2018年秋经济数学基础形考任务二网上作业参考答案
(完整版)经济数学基础形成性考核册答案
![(完整版)经济数学基础形成性考核册答案](https://img.taocdn.com/s3/m/6f5262067c1cfad6185fa7ae.png)
电大经济数学基础形成性核查册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x) x 2 1, x0 0 处连续,则 k________ .答案: 1k ,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是.答案: y1 x 12 24. 设函数 f ( x 1) x 2 2x 5 ,则 f ( x)__________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π __________ . 答案:π) 22(二)单项选择题1. 函数 y x 1的连续区间是(D )x 2x 2A . (,1) (1, )B . ( , 2) ( 2,)C . ( , 2) ( 2,1) (1,)D . (, 2)( 2, ) 或( ,1) (1, )2. 以下极限计算正确的选项是(B )x1B. limx1A. limx xxx 011D. lim sin x 1C. lim x sinxxxx3. 设 ylg2 x ,则 d y( B ).A .1dxB .1 dx C .ln10dxD .1dx2xx ln10xx4. 若函数 f ( x)在点 x 0 处可导,则 (B )是错误的.A .函数 f (x)在点 x 0 处有定义B . limf ( x)A,但A f (x 0 )xx 0C .函数 f (x) 在点 x 0 处连续D .函数 f (x) 在点 x 0 处可微5. 当 x0 时,以下变量是无量小量的是(C) .A . 2xB . sin xC . ln(1x) D . cos xx ( 三)解答题 1.计算极限( 1) limx 22 3x21x 1x12原式 lim( x1)( x 2)x 1( x 1)( x 1)limx2 x 1 x1 12( 2) lim x25x 6 1 x 2x26x 8 2原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3 x2x 4 12( 3)lim1 x 11x2x原式 =lim(1 x 1)( 1 x 1) xx( 1 x 1)1= limx 01 x 11 =2x 23x5 1 ( 4) lim2x3x 2x4 31 351xx 2原式 == 3 3 4 3x x 2( 5)limsin 3x3 xsin 5x53sin 3x3lim 3x原式 =sin 5x=5 x55xx 2 44( 6) limx2sin( x 2)原式 =limx 22)x2sin( xx 2lim ( x 2)x 2= 4=lim sin( x 2)x 2x 2x sin1b, x 02.设函数 f (x)xx 0 ,a,sin xx 0x问:(1)当 a, b 为何值时,f ( x) 在 x 0处有极限存在?(2)当 a, b 为何值时, f ( x) 在x0处连续 .解: (1) limf ( x) b , lim f ( x)1xx当a b 1时,有 lim f(x)f(0) 1x(2). 当ab 1时, 有lim f(x)f(0) 1x函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)yx22xlog 2 x22 ,求 y答案: y2x 2 x ln 21x ln 2( 2)yax bcx ,求 yd答案:ya(cx d )c(ax b) ad bc (cxd) 2(cx d )2( 3)y1,求 y3x 53(3x3答案: y5) 22( 4) yx xe x ,求 y答案:y 1 (e x xe x ) = 1 e x xe x2 x 2 x( 5)y eax sin bx ,求 dyy (e ax ) (sin bx e ax (sin bx)答案:∵ax axae sin bx be cosbxe ax (sin bx bcosbx)∴ dy e ax (a sin bx bcosbx)dx 1( 6)y e x x x ,求 dy1 1 3答案:∵ y e x xx2 2( 311∴ dy x e x )dx2 x2( 7)y cos x e x2 ,求 dy答案:∵ y sin x ( x) e x 2 (= sin x 2xe x22 x∴ dy ( sin x 2xe x2 )dx2 x( 8)y sin n x sin nx ,求 y答案: y nsin n 1 x cos x n cosnx ( 9)y ln( x 1 x2 ) ,求y答案: y 1 ( x 1 x 2 )x 1 x 2=1 1 x2 x=x2 x 2x 1 1cot 1 1 3 x 2 2x( 10)y 2 x ,求 yx x 2 )=1 (1 x )1 x2 1 x2x11x2111 1cos( x 2 x 6y 2xln 2 (cos ) 2) 答案:x12 cos11 112 x ln 2 sinxx 2x 3 6 x 54.以下各方程中y 是 x 的隐函数,试求 y 或dy(1) 方程两边对 x 求导:2x 2 y y y xy 3 0(2 y x) yy 2x 3所以 dyy 2x3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy )4[cos(x y)xe xy ] y4 cos(x y) ye xy所以y4 cos(x y) ye xy cos(x y)xe xy5.求以下函数的二阶导数:( 1)yln(1x 2 ) ,求 y答案: (1)y2x1 x2y 2(1 x 2 ) 2x 2x2 2x 2(1 22(1 22x )x )(2)y (xy3x41 11 x 2x 2 )25 321x 243 21 1x 223 1 1y (1)4 4作业(二)(一)填空题1.若f (x)dx 2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sinx) dx ________.答案: sin x c3. 若f ( x) dxF ( x) c ,则 xf (1 x 2 )dx.答案:1F (1 x 2 ) cd24.设函数eln(1 x 2)dx ___________ .答案: 0dx 15. 若 P(x) 01dt ,则 P ( x) __________ .答案:1x 2x1 t 21 (二)单项选择题1. 以下函数中,( D2)是 xsinx的原函数.A .1cosx 2B .2cosx 2C .- 2cosx2D . -1cosx 2222. 以低等式成立的是(C ).A . sinxdxd(cosx)B . ln xdxd( 1)xC . 2 xdx1 d(2 x )D .1 dx d xln 2x3. 以下不定积分中,常用分部积分法计算的是(C ).A . cos(2x1)dx ,B .x 1 x 2 dxC . xsin 2xdxD .x 2 dx1 x4. 以下定积分计算正确的选项是(D).12 d216B .dx15x x11C .23D . sin d( xx )dx 0x x5. 以下无量积分中收敛的是( B ).A .1(三)解答题1dx B .112dx C .e x dxD .sinxdxxx 011.计算以下不定积分3x( 1) 3xdx 原式 =3 x dx = (e )c3x ce x(e ) ln 3e x (ln 3 1)e( 2)(1x) 213dx 答案:原式 = (x 2 2 x x 2 )dxx=14 32 5 c2x 23 x 2x 25x 24 (x 2)dx1 x 22x c( 3)dx 答案:原式 =( 4)1 1 dx答案:原式 = 1 d (1 2x)1ln 1 2x c 2x 2 1 2x 21 13( 5)x 2 x2dx答案:原式 = 2 x 2 d (2 x 2 ) = ( 2 x2) 2 c2 3( 6)sinxdx 答案:原式=2 sin xd x 2 cos x c x( 7)xdx xsin2答案:∵ (+) x sinx2(-) 1 2 cosx2(+) 0 4 sinx2∴原式 = 2x cosx4 sinxc2 2(8) ln( x 1)dx答案:∵ (+) ln( x 1) 1(-)1x x 1∴原式 = x ln( x 1) x dxx 1= x ln( x 1) (1 1 )dxx 1 = x ln( x 1) x ln( x 1) c 2.计算以下定积分2xdx( 1) 111x)dx 2 1)dx = 2 ( 1x2 x)12 2 5 9答案:原式 = (1 (x1 12 2 212e x( 2) x2 dx11112e xx 2)d112答案:原式 =2 ( = ex e e 21xxe3( 3)1dx1x 1 ln xe3x d(1 ln x) = 2 1 ln xe 3 答案:原式 =1 ln x 21x1( 4)2x cos2xdx答案:∵ (+) xcos2x (-)11sin 2x2(+)01cos2x4∴ 原式 = (1x sin 2x1cos2x) 0224=1 1 1442e( 5) x ln xdx 1答案:∵ (+)ln xx(-)1x 2x21 2ln x e1e∴ 原式 =x 12 xdx21 =e 2 1 x 21e1 (e2 1)2 444 xxx(1( 6)答案:∵原式 = 44 xe xdx(-)1 -e x (+)0e x4e x ) 04∴xe xdx ( xex 0=5e 4 1故:原式 =55e4作业三(一)填空题10 4 51.设矩阵 A32 32 ,则 A 的元素 a 23 __________ ________ .答案: 321612.设 A, B 均为 3 阶矩阵,且 A B3,则2AB T = ________. 答案: 723. 设 A, B 均为 n 阶矩阵,则等式 ( AB) 2 A 2 2 ABB 2 成立的充分必要条件是.答案: AB BA4. 设 A, B 均为 n 阶矩阵, ( IB) 可逆,则矩阵 A BXX 的解 X__________ ____ .答案:( IB) 1 A1 01 0 0 5. 设矩阵 A020 ,则 A1__________ .答案:A0 10 0 032 10 03(二)单项选择题1. 以下结论或等式正确的选项是( C ).A .若 A,B 均为零矩阵,则有 A B B .若 AB AC ,且 A O ,则 BCC .对角矩阵是对称矩阵D .若 AO, B O ,则 AB O2. 设 A 为 34 矩阵, B 为5 2矩阵,且乘积矩阵 ACB T 有意义,则 C T 为(A )矩阵.A . 2 4B . 4 2C . 3 5D . 533. 设 A, B 均为 n 阶可逆矩阵,则以低等式成立的是(C ).`A . ( A B) 1A 1B 1 ,B . ( A B) 1 A 1 B 14. 以下矩阵可逆的是(A).1 2 31 01 A .2 3 B .10 1 0 0 3123C .1 11 1 0 0D .222 2 25. 矩阵 A3 3 3 的秩是(B ).4 44A . 0B . 1C .2D .3三、解答题 1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)2.计算0 2 1 1 0 0 03 0 00 0312 5 4= 0121 2 3 1 2 4 2 4 51 2 2 1 4 3 6 1 01 32 23 1 3 2 71 2 3 1 2 4 2 4 5 7 19 7 2 4 5 解1 221 4 3 6 17 12 0 6 1 013 223132 7 0 4 732 7515 2 =1 11 032142 31 12 33.设矩阵 A111 , B 1 12 ,求 AB 。
【经济数学基础】形成性考核册答案(附题目)4
![【经济数学基础】形成性考核册答案(附题目)4](https://img.taocdn.com/s3/m/ba2838f0dc88d0d233d4b14e852458fb760b3876.png)
电大天堂【经济数学基础】形成性考核册答案电大天堂【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 , 在 处连续, 则 .答案: 13.曲线 在 的切线方程是 .答案:4.设函数 , 则 .答案:5.设 , 则 (二)单项选择题1.函数 , 下列变量为无穷小量是.... . A. B. C. D.2.下列极限计算正确的是....) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3.设 , 则 (..).......A. B. C. D.4.若函数.(x)在点x0处可导,则. . )是错误的.. A .函数f (x)在点x0处有定义 B . , 但C. 函数f (x)在点x0处连续D. 函数f (x)在点x0处可微 5.若 , 则 B )A. 1/B. -1/C.D. (三)解答题 1. 计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x(5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2. 设函数 ,问: (1)当 为何值时, 在 处有极限存在? (2)当 为何值时, 在 处连续.答案: (1)当 , 任意时, 在 处有极限存在; (2)当 时, 在 处连续。
3. 计算下列函数的导数或微分: (1) , 求 答案:2ln 12ln 22x x y x ++=' (2) , 求 答案:2)(d cx cbad y +-='(3) , 求 答案:3)53(23--='x y(4) , 求 答案:x x xy e )1(21+-='(5) , 求答案:dx bx b bx a dy ax )cos sin (e += (6) , 求 答案: (7) , 求 答案: (8) , 求答案:)cos cos (sin 1nx x x n y n +='- (9) , 求 答案:211xy +='(10) , 求答案:652321cot 61211sin2ln 2--+-='x x xx y x4.下列各方程中 是 的隐函数, 试求 或 (1) , 求 答案:x xy xy y d 223d ---=(2) , 求答案:)cos(e )cos(e 4y x x y x y y xy xy +++--='5. 求下列函数的二阶导数: (1) , 求答案:222)1(22x x y +-='' (2) , 求 及答案: ,电大天堂【经济数学基础】形考作业二答案:(一)填空题1.若 , 则 .答案:2. .答案:3.若 ,则........答案:4.设函数 .答案: 05.若 ,则 .答案: (二)单项选择题1.下列函数中, ....)是xsinx2的原函数...A. cosx2B. 2cosx2C. -2cosx2D. - cosx2 2.下列等式成立的是...)...... A. B.C. D.3.下列不定积分中,常用分部积分法计算的是( . )........A. ,B.C.D. 4.下列定积分计算正确的是. .. )... A. B. C. D.5.下列无穷积分中收敛的是...).. A. B. C. D.(三)解答题 1.计算下列不定积分(1)⎰x x xd e3答案: (2)⎰+x xx d )1(2答案:c x x x +++252352342(3)⎰+-x x x d 242 答案:c x x +-2212(4)⎰-x x d 211答案:c x +--21ln 21(5)⎰+x x x d 22答案:c x ++232)2(31(6)⎰x xx d sin答案:c x +-cos 2(7)⎰x xx d 2sin答案:c xx x ++-2sin 42cos 2(8)⎰+x x 1)d ln(答案:c x x x +-++)1ln()1( 2.计算下列定积分 (1)x x d 121⎰--答案:25(2)x xxd e2121⎰答案:e e - (3)x xx d ln 113e 1⎰+答案:2(4)x x x d 2cos 20⎰π答案:21-(5)x x x d ln e 1⎰答案:)1e (412+(6)x x x d )e 1(4⎰-+答案:4e 55-+电大天堂【经济数学基础】形考作业三答案:(一)填空题1.设矩阵 , 则 的元素 .答案: 32.设 均为3阶矩阵, 且 , 则 = .答案:3.设 均为 阶矩阵, 则等式 成立的充分必要条件........答案:4.设 均为 阶矩阵, 可逆,则矩阵 的解 .答案:A B I 1)(--5.设矩阵 , 则 .答案: (二)单项选择题1.以下结论或等式正确的是..).. A. 若 均为零矩阵, 则有 B .若 , 且 , 则 C. 对角矩阵是对称矩阵 D. 若 , 则2.设 为 矩阵, 为 矩阵,且乘积矩阵 有意义,则 为.. )矩阵...... A. B.C. D.3.设 均为 阶可逆矩阵,则下列等式成立的是( . )........ ` A . , B .C. D. 4.下列矩阵可逆的是. .. )... A. B. C. D.5.矩阵 的秩是. ...).. A. 0 B. 1 C. 2 D. 3三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02. 计算解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---142301112155 3. 设矩阵 , 求 。
电大经济数学基础形成性考核册及参考答案[1]
![电大经济数学基础形成性考核册及参考答案[1]](https://img.taocdn.com/s3/m/2699fbff59f5f61fb7360b4c2e3f5727a5e924fa.png)
电大经济数学基础形成性考核册及参考答案[1]关建字摘要:答案,矩阵,下列,百台,产量,成本,利润,求解,未知量,对称竭诚为您提供优质文档,本文为收集整理修正,共13页,请先行预览,如有帮助感谢下载支持经济数学基础形成性考核册及参考答案作业(一)(三)解答题1.计算极限x 2-3x +21(x -2)(x -1)x -2(1)lim==-=lim lim 2x →1x →1x →12x -1(x -1)(x +1)(x +1)x 2-5x +61(x -2)(x -3)x -3(2)lim 2=lim =lim =x →2x -6x +8x →2(x -2)(x -4)x →2(x -4)2(1-x -1)(1-x +1)1-x -1lim (3)lim=x →0x →0x x (1-x +1)=limx →0-x -11=lim=-2x (1-x +1)x →0(1-x +1)351-+2x 2-3x +5x x =1lim (4)lim =x →∞x →∞3x 2+2x +42433++2x x (5)lim5x sin 3x 33sin 3x==lim x →03x sin 5x 55x →0sin 5xx 2-4(x -2)(x +2)(6)lim=lim =4x →2sin(x -2)x →2sin(x -2)1⎧x sin +b ,x <0⎪x ⎪2.设函数f (x )=⎨a ,x =0,⎪sin xx >0⎪x ⎩问:(1)当a ,b 为何值时,f (x )在x =0处有极限存在?(2)当a ,b 为何值时,f (x )在x =0处连续.答案:(1)当b =1,a 任意时,f (x )在x =0处有极限存在;(2)当a =b =1时,f (x )在x =0处连续。
3.计算下列函数的导数或微分:(1)y =x +2+log 2x -2,求y '答案:y '=2x +2ln 2+x 2x 21x ln 2(2)y =ax +b,求y 'cx +d答案:y '=a (cx +d )-c (ax +b )ad -cb=22(cx +d )(cx +d )13x -513x -5,求y '12(3)y =答案:y ==(3x -5)-y '=-32(3x -5)3(4)y =答案:y '=x -x e x ,求y '12xax -(x +1)e x(5)y =e sin bx ,求d y答案:y '=(e )'sin bx +e (sin bx )'ax ax =a e ax sin bx +e ax cos bx ⋅b=e ax (a sin bx +b cos bx )dy =e ax (a sin bx +b cos bx )dx(6)y =e +x x ,求d y1x311答案:d y =(x -2e x )d x 2x (7)y =cos x -e -x ,求d y 答案:d y =(2x e -x -n 22sin x 2x)d x(8)y =sin x +sin nx ,求y '答案:y '=n sin n -1x cos x +cos nxn =n (sin n -1x cos x +cos nx )(9)y =ln(x +1+x 2),求y '答案:1-1x 1122'=y '=(x +1+x )=(1+)=(1+(1+x )2x )2x +1+x 2x +1+x 21+x 21+x 2x +1+x 2121(10)y =2cot 1x+1+3x 2-2xx,求y 'ln 21-21-6-x +x 答案:y '=126x 2sinx4.下列各方程中y 是x 的隐函数,试求y '或d y (1)x 2+y 2-xy +3x =1,求d y 答案:解:方程两边关于X 求导:2x2cot 1x 35+2yy '-y -xy '+3=0y -3-2xd x2y -x(2y -x )y '=y -2x -3,d y =(2)sin(x +y )+e xy =4x ,求y '答案:解:方程两边关于X 求导cos(x +y )(1+y ')+e xy (y +xy ')=4(cos(x +y )+e xy x )y '=4-ye xy -cos(x +y )4-y e xy -cos(x +y )y '=xy x e +cos(x +y )5.求下列函数的二阶导数:(1)y =ln(1+x ),求y ''22-2x 2答案:y ''=22(1+x )(2)y =1-x x,求y ''及y ''(1)3-1-答案:y ''=x 2+x 2,y ''(1)=14453作业(二)(三)解答题1.计算下列不定积分3x (1)⎰xd xe3xx 3x 3xe 答案:⎰xd x =⎰()d x =+c 3e e ln e(2)⎰(1+x )2xd x113-(1+x )2(1+2x +x 2)答案:⎰d x =⎰d x =⎰(x 2+2x 2+x 2)d x x x42=2x +x 2+x 2+c35x2-4d x (3)⎰x +21x2-4d x =⎰(x -2)d x =x 2-2x +c答案:⎰2x +2(4)351⎰1-2xd x 答案:1111d x -ln1-2x +c ==-d(1-2x )⎰1-2x ⎰221-2x2(5)x 2+x d x 3211222答案:⎰x2+x d x =⎰2+x d(2+x )=(2+x )+c 322⎰(6)⎰sinx xd x答案:⎰sinx xd x =2⎰sin xd x =-2cos x +c(7)x sin⎰xd x 2答案:x sin ⎰x xd x =-2⎰xdco s d x 22x x x x +2⎰co s d x =-2x cos +4sin +c 2222=-2x cos (8)ln(x +1)d x 答案:ln(x +1)d x ==(x +1)ln(x +1)-2.计算下列定积分(1)⎰⎰⎰ln(x +1)d(x +1)⎰(x +1)dln(x +1)=(x +1)ln(x +1)-x +c⎰2-11-x d x答案:⎰12-11-x d x =1x21211252+==(x -x )+(x -x )(1-x )d x (x -1)d x -11⎰-1⎰12221(2)⎰2ed x x 22答案:⎰1121e x x -e d x ==-e d ⎰1x x21x1121=e -e(3)⎰e 31x 1+ln xd xe 311d(1+ln x )=2(1+ln x )21+ln x答案:⎰e 31x 1+ln x1d x =⎰1e 31=2π(4)⎰20x cos 2x d x ππππ111122--sin 2xdx 答案:⎰2x cos 2x d x =⎰2xd sin 2x =x sin 2x 0=⎰0002222(5)⎰e1x ln x d xe答案:⎰01x ln x d x =e 21e12122e (e +1)==ln x d x x ln x -x d ln x 1⎰⎰11422(6)⎰4(1+x e-x)d x40答案:⎰(1+x e)d x =x -⎰xd e =3-xe -x414-x -x4+⎰0e -x d x =5+5e -44作业三三、解答题1.计算(1)⎢⎡-21⎤⎡01⎤⎡1-2⎤=⎢⎥⎢⎥⎥⎣53⎦⎣10⎦⎣35⎦⎡02⎤⎡11⎤⎡00⎤(2)⎢⎥⎢00⎥=⎢00⎥0-3⎦⎣⎦⎣⎦⎣⎡3⎤⎢0⎥(3)[-1254]⎢⎥=[0]⎢-1⎥⎢⎥⎣2⎦23⎤⎡-124⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥02.计算-122143-61⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦23⎤⎡-124⎤⎡245⎤⎡7197⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥=⎢7120⎥-⎢610⎥0解-122143-61⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦⎢⎣0-4-7⎥⎦⎢⎣3-27⎥⎦⎡515=⎢⎢111⎢⎣-3-2⎡23-1⎤⎡123⎤3.设矩阵A =⎢⎢111⎥,B =⎢112⎥,求AB 。
0ghf%iib经济数学基础形成性考核册参考答案
![0ghf%iib经济数学基础形成性考核册参考答案](https://img.taocdn.com/s3/m/05859bd87fd5360cba1adbc8.png)
、 .~① 我们‖打〈败〉了敌人。
②我们‖〔把敌人〕打〈败〉了。
经济数学基础形成性考核册参考答案经济数学基础作业1一、填空题:1.02.13.012=+-y x4.x 25.2π二、单项选择:1.D2.B3.B4.B5.C 三、计算题: 1、计算极限 (1)2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2). 原式=4)-2)(x -(x 3)-2)(x -(x lim 2x →2143lim2=--=→x x x(3). 原式=)11()11)(11(lim 0+-+---→x x x x x=111lim 0+--→x x=21-(4).原式=22433531x x x x +++-=31(5).原式=xxx x x 55sin 33sin lim530→=53(6). 原式=2)2sin(2lim 2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x= 42.(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3. 计算下列函数的导数或微分(1).2ln 12ln 22x x y x ++=' (2). 22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+=' (3). 23)53(23---='x y(4). )(21x x xe e x y +-='=x x xe e x--21(5). ∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dx bx b bx a e dy ax)cos sin (+= (6). ∵x e x y x 23112+-=' ∴dx e xx dy x )123(12-= (7).∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin x xe x x-+-∴dx xe x xdy x )22sin (2-+-=(8) nx n x x n y n cos cos sin 1+⋅='- (9) )1(1122'++⋅++='x x xx y=)11(1122xxx x ++⋅++=2221111x xx x x +++⋅++ =211x+(10) 531cos 261211cos 61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='- 2. 下列各方程中y 是x 的隐函数,试求dy y 或'(1) 方程两边对x 求导:0322=+'--'⋅+y x y y y x 32)2(--='-x y y x y所以 dx xy x y dy ---=232(2) 方程两边对x 求导:4)()1)(cos(='+⋅+'++y x y e y y x xyxyxy ye y x y xe y x -+-='++)cos(4])[cos(所以 xyxyxey x ye y x y ++-+-=')cos()cos(4 3.求下列函数的二阶导数:(1) 212xxy +=' 222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2) 212321212121)(-----='-='x x x x y23254143--+=''x x y14143)1(=+='y经济数学基础作业2一、填空题: 1.22ln 2+x2. c x +sin3. c x F +--)1(2124. 05. 211x+-二、单项选择:1.D2.C3.C4.D5.B 三、计算题: 1、计算极限(1) 原式=⎰dx e x)3( =c e c ee x xx +-=+)13(ln 33ln )3( (2) 原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3) 原式=⎰+-=-c x x dx x 221)2(2(4) 原式=c x x x d +--=---⎰21ln 2121)21(21 (5) 原式=⎰++)2(22122x d x=c x ++232)2(31(6) 原式=⎰+-=c x x d x cos 2sin 2(7) ∵(+) x 2sinx (-) 1 2cos2x - (+) 0 2sin 4x-∴原式=c x x x ++-2sin 42cos2 (8) ∵ (+) )1ln(+x 1 (-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分:(1) 原式=⎰⎰-+--2111)1()1(dx x dx x=29252)21(2212=+=-+x x (2) 原式=⎰-212211)(xd x xe x=21211e e e x -=-(3) 原式=⎰++31)ln 1(ln 1e x d x x x=21ln 123=+e x (4) ∵ (+)xx 2x 2 ∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5) ∵ (+) x22x∴ 原式=⎰-e exdx x x 11221ln 21=)1(414122122+=-e x e e(6) ∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -x e - (+)0 xe -∴⎰-----=440)(x x x e xe dx xe=154+--e故:原式=455--e经济数学基础作业3一、填空题1. 3.2.72-.3. 可交换B A ,.4. A B I 1)(--.5. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-31000210001. 二、单项选择题1. C .2. A .3. C .4. A .5. B . 三、解答题 1.(1) 解:原式=⎥⎦⎤⎢⎣⎡-5321 (2)解:原式=⎥⎦⎤⎢⎣⎡0000(3)解:原式=[]02.解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---142301112155 3.解:AB =0010420650014426651016421165=-=-=--4.解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-⨯+-⨯+74041042141074042101112421)1()2(λλλ),(③②①③①②A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−-⨯+λλ4900410421)4(②③ 所以当49=λ时,秩)(A r 最小为2。
经济数学基础形成性考核册及参考答案
![经济数学基础形成性考核册及参考答案](https://img.taocdn.com/s3/m/339dea8a680203d8ce2f2478.png)
(5) y = e ax sin bx ,求 dy
答案: dy = eax (a sin bx + b cos bx)dx
1
(6) y = e x + x x ,求 dy
答案: dy = ( 1
x−
1
1
e x )dx
2
x2
(7) y = cos x − e−x2 ,求 dy
答案: dy = (2xe− x2 − sin x )dx 2x
D. 1 dx = d x x
答案:C 3. 下列不定积分中,常用分部积分法计算的是( ).
A. ∫ cos(2 x +1)dx , ∫ B. x 1 − x2 dx C. ∫ x sin 2xdx
答案:C
4. 下列定积分计算正确的是(
).
∫ D. x dx
1+ x2
1
∫ A. 2xdx = 2 −1
x x →0+
1
C. lim x sin = 1
x→ 0
x
siБайду номын сангаас x
D. lim
=1
x x →∞
3. 设 y = lg2 x ,则 d y = ( ).答案:B
A. 1 dx 2x
B. 1 dx x ln10
C. ln10 dx x
D. 1 dx x
4. 若函数 f (x)在点 x0 处可导,则( )是错误的.答案:B
2 =2
12
0 −1 1 0 −1 0
123 1 2 3 B = 1 1 2 = 0 -1 -1 =0
011 0 1 1
所以 AB = A B = 2 × 0 = 0
⎡1 2 4⎤ 4.设矩阵 A = ⎢⎢2 λ 1⎥⎥ ,确定 λ 的值,使 r ( A) 最小。
中央电大最新经济数学基础形成性考核册答案全解
![中央电大最新经济数学基础形成性考核册答案全解](https://img.taocdn.com/s3/m/8265152c3186bceb18e8bb9e.png)
2018最新经济数学基础形成性考核册答案全解作业(一)3.曲线y x 在(1,1)的切线方程是.答案:24.设函数 f (x • 1) = x 2x 5,则 f (x)=5. ______________________________________ 设 f (x) =xsinx ,贝u f X n = .答案:—n2 211. ___________________________________________ 函数f(x)二x •在区间 内是单调减少的.答案:(-1,0)一 (0,1)x2. _________________________________ 函数y =3(x -1)2的驻点是 ,极值点是,它是极值点.答案:x = 1, x = 1,小1.若 f (x)d^ 2x 2x c ,贝y f (x) 口2. (sinx) dx 二 ___________ .答案:sin x c3. 若 f(x)dx 二F(x) c ,则(1 -x 2) c2d e24.设函数ln(1 ' x )dx 二 .答案:0dx 冲(一)填空题 .答案:02 .设 f (x)= X 2 +1, k,X = °,在X =0处连续,则k 二 x = 0 .答案:1.答案:2x3.设某商品的需求函数为pq(p) =10e^,则需求弹性E p =.答案:—2 p4.行列式D =1-1.答案:__1 5.设线性方程组 AX =b ,且A T 0 卫1-16〔 2,则t 0时,方程组有唯一解.答案:.答案:2x ln 2210 15.若P(x) - -------- dt,则P (x)二x(1 +t 23.设 y =lg 2x ,则 dy =().答案:B1.下列函数在指定区间(-=•::)上单调增加的是(j1•设矩阵A= 3 -2 -4 52 ,则A 的元素a 23二 .答案:3-12•设A, B 均为3阶矩阵,且--3,则-2AB T.答案:- 722 2 23•设A, B 均为n 阶矩阵,则等式(A-B )二A - 2AB B 成立的充分必要条件是答案: AB 4•设代B 均为n 阶矩阵,(I -B )可逆,则矩阵A • BX 二X 的解X -BA答案:(I -B )J A■15•设矩阵A= 00 1 0 ,则A -3•答案:(二)单项选择题 x — 11.函数y 二丁x 2 +x —2的连续区间是( )答案:DA .(-二,1) (1,:C . ( - : -, -2)」_: ( -2,1)」D .(-:-厂2)」_: (「2, ■:-)或(-:-,1)」2.下列极限计算正确的是()答案:BxB. lim — =1 x " xC. lim x ]0.1xsi nx D. limx r.:x=1 A . 21x dx B . xr^dx c .-dxxx 2A . sinxB . eC . xD . 3 —1C.-1xs inxdx=02.已知需求函数q (p ) =100 2_04 p,当p =10时,需求弹性为(C ).A . 4 2,p l n2B . 4l n2-4l n2 D . -4 2°pl n23.下列积分计算正确的是(A).1ex_e 公A_h dx =0B .J dx =0v 2A .若代B 均为零矩阵,4.设线性方程=b 有无穷多解的充分必要条件是 D ).A . r(A) = r(A) ::mB . r(A) :: nC . m :: nD . r(A) = r(A) ::nX i X 2 二 a 1 X 3 二 a ?, 5.设线性方程组“凶+2x2+X3 =a 3A . a 1 a 2 a 3 =0B . a -a 2 a 3 X 2 则方程组有解的充分必要条件是C ).=0C . a i ' a ? -— 0 D . - a i ' a ? ' a 3 — 0 (—)单项选择题1.下列函数中,()是 xsinX 的原函数。
电大【经济数学基础】形成性考核册答案(附题目)
![电大【经济数学基础】形成性考核册答案(附题目)](https://img.taocdn.com/s3/m/48c6977702768e9951e738d5.png)
电大在线【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21xe - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .1/ 2xB .-1/2xC .x 1D .x1- (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核册及参考答案
![经济数学基础形成性考核册及参考答案](https://img.taocdn.com/s3/m/162bf2e7856a561252d36f1f.png)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =l g 2,则d y =().答案:BA .12d xx B .1d x x ln10 C .ln 10x x d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:B A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x时,下列变量是无穷小量的是( ). 答案:CA .x2 B .xx sin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x=)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim0535sin 33sin 5lim0x x x x x →=53(6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;(2)当1==b a时,)(x f 在0=x 处连续。
中央电大经济数学基础形成性考核册答案全解
![中央电大经济数学基础形成性考核册答案全解](https://img.taocdn.com/s3/m/6c953c9325c52cc58ad6bee6.png)
2018经济数学基础形成性考核册答案全解作业(一)(一)填空题.. x —sin x …1. Iim ----------------= __________________________ .答案:0J0x/ \ '‘X1 2+1, X 式0 cr2. 设f(x)= ,在x=0处连续,则k= .答案:1J k, x = 01 13. 曲线y = x在(1,1)的切线方程是.答案:y x -2 22 .4. __________________________________________________________ 设函数f (x 1) = x 2x 5,则f (x) = ____________________________________________ .答案:2xn n5. 设f (x) = xsin x,则f ()= .答案:-一2 26. 若f (x)dx = 2x_____________________ 2x c,则f (x)工.答案:2x ln 2 27. (sinx) dx 二____________ .答案:sin x c2 1 28. 若f (x)dx =F (x) c,则xf (1 -x )dx =.答案:F (1 - x ) cd e 29. 设函数___________________________ l n(1 x )dx二.答案:0dx M110. _________________________________________________ 函数f (x) =x 在区间内是单调减少的.答案:(-1,0) ________________________ (0,1)x11. 函数y =3(x -1)的驻点是______________ ,极值点是,它是极值点.答案:x =1, x =1,小上12设某商品的需求函数为q(p)二10e 2,则需求弹性E p二搭案:-2p1 114设线性方程组AX=b,且A T0 -10 00 1若P(x)二x——2dt,则P(x)二_J1 +t1 6【 32 ,则t ___________ 时,方程组有唯一解t +1 0 一11 1 1 13.行列式D — -1 1 1 _ 1-11.答案:4.答案:=-1-1 0 4 -5115.设矩阵A =3 _ 2 3 2,则A 的元素a 23 =.答案:31 2 16 _1 _.答案:—$—1 x 212.设A 为3 4矩阵,B 为5 2矩阵,且乘积矩阵ACB T 有意义,则C T 为(A . 24 )矩阵.16.设代B 均为3阶矩阵,且 A = B = —3,则—2AB 17.设A, B 均为n 阶矩阵,则等式(A-B )2 = A 2 - 2AB - B 2成立的充分必要条件是.答案:AB18.设A, B 均为n 阶矩阵,(I - B )可逆,则矩阵 A • BX = X 的解X答案:(I -B) 1A(二)单项选择题亠 1 2 dx ). x11.以下结论或等式正确的是(c .对角矩阵是对称矩阵) .答案:- 72BA19.设矩阵A = ■1 00【0 ,则A -3答案:A 二1.函数 y 2^ 1-x +x —2 的连续区间是((-:-,-2) (-2,:|•匚」)或(-:-,1) (1,九匸2.下列极限计算正确的是( .1计匸=1x7 • x3.设 y = Ig2 x ,则 dy(B . dx ).xln 104.若函数f (x )在点X0处可导, 则(B . lim f(x)=A ,但 A=f(x 0))是错误的.X —05.当x > 0时,下列变量是无穷小量的是( c . ln (1 • x ))16.下列函数中,(D . -—cosx 2)是xsinx?的原函数.2X1 x7.下列等式成立的是(c . 2 dxd(2 )). ln 28.下列不定积分中,常用分部积分法计算的是(xsin 2xdx ).9.下列定积分计算正确的是(D ..Hsin xdx = 0). -3T10.下列无穷积分中收敛的是(B .13.设A, B均为n阶可逆矩阵,则下列等式成立的是(C. AB = BA )1 2 314.下列矩阵可逆的是(A . 0 2 3 )003一2 2 23 3 3的秩是(B. 1 )4 4 4^16.下列函数在指定区间17.已知需求函数q( p) =1QQ 2 -°'4?,当p=10时,需求弹性为(c. -41 n2 ). x _x1e — e18.下列积分计算正确的是(A . dx = 0 )=219.设线性方程组A m n X = b有无穷多解的充分必要条件是(D. r(A)二r(A) ::: n )| x1 x2 = a120.设线性方程组* x2+x3 = a2,则方程组有解的充分必要条件是(C. a1+ a2-a3= 0 )捲+2x2 + X3 =a3.(三)解答题1•计算极限(1)x2-3x 2 limX1x2-1Pm;::::* =Pm x-2(x 1)(2) 022x「5x 6 2x -6x 8(3).1 -x -1「( .1 -x -1)( 1-x 1)=limX 50X( . 1 - X 1)-1= lim =lim --------------- J0 x( , 1 - x 1) x )0( J - x 1)% n x -3x 52x 4521-3x x1315.矩阵A4sin3x 5xsin 3x 3 3(5)limlim=x 0sin5x x 0 3xsin5x 5 5xsin — +b,x 2•设函数 f (x) = « a,sin x x问:(1)当a, b 为何值时,f (x)在x=0处有极限存在?(2)当a,b 为何值时,f (x)在x = 0处连续.(2)当 a =b =1 时,f (x)在x = 0处连续。
经济数学基础作业(二)部分答案
![经济数学基础作业(二)部分答案](https://img.taocdn.com/s3/m/1fff47bff121dd36a32d82d9.png)
《经济数学基础》作业(二)部分答案一、填空题1.若c x x x f x ++=⎰22d )(,则_____________)(=x f 。
答案:='++=)22()(c x x f x 22ln 2+x 2.____________d )(sin ='⎰x x 。
答案: c x f x x f +='⎰)()d (c x x x +='∴⎰sind )(sin3.若c x F x x f +=⎰)(d )(,则_____________d )1(2=-⎰x x xf 。
答案: )d(1)1(21)d 2()1(21d )1(2222x x f x x x f x x xf ---=---=-⎰⎰⎰=c x F +--)1(212(还原)4.____________d )1ln(d de 12=+⎰x x x。
正确答案:0定积分的导数为0。
5.若21d e 0=⎰∞+-x kx,则_________=k 。
答案:∵)d(e1lim d e2100kx k x b kxb kx--==⎰⎰-+∞→∞+- kk kkkbb b kxb 1e1lim1e1lim 0=-=-=-+∞→-+∞→∴2=k二、单项选择题1.下列函数中,( )是2sin x x 的原函数。
A .2cos 21x B .2cos 2x C .2cos 21x -D .2cos 2x -答案:C 。
2.下列等式成立的是( )。
A .)(cos d d sin x x x = B .)1(d d 12xx x=C .)(d d ln xxa x a a = D .)(d d 21x x x=答案:C ,D 。
3。
下列不定积分中,常用分部积分法的是( )。
A .x x x d sin 2⎰B .x x x d )12sin(⎰+C .x xx d ln ⎰D .x xx d 1⎰+答案:B 。
国开电大经济数学基础12形考任务2
![国开电大经济数学基础12形考任务2](https://img.taocdn.com/s3/m/928f264a7fd5360cba1adb6f.png)
国开电大经济数学基础12 形考任务2 2018.12 注:国开电大经济数学基础12 形考任务 2 共20 道题,每到题目从题库中三选一抽取,具体答案如下:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则().答案:题目6:若,则().答案:题目6:若,则().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:().答案:0题目10:().答案:0题目10:().答案:题目11:设,则().答案:题目11:设,则().答案:题目11:设,则().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:。
2018年秋会计专【经济数学基础】形成性考核册答案(附
![2018年秋会计专【经济数学基础】形成性考核册答案(附](https://img.taocdn.com/s3/m/aaed8379cec789eb172ded630b1c59eef9c79a11.png)
电大天堂【经济数学基础】形成性考核册答案注:本答案仅供参考,如有错误敬请指正有不对的地方欢迎指出。
电大天堂【经济数学基础】形考作业一答案:(一)填空题 一.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:一 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题一. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21x e - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设,则( B ). A .B .C .D .4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .一/ 2xB .-一/2xC .x1D .x 1-(三)解答题 一.计算极限(一)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(一)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(一)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
2018年度秋经济数学基础学习知识形考任务一网上课后复习参考材料.规范标准答案
![2018年度秋经济数学基础学习知识形考任务一网上课后复习参考材料.规范标准答案](https://img.taocdn.com/s3/m/e51bef64b8f67c1cfbd6b878.png)
经济数学基础形考网上形考任务一作业参考答案(2018年秋季)单项选择题题目1函数的定义域为().选择一项:A.B.C.D.正确答案是:题目2下列函数在指定区间上单调增加的是().选择一项:A.B.C.D.正确答案是:题目3设,则=().选择一项:A.B.C.D.正确答案是:题目4当时,下列变量为无穷小量的是().选择一项:A.B.C.D.正确答案是:题目5 下列极限计算正确的是().选择一项:A.B.C.D.正确答案是:题目6 ().选择一项:A. 2B. 1C. 0D. -1正确答案是:-1题目7 ().选择一项:A. -1B. 2C. 1D. -2正确答案是:-1题目8 ().选择一项:A. ().B. ().C. ().D. ().正确答案是:().题目9 ().选择一项:A. 4B. 1C. 2D. 0正确答案是:4题目10 设在处连续,则().选择一项:A. 2B. 0C. -2D. 1正确答案是:2题目11 当(),()时,函数在处连续.选择一项:A.B.C.D.正确答案是:题目12 曲线在点的切线方程是().选择一项:A.B.C.D.正确答案是:题目13 若函数在点处可导,则()是错误的.选择一项:A. ,但B. 函数在点处有定义C. 函数在点处可微D. 函数在点处连续正确答案是:,但题目14 若,则().选择一项:A.B. -1C.D. 1正确答案是:1题目15 设,则().选择一项:A.B.C.D.正确答案是:题目16 设函数,则().选择一项:A.B.C.D.正确答案是:题目17 设,则().选择一项:A.B.C.D.正确答案是:题目18正确获得4.00分中的4.00分题干设,则().选择一项:A.B.C.D.正确答案是:题目19 设,则().选择一项:A.B.C.D.正确答案是:题目20 设,则().选择一项:A.B.C.D.正确答案是:题目21 设,则().选择一项:A.B.C.D.正确答案是:题目22 设,方程两边对求导,可得().选择一项:A.B.C.D.正确答案是:题目23 设,则().选择一项:A. 1B. -1C.D.正确答案是:题目24 函数的驻点是().选择一项:A.B.C.D.正确答案是:题目25设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.正确答案是:。
2018年秋会计专【经济数学基础】形成性考核册答案(附
![2018年秋会计专【经济数学基础】形成性考核册答案(附](https://img.taocdn.com/s3/m/cc33191b580216fc700afdd1.png)
电大天堂【经济数学基础】形成性考核册答案注:本答案仅供参考,如有错误敬请指正有不对的地方欢迎指出。
电大天堂【经济数学基础】形考作业一答案:(一)填空题 一.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:一 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题一. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21x e - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设,则( B ). A .B .C .D .4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .一/ 2xB .-一/2xC .x1 D .x 1-(三)解答题 一.计算极限(一)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(一)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(一)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济数学基础形考任务二网上作业参考答案
(2018年秋季)
单项选择题
题目1下列函数中,()是的一个原函数.
选择一项:
A.
B.
C.
D.
正确答案是:
题目2 若,则().选择一项:
A.
B.
C.
D.
正确答案是:
题目3 ().
选择一项:
A.
B.
C.
D.
正确答案是:
题目4 ().
选择一项:
A.
B.
C.
D.
正确答案是:
题目5 下列等式成立的是().
选择一项:
A.
B.
C.
D.
正确答案是:
题目6 若,则().选择一项:
A.
B.
C.
D.
正确答案是:
评论:用代换法求解。
令t=3x-2,则dt=3dx. ∫(3x-2)dx=∫(t)⅓dt=⅓∫(t)dt=⅓F(t)+C =⅓F(3x-2)+ C
题目7 用第一换元法求不定积分,则下列步骤中正确的是().
选择一项:
A.
B.
C.
D.
正确答案是:
题目8 下列不定积分中,常用分部积分法计算的是().
选择一项:
A.
B.
C.
D.
正确答案是:
题目9 用分部积分法求不定积分,则下列步骤中正确的是().选择一项:
A.
B.
C.
D.
正确答案是:
评论:这是幂函数和对数的乘积形式,选择对数函数为u,幂函数为v'
题目10 ().
选择一项:
A.
B. 1
C.
D. 0
正确答案是:0
评论:定积分是一个数值,故再求导值为0
题目11 设,则().
选择一项:
A.
B.
C.
D.
正确答案是:
题目12 下列定积分计算正确的是().
选择一项:
A.
B.
C.
D.
正确答案是:
题目13 下列定积分计算正确的是().
选择一项:
A.
B.
C.
D.
正确答案是:
评论:利用奇偶函数的定积分计算性质,先判断被积函数的奇偶性。
题目14 ().
选择一项:
A.
B.
C.
D.
正确答案是:
评论:去掉被积函数的绝对值号,同时考虑积分区间。
题目15 用第一换元法求定积分,则下列步骤中正确的是().
选择一项:
A.
B.
C.
D.
正确答案是:
题目16 用分部积分法求定积分,则下列步骤正确的是().选择一项:
A.
B.
C.
D.
正确答案是:
评论:被积函数是幂函数和三角函数的乘积,选幂函数为U,三角函数为v'
题目17 下列无穷积分中收敛的是().
选择一项:
A.
B.
C.
D.
正确答案是:
题目18求解可分离变量的微分方程,分离变量后可得().选择一项:
A.
B.
C.
D.
正确答案是:
题目19根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:
A.
B.
C.
D.
正确答案是:
题目20 微分方程满足的特解为().
选择一项:
A.
B.
C.
D.
正确答案是:
将y(0)=0 带入上式得:C=。