圆的切线 课件
合集下载
2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)

1.切线的性质 (1)性质定理:圆的切线垂直于经 过 切点的半径. 如图,已知AB切⊙O于A点,则 OA ⊥AB.
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
利用圆的切线的性质来证明或进行有关的计算有时需
添加辅助线,其中连接圆心和切点的半径是常用辅助线, 从而可以构造直角三角形,利用直角三角形边角关系求解, 或利用勾股定理求解,或利用三角形相似求解等.
1. AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB的延长线于点C,
若DA=DC,求证:AB=2BC.
∠BOD 是 BD 所对的圆心角,
∠BCD=45° , ∴∠BOD=90° . ∵∠ADB 是△BCD 的一个外角, ∴∠DBC=∠ADB-∠ACB =60° -45° =15° , ∴∠DOC=2∠DBC=30° , 从而∠BOC=120° , ∵OB=OC,∴∠OBC=∠OCB=30° .
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
交⊙O于点E,PA=AO=OB=1. (1)求∠P的度数; (2)求D切点,∴OC⊥PC,△POC 为直角三角形. ∵OC=OA=1,PO=PA+AO=2, OC 1 ∴sin ∠P= PO= .∴∠P=30° . 2 (2)∵BD⊥PD,∴在 Rt△PBD 中, 由∠P=30° ,PB=PA+AO+OB=3, 3 得 BD= . 2 连接 AE.则∠AEB=90° ,∴AE∥PD. ∴∠EAB=∠P=30° ,∴BE=ABsin 30° =1, 1 ∴DE=BD-BE= . 2
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
利用圆的切线的性质来证明或进行有关的计算有时需
添加辅助线,其中连接圆心和切点的半径是常用辅助线, 从而可以构造直角三角形,利用直角三角形边角关系求解, 或利用勾股定理求解,或利用三角形相似求解等.
1. AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB的延长线于点C,
若DA=DC,求证:AB=2BC.
∠BOD 是 BD 所对的圆心角,
∠BCD=45° , ∴∠BOD=90° . ∵∠ADB 是△BCD 的一个外角, ∴∠DBC=∠ADB-∠ACB =60° -45° =15° , ∴∠DOC=2∠DBC=30° , 从而∠BOC=120° , ∵OB=OC,∴∠OBC=∠OCB=30° .
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
交⊙O于点E,PA=AO=OB=1. (1)求∠P的度数; (2)求D切点,∴OC⊥PC,△POC 为直角三角形. ∵OC=OA=1,PO=PA+AO=2, OC 1 ∴sin ∠P= PO= .∴∠P=30° . 2 (2)∵BD⊥PD,∴在 Rt△PBD 中, 由∠P=30° ,PB=PA+AO+OB=3, 3 得 BD= . 2 连接 AE.则∠AEB=90° ,∴AE∥PD. ∴∠EAB=∠P=30° ,∴BE=ABsin 30° =1, 1 ∴DE=BD-BE= . 2
圆的切线的性质及判定定理 课件

【典例训练】
1.在Rt△ABC中,∠C=90°,AC=3 cB的关系为( )
(A)相切
(B)相离
(C)相交
(D)无法判断
2.如图所示,CB为⊙O的直径,P是CB的延
长线上一点,且OB=BP,∠AOC=120°,
则PA与⊙O的位置关系是_____.
圆的切线的性质
圆的切线的性质 (1)已知一条直线是圆的切线时,常作出过切点的半径,则该半 径垂直于切线,从而出现了直角. (2)从圆外一点引圆的两条切线,这点与圆心的连线平分这两条 切线的夹角,这点到切点的切线长相等. (3)连接圆的两条平行切线的切点的线段是圆的直径.
【典例训练】 1.如图所示,DB,DC是⊙O的两条切线,A是圆上一点,已知 ∠D=46°,则∠A=_____.
DO AD
AD
2.如图,已知EB是半圆O的直径,A是BE延长线上的一点,AC是 半圆O的切线,D为切点,BC⊥AC于C,若BC=6,AC=8,则 AE=_______.
【解析】1.如图所示,连接OB,OC,
则OB⊥BD,OC⊥CD,
则∠DBO+∠DCO=90°+90°=180°,
则四边形OBDC内接于一个圆,
则有∠BOC=180°-∠D=180°-46°=134°,
【解析】连接OC,∵OA=OB,AC=CB,OC=OC, ∴△OAC≌△OBC, ∴∠OCA=∠OCB=90°, ∴直线AB与⊙O相切. 答案:相切
1.圆的切线的其他相关性质 (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)过圆心且过切点的直线与过该点的切线垂直.
2.切线的判定定理 在切线的判定定理中要分清定理的题设和结论,“经过半径外 端”和“垂直于这条半径”这两个条件缺一不可,否则就不是 圆的切线,如图①②中的例子就不同时满足这两个条件,所以 都不是圆的切线.
《切线的判定与性质》PPT课件 人教版九年级数学

利用判定定理时,要注意直线须具备以下两个条件,缺一 不可: (1)直线经过半径的外端;(2)直线与这半径垂直.
已知一个圆和圆上的一点,如何过这个点画出 圆的切线?
.O . Al
第一步:连接OA; 第二步:过A点作OA的垂线l.
归纳:判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,
切线的性质定理:
圆的切线垂直于过切点的半径.
.O
几何符号表达:∵直线l切⊙O于点A, A
l
∴OA⊥l
反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
有公共点,连半径,证垂直; 无公共点,作垂直,证半径.
经过半径的外端并 判定定理 →且垂直于这条半径
的直线是圆的切线
切线的性 质定理
→
圆的切线垂直于 经过切点的半径
→
有切线常作辅助线: 见切线,连切点,得垂直.
∴△OBD≌△OCE(AAS),
∴OD=OE . ∴AC与⊙O相切.
方法二:
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂1 , ∴ AB⊥l2,
∴ l1∥l2.
l2
已知一个圆和圆上的一点,如何过这个点画出 圆的切线?
.O . Al
第一步:连接OA; 第二步:过A点作OA的垂线l.
归纳:判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,
切线的性质定理:
圆的切线垂直于过切点的半径.
.O
几何符号表达:∵直线l切⊙O于点A, A
l
∴OA⊥l
反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
有公共点,连半径,证垂直; 无公共点,作垂直,证半径.
经过半径的外端并 判定定理 →且垂直于这条半径
的直线是圆的切线
切线的性 质定理
→
圆的切线垂直于 经过切点的半径
→
有切线常作辅助线: 见切线,连切点,得垂直.
∴△OBD≌△OCE(AAS),
∴OD=OE . ∴AC与⊙O相切.
方法二:
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂1 , ∴ AB⊥l2,
∴ l1∥l2.
l2
《圆的切线》PPT课件

.
4
问题2:砂轮转动时,火花是沿着砂轮的 什么方向飞出去的?
.
5
动手做一做
• 画一个圆O及半径OA,画一条直线l经过⊙O的半 径OA的外端点A,且垂直于这条半径OA,这条直 线与圆有几个交点?
●O
┐
l
思考:直线l一定是圆O的A切线吗?
由此,你知道如何画圆的切线吗?
.
6
〖想一想〗
过圆0内一点作直线,这条直线与圆有怎样的位置关系? 过半径OA上一点(A除外)能作圆O的切线吗?过点A呢?
∴OP∥AC。
∵PE⊥AC,
∴∠PEC=90°
∴ ∠OPE=∠PEC=90°
∴PE⊥OP。
.
11
∴PE为⊙0的切线。
〖拓展例题〗 :如图所示,等腰△ABC,BC边过圆
心O,且满足OB=OC,AB边交⊙O于点D,连结AO,并且满足
OD⊥AB。求证:AC与⊙O相切。
A
证明:过点O作OE⊥AC于E。
∵△ABC是等腰△ABC
O l
r
O
r l
O l
r
A
A
A
Байду номын сангаас
利用判定定理时,要注意直线须具备以 下两个条件,缺一不可:
(1)直线经过半径的外端; (2)直线与这半径垂直。
〖想一想〗
判断一条直线是圆的切线,你现在会有多少种方法?
切线判定有以下三种方法: 1.利用切线的定义:与圆有唯一公共点的直线是
圆的切线。 2.利用d与r的关系作判断:当d=r时直线是圆的
.
1
圆的切线
授课教师:邹春雨
图形
直线与圆的 位置关系
公共点的个数
圆心到直线的距离 d 与半径 r的关系
直线和圆的位置关系切线的判定课件

圆心O到直线L的距
O
离等于半径,直线
L与⊙O相切。
A
•直线和圆的位置关系切线的判定
•2
圆的切线判定定理:
经过半径的外端且垂直于这条半径
的直线是圆的切线。
条件: (1)经过半径的外端;
●
(2)垂直于过该点半径;
O
┐
符
A
l
号
语 ∵l⊥OA,且l 经过⊙O上的A点
言
表 ∴直线l是⊙O的切线
达
•直线和圆的位置关系切线的判定
l是圆的切线 l是圆的切线 l是圆的切线
2. 证明圆的切线常用辅助线作法:
⑴有公共点时,连半径,证垂直 ⑵无公共点时,作垂直,证半径
•直线和圆的位置关系切线的判定
•12
1、矩形的两边长分别为2.5和5,若以较 长一边为直径作半圆,则矩形的各边与半 圆相切的线段最多有( D )
A、0条 B、 1条 C、 2条 D、 3条
O l
r
A
O r
l
A
O l
r
A
•直线和圆的位置关系切线的判定
•5
精彩源于发现
请你总结一下:圆 的切线的判定有几 种方法?
•直线和圆的位置关系切线的判定
•6
知识清单:
1、如何判定一条直线是已知圆的切线? (1)与圆只有一个公共点的直线是圆的切线; (2)到圆心的距离等于半径的直线是圆的
切线;(d=r)
(2)如果已知条件中不知直线与圆是否有公共 点,则过圆心作直线的垂线段为辅助线,再 证垂线段长等于半径长。简记为:(无公
共点时,作垂直,证半径)
•直线和圆的位置关系切线的判定
•11
谈谈今天的收获
2.3圆的切线的性质及判定定理课件人教新课标1

►变式训练
在梯形 ABCD 中,AD∥BC,∠C=90°,且 AD+BC=AB=4, AB 为⊙O 直径,则⊙O 与 CD____(填“相交”,“相切”或析圆的切线的性质定理及两个推论的条件和结论间的关系, 可以得出如下结论:如果一条直线具备以下三个条件中的任意两个, 就可以推出第三个:①垂直于切线;②过切点;③过圆心.于是,在 利用切线性质时,通常作的辅助线是过切点的半径.
方法二 ∵ED 切⊙O 于 D,连接 OD. ∴OD⊥ED,∠EDA=90°-∠ODA. ∵EM⊥AB,∴∠ECD=∠ACM=90°-∠A. ∵OA=OD,∴∠ODA=∠A. ∴∠EDC=∠ECD.∴EC=ED.
题型2 判定定理的应用 例2 △ABC 为等腰三角形,点 O 是底边 BC 的中点,⊙O 与腰 AB 相
第二讲 直线与圆的位置关系
2.3 圆的切线的性质及判定定理
1.理解圆的切线的性质及其判定定理. 2.能正确应用圆的切线的性质及其判定定理.
1.直线与圆有___两__个___公共点,称直线与圆相交;直线与圆只 有___一__个___公共点,称直线与圆相切;直线与圆___没__有___公共点,称
2.圆的切线还有两条性质应当注意:一是切线和圆只有一个公 共点;二是切线和圆心的距离等于圆的半径.在许多实际问题中,我 们也利用它们来解决.
3.牢记切线的性质是解直线和圆相切问题的关键.另外,应用 切线性质解相关题目时往往会用到其他平面几何图形的性质.
4.证明直线与圆相切一般有以下几种方法:①直线与圆只有一 个公共点;②圆心到直线的距离等于圆的半径;③切线的判定定理.一 般证明题目常用方法③.
例3 如图,已知 AB 是⊙O 的直径,BC 切⊙O 于 B,AC 交⊙O 于 P,
《切线的判定方法》课件

的切线。
02
如果一条直线经过半径 的外端并且与半径之间 的夹角为90度,那么 这条直线就是圆的切线
。
03
如果一条直线经过圆的 某个点,并且与经过该 点的半径垂直,那么这 条直线就是圆的切线。
02
切线的判定方法
圆心到直线的距离
圆心到直线的距离为0
如果圆心到直线的距离为0,径的交点叫做切点,切点是圆上的一 点。
切线的性质
1 2
3
切线与半径垂直
切线与半径之间的夹角为90度。
切线与圆只有一个交点
切线与圆只有一个公共点,即切点。
切线与半径的交点是切点
切点是圆上的一点,也是切线与半径的交点。
切线的判定条件
01
切线的判定条件是:经 过半径的外端并且垂直 于这条半径的直线是圆
《切线的判定方法》ppt课件
$number {01}
目录
• 切线的定义 • 切线的判定方法 • 切线定理的应用 • 切线定理的证明 • 切线定理的拓展
01
切线的定义
切线的几何定义
01
切线是一条与圆只有一个交点的直线,这个交 点叫做切点。
02
切线与半径垂直,即切线与半径之间的夹角为 90度。
03
切线的判定定理
经过半径的外端且垂直于半径的直线是圆的切线
如果经过半径的外端且垂直于半径的直线是圆的切线。
经过直径的外端且垂直于直径的直线是圆的切线
如果经过直径的外端且垂直于直径的直线是圆的切线。
经过圆上一点且垂直于该点与圆心的连线的直线是圆的切线
如果经过圆上一点且垂直于该点与圆心的连线的直线是圆的切线。
切线定理在其他领域的应用
数学物理方法
切线定理在数学物理方法中有着广泛 的应用。例如,在求解偏微分方程时 ,可以利用切线定理来分析解的性质 和变化趋势。
02
如果一条直线经过半径 的外端并且与半径之间 的夹角为90度,那么 这条直线就是圆的切线
。
03
如果一条直线经过圆的 某个点,并且与经过该 点的半径垂直,那么这 条直线就是圆的切线。
02
切线的判定方法
圆心到直线的距离
圆心到直线的距离为0
如果圆心到直线的距离为0,径的交点叫做切点,切点是圆上的一 点。
切线的性质
1 2
3
切线与半径垂直
切线与半径之间的夹角为90度。
切线与圆只有一个交点
切线与圆只有一个公共点,即切点。
切线与半径的交点是切点
切点是圆上的一点,也是切线与半径的交点。
切线的判定条件
01
切线的判定条件是:经 过半径的外端并且垂直 于这条半径的直线是圆
《切线的判定方法》ppt课件
$number {01}
目录
• 切线的定义 • 切线的判定方法 • 切线定理的应用 • 切线定理的证明 • 切线定理的拓展
01
切线的定义
切线的几何定义
01
切线是一条与圆只有一个交点的直线,这个交 点叫做切点。
02
切线与半径垂直,即切线与半径之间的夹角为 90度。
03
切线的判定定理
经过半径的外端且垂直于半径的直线是圆的切线
如果经过半径的外端且垂直于半径的直线是圆的切线。
经过直径的外端且垂直于直径的直线是圆的切线
如果经过直径的外端且垂直于直径的直线是圆的切线。
经过圆上一点且垂直于该点与圆心的连线的直线是圆的切线
如果经过圆上一点且垂直于该点与圆心的连线的直线是圆的切线。
切线定理在其他领域的应用
数学物理方法
切线定理在数学物理方法中有着广泛 的应用。例如,在求解偏微分方程时 ,可以利用切线定理来分析解的性质 和变化趋势。
圆的切线课件

通过圆上一点作切线
总结词
通过圆上一点作切线需要利用半径垂直于切线的性质。
详细描述
选取圆上任意一点,然后通过这一点作一条直线与圆相切,即为切线。这种方法 需要利用圆的性质,即半径垂直于切线。
通过圆外一点作切线
总结词
通过圆外一点作切线需要利用垂径定 理和切线的性质。
详细描述
选取圆外任意一点,然后通过这一点 作一条直线与圆相切,即为切线。这 种方法需要利用垂径定理和切线的性 质,即半径与切线垂直且半径长度等 于圆心到切点的距离。
判定方法三
利用圆的性质,通过观察 圆心到直线的距离是否等 于半径来判断是否为切线 。
02 圆的切线的性质定理
切线与半径垂直
切线与经过切点的半径垂直, 这是切线的基本性质。
在几何学中,这一性质用于证 明切线的其他性质和定理。
在实际应用中,这一性质可用 于确定某直线是否为圆的切线 。
切线长定理
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。 这一性质在几何作图和证明中非常有用,特别是在解决与圆和切线相关的问题时。
05 圆的切线的相关定理和推论
切线与半径之间的夹角定理
总结词
切线与半径之间的夹角定理描述了切线与半径之间的角度关系。
详细描述
切线与半径之间的夹角是直角,即切线与半径垂直。这个定理是圆的基本性质之一,是证明其他切线定理的基础 。
切线长定理的推论
总结词
切线长定理的推论给出了切线长度与半径之间的关系。
圆的切线ppt课件
目录
Contents
• 圆的切线的基本概念 • 圆的切线的性质定理 • 圆的切线的应用 • 圆的切线的作法 • 圆的切线的相关定理和推论
01 圆的切线的基本概念
圆的切线的性质和判定定理市公开课一等奖省赛课微课金奖课件

普通地, 一个点集(比如线段或其它几
何图形)中全部点在某直线上射影集合, 就
是这个点集在这条直线上射影
直角三角形射影定理 直角三角形一条
直角边平方等于该直角边在斜边上射影与斜
边乘积, 斜边上高平方等于两条直角边在斜
边上射影乘积
C
Rt△ABC∽Rt△ACD∽△Rt△CBD
AC2=AB·AD BC2=AB·BD
CD2=AD·BD
A
DB
第7页
例4.试用直角三角形射影定理证实勾股定 理
已知: 如图,Rt△ABC中, ∠C=90°
求证: AC2+BC2=AB2
C
A
D
B
第8页
例5.如图,Rt△ABC中, ∠C=90°, AC>BC,CD⊥AB于点D,若CD=4,AB=10, 求AC及BC
C
A
D
B
第9页
例6.如图,在Rt△ABC中,∠ACB=90°,
求证: (1)PO平分∠APBBiblioteka (2)PO垂直平分线段AB
※结论能够直接用
A
O
P
·
B 切线长定理 从圆外一点引圆两条切
线, 切线长相等 第5页
例3、如图,⊙O和⊙O′外切于点P,一 条外公切线切两圆于点A.B,求证:∠APB= 90°
A B
Q
O
·O
·P
′
第6页
从一点向一条直线作垂线, 垂足就称为
这点在这条直线上射影
CD⊥AB于点D,DE⊥AC于E,DF⊥BC于F,求证:
AC 3 BC 3
AE BF
C
E
F
A
D
B
第10页
圆切线性质和判定定理
人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

知识回顾
直线与圆相切的判定: 1.利用定义判定:直线和圆只有一
个公共点时,直线与圆相切. 2.利用直线与圆心距离判定:当圆
心与直线的距离等于该圆的半径时,直 线与圆相切.
O
l
O d=r
l
新知探究
知识点1 切线的判定
思考:如图,在⊙O中,经过半径OA 的外端点 A 作直线 l⊥OA. (1)圆心O到直线 l 的距离是多少?
l
∴OA⊥l
ห้องสมุดไป่ตู้ 反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
相交.这与已知条件“直线与⊙O相切”相 C 矛盾;
A MD
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂直,证半径.
随堂练习
1.如图,已知⊙O的直径AB与弦AC的夹角为31°,
d l
A
3.判定定理:经过半径的外端并且垂直于
O
这条半径的直线是圆的切线.
l
A
已 知 : 直 线 AB 经 过 ⊙ O 上 的 点 C , 并 且 OA=OB ,
CA=CB.求证:直线AB是⊙O的切线.
证明:连接OC.
圆的切线的性质及判定定理 课件

[解题过程] (1)证明:依据题意,得 a+b=c+4,ab=4(c+2), 则 a2+b2=(a+b)2-2ab =(c+4)2-2×4(c+2)=c2, 所以△ABC 是直角三角形.
(2)∵∠C=90°,tan A=ab=34, ∴不妨设 a=3k,b=4k,则 c=5k(k>0), 代入 a+b=c+4,得 k=2. ∴a=6,b=8,c=10. 连接 OE,得 BC∥OE. ∴OBCE=AAOB,即O6E=10-10OE.解得 OE=145. 在 Rt△AOE 中,tan A=OAEE=34,∴AE=5.
[规律方法] 用切线的性质定理求解线段的长度时,应注 意哪些问题?
(1)如果已知三边的一元二次方程,可利用韦达定理建立起 三角形的三边之间的关系;
(2)在应用切线的性质定理及其推论进行几何证明和求解 时,如果已知切点,则连接圆心和切点构成垂直是一种常用的 方法.
(江苏高考)AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB
[思路点拨]
[解题过程] 如图所示,连接OA、OB、OC.
∵PA和PB分别切⊙O于点A和B, ∴∠PAO=∠PBO=90°. ∴∠AOB+∠APB=180°. ∴∠AOB=180°-∠APB=140°. ∵DC切⊙O于点C,∴∠OCD=90°.
又∵∠PAO=90°, 在 Rt△CDO 与 Rt△ADO 中, 有 OD=DO,CO=AO, ∴△CDO≌△ADO.
∴∠COD=∠AOD=12∠COA. 同理可证,∠COE=∠BOE=12∠COB.
∴∠DOE=12(∠COA+∠COB)=12×140°=70°.
[规律方法] (1)如何利用切线性质定理及推论求解有关角 的问题?
圆的切线的性质及判定定理 课件

∴∠1=∠3,∴OD∥AE.
∵DE⊥AE,∴DE⊥OD, 即 DE 是⊙O 的切线.
(2)过 D 作 DG⊥AB, ∵∠1=∠2,∴DG=DE=3. 在 Rt△ODG 中,OG= 52-32=4, ∴AG=4+5=9.
∵DG⊥AB,FB⊥AB,∴DG∥FB.
∴△ADG∽△AFB,∴DBFG=AAGB. ∴B3F=190,∴BF=130.
【自主解答】 (1)如图所示,连接 BC. ∵CD 为⊙O 的切线, ∴OC⊥CD. 又 AD⊥CD,
∴OC∥AD.
(2)∵AC 平分∠DAB, ∴∠DAC=∠CAB. ∵AB 为⊙O 的直径,∴∠ACB=90°. 又 AD⊥CD,∴∠ADC=90°, ∴△ADC∽△ACB. ∴AADC=AACB,∴AC2=AD·AB. ∵AD=2,AC= 5,∴AB=52.
1.“以圆的两条平行切线的切点为端点的线段是圆的 直径”这句话对吗?为什么?
【提示】 正确.如图 AB、CD 分别切⊙O 于 E、F, 连接 EO 并延长交 CD 于 F′,∵AB 是⊙O 的切线,∴OE
⊥AB.∵AB∥CD,∴OF′⊥CD,∴F′为切点,∴F′与 F
重合,即 EF 是⊙O 的直径.
圆的切线的性质及判定定理
1.切线的性质定理及推论
(1)性质定理:圆的切线垂直于经过 切点的半径.
如图 2-3-1,已知 AB 切⊙O 于点 A,则 OA⊥AB.
(2)推论 1:经过圆心且 垂直于切线的直线 必经过切点. (3)推论 2:经过切点且 垂直于切线的直线 必经过圆心.
图 2-3-1
2.切线的判定定理 经过半径的 外端 并且 垂直于 这条半径的直线是圆的 切线.
如图 2-3-2 所示,已知
AB 是⊙O 的直径,直线 CD 与⊙O 相切 于点 C,AC 平分∠DAB,AD⊥CD.
∵DE⊥AE,∴DE⊥OD, 即 DE 是⊙O 的切线.
(2)过 D 作 DG⊥AB, ∵∠1=∠2,∴DG=DE=3. 在 Rt△ODG 中,OG= 52-32=4, ∴AG=4+5=9.
∵DG⊥AB,FB⊥AB,∴DG∥FB.
∴△ADG∽△AFB,∴DBFG=AAGB. ∴B3F=190,∴BF=130.
【自主解答】 (1)如图所示,连接 BC. ∵CD 为⊙O 的切线, ∴OC⊥CD. 又 AD⊥CD,
∴OC∥AD.
(2)∵AC 平分∠DAB, ∴∠DAC=∠CAB. ∵AB 为⊙O 的直径,∴∠ACB=90°. 又 AD⊥CD,∴∠ADC=90°, ∴△ADC∽△ACB. ∴AADC=AACB,∴AC2=AD·AB. ∵AD=2,AC= 5,∴AB=52.
1.“以圆的两条平行切线的切点为端点的线段是圆的 直径”这句话对吗?为什么?
【提示】 正确.如图 AB、CD 分别切⊙O 于 E、F, 连接 EO 并延长交 CD 于 F′,∵AB 是⊙O 的切线,∴OE
⊥AB.∵AB∥CD,∴OF′⊥CD,∴F′为切点,∴F′与 F
重合,即 EF 是⊙O 的直径.
圆的切线的性质及判定定理
1.切线的性质定理及推论
(1)性质定理:圆的切线垂直于经过 切点的半径.
如图 2-3-1,已知 AB 切⊙O 于点 A,则 OA⊥AB.
(2)推论 1:经过圆心且 垂直于切线的直线 必经过切点. (3)推论 2:经过切点且 垂直于切线的直线 必经过圆心.
图 2-3-1
2.切线的判定定理 经过半径的 外端 并且 垂直于 这条半径的直线是圆的 切线.
如图 2-3-2 所示,已知
AB 是⊙O 的直径,直线 CD 与⊙O 相切 于点 C,AC 平分∠DAB,AD⊥CD.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
r
l
D
如上图:直线l与⊙O相切,直线l叫做⊙O切线
,点D叫做切点。
活动二:探究切线的判定
问题:过已知一个圆和圆上的一个点,怎样过该 点作圆的切线? 已知:⊙O和⊙O上的一点D,如何过点D 画⊙O的切线?
下面我们共同完成作图后,再回答问 题:
(1)任意画一个半径为r的⊙O。
(2)任意画⊙O的一条半径OD。
例题欣赏
Hale Waihona Puke 例1:如图,直线AB经过⊙O上的 点C,并且OA=OB, CA=CB, 求证:直线AB是⊙O的切线。
证明:连接OC ∵OA=OB ∴ABC是等腰三角形 ∵CA=CB ∴OC⊥AB ∵OC为半径 ∴AB为⊙O的切线
2 、如图,以O为圆心,OA为半 径的圆交OB于C,若OA=3,AB=4, BC=2,则AB是⊙O的切线吗?
练习引入: 如图,已知在△ABC中,∠BAC= 120°,AB=AC,AB=4,以A为圆心,2 为半径,做⊙A,试问直线BC与⊙A的 相切吗?说明原因 ? 答:相切
∵D=2=r
(4),如图,AB是⊙O的切线,A为切点, AC是⊙O 的弦,过⊙O作OH⊥AC于H,若 OH=3,AB=12,BO=13,求弦AC的长为 _____________。
B、直线和圆有公共点,则直线和圆相交。
C、经过圆上一点,有且仅有一条切线。
D、圆的切线垂直于半径。
2、已知,AB、AC分别是切⊙O于B、C, ∠A=50°,点P是圆上异于B、C的一 动点,则∠BPC的度数为 ( C ) A、65° B、115° C、65°或115° D、130°或50°
例2:如图,A是⊙O外的一点,AO的延长线 交⊙O于C,直线AB经过⊙O上一点B,且 AB=BC,∠C=30o。
B
O
T
A
A l1
O O l2 B
小结:切线的性质
1、切线和圆只有一个交点。 2、圆心到切线的距离等于半径。 3、切线垂直于过切点的半径。 4、经过圆心垂直于切线的直线 必经过切点。 5、经过切点垂直于切线的直线 必经过圆心。
活动四:巩固新知
1、下列命题中正确的是:( )
A、经过半径外端的直线是圆的切线。
求证:直线AB是⊙O的切线。
B
C
O
A
证明:连接OB ∵AB=BC ∴∠C=∠A ∵∠C=30° ∴∠A=30° ∴∠ABC=120° ∵OB=0C ∴∠C=∠OBC=30° ∴∠ABO=90° ∵OB为半径,OB⊥BA ∴直线AB是⊙O的切线
(1),如图,要使得EF是⊙O的切线, 还要添加的条件是__________________
证明:连接OC ∵OA=OC ∴∠OAC=∠OCA ∵CD为的切线 ∴OC⊥CD ∴∠OCA=90° ∵AD⊥CD ∴∠ADC=90° ∴∠ADC+∠OCD=180° ∴AD∥OC ∴∠DAC=∠OCA ∴∠DAC=∠OAC ∴AC平分∠DAB
1、如图,AB是⊙O的直径, AT=AB, ∠ABT=45°。 求证:AT是⊙O的切线
O
C B
A
活动三:切线的性质
已知:直线CD是⊙O上的切线,切点为 B,那么半径OB与直线CD垂直吗?
切线的性质:
圆的切线垂直于过切点的半径。
∵L为⊙O的切线,B为切点
∴L⊥OB
• 特征:
①、经过圆心垂直于切线的直线比经过切点。 ②、经过切点垂直于切线的直线必经过圆心 。
例题教学
例3:如图,直线AB是⊙O的直径,C为 ⊙O一点,AD和过C点的切线互相垂直, 垂足为D, 求证:AC平分∠DAB
(3)过D作直线l⊥OD。
切线的判定定理: 经过半径的外端垂直于这条半径的直 线是圆的切线 。
∵O为圆心,OB⊥L ∴L为⊙O的切线
切线的判定定理:经过半径的外端并且垂直于 这条半径的直线是圆的切线。
(分析)
若同时满足: ①经过半径的外端; ②垂直于这条半径。 则有结论:直线是圆的切线。
注意:若直线满足①, 而不满足②; 若直线满足②, 而不满足①。
①∠CAE =∠B, ②∠C=∠FAB ③∠EAB= ∠ FAB ④∠BAC+ ∠CAE =90° ⑤AB⊥EF
5、如图,AB是⊙O的直径,弦AD平 分∠BAC,过A作AC⊥DC,求证:DC 是⊙O的切线。
A
O
B
D C
(2),如图,AB为非直径的弦, 且∠CAE=∠B, 求证:直线EF是⊙O的切线。
圆的切线
回龙中学:何
健
活动一:复习引入
问题:直线和圆有哪些位置关系?
直线和园的位 置
图形
公共点的个数 圆心到直线的 距离与半径的 关系 公共点的名称
直线名称
问题:直线l与⊙O有一个公共点D,那么除点D 外,直线l与⊙O还有没有其他的公共点呢?
一般地,当直线和圆有唯一公共 点时,叫做直线和圆相切。其中 的直线叫做圆的切线,唯一的公 共点叫做切点。
1,AD为等腰△ ABC的高,E、F分别为AB、AC的中点 ,则以EF为直径的圆与BC的位置关系是 ( C ) A. 相离 B、相切 C、 相交 D、以上都有可能
5,如图,AB为⊙O的直径,C为⊙O上 的一点,D在AB的延长线上,且∠DCB =∠A
①,CD与⊙O相切吗?如果相切,加以证明; 如果不相切,请说明理由? ②,若CD与⊙O相切,且∠D=30,BD= 10,求⊙O的半径。