二年级(上)奥数知识讲座:第六讲 (找规律一)习题六及解答

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二年级奥数知识讲座第六讲(找规律一)习题六及解答

1.观察图6—4中的点群,请回答:

(1)方框内的点群包含多少个点?

(2)第10个点群中包含多少个点?

(3)前十个点群中,所有点的总数是多少?

2.观察下面图6—5中的点群,请回答:

(1)方框内的点群包含多少个点?

(2)推测第10个点群中包含多少个点?

(3)前10个点群中,所有点的总数是多少?

3.观察图6—6中的点群,请回答:

(1)方框内的点群包含多少个点?

(2)推测第10个点群包含多少个点?

(3)前十个点群中,所有点的总数是多少?

4.图6—7所示为一堆砖.中央最高一摞是10块,它的左右两边各是9块,再往两边是8块、7块、6块、5块、4块、3块、2块、1块.

问:(1)这堆砖共有多少块?

(2)如果中央最高一摞是10O块,两边按图示的方式堆砌,问这堆砖共多少块?

5.图6—8所示为堆积的方砖,共画出了五层.如果以同样的方式继续堆积下去,共堆积了10层,问:

(1)能看到的方砖有多少块?

(2)不能看到的方砖有多少块?

习题六解答

1.解:(1)数一数,前四个点群包含的点数分别是:1,5,9,13.

不难发现,这是一个等差数列,公差是4,可以推出,第5个点群包含的点数是:

13+4=17(个).

(2)下面依次写出各点群的点数,可得第10个点群的点数为37.

(3)前十个点群的所有点数为:

2.解:(1)数一数,前4个点群包含的点数分别是:

1,4,9,16.

不难发现,这是一个自然数平方数列.所以第5个点群(即方框中的点群)包含的点数是:

5×5=25(个).

(2)按发现的规律推出,第十个点群的点数是:

10×10=100(个).

(3)前十个点群,所有的点数是:

3.解:(1)数一数,前四个点群包含的点数分别是:4,8,12,16.

不难发现,这是一个等差数列,公差是4,可以推出,第5个点群(即方框中的点群)包含的点数是:

16+4=20(个).

(2)下面依次写出各点群的点数,可得第10个点群的点数为40.

(3)前十个点群的所有的点数为:

4.解:从最简单情况入手,找规律:

按着这种规律可求得:

(1)当中央最高一摞是10块时,这堆砖的总数是:

1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2 +1

=10×10=100(块).

(2)当中央最高一摞是100块时,这堆砖的总数是:

1+2+3+……+98+99+100+99+98+……+3+2+1

=100×100=10000(块).

5.解:(1)数一数,前五层中各层可见的方砖数是:1,3,5,7,9

不难发现,这是一个奇数列.照此规律,十层中可见的方砖总数是:

1+3+5+7+9+11+13+15+17+19

=100(块).

(2)再想一想,前五层中,各层不能看到的方砖数是:

第一层 0块;第二层1块;第三层4块;

第四层9块;第五层16块;

不难发现,1,4,9,16是自然数平方数列,按照此规律把其余各层看不见的砖块数写出来(如下表):

相关文档
最新文档