有限时,模糊关系的合成化为模糊 矩阵的合成. 矩阵的合成 设X = {x1, x2, …, xm}, Y = { y1 , y2 , … , ys}, Z= {z1, z2, … , zn},且X 到Y 的模糊关系 1 = (aik)m×s, 模糊关系 关系R , × Y 到Z 的模糊关系 2 = (bkj)s×n,则X 到Z 的模糊关 模糊关系 关系R 模糊关 × 系可表示为模糊矩阵的合成: 模糊矩阵的合成 系可表示为模糊矩阵的合成: R1 ° R2 = (cij)m×n, × 其中c 其中 ij = ∨{(aik∧bkj) | 1≤k≤s}.

模糊数学的原理及应用

模糊数学的原理及应用

模糊数学的原理及应用1. 简介模糊数学,又称为模糊逻辑学或模糊数理,是一种能够处理不确定性和模糊性的数学方法和理论。

它的核心思想是允许数学量的取值在一个范围内模糊变化,而不是固定在一个确定的值上。

模糊数学在各个领域中具有广泛的应用,包括人工智能、控制理论、模式识别、决策分析等。

2. 模糊数学的基本概念在模糊数学中,有几个基本概念需要了解:2.1 模糊集合模糊集合是指具有模糊隶属度的元素集合。

与传统集合不同,模糊集合中的元素可以被归为多个不同的类别,每个类别都有一个隶属度来表示元素与该类别的关联程度。

2.2 模糊关系模糊关系是指一个模糊集合的元素之间的关系。

模糊关系可以表示为一个矩阵,其中每个元素表示两个元素之间的隶属度。

2.3 模糊逻辑模糊逻辑是一种模糊推理的方法。

与传统逻辑不同,模糊逻辑中的命题可以有一个隶属度来表示命题的真实程度。

模糊逻辑通过对隶属度的运算,对不确定性的问题进行推理和决策。

3. 模糊数学的应用领域模糊数学在各个领域中都有广泛的应用,以下是一些常见的应用领域:3.1 人工智能模糊数学在人工智能中起着重要的作用。

通过模糊集合和模糊逻辑的方法,可以处理人工智能系统中的不确定性和模糊性,提高系统的智能性和决策能力。

3.2 控制理论模糊控制是一种控制理论,它基于模糊集合和模糊逻辑的方法,可以处理控制系统中的不确定性和模糊性。

模糊控制可以应用于各种控制系统,如温度控制、车辆控制等。

3.3 模式识别模糊数学在模式识别中具有重要的应用。

通过模糊集合和模糊关系的方法,可以处理模式识别中的不确定性和模糊性问题,提高模式识别的准确性和鲁棒性。

3.4 决策分析模糊数学在决策分析中也具有广泛的应用。

通过模糊集合和模糊逻辑的方法,可以处理决策问题中的不确定性和模糊性,帮助决策者做出更合理的决策。

4. 模糊数学的发展和未来模糊数学作为一种新兴的数学方法,正在不断发展和完善。

未来,随着科技的进步,模糊数学在各个领域中的应用将会更加广泛和深入。

模糊数学-模糊数学基本知识

模糊数学-模糊数学基本知识

而直积
A
B
0.5 0.4
0.3 0.8
0.8 0.3
0.5 0.7
0.5 0.4
0.8 0.3
模糊矩阵: A aij
aij bij
B bij
A B
例2
0.4 0.5 0.5 0.6 0.8 0.7 0.8 0.9
AB
(c)模糊矩阵的和:
cij max aij , bij aij bij
模糊矩阵C称为A与B的和的表示:
C cij A B
(d)模糊矩阵的直积
A aij
❖ 例1 设 U={u1, u2, u3 , u4,u5}
A 0.2 0.7 1 0.5 , B 0.5 0.3 0.1 0.7
u1 u2 u3 u5
u1 u2 u4 u5
求AB、 AB , AC
解:
A(u1)B(u1)
AU B 0.2 0.5 0.7 0.3 1 0 0 0.1 0.5 0.7
经典集合论的例子: 设U={ 红桃,方块,黑桃,梅花 }
V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V
解: U×V={ (红桃,A),(红 桃, 2),……,(
梅花, K) }
35
模糊关系论例子: 设有一组学生U:
U={ 张三,李四,王五 } 他们对球类运动V:
身高与体重的普通关系
R(A,B) Bi
40
50
60
70
80
Ai
140
1
0
0
0
0
150
0
1
0
0
0
160
0
0
1

高中数学中的模糊数学知识有哪些应用

高中数学中的模糊数学知识有哪些应用

高中数学中的模糊数学知识有哪些应用在高中数学的学习中,我们常常会接触到各种各样的数学知识和概念。

其中,模糊数学作为一个相对较新的领域,虽然在高中阶段只是浅尝辄止,但它的应用却十分广泛,并且在日常生活和众多学科中都发挥着重要的作用。

模糊数学是研究和处理模糊性现象的数学。

与传统的精确数学不同,它允许存在一定程度的不确定性和模糊性。

那么,在高中数学的范畴内,我们能看到哪些模糊数学知识的应用呢?首先,在图像识别领域,模糊数学有着显著的应用。

当我们使用人脸识别软件时,系统并不会要求面部特征完全精确匹配,而是能够在一定的模糊范围内识别出个体。

这是因为人的面部特征在不同的光照、角度和表情下会有所变化,存在一定的模糊性。

模糊数学通过建立合适的模型,能够处理这些模糊的信息,从而提高识别的准确性。

在决策分析中,模糊数学也能大显身手。

比如在选择大学时,我们会考虑多个因素,如学校的综合排名、专业优势、地理位置、学费等。

然而,这些因素往往难以精确量化,而且它们对于每个人的重要性也不尽相同。

模糊数学可以帮助我们综合考虑这些模糊的因素,通过建立模糊综合评价模型,为决策提供更科学、更合理的依据。

在经济领域,模糊数学同样具有重要意义。

对于股票市场的预测,影响股票价格的因素众多且复杂,包括宏观经济形势、公司业绩、行业发展趋势等。

这些因素充满了不确定性和模糊性,很难用精确的数学模型来描述。

模糊数学可以通过对这些模糊信息的处理和分析,为投资者提供一定的参考,帮助他们做出更明智的投资决策。

在环境科学中,模糊数学也发挥着作用。

评估环境质量就是一个典型的例子。

空气质量、水质、土壤质量等环境指标往往不是绝对清晰的界限,而是存在一定的模糊范围。

例如,对于空气质量的“良好”“轻度污染”“中度污染”等评价,并没有绝对明确的界限。

模糊数学可以帮助建立环境质量评价模型,更准确地反映环境的真实状况。

在医学领域,模糊数学也有广泛的应用。

疾病的诊断往往不是非黑即白的,症状可能存在模糊性和不确定性。

模糊数学法

模糊数学法

模糊数学法引言模糊数学法是一种用于处理模糊不确定性问题的数学方法。

它是由美国数学家洛特菲尔德于1965年提出的,被认为是一种在现实世界中处理不明确、含糊和不确定性信息的有效工具。

在传统的数学中,我们通常使用精确的数值来进行计算和推导。

然而,在现实生活中,很多问题都是模糊不清的,无法用精确的数值来描述。

例如,判断一个人的身高是否高大,这个问题就存在模糊性,因为高大的标准因人而异。

在这种情况下,传统的数学方法就失去了效力,需要使用模糊数学法来处理。

模糊集合模糊集合是模糊数学的核心概念之一。

传统的集合理论中,元素要么属于集合,要么不属于集合,不存在属于程度的概念。

而在模糊集合中,元素的归属程度可以是模糊的。

一个元素可以部分属于集合,部分不属于集合。

这种归属程度的模糊性可以用[0,1]之间的数值来表示,称为隶属度。

模糊集合可以用一个隶属函数来描述。

隶属函数是一个将元素映射到隶属度的函数。

例如,对于一个描述“高大”人的模糊集合,可以用一个隶属函数将每个人映射到0到1之间的一个隶属度,表示这个人属于“高大”这个集合的程度。

模糊逻辑模糊逻辑是模糊数学的另一个重要概念。

传统的逻辑推理是基于真假的二值逻辑,而模糊逻辑则允许命题的真实性程度是模糊的。

模糊逻辑中的命题可以是“完全真”、“完全假”或者处于两者之间的模糊状态。

模糊逻辑使用模糊推理来推导出模糊命题的真实性程度。

它可以用于解决模糊不确定性问题,例如模糊控制系统中的决策问题、模糊信息检索等。

模糊数学应用模糊数学方法在很多领域都有广泛的应用。

以下是一些常见的应用领域:模糊控制模糊控制是模糊数学的一个重要应用领域。

在传统的控制系统中,输入和输出之间的关系通常是精确的,可以用精确的数学模型来描述。

然而,在现实生活中,很多控制系统的输入和输出之间的关系是模糊的,无法用精确的数学模型来描述。

在这种情况下,可以使用模糊控制方法来设计控制系统,通过模糊推理来处理模糊的输入和输出。

模糊数学方法详细介绍

模糊数学方法详细介绍

A x e
A x
A x
A x
1
0
1
a
x
0
1
a
x
0
a
x
偏小型
6.柯西型
1 1 A x 1 x a xa x a A x
中间型
1 1 x a

偏大型
0 1 A x 1 x a xa xa
A x A x
0 k xa b x c x A ba cxd 1
xd
A x
1
0
1
a
b
1
cd x
0
x
0 a b
a
b
x
偏小型
4. 型 k 0
1 A x k xa e
现实中的模糊概念——例如:厚、薄、美、丑、 早晨、中午、晴天、阴天、优、劣,蔬菜、水 果、感冒、合格品、次品等 量的分类
确定性 经典数学 量 随机性 随机数学 不确定性模糊性 模糊数学

模糊数学
1965年美国加利福尼亚大学控制专家扎德(zadeh L.A)在《information and control》杂志上发表了一 篇开创性论文“Fuzzy sets”这标志着模糊数学的诞生。 模糊数学是研究和处理模糊性现象的数学方法。是 把模糊的问题化为确定性问题的基础,是数据处理常用 的方法。

说明:排中律不成立,即
A A U, A
c c
一、模糊集合论的基础知识



U = {甲, 乙, 丙, 丁} A = “矮子” 隶属函数A= (0.9, 1, 0.6, 0) B = “瘦子” 隶属函数B= (0.8, 0.2, 0.9, 1) 找出 C = “既矮又瘦” C = A∩B = ( 0.9∧0.8 , 1∧0.2 , 0.6∧0.9 , 0∧1 ) = ( 0.8, 0.2, 0.6, 0) 甲和丙比较符合条件

模糊数学的基础知识

模糊数学的基础知识

模糊数学知识小结与模糊数学相关的问题模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系模糊层次分析法—两两比较指标的确定模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。

由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果模糊数学基础一.Fuzzy 数学诞生的背景1)一个古希腊问题:“多少粒种子算作一堆?”2)Fuzzy 概念的广泛存在性,如“找人问题”3)何谓Fuzzy 概念?,如何描述它?由集合论的要求,一个对象x,对于一个集合,要么属于A,要么不属于A,二者必居其一,且仅居其一,绝对不允许模棱两可。

这种绝对的方法,是不能处理所有科学的问题,即现实生活中的一切事物一切现象都进行绝对的精确化时行不通的,从而产生模糊概念。

二.模糊与精确的关系对立统一,相互依存,可互相转化。

- 精确的概念可表达模糊的意思:如“望庐山瀑布”“飞流直下三千尺,凝是银河落九天”- Fuzzy的概念也能表达精确的意思:模糊数学不是让数学变成模模糊糊的东西,而是让数学进入模糊现象这个禁区,即用精确的数学方法去研究处理模糊现象。

三. 模糊性与随机性的区别事物分确定性现象与非确定性现象- 确定性现象:指在一定条件下一定会发生的现象。

- 非确定性现象分随机现象与模糊现象* 随机性是对事件的发生而言,其事件本身有着明确的含义,只是由于发生的条件不充分,事件的发生与否有多种可能性。

* 模糊性是研究处理模糊现象的,它所要处理的事件本身是模糊的。

模糊数学的广泛应用性模糊技术是21世纪的核心技术模糊数学的应用几乎渗透到自然科学与社会科学的所有领域:1)软科学方面:投资决策、企业效益评估、经济宏观调控等。

2)地震科学方面:地震预报、地震危害分析。

模糊数学方法

模糊数学方法

模糊数学方法
模糊数学方法是一种处理具有不确定性或模糊性问题的数学方法。

在经典数学中,事物通常被视为确定性的,可以用精确的数值来表示。

然而,在实际生活中,很多事物是模糊的,没有明确的界限和定义,这就需要用模糊数学方法来处理。

模糊数学方法的基本思想是承认事物的模糊性,将模糊性作为事物的一种固有属性来处理,而不是试图消除它。

通过建立模糊集合和隶属函数,模糊数学方法能够描述和处理具有不确定性和模糊性的事物。

具体来说,模糊数学方法包括模糊集合理论、模糊推理、模糊控制等方面的内容。

其中,模糊集合理论是研究模糊性事物的数学理论,包括模糊集的定义、运算和性质等;模糊推理是利用模糊集合和隶属函数进行推理的方法,可以用于处理不确定性和模糊性的事物;模糊控制则是将模糊数学方法应用于控制领域,用于处理具有不确定性和非线性的控制系统。

总之,模糊数学方法是一种处理具有不确定性或模糊性问题的有效工具,可以广泛应用于各个领域,如自然语言处理、模式识别、人工智能等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。

普通集合A ,对x ∀,有A x ∈或A x ∉。

如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。

模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。

即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。

(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射:))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。

)(u A 称为元素u 属于模糊集A 的隶属度。

映射所表示的函数称为隶属函数。

例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A若在集合U 上定义了一个隶属函数,则称E 为模糊集。

(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。

或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =, (3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂, 补集:)}(1),.....,(1),(1{21n cu A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,, 2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集;称})(,{λλ>∈=u A U u u A s为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。

二.模糊数学的基本定理1.模糊截积:已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,A λ也是U 上模糊集,其隶属函数为:)(),())((U u u A u A ∈∀∧=λλ;称为A λ为λ与A 的模糊截积。

2.分解定理1:已知模糊子集)(U F A ∈,则λλλA A ]1,0[∈⋃=推论1:对,U u ∈∀}],1,0[{)(λλλA u u A ∈∈∨=3.分解定理2:已知模糊子集)(U F A ∈,则S A A λλλ]1,0[∈⋃=推论2:对,U u ∈∀}],1,0[{)(SA u u A λλλ∈∈∨= 三.模糊关系与模糊聚类 1.模糊关系与模糊关系的合成(1) 模糊关系 普通集合的经典关系,模糊关系:从U 到V 上的一个模糊关系:]1,0[:→⨯V U R ,),(j i v u R 表示j i v u 与具有的关系程度,Vv U u j i ∈∈,。

n m ij a A ⨯=)((ij a 满足0≤ij a ≤1)称为U 到V 上的一个模糊关系的模糊矩阵。

(2).设A =p n ij a ⨯)(和B =m p ij B ⨯)(为两个模糊矩阵,令ij c =)(1kj ik pk b a ∧∨=,i =1,2,…,n ,j =1,2,…,m 。

则称矩阵C =m n ij c ⨯)(为模糊矩阵A 与B 的褶积,记为 C =A B ∙, 其中“∨”和“∧”的含义为},max{b a b a =∨ },min{b a b a =∧显然,两个模糊矩阵的褶积仍为模糊矩阵 2. 模糊等价矩阵及其λ矩阵 设方阵A 为以模糊矩阵,若A 满足 A A =A则称A 为模糊等价矩阵。

模糊等价矩阵可以反映模糊分类关系的传递性,即描述诸如“甲像乙,乙像丙,则甲像丙”这样的关系。

设A =n n ij a ⨯)(为一个模糊等价阵,0≤λ≤1为一个给定的数,令⎪⎩⎪⎨⎧<≥=λλλij ij ija a a若若,0,1)( ,,...,2,1,n j i =则称矩阵n n ij a A ⨯=)()(λλ为A 的-λ截阵 例如,A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡14.06.04.014.06.04.01为一个模糊等价阵,取0.4<6.0≤λ,则λA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010101若取4.00≤≤λ,则λA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1111111112.模糊聚类:模糊划分的概念最早由Ruspini 提出,利用这一概念人们提出了多种聚类方法,比较典型的有:基于相似性关系和模糊关系的方法(包括聚合法和分裂法),基于模糊等价关系的传递闭包方法、基于模糊图论最大树方法,以及基于数据集的凸分解、动态规划和难以辨识关系等方法. 然而由于上述方法不适用于大数据量情况,难以满足实时性要求高的场合,因此其实际的应用不够广泛,故在该方面的研究也就逐步减少了. 实际中受到普遍欢迎的是基于目标函数的方法,该方法设计简单、解决问题的范围广,最终还可以转化为优化问题而借助经典数学的非线性规划理论求解,并易于计算机实现. 因此,随着计算机的应用和发展,该类方法成为聚类研究的热点.(1)模糊聚类的基本概念模糊聚类目标函数的演化模糊聚类方法模糊聚类法和一般的聚类方法相似,先将数据进行标准化,计算变量间相似矩阵或样品间的距离矩阵,将其元素压缩到0与1之间形成模糊相似矩阵,进一步改造为模糊等价矩阵,最后取不同的标准λ,得到不同的-λ截阵,从而就可以得到不同的类。

具体步骤如下: 第一步:数据标准化 1.数据矩阵设论域},...,,{21n x x x U =为被分类的对象,每个对象又由m 个指标表示其性状:},...,,{21im i i i x x x x =(n i ,...,2,1=)于是得到原始数据矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nm nn mm x x x x x x x x x ... (21)22221112112.数据标准化在实际问题中,不同的数据一般有不同的量纲。

为了使有不同的量纲的量也能进行比较,通常需要对数据作适当的变换。

但是,即使这样得到的数据也不一定在区间[0,1]上。

因此,这里所说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。

通常需要作如下变换: (1)平移·标准差变换:kk ik ikS x x x '-=' (m k n i ,...,2,1;,...,2,1==)其中∑∑==-=='ni k ikk ni ikx x nS xnx 121)(1,1。

经过变化后,每个变量的均值为0,标准差为1,且消除了量纲的影响。

但是,这样得到的kx '还不一定在区间[0,1]上。

(2)平移·级差变换}{min }{max }{min 111ik ni ikni ik ni ikikx x x x x '-''-'=''≤≤≤≤≤≤- (m k ,...,2,1=)显然有10≤''≤ikx ,而且也消除了量纲的影响。

第二步:标定(建立模糊相似矩阵)设论},...,,{},,...,,{2121im i i i n x x x x x x x U ==依照传统的方法确定相似系数,建立模糊相似矩阵,i x 与j x 的相似程度),(j i ij x x R r =。

可根据问题的性质,选取下列公式之一计算ij r 1. 数量积法⎪⎩⎪⎨⎧≠⋅==∑=;,1;,11j i x x M j i r jk mk ik ij 其中)(max 1∑=≠⋅=mk jk ik ji x x M显然ij r ]1,0[∈,若ij r 中出现负值,也可采用下面的方法将ij r 压缩在[0,1]上 令21+='ij ij r r ,则]1,0[∈'ij r 。

当然也可用上述的平移·级差变换。

2.夹角余弦法ijr =2111221][∑∑∑===⋅nk nk jk ik nk jkik x x x x若将变量i X 的n 个观测值T in i i x x x ),...,,(21与变量j X 的相应n 个观测值Tjn j j x x x ),...,,(21看成n 维空间中的两个向量,ij r 正好时这两个向量夹角的余弦。

3.相关系数法从统计角度看,两个随机变量的相关系数是描述这两个变量关联性(线性关系)强弱的一个很有用的特征数字。

因此,用任意两个变量的n 个观测值对其相关系数的估计可作为两个变量关联性的一种度量,其定义为ijr =2111221])()([|)(||)(|∑∑∑=-=-⋅---n k n i j ji i ik nk j jk i ikx x x x x x x x,其中i x (i =1,2,…,p )见(i x =∑=nk ikx n11,i =1,2,…, p ,)。

ijr (1p j i ≤≤,)其实就是X =T p X X ),...,(1的样本相关矩阵中的各元素。

4.指数相似系数法∑=-⋅-=mk kjk ik ij S x x m r 122})(43exp{1, 其中∑=-=ni ik ikK x x nS 12)(1,而),...,2,1(11m k x nx ni ikk ==∑=需要注意的是,相关系数法与指数相似系数法中的统计指标的内容是不同的。

5.最大最小法∑∑==∨∧=mk jk ikmk jk ikij x xx xr 11)()(6.算术平均最小法∑∑==+∧=mk jk ikmk jk ik ij x xx x r 11)()(27.几何平均最小法∑∑==⋅∧=mk jkik mk jk ikij x x x xr 11)((上述5,6,7三种方法均要求0>ij x ,否则也要做适当变换) 8.绝对值减数法∑=--=mk jk ik ij x x C r 1||1适当选取C ,使得01≤≤ij r 。

相关文档
最新文档