第五讲 时间序列的平稳性检验

合集下载

第五讲 时间序列的平稳性检验

第五讲 时间序列的平稳性检验

16
ARMA( p, q)
ARIMA( p, d , q) :
17
单位根过程
• 随机序列 y t 称为单位根过程,如果,
1
1 1
平稳过程
非平稳过程、非单位根过程
18
单位根检验
20世纪70年代,Dickey和Fuller提出了DF统计量,用于检验序列 是否包含单位根过程以及单整的阶数,称为DF检验。
第五节
时间序列的平稳性检验
1
平稳性的检验方法之一:时序图检验方法
• 根据平稳时间序列均值、方差为常数的性质,平稳序列的时 序图应该显示出该序列始终在一个常数值附近随机波动,而 且波动的范围有界、无明显趋势及无季节性特征
税收收入(亿元)
80.00%
60.00%
40.00%
20.00%
0.00%
第 1季 19 94 度 年 第 3季 19 95 度 年 第 1季 19 95 度 年 第 3季 19 96 度 年 第 1季 19 96 度 年 第 3季 19 97 度 年 第 1季 19 97 度 年 第 3季 19 98 度 年 第 1季 19 98 度 年 第 3季 19 99 度 年 第 1季 19 99 度 年 第 3季 20 00 度 年 第 1季 20 00 度 年 第 3季 20 01 度 年 第 1季 20 01 度 年 第 3季 度
21
22
ADF检验
ADF检验中两个重要问题: (1)关于位移项和趋势项的判断:实际中并不知道被检验序列的 DGP 属于哪一种形式,怎样选择单位根检验式呢?先采用有趋势 和漂移项的。因为它对应的ADF统计量的检验功效最高。 (2)关于滞后阶数的判断:k尽量小,以保持更大的自由度; k充分 大以消除残差内的自相关。

时间序列数据的平稳性检验

时间序列数据的平稳性检验

(对全部t)
▪ 方差 var( yt ) E( yt )2 2(对全部t)
▪ 协方差 k E[( yt )( ytk )](对全部t)
▪ 其中 k 即滞后k旳协方差[或自(身)协方差],yt 是
和 ytk ,也就是相隔k期旳两值之间旳协方差。
6
▪ 三、伪回归现象 ▪ 将一种随机游走变量(即非平稳数据)对另一种
14
▪ I (1)过程在金融、经济时间序列数据中是最普遍 旳,而I (0)则表达平稳时间序列。
▪ 从理论与应用旳角度,DF检验旳检验模型有如下
旳三个:
Yt (1 )Yt1 ut 即 Yt Yt1 ut
(5.7)
Yt 1 (1 )Yt1 ut 即 Yt 1 Yt1 ut
(5.8)
随机游走变量进行回归可能造成荒唐旳成果,老 式旳明显性检验将告知我们变量之间旳关系是不 存在旳。 ▪ 有时候时间序列旳高度有关仅仅是因为两者同步 随时间有向上或向下变动旳趋势,并没有真正旳 联络。这种情况就称为“伪回归”(Spurious Regression)。
7
第二节 平稳性检验旳详细措施
一、单位根检验 ▪ (一)单位根检验旳基本原理 ▪ David Dickey和Wayne Fuller旳单位根检验
34
▪ Johansen协整检验有两个检验统计量:
▪ ①迹检验统计量trace :
g
▪ trace=-T ln(1-ˆi),其中r为假设旳协整关系旳 i=r+1 个数,ˆi 为 旳第i个特征值旳估计值(下同)。 相应旳零假设是:H0:协整关系个数不不小于等
于r;被择Байду номын сангаас设:H1:协整关系个数不小于r。
yt yt-k+1yt-1+2yt-2+...k-1yt-(k-1)+ut (5.12)

时间序列平稳性检验

时间序列平稳性检验

时间序列平稳性检验分析姓名xxx学院xx学院专业xxxx学号xxxxxxxxxx时间序列平稳性分析检验时间序列是一个计量经济学中的概念,时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。

一、时间序列平稳性的定义假定某个时间序列是由某一随机过程(stochasticprocess)生成的,即假定时间序列{Xt}(t=1,2,•)•的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=u是与时间t无关的常数;2)方差Var(Xt)=o2是与时间t无关的常数;3)协方差Cov(Xt,Xt+k尸条是只与时期间隔k有关,与时间t无关的常数。

则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochasticprocess)。

eg:一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=Mt,Mt~N(0,o2)该序列常被称为是一个白噪声。

由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。

eg:另一个简单的随机时间列序被称为随机游走,该序列由如下随机过程生成:Xt=Xt-1+」t这里,出是一个白噪声。

容易知道该序列有相同的均值:E(Xt)=E(Xt-1)为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知X1=X0+」1X2=X1+」2=X0+J1+J2xt=X0+出+也++M由于X0为常数,%是一个白噪声,因此Var(Xt)=to2即Xt的方差与时间t有关而非常数,它是一非平稳序列二、时间序列平稳性检验的方法对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。

但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF检验无效。

时间序列的平稳性及其检验

时间序列的平稳性及其检验
或Yt e 0 1t ut
19
伪回归spurious regression

如果时间序列是有趋势的,那么一定是非平稳 的,从而采用OLS估计的t检验和F检验就是无 效的。
两个具有相同趋势的时间序列即便毫无关系, 在回归时也可能得到很高的显著性和复判定系 数 出现伪回归时,一种处理办法是加入趋势变量, 另一种办法是把非平稳的序列平稳化

时间序列分析模型:解释时间序列自身的变化 规律和相互联系的数学表达式

确定性的时间序列模型 随机时间序列模型
3
随机过程与随机序列
设T 为某个时间集,对t T,取xt为随机变量, 对于该随机变量的全体 xt , t T 当取T 为连续集,如T (, )或T [0, )
1000.0 900.0 800.0
GDP指数(1978=100)
700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0
年份
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03
8
说 明


自然科学领域中的许多时间序列常常是 平稳的。如工业生产中对液面、压力、 温度的控制过程,某地的气温变化过程, 某地100年的水文资料,单位时间内路口 通过的车辆数过程等。 但经济领域中多数宏观经济时间序列却 都是非平稳的。如一个国家的年GDP序 列,年投资序列,年进出口序列等。
9
时间序列模型的例子
22
时间序列模型不同于经典计量模 型的两个特点


⑴ 这种建模方法不以经济理论为依据, 而是依据变量自身的变化规律,利用外 推机制描述时间序列的变化。 ⑵ 明确考虑时间序列的非平稳性。如果 时间序列非平稳,建立模型之前应先通 过差分把它变换成平稳的时间序列,再 考虑建模问题。

时间序列的预处理(平稳性检验和纯随机性检验)

时间序列的预处理(平稳性检验和纯随机性检验)
自相关图、白噪声检验等。
1、时序图的绘制
在SAS系统中,使用GPLOT程序可以绘 制多种精美的时序图。
可以设置坐标轴、图形颜色、观察值点 的形状及点之间的连线方式等
例2-1
data example2_1;
input price1 price2;
time=intnx('month','01jul2004'd,_n_-1);
format time date.;
cards;
12.85 15.21
13.29 14.23
12.41 14.69
15.21 13.27
14.23 16.75
13.56 15.33
;
proc gplot data= example2_1; \\绘图过程开始
plot price1*time=1 price2*time=2/overlay; //确定纵横轴,按两种
时间序列分析之
试验二
时间序列的预处理 (平稳性检验和纯随机性检验)
一、平稳性检验
时序图检验
根据平稳时间序列的均值、方差
及周期特征。
自相关图检验
根据平稳时间序列的短期相关性, 其自相关图中随着延迟期数 的增加,自相关系数会很快 地衰减向零。
cards;
97 154 137.7 149 164 157 188 204 179 210 202 218 209
204 211 206 214 217 210 217 219 211 233 316 221 239
215 228 219 239 224 234 227 298 332 245 357 301 389
平稳时间序列的时序图与自相关图

时间序列中的时间序列平稳性检验

时间序列中的时间序列平稳性检验

时间序列中的时间序列平稳性检验时间序列平稳性是时间序列分析中的重要概念,对时间序列模型和预测有着重要的影响。

时间序列平稳性指的是时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化的性质。

本文将介绍时间序列平稳性检验的相关理论与方法。

一、时间序列平稳性检验的基本理论在进行时间序列分析前,需要先确定该时间序列是否具有平稳性。

时间序列平稳性则是指时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化,比如说均值、方差、自相关系数等都不应该与时间有关。

若时间序列不具有平稳性,则其分析结果会受到时间变量的影响,预测结果也不够准确。

对于时间序列平稳性的检验,主要考虑3个方面,即序列的均值、序列的方差、序列的自相关。

时间序列平稳性检验的基本理论是根据大数定理和中心极限定理进行的。

在此基础上,常用的做法是,检验序列均值是否随时间变化而变化、检验方差是否随时间变化而变化、检验自相关系数是否与时间有关。

二、时间序列平稳性检验的方法1.图示法:通过绘制时间序列图、自相关图、偏自相关图可以直观地了解时间序列的平稳性。

时间序列图是反映序列随时间变化时的整体变化趋势的图形;自相关图表达的是序列在不同时滞下的线性相关程度,若相关系数呈现规律性或趋势性,则序列不平稳;偏自相关图是用来判断序列是否具有趋势或季节性,若序列的偏自相关系数在超过置信度时突破界限,则序列不具有平稳性。

2.计量经济学检验法:常用的计量经济学检验法有DF检验、ADF检验、KPSS检验等,其中ADF检验最为常用。

ADF检验分为一般ADF检验、增广ADF检验、阶数选择ADF检验等,在跨期比较和模型选择方面有效,而且误判率较低。

3.波动函数法:通过测量时间序列各部分的波动函数,从而判断序列是否平稳。

包括周期波动函数法、空间波动函数法等。

周期波动函数法是通过加权平均数对序列进行周期性处理,得到波动函数,然后计算波动函数的标准偏差,以此来判断序列平稳性;空间波动函数法则是通过空间均方差来判断时间序列的平稳性。

时间序列的平稳性及其检验

时间序列的平稳性及其检验
section data) ★时间序列数据是最常见,也是最常用到的数据。
⒉经典回归模型与数据的平稳性
❖ 经典回归分析暗含着一个重要假设:数据是平稳的。
❖ 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
❖ 经典回归分析的假设之一:解释变量X是非随机变 量
❖ 放宽该假设:X是随机变量,则需进一步要求: (1)X与随机扰动项 不相关∶Cov(X,)=0
表 9.1.1 一个纯随机序列与随机游走序列的检验
序号 Random1 自相关系数
Q LB
rk (k=0,1,…17)
Random2
rk
自相关系数
Q LB
(k=0,1,…17)
1 -0.031 K=0, 1.000 2 0.188 K=1, -0.051 3 0.108 K=2, -0.393 4 -0.455 K=3, -0.147 5 -0.426 K=4, 0.280 6 0.387 K=5, 0.187 7 -0.156 K=6, -0.363 8 0.204 K=7, -0.148 9 -0.340 K=8, 0.315 10 0.157 K=9, 0.194 11 0.228 K=10, -0.139 12 -0.315 K=11, -0.297 13 -0.377 K=12, 0.034 14 -0.056 K=13, 0.165 15 0.478 K=14, -0.105 16 0.244 K=15, -0.094 17 -0.215 K=16, 0.039 18 0.141 K=17, 0.027 19 0.236
0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381

时间序列分析中的平稳性检验

时间序列分析中的平稳性检验

时间序列分析中的平稳性检验时间序列分析是统计学中重要的研究领域,它用于研究随时间变化的数据,并预测未来的趋势。

平稳性检验是时间序列分析的关键步骤之一,它用于确定时间序列数据是否具有平稳性。

本文将介绍时间序列分析中的平稳性检验的基本概念、方法和应用。

一、平稳性的概念在时间序列分析中,平稳性是指时间序列数据的统计特性在不同时间段内保持不变。

具体而言,平稳性要求时间序列的均值、方差和自相关函数在时间上不发生显著的变化。

如果时间序列数据具有平稳性,那么我们可以利用历史数据对未来进行可靠的预测。

二、平稳性检验的方法为了检验时间序列数据的平稳性,常用的方法包括观察法、单位根检验和ADF检验。

1. 观察法观察法是最简单的平稳性检验方法,它通过观察时间序列数据的图表和统计指标来判断数据是否具有平稳性。

如果时间序列数据的均值和方差在不同时间段内保持相对稳定,且自相关函数衰减较快,那么可以初步认为数据具有平稳性。

2. 单位根检验单位根检验是一种常用的平稳性检验方法,它基于时间序列数据是否具有单位根来判断数据的平稳性。

常用的单位根检验方法包括ADF检验、PP检验和KPSS 检验。

其中,ADF检验是最常用的单位根检验方法之一。

3. ADF检验ADF检验(Augmented Dickey-Fuller test)是一种常用的单位根检验方法,它基于Dickey-Fuller回归模型来判断时间序列数据是否具有单位根。

ADF检验的原假设是时间序列数据具有单位根,即非平稳性;备择假设是时间序列数据不具有单位根,即平稳性。

ADF检验的关键统计量是ADF统计量,它的值与临界值进行比较来判断数据的平稳性。

如果ADF统计量的值小于临界值,那么可以拒绝原假设,认为数据具有平稳性;如果ADF统计量的值大于临界值,那么接受原假设,认为数据不具有平稳性。

三、平稳性检验的应用平稳性检验在时间序列分析中具有广泛的应用。

首先,平稳性检验是进行时间序列建模的前提条件,只有具有平稳性的数据才能进行可靠的建模和预测。

第五章时间序列数据的平稳性检验

第五章时间序列数据的平稳性检验

29

5
二,贸易信贷管理主要内容
贸易信贷定义 企业货物贸易项下外债,包括企业出口预 收货款和进口延期付款. 企业货物贸易项下境外债权包括进口预付 货款和出口延期收款.
6
二,贸易信贷管理主要内容
实行登记管理制度 登记方式:直接登陆互联网或前往外汇局 柜台上网(分局配备相应设施和人员) 网上登记:贸易信贷登记管理系统 网上 互联网进入: 逐笔登记和注销手续 逐笔
24
二,跨境贸易人民币结算主要内容
国家允许指定的,有条件的企业在自愿的基础上以人 民币进行跨境贸易的结算,支持商业银行为企业提供 跨境贸易人民币结算服务. 跨境贸易人民币结算不纳入外汇核销管理,不须办理 进出口核销手续.企业在办理以人民币结算的跨境贸 易报关和出口货物退(免)税时不需提供外汇核销单. 使用人民币结算的出口贸易,按照有关规定享受出口 货物退(免)税政策.
4
一,《办法》总体思路和主要内容 办法》
《办法》的主要内容
建立"出口收结汇联网核查系统" ; 实行出口收汇待核查账户管理 ; 实行全国统一的联网核查规则 ; 对历史数据的核查采取计算初始值和审核纸质单证两 种方法处理 ; 出口收汇实行联网核查 ; 核查系统运行期间发生故障时的应急措施 ; 实行异常情况报告制度 .
14
一,进出口核销管理制度简介
进口付汇核销管理是国家对进口付汇实行 事后核销制度,即外汇管理局委托外汇指 定银行,以进口付汇核销单为主线对进口 付汇,到货进行监管核查的一种管理制度. 进口付汇核销制度自1994年8月1日起实施, 是1994年我国外汇体制改革的重要内容之 一.
15
二,进出口核销业务流程
27
外汇局网站, 外汇局网站,咨询电话

时间序列---平稳性检验

时间序列---平稳性检验

时间序列---平稳性检验试验一平稳性检验1.图示判断给出一个随机时间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。

一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程;而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。

进一步的判断:检验样本自相关函数及其图形,随着k的增加,样本自相关函数下降且趋于零。

但从下降速度来看,平稳序列要比非平稳序列快得多。

例题:选择数据1986.01---0995.12的月数据进行分析:时序图:相关系数及图形:初步判断序列为非平稳序列。

2.平稳性的单位根检验原理:对时间序列的平稳性除了通过图形直观判断外,运用统计量进行统计检验则是更为准确与重要的。

单位根检验(unit root test)是统计检验中普遍应用的一种检验方法。

检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型Xt=α+ρXt-1+μt (*)中的参数ρ是否小于1。

或者:检验其等价变形式Xt=α+δXt-1+μt (**)中的参数δ是否小于0 。

因此,针对式?Xt=α+δXt-1+μt 我们关心的检验为:零假设H0:δ=0。

备择假设 H1:δ<0然而,在零假设(序列非平稳)下,即使在大样本下t 统计量也是有偏误的(向下偏倚),通常的t 检验无法使用。

Dicky 和Fuller 于1976年提出了这一情形下t 统计量服从的分布(这时的t 统计量称为τ统计量),即DF 分布(见表9.1.3)。

由于t 统计量的向下偏倚性,它呈现围绕小于零值的偏态分布。

如果:t<临界值,则拒绝零假设H0:δ =0,认为时间序列不存在单位根,是平稳的。

为了保证DF 检验中随机误差项的白噪声特性,Dicky 和Fuller 对DF 检验进行了扩充,形成了ADF (Augment Dickey-Fuller )检验。

实际检验时从模型3开始,然后模型2、模型1何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时检模型1: t mi it it t XX X εβδ+?+=?∑=--11 (*模型2: t mi it it t XX X εβδα+?++=?∑=--11 (*模型3: t m i i t it t X X t X εβδβα+?+++=?∑=--11 (*验停止。

第五章时间序列数据的平稳性检验

第五章时间序列数据的平稳性检验
t
25
e
检验
t 验,但需要注意的是,此时的临界值不能再用
e
是否平稳可以采用前文提到的单位根检
(A)DF检验的临界值,而是要用恩格尔和格兰杰 (Engle and Granger)提供的临界值,故这种 协整检验又称为(扩展的)恩格尔格兰杰检验 (简记(A)EG检验)。
26
此外,也可以用协整回归的Durbin-Watson统计 检验(Cointegration regression Durbin-Watson test,简记CRDW)进行。CRDW检验构造的统计 量是:
5
平稳随机过程的性质: 均值 方差
2 2 v a r ( y ) E ( y ) (对所有t) t t
E( yt )
(对所有t)
协方差 (对所有t) E [ ( y ) ( y ) ] k t t k 其中 k 即滞后k的协方差[或自(身)协方差], yt是 和 y t k ,也就是相隔k期的两值之间的协方差。
2
第一节
一、随机过程
随机过程和平稳性原理
一般称依赖于参数时间t的随机变量集合{ y t }为随 机过程。
例如,假设样本观察值y1,y2…,yt是来自无穷随机
变量序列…y-2, y-1,y0 ,y1 ,y2 …的一部分,则这个
无穷随机序列称为随机过程。
3
随机过程中有一特殊情况叫白噪音,其定义 如下:如果随机过程服从的分布不随时间改 变,且
(5.4)
10
依次将式(5.4)…(5.3)、(5.2)代入相邻的上式,并 整理,可得:
T 2 T YY t u u . . . uu (5.5) t T t 1 t 2 t T t

5.2 时间序列的平稳性及其检验

5.2 时间序列的平稳性及其检验
– Dicky和Fuller于1976年提出了这一情形下t统计量服 从的分布(这时的t统计量称为统计量),即DF分布。
– 由于t统计量的向下偏倚性,它呈现围绕小于零均值的 偏态分布。
显著性水平
0.01 0.05 0.10
样本容量
25 50
100
500
-3.75 -3.58 -3.51 -3.44 3.00 -2.93 -2.89 -2.87 2.63 -2.60 -2.58 -2.57
§5.2 时间序列的平稳性及其检验
一、问题的提出 二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整时间序列 六、趋势平稳与差分平稳随机过程
一、问题的提出
• 从经典计量经济学模型的方法论基础出发
– 时间序列的平稳性可以替代随机抽样假定,采用平稳 时间序列作为样本,建立经典计量经济学模型,在模 型设定正确的前提下,模型随机扰动项仍然满足极限 法则和经典模型的基本假设(序列无关假设除外), 特别是正态性假设。
• 定义
–假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得 到,如果满足下列条件:
• 均值E(Xt)=是与时间t 无关的常数; • 方差Var(Xt)=2是与时间t 无关的常数; • 协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,
m
X t t X t1 i X ti t i 1
模型1 模型2 模型3
零假设 H0:=0 备择假设 H1:<0
• 检验过程
–实际检验时从模型3开始,然后模型2、模型1。 –何时检验拒绝零假设,即原序列不存在单位根,为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


9
单整性 单整过程的统计特征 DF分布 DF临界值 单位根检验
10
AR(1)过程
yt yt 1 t
随机游走过程 非平稳过程
1
差分变换
yt yt yt 1 t
平稳过程
单整性
11
单整性
• 如果一个非平稳时间序列能够通过适当的差分变换成为平稳的时间序列 ,那么该序列就是单整序列(integrated series)。如果只需要一次差分,则 称序列是一阶单整的,或写成I(1)。更一般地,如果需要d次差分,则称 序列是d阶单整的,或I(d)。
ARMA( p, q) :

如果自回归滞后算子多项式的所有p个根的逆都在单位圆内,则该过 程是一个平稳过程;如果其中一个根位于单位圆上,则称该过程有一个单 位自回归根(unit autoregressive root),简称单位根(unit root)。
ARMA( p 1, q)
12
yt yt 1 t
-100 100
25 y=0.1t+u 20 15 10 5 0 -5 20 40 60 80 100 120 140 160 180 200
200
300
400
500
600
700
800
900 1000
确定性趋势过程:(去势平稳过程)
yt a t t
yt ( yt t ) a t
5
实践中如何检验序列的平稳性?
样本自相关函数可以说明不同时期的数据之间的相关程度,其取
值范围在-1到 1之间,值越接近于1,说明时间序列的自相关程度越 高。 判断时间序列是否平稳,是一项很重要的工作。运用自相关分析 图判定时间序列平稳性的准则是: (1)若时间序列的自相关函数在k>3时都落入置信区间,且逐渐趋于 零,则该时间序列具有平稳性; (2)若时间序列的自相关函数更多地落在置信区间外面,则该时间序列 就不具有平稳性。
14
包含时间和漂移项的随机游走
(含有随机趋势和确定性趋势的混合随机过程)
yt t yt 1 t
含有随机趋势和确定性趋势的混 合随机过程实际上是随机游走加 上一个时间t的2次方过程。
250
y=0.1+0.1t+y(-1)+u
200 150 100 50 0 -50 100 200 300 400 500 600 700 800 900 1000
22
单位根检验一般程序
23
24
25
26
27
28
phillips-perron 检验
29
30
无限的 永久的
1
?
13
• 包含漂移项的随机游走(random walk with drift)
这是一个趋势项和一个随机游走过程之和,称作随机趋势过程 (差分平稳过程)。 20 120
100 80 60
-40
y=0.1+y(-1)+u
y=-0.1+y(-1)+u
0 -20
40
-60
20
-80
0 -20 100 200 300 400 500 600 700 800 900 1000
15
ARMA( p, q)
ARIMA ( p, d , q) :
16
单位根过程
• 随机序列 yt 称为单位根过程,如果,
1
1 1
平稳过程
非平稳过程、非单位根过程
17
单位根检验
量,用于检验序列 是否包含单位根过程以及单整的阶数,称为DF检验。
20
21
ADF检验
ADF检验中两个重要问题: (1)关于位移项和趋势项的判断:实际中并不知道被检验序列的 DGP 属于哪一种形式,怎样选择单位根检验式呢?先采用有趋 势和漂移项的。因为它对应的ADF统计量的检验功效最高。 (2)关于滞后阶数的判断:k尽量小,以保持更大的自由度; k充分大 以消除残差内的自相关。
表 5.1 随机游走过程和平稳的一阶自回归过程统计特征比较 随机游走过程 方差 自相关系数 穿越零均值点的期望时间 记忆性 tu2 (无限的)
随机游走和平稳的AR(1)过程的统计性质
平稳的一阶自回归过程
u2/(1-12) k =1k
有限的 暂时的
(有限的)
k = 1 ( k / T ) 1, k, T
0 0
1
1
• 2. DF检验是左单端检验。因为 > 1意味着强非平稳, < 1意味着平稳。当接受 < 1,拒绝 = 1时,自然也应拒 绝 > 1。所以DF检验只考虑两种情形。
19
DF检验的其他形式
加入位移(飘移)项:
加入位移项和趋势项:
经验规律: (1)表示流量的序列,如不变价的消费、收入等通常表现为I(1)过程。 (2)增长率变量,例如GDP增长率通常表示为I(0)过程。
-20.00% -40.00%
19 94 年
年份
-60.00%
税收收入的增长率
1
平稳性的检验之二: 相关图检验
• 随机变量的相关系数: • 自相关函数:
Cov( yt , yt ) E[( yt )( yt )]
2 0 Cov( yt , yt ) Var( yt ) y
平稳过程
2
自相关函数的不同形式
3
自相关函数的不同形式
4
• 什么样的自相关函数图形才能判断时间序列是平稳的呢? 随着位移的增加,所有协方差平稳过程的自相关函数 (和偏自相关函数)都会以某种方式趋近于0,其准确衰 减模式则取决于序列本身的性质。 平稳序列的ACF随着滞后期的增加而迅速下降,而非平 稳序列的ACF随着滞后期的增加而下降的很缓慢,由此 ,ACF表示了序列的 “记忆”长度。
Dickey, D. and Fuller, WA (1979) “Distribution of the estimates for autoregressive time series. with a unit root”, Journal of the American Statistical Association, 74: 427 -31.
6
检验 1964年—1999年 中国纱年产量序列 的平稳性
7
检验1949年—— 1998年北京市每年最 高气温序列的平稳性
8
平稳性检验之三: 单位根检验
由于伪回归问题的存在,在回归模型中应避免直接使用 非平稳变量。因此检验变量的平稳性是一个必须解决的问 题。以上介绍了用相关图判断时间序列的平稳性,这里讨 论严格的统计检验方法,即单位根检验。
1 备择假设 〈 1
零假设
DF ˆ 1 ˆ) s(
非平稳 平稳
当DF 临界值时,不能拒绝 H0,yt非平稳
1 T 2 ˆ) ˆt s( u T t 2
当DF 临界值时,拒绝 H0,yt 平稳
yt yt 1 ( 1) yt 1 t
yt yt 1 t
平稳性的检验方法之一:时序图检验方法
• 根据平稳时间序列均值、方差为常数的性质,平稳序列的时 序图应该显示出该序列始终在一个常数值附近随机波动,而 且波动的范围有界、无明显趋势及无季节性特征
税收收入(亿元)
80.00%
60.00%
40.00%
20.00%
0.00%
第 1季 19 94 度 年 第 3季 19 95 度 年 第 1季 19 95 度 年 第 3季 19 96 度 年 第 1季 19 96 度 年 第 3季 19 97 度 年 第 1季 19 97 度 年 第 3季 19 98 度 年 第 1季 19 98 度 年 第 3季 19 99 度 年 第 1季 19 99 度 年 第 3季 20 00 度 年 第 1季 20 00 度 年 第 3季 20 01 度 年 第 1季 20 01 度 年 第 3季 度
DF
ˆ 1 ˆ t ˆ ˆ
18
注意
• 1. DF检验采用的是OLS估计。但DF统计量并不服从t分布。
T
DF

(1 / 2)(W (1) 2 1) W (1) W (i )di
0
1
{ W (i ) 2 di ( W (i )di) 2 }1 / 2
相关文档
最新文档