防止产生谐振过电压的措施
防止电压互感器铁磁谐振过电压选用一次消谐器
![防止电压互感器铁磁谐振过电压选用一次消谐器](https://img.taocdn.com/s3/m/fcd7c3df6c85ec3a86c2c5bc.png)
防止电压互感器铁磁谐振过电压选用一次消谐器
随着电力系统的整改与扩建,电力系统存在的一些常见疑难问题仍得不到有效的解决。
比如:铁磁谐振过电压问题引起的一系列电压互感器烧毁、高压保险熔断等等。
都知道电压互感器对电力系统很重要,它是输电和供电系统不可缺少的一种电器。
它能够平衡一、二次侧之间的电磁关系,像-个被限定结构和使用形式的特殊变压器,都是用来变换线路上的电压。
电压互感器能把高电压按比例关系变换成100V或更低等级的标准二次电压,供保护、计量、仪表装置使用,维护电力设备的正常使用。
6~35kV电网中性点不接地系统中,母线上Y0接线的PT一次绕组,成为该电网对地唯一金属性通道。
当母线空载或出线较少时,因合闸充电或在运行时接地故障消除等原因,会使电压互感器过饱和,可能激发铁磁谐振,出现过电压,接地指示误动作,PT 高压保险丝熔断等异常现象,严重时会导致 PT 烧毁,造成大面积停电事故。
那么,发生铁磁谐振过电压问题我们应该怎么办呢?该如何保护电压互感器呢?
出现铁磁谐振过电压通常我们会想到电压互感器加装一次消谐进行消谐。
LXQ系列6~35kV电压互感器中性点用非线性电阻消谐阻尼器又称一次消谐器,是安装在6~35kV电压互感器一次绕组Y接线中性点与地之间的一种非线性电阻消谐阻尼器件。
电压互感器加装一次消谐器能够消除电压互感器的突然投入、系统运行方式的突然改变或电气设备的投切、系统负荷发生较大的波动、电网频率的波动、线路发生单相接地、负荷的不平衡变化等引起的铁磁谐振过电压,可以起到良好的限制电压互感器铁磁谐振的效果。
浅谈10kV系统产生谐振过电压原因及控制对策
![浅谈10kV系统产生谐振过电压原因及控制对策](https://img.taocdn.com/s3/m/4d7ba1fdbd64783e08122ba8.png)
浅谈10kV系统产生谐振过电压原因及控制对策摘要在10kV配电网中,常常发生电磁式电压互感器烧毁的现象,其原因都是因为某些故障或者不正常运行致使电压互感器内的铁芯饱和,诱发铁磁谐振的产生,致使电压互感器内部产生过电压,过电流,严重威胁电力系统的安全运行。
本文通过对配电系统电压互感器频繁损坏的现象,简要阐述铁磁谐振的现象与机理,产生的条件,提出了控制谐振过电压的措施,与大家交流学习。
关键词铁磁谐振;过电压;防范措施引言长期以来,电力系统铁磁谐振过电压严重威胁着电网的安全运行,在10kV 系统中,电磁式电压互感器引发的铁磁谐振过电压导致的设备事故时有发生。
这种过电压持续时间长,对系统的安全运行构成很大威胁,轻者可导致电压互感器烧损,高压熔丝熔断及匝间短路或爆炸;重者发生避雷器爆炸、母线短路等事故。
本文通过对配电系统电压互感器频繁损坏的现象,简要阐述铁磁谐振的现象,产生的条件及防范措施,总结了针对此类故障采取防范措施的一些运行经验。
1 铁磁谐振过电压产生的机理[1-2]目前,我国企业在35kV或者是其以下的配电网,有许多都是采用中性点和不接地的方式进行运行的,因此其中的很大一部分选用的都是比较传统的消线圈完成接地。
因此在其具体进行运行的问题可以看出,中性点的不接地系统,会受到电压的互感器铁心饱和使得铁磁谐振过的电压相对多一些。
中性点不接地运行方式的电力系统单相接地后,两相电压瞬时升高,三相铁心受到不同的激励而呈现不同程度的饱和,电压互感器各相感抗发生变化(各相电感值不同),中性点位移,产生零序电压。
由于线路电流持续增大,导致电压互感器铁心逐渐磁饱和,其电感值迅速减小,当满足ωL=1/ωC时,产生谐振过电压。
在发生谐振时,电压互感器一次励磁电流急剧增大,使高压熔丝熔断。
如果电流尚未达到熔丝的熔断值,但超过了电压互感器额定电流,长时间处于过电流状况下运行,可造成电压互感器烧损。
电力系统中存在着许多非线性感性元件,如发电机、变压器、电压互感器等,这些感性元件和系统中存在的分布电容组成复杂的LC振荡回路,有可能激发铁磁谐振产生过电压。
谐波、谐振的危害及防治措施
![谐波、谐振的危害及防治措施](https://img.taocdn.com/s3/m/ea3fe9d7b9f67c1cfad6195f312b3169a551ea45.png)
谐波、谐振的危害及防治措施前言随着电气自动化的迅速发展,工业生产中对电能质量的要求更高,但由于电能的复杂性和不稳定性,电力企业和电力用户都会面临许多问题。
其中一个关键问题就是谐波和谐振的危害,它们会对电力系统带来很多问题,同时也会对设备和工作人员的安全产生影响。
因此,谐波和谐振的危害需要引起我们的重视,有必要采取相应的措施进行防治。
谐波的危害谐波是指频率为整数倍基波频率的倍频波,当电网中出现谐波时,会对电力系统造成很多负面影响,主要表现在以下几个方面:1. 降低电网功率因数谐波会对电力系统的功率因数产生影响,使功率因数降低。
功率因数越低,电子设备就越难以正常工作,同时还会导致电能损失和电费增加。
因此,谐波应尽量减小。
2. 损害设备大量谐波会给设备带来很大的损害,造成设备寿命减少,安全储备降低和可靠性下降,这对生产带来很大的风险和影响。
谐波带来的损害主要包括:•电机过热损坏•物理变形•变压器局部过热•电容器和电感器损坏3. 干扰通信系统谐波会引起通信系统(尤其是无线电通信系统)的干扰,影响通信质量。
这种干扰会干扰射频通信的接收机、起伏机、响应器、发射机以及其他电子部件,使通信信号受到严重干扰,从而影响通信过程的稳定性和可靠性。
谐振的危害谐振是指电力系统在特定频率下的共振现象。
虽然谐振一般在正常运行条件下不会出现,但当出现谐振时,会对电力系统造成很大的威胁,主要表现在以下几个方面:1. 破坏电力设备谐振波能量巨大,一旦出现谐振,就会对电力设备造成破坏,严重时甚至会导致设备停产,影响生产。
因此,谐振的出现需要引起注意。
2. 对安全产生威胁谐振波会对人员和设备的安全产生威胁,严重时会导致设备火灾、电击事故等。
电力系统中所有的设备,不仅要承受电压和电流的冲击,还要承受谐振波的冲击,如果谐振波过大,会对设备造成严重威胁。
3. 影响电网稳定性谐振波的存在会破坏电力系统的稳定性,使电网不稳定,从而引起负荷不均衡、跳闸等故障,进一步危及电网的供电能力和稳定性。
电压互感器铁磁谐振的发生原因及防范措施
![电压互感器铁磁谐振的发生原因及防范措施](https://img.taocdn.com/s3/m/25be06f9102de2bd960588a5.png)
电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。
在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。
这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。
在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。
1、电压互感器引起铁磁谐振的发生原因分析在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。
在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。
C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。
但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。
由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。
当激磁电流过大时,铁芯饱和,则L值随之大大降低。
正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。
2、铁磁谐振的特点对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。
电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。
TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。
此外回路损耗也使谐振过电压受到阻尼和限制。
浅析电压互感器铁磁谐振过电压防范措施
![浅析电压互感器铁磁谐振过电压防范措施](https://img.taocdn.com/s3/m/621b55fcfc0a79563c1ec5da50e2524de418d071.png)
浅析电压互感器铁磁谐振过电压防范措施电压互感器是电力系统中常见的一种测量设备,其作用是将高压变电器的高电压变换为低电压用于测量和保护系统。
电压互感器在运行过程中会受到各种干扰和影响,其中铁磁谐振过电压是一个常见的问题。
本文将对电压互感器铁磁谐振过电压的原因进行分析,并提出相应的防范措施。
一、铁磁谐振过电压的原因1. 铁芯饱和电压互感器的铁芯在运行过程中,会受到系统电压的影哨,当系统电压过高时,铁芯可能会发生饱和现象。
当铁芯饱和时,会导致互感器的谐振频率发生变化,从而产生过电压。
2. 负载变化3. 保护动作在系统故障或过载状态下,保护设备会进行动作,引发短时过电压。
这种过电压也可能引起电压互感器的铁磁谐振现象。
1. 加强互感器绝缘为了防范铁磁谐振过电压的发生,首先要确保互感器的绝缘性能良好。
在选择互感器时,应选择具有较高击穿电压的绝缘材料,以提高互感器的绝缘强度。
2. 优化互感器设计在互感器的设计过程中,应该根据系统的电压和负载特性,优化互感器的结构和参数,以减少铁磁谐振过电压的可能性。
3. 使用补偿电容器在互感器的设计中,可以加入合适的补偿电容器来抵消铁磁谐振过电压。
补偿电容器的选择和布置是一个复杂的工程问题,需要根据实际系统情况进行综合考虑。
4. 定期检测为了确保电压互感器的正常运行,需要定期对其进行检测和维护。
通过定期检测,可以及时发现互感器存在的问题,并采取相应的措施进行修复。
5. 系统优化在系统设计和运行过程中,应该保持系统的稳定性,避免出现系统过载或短路等故障情况,以减少铁磁谐振过电压的发生。
电压互感器铁磁谐振过电压是一个常见的问题,但通过合理的设计和操作措施,可以有效地防范和解决这一问题,从而确保电力系统的安全稳定运行。
希望本文的分析和建议能够为电力系统工程技术人员在实际工作中提供一些参考和帮助。
电力系统谐振过电压产生的原因及防范措施
![电力系统谐振过电压产生的原因及防范措施](https://img.taocdn.com/s3/m/3412bafeaeaad1f346933fd7.png)
电力系统谐振过电压产生的原因及防范措施摘要电力系统中,厂站因过电压引起故障甚多,特别是谐振过电压,对设备甚至系统安全稳定运行影响大。
分析原因,找出问题,提出防治措施很有必要。
关键词谐振过电压;PT;铁芯饱和;防范措施0 引言我国电力系统分为不同电压等级,35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。
过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。
1 谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
2 铁磁谐振为满足电网测量、保护需要,电力系统中配置大量电感电容元件,如:互感器、电抗器等电感元件;电容器、线路对地电容等电容元件。
当进行设备操作或系统故障时,电感电容元件构成振荡回路,在一定条件下产生谐振,损坏设备影响系统。
2.1 原因分析图1某水厂单串接线图,采用接线,110kV系统中性点直接接地,变压器、PT等分相运行,变压器、PT高压绕组接成Y0,该厂多次发生铁磁谐振过电压。
原因:图1 某水电站单串接线图1)故障时产生谐振过电压。
当系统发生单相故障时,因整个电网系统中电感电容元件参数不匹配,两者共同作用,为谐振产生创造条件,最终导致铁磁谐振过电压发生;2)操作时产生谐振过电压。
110kV开关为双断口且并联均压电容,停送电操作时,先拉5012、5013,再拉50126,其他刀闸均接通。
110kV环网通过开关断口电容构成带电磁式PT空母线产生谐振。
2.2 等值电路图该厂输出线路发生单相接地故障,瞬时A相线路产生接地电流,因避雷器参数不匹配,构成谐振回路而产生谐振过电压。
图2 简化电路图如图2,L1是1B一次侧电感,L2是2B一次侧电感,Lm是PT一次侧电感,C0是空长线路对地电容,RL是电阻,k为故障点。
防止谐振过电压的措施
![防止谐振过电压的措施](https://img.taocdn.com/s3/m/a596dfd949649b6648d74719.png)
防止谐振过电压的措施电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。
谐振过电压分为以下几种:1、线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。
2、铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。
3、参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd~Xq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。
限制谐振过电压的主要措施有:1、提高开关动作的同期性由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。
2、在并联高压电抗器中性点加装小电抗用这个措施可以阻断非全相运行时工频电压传递及串联谐振。
3、破坏发电机产生自励磁的条件,防止参数谐振过电压。
4、严格执行调度规程在运行方式上和倒闸操作过程中,防止断路器断口电容器与空载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。
它包括两个方面:①应避免用带断口电容器的断路器切带电磁式电压互感器的空载母线。
②避免用带断口电容器的回路的刀闸对带电磁式电压互感器的空载母线进行合闸操作。
具体可采用下述方式来实现:在切空母线时,先拉开电压互感器,对母线断电;在投空母线时,先断开被送电母线PT,对母线送电,再合母线电压互感器。
5、避免操作过电压在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振时,应立即合上带断口电容器的断路器,切除回路电容,终止谐振,防止隐患发展形成事故。
电网谐振过电压的限制方法
![电网谐振过电压的限制方法](https://img.taocdn.com/s3/m/ea87c8566d175f0e7cd184254b35eefdc8d31500.png)
电网谐振过电压的限制方法电网谐振过电压是指电网中由于谐振电路产生的过电压现象。
谐振过电压的存在会对电网设备和用户设备造成损坏和影响电网的稳定运行。
为了限制电网谐振过电压的发生,以下是一些常用的方法:1. 控制谐振回路的阻抗:对于谐振回路来说,其阻抗会影响谐振过电压的大小。
因此,通过控制谐振回路中的电抗元件(如电感和电容)的数值,来改变谐振回路的阻抗,从而限制谐振过电压的大小。
2. 使用限流电感器:在电网系统中配置适当的限流电感器,可以限制谐振过电压的大小。
限流电感器是一种具有一定阻抗的电感元件,可降低系统的谐振频率,减小谐振过电压的幅值。
3. 安装降压变压器:通过安装适量的降压变压器,将电网供电电压降低,从而减小谐振过电压的幅值。
这样可以有效地限制谐振过电压对电网设备和用户设备的影响。
4. 使用TVS(气体抑制二极管):TVS是一种具有快速响应的抑制过电压的元件,可以在过电压出现时迅速导通,将过电压限制在安全范围内。
在电网系统中配置适当的TVS,可以有效地限制谐振过电压的幅值。
5. 加装补偿电容器:在电网系统中加装补偿电容器,可以提供谐振过电压的吸收和分布功能,从而限制谐振过电压的幅值。
补偿电容器可以有效地抑制谐振回路的振荡。
6. 控制电网变流器的运行方式:电网变流器是电网中常见的谐振回路。
通过控制电网变流器的运行方式,如变流器的开关控制策略、调整变流器的输出功率等,可以减小谐振过电压的幅值。
7. 增加电网的阻尼:在电网中增加适当的阻尼,可以有效地抑制谐振回路的振荡,减小谐振过电压的幅值。
可以采用增加电阻等方法来实现电网的阻尼。
总之,限制电网谐振过电压的方法可以从改变谐振回路的阻抗、配置限流电感器、降低电网供电电压、使用TVS、加装补偿电容器、控制电网变流器的运行方式、增加电网的阻尼等方面进行。
需要根据具体情况综合应用这些方法,以达到有效抑制谐振过电压的目的,保证电网的稳定运行。
电厂中谐振过电压产生与抑制
![电厂中谐振过电压产生与抑制](https://img.taocdn.com/s3/m/1ab6da294b35eefdc8d33376.png)
浅析电厂中谐振过电压的产生与抑制【摘要】电网中存在着大量的感容性元件,当电力系统中出现扰动时(操作或发生故障),这些电感、电容元件就有可能形成各种不同的振荡回路,引起谐振过电压。
不同类型的谐振过电压有着截然不同的抑制与消除方法,本文针对不同类型的谐振过电压的产生原因、特点进行了阐述,同时介绍了设计人员在电厂设计中是如何进行谐振过电压抑制与消除的。
【关键词】感容性元件;扰动;谐振过电压;抑制与消除1 谐振过电压的产生原因及危害电厂中存在着大量储存静电能量的电容元件(电缆等导线的对地电容和相间电容,串、并联补偿电容器组,各种设备的杂散电容等)和储存磁能的电感元件(变压器、互感器、发电机、消弧线圈、电抗器以及各种杂散电感等)。
电网中的电感、电容元件,在一定电源的作用下,并受到操作或故障的激发,使得某一自身振荡频率与外加强迫频率相等,形成周期性或准周期性的剧烈振荡,电压振幅急剧上升,出现严重谐振过电压。
谐振过电压的持续时间较长,甚至可以稳定存在,直到破坏谐振条件为止。
谐振过电压可在各级电网中发生,危及绝缘,烧毁设备,破坏保护设备的保护性能,甚至引发不可预知的灾难性后果。
2 谐振过电压的类型及相应抑制方法在中、低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,以便制定防振与消振的对策与措施。
各种谐振过电压可以归纳为三种类型:线性谐振过电压、铁磁谐振过电压和参数谐振过电压。
2.1 线性谐振过电压线性谐振过电压的特点:1)参与谐振的各电气参量均为线性。
2)谐振发生在电网自振频率与电源频率相等或相近时。
3)多为空载线路不对称接地故障的谐振、消弧线圈补偿网络的谐振和某些传递过电压的谐振等。
当消弧线圈网络在全补偿运行状态,也即脱谐度v=0,此时如果发生单相接地,导致网络中出现零序电压,进而便可引发消弧线圈与导线对地电容的串联线性谐振。
变电站及用户常见的操作过电压、谐振过电压及防止操作过电压和谐振过电压措施
![变电站及用户常见的操作过电压、谐振过电压及防止操作过电压和谐振过电压措施](https://img.taocdn.com/s3/m/9995d8e2cf2f0066f5335a8102d276a200296083.png)
Ijd IB cos300 IC sin 300 2 3UxgC0 cos300 3C0Uxg (8–1)
图8–1 单相接地电路图及相量图 (a)电路图 ;(b)相量图
形成电网中有直流电压分量 q 3C0Uxg Uxg 。所以断弧后,
3C0
3C0
导线对地稳态电压由各自电源电势和直流电压-Uxg叠加组成。
断弧后瞬间,B、C相的电源电势为-0.5Uxg,叠加结果为
-1.5Uxg;A 相电源电势为Uxg,叠加结果为零。因此,断弧
后瞬间,各相电压初始值与瞬间稳态值相等,不会引起过渡
—
20
0.06
—
35
0.10
0.12
60
—
0.20
由表8–1可知,当一个10kV电网的架空线路总长度不超过 1000km,一个35kV电网的架空线路总长不超过100km,它们的 单相接地电流 Ijd 将分别不超过30A和10A。运行经验 证明,此时
由于电动力和热空气的作用,接地电弧被拉长,一般能够在
Um
电压大为减缓,从而有利
1.5 8
于接地残流电弧的熄灭。 但实际测量证明,接地残
4
1.0
3 2
流电弧远不是在电流第一
0.5
次通过零点时就熄灭的,
1
0 d
有时电弧可存在几秒钟之
0
1
2
3
4 dt
久。这是因为熄弧后经过
半个迫振周期
0
,由于
图8–5 在不同比值v/d 时恢复电压的包络线
恢复电压幅值达到最大(接近 2Um),而往往再度发生击穿,
220kV变电站铁磁谐振过电压事故分析及防止措施
![220kV变电站铁磁谐振过电压事故分析及防止措施](https://img.taocdn.com/s3/m/df07e5e4551810a6f524861d.png)
220kV变电站铁磁谐振过电压事故分析及防止措施摘要:文章结合某220kV变电站刀闸操作过程中出现的110kV母线设备铁磁谐振案例,对系统中因操作产生的铁磁谐振过电压情况进行分析,并提出预防措施和对策。
关键词:铁磁谐振过电压分析措施电力系统中具有一系列电气元件,组成极为复杂的电感电容的串联震荡回路,串联谐振现象会在电网的某一部分造成过电压,破坏电气设备绝缘,危机设备的安全运行。
对于小容量非线性电感元件(例如电压互感器)谐振过电压使它产生的大电流,在严重情况下,造成电感线圈及其保护熔丝烧毁甚至压变及高压设备爆炸,谐振过电压持续时间较长并可能稳定存在,因此了解谐振发生的原因及防止措施是十分必要的。
1 谐振基本概念1.1 串联谐振的定义谐振时XL=Xc,电路此时的工作状态叫谐振又由于谐振发生在RLC串联回路中又叫串联谐振(图1)。
1.2 为何串联谐振又叫电压谐振谐振电路中的电流I=U/Z=U/R(谐振时回路中的总电阻Z=R)谐振时各元件的电压:UR=I×R=R×U/R=U(说明谐振时电阻上的电压等于电源电压)UL=jωoLI=jωoL×U/R=j(ωoL/R)×U=jQU,Q:品质因数,Q=XL/R(说明谐振时电感上的电压等于Q倍电源电压) UC=j(1/ωoC)×I=j1/ωoC)×U/R=j(1/ωoCR)×U=jQU,Q:品质因数,Q=XC/R=1/ωoCR(说明谐振时电容上的电压等于Q倍电源电压) 从上述表达式中可以看出:Q=UC/U=UL/U。
一般在串联谐振时Q>1,在大电流接地系统中电源电压U很高,而在电感和电容上的电压是电源电压的Q倍。
在无线电中可以加以利用,使微弱的信号输入串联谐振回路中,电容两端可获得高电压。
但是在电力系统中由于电源电压本身就很高,如在串联谐振下工作则会严重损坏设备。
这是绝对不允许的,所以说在大电流接地系统中发生串联铁磁谐振也叫电压谐振。
10kV配电系统过电压原因分析及防范措施
![10kV配电系统过电压原因分析及防范措施](https://img.taocdn.com/s3/m/8a5730d9fc4ffe473268ab06.png)
10kV配电系统过电压原因分析及防范措施摘要:本文主要针对10kV配电系统过电压的原因及防范措施展开了分析,对过电压的原因作了详细的阐述,给出了一系列相应有效的防过电压措施,并结合具体的实例进行了论证,以期能为有关方面的需要提供有益的参考和借鉴。
关键词:配电系统;过电压;原因;措施过电压属于电力系统中的一种电磁扰动现象。
在10kv配电系统中出现过电压问题,将会对正常的供电产生一定的影响。
因此,我们需要认真分析过电压存在的原因,采取有效的措施做好防范,从而保障供电系统的正常供电运行。
基于此,本文就10kV配电系统过电压的原因及防范措施进行了分析,相信对有关方面的需要能起到一定的帮助作用。
1 过电压原因分析据运行统计,造成设备故障或损坏的过电压形式主要有:谐振过电压、直击雷过电压、雷电反击过电压等。
不同的过电压形式具有不同机理,对设备的损坏程度也不同。
1.1 谐振过电压10kV电压互感器由于谐振过电压使髙压侧熔断器熔断的故障。
变电站10kV系统属中性点不接地系统,当发生接地故障时,系统相电压升高,加在线圈两端的电压升高,铁芯出现磁饱和现象,感抗发生变化。
PT的感抗和线路的对地容抗匹配时就会产生铁磁谐振过电压,使高压侧熔断器熔断。
特别是单相接地故障时,对地电容电流较大,产生电弧不能自熄灭,出现间歇性放电产生弧光过电压,使铁芯更易出现磁饱和现象,引起谐振过电压,使PT高压侧熔断器熔断。
1.2 接地不良引起雷电反击过电压主变10kV侧出线避雷器过电压烧毁现象。
出现这种现象的主要原因是接地电阻偏大。
经实地测量,两个变电站地网的接地接阻均不合格,约1欧姆(标准要求小于等于0.5欧姆)。
当强大的雷电流通过避雷针、避雷线的引下线或构架等接地体向地网泄放时,因接地阻太大,残压过高而通过避雷器进行反击,以致破坏避雷器。
1.3 进行波入侵和雷电流感应引起的过电压(1)10kV架空线或配电线因雷击而引起雷电流入侵,入侵的进行波遇到阻抗突变的结点时会因反射而使电压升髙,来回反射并扩散的高电压碰到绝缘相对薄弱处便可能击穿造成事故。
电压互感器谐振过电压分析及预防措施
![电压互感器谐振过电压分析及预防措施](https://img.taocdn.com/s3/m/61bbbe335bcfa1c7aa00b52acfc789eb162d9e13.png)
电压互感器谐振过电压分析及预防措施电压互感器是电力系统中常用的测量和保护装置,它将高电压侧的电压降低到低电压侧进行测量或传递。
然而,当电压互感器遭受到电力系统中的谐振过电压时,会引起互感器的谐振现象,从而影响电力系统的稳定性和互感器的工作性能。
本文将从谐振过电压的原因和机理、谐振过电压的预防措施等方面进行详细分析。
首先,谐振过电压的原因和机理主要有以下几点:1.系统谐振:当系统中存在谐振的无功电容或电感元件时,谐振过电压现象容易发生。
例如,当系统中存在高频电容器、线路电容或电抗器等无功元件时,谐振过电压现象可能因其与互感器的谐振频率接近而发生。
2.外部故障:外部故障引起的短路或开路等异常情况,会导致电力系统中电流的突然变化,从而引起电压互感器的谐振过电压。
例如,当发生系统短路时,系统中的电流突然增大,产生过大的谐振电压。
3.负荷电压突变:系统中负荷突然增加或减少,使得负荷电流突变,导致电力系统中的电压突变。
当这种电压突变与互感器的谐振频率接近时,会引起互感器的谐振。
为了预防电压互感器谐振过电压的发生,可以采取以下预防措施:1.减小互感器与系统的谐振频率接近:通过调整互感器的参数或改变系统中的无功元件,使得互感器的谐振频率与系统频率之间存在较大差异,从而减小谐振过电压的发生概率。
2.安装绕组电阻:在互感器的一次侧或二次侧绕组中,安装适当的绕组电阻,可以减小谐振过电压的幅值和持续时间。
绕组电阻可以提供额外的阻尼,抑制谐振现象的发生。
3.加大互感器的绝缘能力:选用具有较高绝缘强度的互感器,可以提高其抗击谐振过电压能力。
合理选择互感器的额定电压和绝缘等级,避免绝缘击穿。
4.加强对系统的监测和维护:定期对电力系统进行检测和维护,及时处理系统中的故障和隐患,防止电压互感器谐振过电压的发生。
综上所述,电压互感器谐振过电压是影响电力系统稳定性和互感器工作性能的一个重要问题。
了解谐振过电压的原因和机理,采取相应的预防措施,可以有效减小谐振过电压的发生概率,确保电力系统的正常运行和互感器的可靠工作。
10KV铁路电力系统谐振过电压产生原因及抑制措施讲解
![10KV铁路电力系统谐振过电压产生原因及抑制措施讲解](https://img.taocdn.com/s3/m/8f0d42d105087632311212dc.png)
10KV 铁路电力系统谐振过电压产生原因及抑制措施摘要:铁路10KV 电力系统是中性点不接地系统,中性点直接接地的三相五柱电磁式电压互感器线圈电感和电网对地电容与构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压。
本文通过对10KV 中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并针对各种抑制谐振过电压的措施进行探讨,得出可行性结论。
关键词:铁路;电力;过电压;抑制措施1 概述铁路10KV 电力系统均为中性点不接地系统(小电流接地),发生单相接地故障时,由于对线电压不产生影响,允许继续运行2个小时,提高了供电的可靠性和连续性,但是存在着易产生过电压的问题。
在10KV 配电所的每一段母线上均接有一台三相五柱电磁式电压互感器,其一次线圈中性点直接接地。
由于电网对地电容与压互的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,甚至能长时间自保持,对系统的安全运行威协极大,它是导致压互高压熔丝熔断和压互烧损、避雷器爆炸的主要原因,也是某些重大事故的诱发原因之一。
近五年以来,在我段管内共发生谐振过电压烧坏压互高压保险12次,烧毁10KV 压互1台,压互瓷瓶内部引出线烧断1次。
2 铁路10KV 电力系统谐振过电压产生的条件2.1 内部条件铁路10KV 电力系统是中性点不接地系统,为了监视系统的三相对地电压,10 kV配电所每段母线上均接有Y/Y/接线的三相五柱电磁式压互。
母线电压互感器的高压侧接成Y 型,其中性点是接地的,由于铁路10KV 电力系统中电缆较多,各相对地电容较高,电网对地电容与压互的电感相匹配构成谐振条件。
当发生谐振时,压互感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成压互烧毁或保险熔断。
2.2 外界激发条件激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。
(2)向带有三相五柱电磁式压互的空母线充电(不带馈线负荷的情况下空送母线)。
电压互感器引起的谐振过电压及防范措施
![电压互感器引起的谐振过电压及防范措施](https://img.taocdn.com/s3/m/c5ee46077cd184254a353507.png)
x X 约为 0 ~ . Z . 3 。当改变电网零序 电 电阻 ,相 当于 在电压 互感 器零 序 回路增 6 0
一
容 时 x , 随之改 变 ,回路 可能 出现 由 加 电阻 ,一 方 面部分 零序 电压将 施加 在 器 铁 磁 谐振 过 电压 的 防范 措 施有 很 多 , ( )
断出京沪高铁无锡东 1 V配电所 电压 阻采 用非 线性 电阻 , 电 网正 常运 行 时 , 侧增设 高压 一次 熔 断器 的措施 。所 以在 0 k 在
互 感器 铁磁 发生分 频谐 振导 致 电压互感 消谐 电阻上电压不高, 呈高阻值 , 防止铁 实 际应 用 中 , 应根 据 电力 系统 实 际情 况 , 器 烧损 的结论 。 磁谐 振 的发生 , 在单 相接地 时 , 而 消谐 电 合理选 用切 实 可行 的消谐 措施 ,以达 到 阻上 电压 升高 , 低 阻值 , 足 电压互 最佳 消谐 效果 ,才 能确保 铁路 供 电 的安 呈 可满
x f 约为 0 10 8 L X . — . ;基频谐振 区域 的 接 消谐 电阻 O 0
x 约 为 0 8 0 ;高频 谐 振 区域 的 . —. 0 8
成 电气设备的损坏 , 甚至发生停电事故 ,
通 过探 讨 , 们知 道 限 制 电压 互 感 我
电压互感 器高 压侧 中心 点加 装 消谐 严 重影 响铁 路运行 的安全 可靠 。
电压互感器铁磁谐振产生原因和抑制措施
![电压互感器铁磁谐振产生原因和抑制措施](https://img.taocdn.com/s3/m/1cbb900c5e0e7cd184254b35eefdc8d376ee1497.png)
电压互感器铁磁谐振产生原因和抑制措施摘要:本文简述了铁磁谐振的危害、铁磁谐振产生的原因、特点,电气手册、规范对抑制电压互感器铁磁谐振措施的措施规定及工程设计中常采用抑制铁磁谐振的方法。
关键词:铁磁谐振过电压危害特点抑制措施电压互感器作为开关柜中的主要设备之一,承担着电力计量、测量及继电保护等重要作用。
但是由于电力系统的开关操作、负荷变动等不稳定因素,常常会引起电压互感器铁磁谐振。
电压互感器铁磁谐振常常引起持续时间很长的谐振过电压,会破坏电气设备绝缘,导致电压互感器熔断器频繁熔断,甚至电压互感器烧毁、爆炸等恶性事故,严重影响工业生产,威胁电气设备运行安全,给生产维护人员增加了工作量,给企业增加了运行成本。
怎样消除电压互感器的铁磁谐振问题摆在了企业生产管理人员和电气工程设计人员的面前。
一、铁磁谐振产生原因电力系统中有大量的储能元件,如电压互感器、变压器、电抗器等电感元件,电容器、线路对地电容等电容元件。
这些元件组成了许多串联或并联的振荡回路。
在正常的稳定状态下运行时,不可能产生严重的的振荡过电压。
但当系统发生故障或由于某种原因电网参数发生了变化,就很可能被激发生谐振。
例如在中性点非有效接地系统,电压互感器和线路对地电容和变压器等电感元件所形成的振荡回路,都有可能发生谐振。
电压互感器一类的电感元件在正常工作电压下,通常铁芯磁通不饱和;但在电气线路参数发生变化的激发下,铁芯磁通饱和,从而与系统电容产生谐振,就可能产生铁磁谐振过电压。
铁磁谐振不仅可在工频(50HZ)下发生,也可在高频(>50HZ)、低频(>50HZ)下发生。
二、电磁谐振的特点电磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器励磁磁通饱和作用引起的持续的、高幅值过电压现象,其主要特点为:1.谐振回路中铁心电感呈非线性,电感随电流增大而铁心饱和而趋于平稳;2.铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态变成谐振状态;如单相接地,跳闸、合闸,投切电容器等。
电网谐振过电压的限制方法(三篇)
![电网谐振过电压的限制方法(三篇)](https://img.taocdn.com/s3/m/7a880e50f68a6529647d27284b73f242336c319f.png)
电网谐振过电压的限制方法电力供电系统或者说在电力供电电网上,过电压现象十分普遍。
如果没有防范措施,随时都可能发生,也随时都可以发现。
引起电网过电压的原因很多。
主要可分为谐振过电压、操作过电压和雷电过电压;其中谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。
多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。
由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。
为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以避免形成严重的串联谐振回路;或采取适当的防止谐振的措施。
在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。
目前,我国35kV及以下配电网,仍大部分采用中性点不接地方式运行,一部分采用老式的消弧(消谐)线圈接地。
从电网的运行实践证明,中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、TV高压中性点增设电阻或单只TV等,但始终没有从根本上得到解决,TV烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2h不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。
而采用老式消弧线圈接地方式的系统由于结构的限制,只能运行在过补偿状态,不能处在全补偿状态,所以脱谐度整定的比较大,约在20%~30%,对弧光过电压无抑制效果。
电力系统内部过电压的防护措施
![电力系统内部过电压的防护措施](https://img.taocdn.com/s3/m/72c02e3ebb1aa8114431b90d6c85ec3a87c28b16.png)
电力系统内部过电压的防护措施1单相接地形成过电压通常应加强电网及设备运行管理,减少接地故障的发生。
对变压器应经常开展检查维护,使之处于安康状态下运行,还应定期开展预防性试验,防止因绝缘击穿而发生单相接地故障。
对供电线路应注重提高架设质量,合理选择导线截面及档距,线路走廊下的树木要定期砍伐,使线路通道符合技术规范。
严禁在电力线路下建房、植树,及在线路附近采石,以防炸断线路而发生接地故障。
2.负荷突变形成过电压通常可采用并联电抗器,以及按一定程序投、切空载线路,以限制长线路电容效应产生的过电压。
在电机侧采用快速减磁系统以限制发电机转子加速和电枢反应。
3.谐振形成过电压谐振过电压持续时间与回路本身特性有关,因此,对特定电网应尽量防止可能引起的谐振操作,或采取措施破坏谐振条件,如使用消谐器等。
对电磁式电压互感器引起的谐振,可在其二次开口三角处接入一个小电阻以破坏谐振;或在电压互感器高压中性点串入一个15kV、50w左右电阻接地,限制流过中性点的电流,防止电压互感器因磁饱和而发生铁磁谐振。
4.间歇性电弧形成过电压通常在电网中性点接入消弧线圈接地。
利用消弧线圈的电感补偿流过接地点的电容电流,使电弧的存在时间缩短,重燃次数减少,从而抑制了高幅值的过电压。
5.投切小电感性负荷产生的过电压此类过电压产生的根据是断路器的截流,由于其能量较小,通常采用避雷器来抑制。
6.开断电容性负荷产生的过电压此类过电压产生的根据是断路器的重燃,其方法是限制断口恢复电压的上升,以减少重燃的途径,从而到达抑制此类过电压的产生。
其措施是:在断路器断口装置并联电阻,能起到阻尼作用,或采用不会产生电弧重燃的真空断路器。
此外,在电容器运行中应尽量减少频繁的投切操作。
7.对投运空载长线路产生的过电压通常采用带合闸电阻断路器,或采用专门装置来判断当断路器两端电压最低时合闸,或设法消除、削弱线路的残余电压。
此外,电网中运行的变压器或线路装设金属氧化物避雷器开展保护(即使在非雷雨季节也不要退出运行),既可限制线路过电压,又可消除变压器、线路空载投切引起的过电压;控制支路的跌落式熔断器,应改为三相联动的柱上少油断路器,以防止非全相操作。
10kV母线谐振过电压事故分析及预防措施
![10kV母线谐振过电压事故分析及预防措施](https://img.taocdn.com/s3/m/6281477669dc5022abea0044.png)
10kV母线谐振过电压事故分析及预防措施摘要:随着我国综合国力的增强,社会经济不断发展和进步,人们的工作和日常生活已离不开电能,与此同时人们对供电质量的要求也更加严格。
母线谐振过电压事故在电力系统运行工作过程中时有发生,对社会经济以及人们的工作生活造成严重的影响。
本文通过分析探索10kV母线谐振过电压事故的发生及其预防措施,为将来我国电力系统的正常工作运行和发展提供科学有效的方案。
关键词:母线;谐振过电压;事故分析;预防措施近年来,随着我国社会的不断发展,电力行业也随之不断进行发展和改革,当前,10kV电网广泛应用在人们的工作和日常生活中,作为电力系统中重要的连接部分,母线有很多功能特点,例如对电能的分配、汇集和传送等等。
但在电路运行过程中,10kV母线谐振过电压事故,以及各种内在和外在因素等都会影响电力系统的正常运行过程。
所以,应该高度重视电力系统在运行过程中出现的事故,并对其进行有效的分析、解决和预防,来提高10kV母线对我国电力行业发展的积极影响,并且为电力系统的正常运行提供保障。
一、母线谐振过电压事故分析2019年3月23日11时58分,在我院科研楼发生了第16GP母线上电压互感器(PT)铁磁谐振烧毁的事件,现场高压室内烟雾弥漫,且伴有剌鼻气味,导致消防烟感报警及停电事件,我们打开PT柜进行检查,发现熔断器C相已完全炸裂、A相从熔断器中间断裂、B相相对较为完整,但三相熔断器卡口上端均有烧蚀迹象;三只电压互感器中,A相和C相互感器下端均有液体流出,B相互感器无液体流出。
图略。
后经查综保装置后台系统和18GP进线柜综保装置,发现11时50分后台装置报母线PT及避雷器柜3GP的TV异常、发出预告总信号(总告警信号),8分钟后电源进线柜18GP报线路过流,母线I段动作,动作电流值为A相55.822A、B相80.053A、C相92.303A。
我们又到上级输变电站查看,综保装置无故障跳闸信息,也没有故障报警信息。
10kV母线谐振过电压事故分析及预防措施
![10kV母线谐振过电压事故分析及预防措施](https://img.taocdn.com/s3/m/ed3ca957e45c3b3567ec8b75.png)
电工电气 (20 7 No.2)10kV母线谐振过电压事故分析及预防措施志哲(广东电网有限责任公司东莞洪梅供电分局,广东 东莞 523160)0 引言随着我国社会经济的快速发展,社会对电能的需求日益增加,对电力系统的供电质量也提出了更高的要求。
在电力系统运行过程中,由于电网对地电容与电压互感器的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,是导致电压互感器高压熔丝熔断和电压互感器烧损、避雷器爆炸的主要原因,也是诱发事故的原因之一。
对于谐振过电压事故的发生,若不采取措施进行预防,将会造成电气设备的大量损坏和大面积的停电事故。
1 事故概述某110kV变电站是在原35kV变电站的基础上通过升压改造并具有无人值班特性的变电站。
按变电站设计要求,该站共有110kV出线4回;35kV 出线6回;10kV出线16回。
该变电站2015年投运以来,10kV系统多次发生谐振过电压现象。
最严重的一次造成10kV电压互感器严重烧损,引起母线三相短路故障,导致该段母线退出运行10h。
该站的站内电气一次接线如图1所示。
2 事故经过时间:2014年8月18日15点14分,电力系统中的监控装置持续3次发出告警动作并报告复位信息,以说明Ⅰ母消谐装置存在问题,因此值班人员重点监视了10kV的电压运行情况,并发现三相电压变化有异常现象。
首先是A相的电压突然降低,而其他两相电压升高,运行一段时间后,B相的电压变得最低,其他两相电压升高,具体的数值变化如表1所示。
15时38分,该站1号主变1B过流后备保护出现动作,10kV电压的母联断路器Ⅰ段的进线开关处发生事故跳闸。
变电站维修人员马上赶到事故现场,发现10kV高压室、中央控制室完全被浓烟笼住,将其通风10min后,维修人员进入到高压室内部检查电气设备,其中Ⅰ母1YH间隔被完全烧毁,高压柜的释压顶盖掉落,后柜门出现严重的变形,101与100开关处于分位,Ⅱ母电压互感装置C相保险丝熔断,A相和B相正常,10kVⅠ母全部失压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
防止产生谐振过电压的措施
系统发生谐振时,在谐振电压和工频电压的作用下,PT铁芯磁密迅速饱和,激磁电流迅速增大,会使PT绕组严重过热而损坏(同一系统中所有PT均受到威胁),甚至引起母线故障造成大面积停电。
因此对发生谐振时,如何快速消除谐振是保证设备安全运行的关键。
一、谐振的分类和谐振现象分析
6kV中性点不接地系统的谐振分基波谐振、高频谐振和分频谐振三种,谐振一般由接地和激发产生,根据运行经验,当向仅带有电压互感器的空母线突然充电时易产生基波谐振;当发生单相接地时易产生分频谐振,特别是单相接地突然消失(如拉路)时易激发谐振。
发生谐振时,相间电压不变,电压互感三角会出现谐振频率电压,中央信号会报“系统单相接地”信号,若不仔细分析其电压变化,会误认为是系统单相接地故障,对于没有装设消弧线圈的变电站,快速消除谐振更为重要,下面对三种谐振现象进行一一分析:
1、基波谐振:发生基波谐振时,相对地电压有以下两种现象:
1) 一相电压下降(不为零),两相电压升高超过线电压或电压表顶表;
2) 两相电压下降(不为零),一相电压升高或电压表顶表;
其相对地电压的过电压小于或等于3倍相电压;
2、高频谐振:发生高频谐振时,其相对地电压的过电压小于或等于4倍相电压,三相对地电压一起升高,远远超过线电压或电压表顶表。
3、分频谐振:发生分频谐振时,三相对地电压依相序次序轮流升高或同时升高,并在(1.2~1.4)倍相电压间做低频摆动,大约每秒一次。
由上述谐振现象可总结如下:
现象判断
发母线接地信号(开口三角有零序输出)
一相相对地电压超过线电压,二相相对地电压超过线电压。
基波谐振:三相相对地电压超过线电压。
高频谐振:三相对地电压依次轮流升高,但不超过线电压三相对地电压同时升高,但不超过线电压分频谐振。
二、发生谐振的处理
对于我们现在6kV不接地系统来说,主要是投入消弧线圈和改变运行参数,一般投入消弧线圈都能消除谐振,对于发生基波和高频谐振,只要消谐器可靠动作,也能消除谐振,但对于分频谐振具有零序性质,
一般消谐器无法消除谐振,投切三相对称负荷不起作用,对于未装设消弧线圈,因此根据实际情况,可按以下方法处理:
1、基波或高频谐振的处理:
1) 有运行电容器时,切除运行电容器;没有运行电容器时,投入一组电容器;
2) 以上措施无法消谐时,切除该母线所有电容器,向调度申请切除部分馈线,最好是先切长线路。
2、分频谐振的处理:
1) 切除该母线所有电容器;
2) 谐振仍无法消除时,向调度申请切除该母线上的线路,直至谐振消除;
3) 若所有线路全部切除后仍无法消谐,向调度申请切除变低开关,将母线停电;
4) 恢复母线及线路送电。