(完整版)圆锥曲线经典中点弦问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中点弦问题专题练习
一.选择题(共8小题)
1.已知椭圆,以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为()
A.B.C.2D.﹣2
2.已知A(1,2)为椭圆内一点,则以A为中点的椭圆的弦所在的直线方程为()
A.x+2y+4=0 B.x+2y﹣4=0 C.2x+y+4=0 D.2x+y﹣4=0
3.AB是椭圆(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为
AB的中点,则K AB•K OM的值为()
A.e﹣1 B.1﹣e C.e2﹣1 D.1﹣e2
4.椭圆4x2+9y2=144内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()
A.3x+2y﹣12=0 B.2x+3y﹣12=0 C.4x+9y﹣144=0 D.9x+4y﹣144=0
5.若椭圆的弦中点(4,2),则此弦所在直线的斜率是()
A.2B.﹣2 C.D.
6.已知椭圆的一条弦所在直线方程是x﹣y+3=0,弦的中点坐标是(﹣2,1),则椭圆的离心率是()A.B.C.D.
7.直线y=x+1被椭圆x2+2y2=4所截得的弦的中点坐标是()
A.
()B.
(﹣,)
C.
(,﹣)
D.
(﹣,)
8.以椭圆内一点M(1,1)为中点的弦所在的直线方程为()
A.4x﹣3y﹣3=0 B.x﹣4y+3=0 C.4x+y﹣5=0 D.x+4y﹣5=0
二.填空题(共9小题)
9.过椭圆内一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是_________.10.已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为:_________.
11.椭圆4x2+9y2=144内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的斜率为_________,直线方程为_________.
12.椭圆4x2+9y2=144内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为_________.13.过椭圆=1内一定点(1,0)作弦,则弦中点的轨迹方程为_________.
14.设AB是椭圆的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则k AB•k OM=_________.15.以椭圆内的点M(1,1)为中点的弦所在直线方程为_________.
16.在椭圆+=1内以点P(﹣2,1)为中点的弦所在的直线方程为_________.
17.直线y=x+2被椭圆x2+2y2=4截得的线段的中点坐标是_________.
三.解答题(共13小题)
18.求以坐标轴为对称轴,一焦点为且截直线y=3x﹣2所得弦的中点的横坐标为的椭圆方程.19.已知M(4,2)是直线l被椭圆x2+4y2=36所截的弦AB的中点,其直线l的方程.
20.已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的方程.
21.已知椭圆,求以点P(2,﹣1)为中点的弦AB所在的直线方程.
22.已知椭圆与双曲线2x2﹣2y2=1共焦点,且过()
(1)求椭圆的标准方程.
(2)求斜率为2的一组平行弦的中点轨迹方程.
23.直线l:x﹣2y﹣4=0与椭圆x2+my2=16相交于A、B两点,弦AB的中点为P(2,﹣1).(1)求m的值;(2)设椭圆的中心为O,求△AOB的面积.
24.AB是椭圆中不平行于对称轴的一条弦,M是AB的中点,O是椭圆的中心,求证:k AB•k OM为定值.
25.已知椭圆C:+=1和点P(1,2),直线l经过点P并与椭圆C交于A、B两点,求当l的倾斜角变化时,弦中点的轨迹方程.
26.已知椭圆.
(1)求斜率为2的平行弦的中点轨迹方程;
(2)过A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程;
(3)过点P()且被P点平分的弦所在的直线方程.
27.已知椭圆.
(1)求过点且被点P平分的弦所在直线的方程;
(2)求斜率为2的平行弦的中点轨迹方程;
(3)过点A(2,1)引直线与椭圆交于B、C两点,求截得的弦BC中点的轨迹方程.
28.已知某椭圆的焦点是F1(﹣4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(Ⅰ)求该椭圆的方程;
(Ⅱ)求弦AC中点的横坐标.
29.(2010•永春县一模)过椭圆内一点M(1,1)的弦AB.
(1)若点M恰为弦AB的中点,求直线AB的方程;
(2)求过点M的弦的中点的轨迹方程.
30.已知椭圆C方程为,直线与椭圆C交于A、B两点,点,
(1)求弦AB中点M的轨迹方程;
(2)设直线PA、PB斜率分别为k1、k2,求证:k1+k2为定值.
2014年1月panpan781104的高中数学组卷
参考答案与试题解析
一.选择题(共8小题)
1.已知椭圆,以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为()A.B.C.2D.﹣2
考点:椭圆的简单性质.
专题:圆锥曲线的定义、性质与方程.
分析:利用中点坐标公式、斜率计算公式、“点差法”即可得出.
解答:解:设以点P为中点的弦所在直线与椭圆相交于点A(x1,y1),B(x2,y2),斜率为k.则,,两式相减得,又x1+x2=8,y1+y2=4,,
代入得,解得k=.
故选A.
点评:熟练掌握中点坐标公式、斜率计算公式、“点差法”是解题的关键.
2.已知A(1,2)为椭圆内一点,则以A为中点的椭圆的弦所在的直线方程为()
A.x+2y+4=0 B.x+2y﹣4=0 C.2x+y+4=0 D.2x+y﹣4=0
考点:直线的一般式方程.
专题:计算题.
分析:首先根据题意设出直线的方程,再联立直线与椭圆的方程,然后结合题意与跟与系数的关系得到答案.解答:解:设直线的方程为y﹣2=k(x﹣1),
联立直线与椭圆的方程代入可得:(4+k2)x2+2k(2﹣k)x+k2﹣4k﹣12=0
因为A为椭圆的弦的中点,
所以,解得k=﹣2,
所以直线的方程为2x+y﹣4=0.
故选D.
点评:解决此类问题的关键是熟练掌握直线与椭圆的位置关系的判定,以及掌握弦中点与中点弦问题.