自考线性代数(经管类)重点考点.

合集下载

自考线性代数经管类笔记

自考线性代数经管类笔记

自考线性代数经管类笔记线性代数是一门应用广泛的数学学科,对于经管类专业的学生来说尤为重要。

本篇笔记将详细介绍线性代数的基本概念和常用方法,以及其中涉及到的经管类应用。

一、向量和矩阵1.1 向量的定义和运算向量是由有序的一组数按照一定顺序排列而成的对象,常用于表示多维度的数据。

向量的加法和数乘是基本的运算操作,能够实现向量之间的合成和缩放。

1.2 矩阵的定义和运算矩阵是由多个向量按行或按列排列而成的矩形数组。

矩阵的加法、数乘和乘法是常见的运算操作,通过这些运算可以实现线性方程组的求解和数据的变换。

二、线性方程组2.1 线性方程组的概念线性方程组是由一组线性方程组成的方程集合,可以用矩阵和向量的形式表示。

线性方程组通常用来描述多个变量之间的关系。

2.2 线性方程组的解法高斯消元法是求解线性方程组的常用方法,通过矩阵的初等行变换将线性方程组化为简化的行阶梯形式,从而得到方程组的解。

三、矩阵的应用3.1 线性变换线性变换是指从一个向量空间到另一个向量空间的一种特殊变换,可以用矩阵表示。

在经管类问题中,线性变换常用于描述经济模型、市场规模和供求关系等。

3.2 特征值与特征向量矩阵的特征值和特征向量是描述矩阵性质的重要指标,可以用来判断矩阵的稳定性和变换的特征。

四、行列式4.1 行列式的概念行列式是一个与矩阵相关的标量,可以用来判断矩阵的可逆性、求解线性方程组和计算面积、体积等几何量。

4.2 行列式的性质行列式具有一系列重要的性质,包括行列式的展开性质、可逆矩阵的行列式性质和矩阵乘法的行列式性质等。

五、矩阵的特殊类型5.1 对称矩阵对称矩阵是指矩阵的转置矩阵等于矩阵本身,具有特殊的性质和应用,常用于描述系统的对称程度和分析力学中的刚体问题。

5.2 正定矩阵正定矩阵是指矩阵的所有特征值都大于零,是优化问题和概率论中常见的矩阵类型。

六、线性代数的应用6.1 经济学中的应用线性代数在经济学中有广泛的应用,如求解均衡价格、计算生产函数、分析供求关系等。

自考04184线性代数(经管类)讲义

自考04184线性代数(经管类)讲义

高数线性代数第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。

所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。

行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。

1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;)定义:符号叫二阶行列所以二阶行列式的值等于两个例如)符号叫三阶行列式,它也例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。

我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9 =0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,解因为所以8-3a=0,时例2当x取何值时,解:解得0<x<9所以当0<x<9时,所给行列式大于0。

(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。

其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。

线性代数经管类知识点

线性代数经管类知识点

线性代数经管类知识点线性代数在经管类学科中具有重要的地位,其涉及的知识点对于分析、建模和解决管理问题具有重要的作用。

本文将介绍一些线性代数在经管类学科中常用的知识点,并探讨其应用。

应用于经管类学科的线性代数知识主要包括矩阵运算、线性方程组的求解以及向量空间的理解。

我们将逐一进行阐述。

1. 矩阵运算:矩阵是一个重要的线性代数工具,在经管类学科中广泛应用于数据的存储和计算。

矩阵的加法、减法和乘法运算能够对数据进行处理和分析。

例如,在经济学中,我们可以通过矩阵乘法来计算不同经济指标的加权平均值,从而对经济状况进行评估。

此外,矩阵的转置运算也可以用于解决一些经济和管理问题,例如对投资组合的评估与优化。

2. 线性方程组的求解:线性方程组是经管类学科中常见的数学模型。

通过线性代数的方法,我们可以求解线性方程组,从而得到方程组的解析解或数值解。

这对于经济学中的均衡分析和管理学中的约束优化问题具有重要的作用。

同时,我们还可以通过求解线性方程组来进行数据拟合和趋势预测,帮助企业做出决策。

3. 向量空间的理解:向量空间是线性代数中的一个重要概念,它描述了向量的线性组合和向量之间的相对位置关系。

在经管类学科中,我们经常遇到多个变量之间的关系,例如市场需求与供给的关系、公司利润与销售额的关系等。

通过将变量转化为向量,我们可以使用向量空间的理论和方法来分析这些关系。

例如,我们可以通过求解向量的线性相关性来检验变量之间的相关性,从而评估市场需求的变化对供给的影响,或者评估公司销售额的变化对利润的影响。

除了以上提到的知识点,线性代数在经管类学科中还有其他重要的应用。

例如,特征值和特征向量的分析可以用于研究矩阵的稳定性和动态系统的行为。

奇异值分解可以用于降维和数据压缩,从而提取关键信息。

矩阵的逆可以用于求解逆问题,例如在金融学中用于对冲或风险管理。

总之,线性代数在经管类学科中扮演着不可或缺的角色。

通过掌握矩阵运算、线性方程组求解和向量空间的理解,我们能够更好地理解和分析经济和管理问题。

线性代数自考(经管类)

线性代数自考(经管类)
2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算.
3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.
4.行列式中各行元素之和为一个常数的类型.
5.范德蒙行列式的计算公式
例6求4阶行列式的值.
测试点 行列式的计算

测试点 个维向量线性无关相应的行列式;

所以 且.
答案 且.
2. 关于线性相关的几个定理
1) 如果向量组线性无关,而线性相关,则可由线性表示,且表示法唯一.
矩阵的加、减、乘有意义的充分必要条件
例1设矩阵,, ,则下列矩阵运算中有意义的是( )
A. B.
C. D.
测试点: 矩阵相乘有意义的充分必要条件
答案: B
例2设矩阵, ,则 =_____________.
测试点: 矩阵运算的定义
解 .
例3设矩阵, ,则____________.
3.转置 对称阵和反对称阵
1)转置的性质
2)若,则称为对称(反对称)阵
例4矩阵为同阶方阵,则=( )
A. B.
C. D.
答案: B
例5设令,试求.
测试点 矩阵乘法的一个常用技巧
解 因为,所以
答案
例6为任意阶矩阵,下列矩阵中为反对称矩阵的是( )
1.向量组的线性相关性的定义和充分必要条件:
1)定义: 设是一组维向量.如果存在个不全为零的数,使得
,
则称向量组线性相关,否则,即如果,必有
,则称向量组线性无关.
2) 个维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.即线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.

自考线性代数(04184)经管类复习提纲内含经典例题分类讲解

自考线性代数(04184)经管类复习提纲内含经典例题分类讲解

线性代数复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

自考本科线性代数(经管类)知识汇总-153页word资料

自考本科线性代数(经管类)知识汇总-153页word资料

自考高数线性代数笔记第一章行列式1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。

(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。

我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:.解得0<x<9所以当0<x<9时,所给行列式大于0。

(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。

其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。

所以在行列式的第i行和第j列的交叉位置上。

自学考试04184线性代数[经管类]讲义

自学考试04184线性代数[经管类]讲义

自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。

所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。

行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。

1.1 行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。

例如)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。

我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1 a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2 当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。

(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。

自考线性代数(经管类)各章考核重点解析

自考线性代数(经管类)各章考核重点解析

自考线性代数(经管类)各章考核重点解析第一章行列式(一)考核知识点1.行列式定义。

2.行列式的性质与计算。

3.克拉默(Cramer)法则。

(二)自学要求学习本章,要确切了解行列式的定义;理解行列式的性质;熟练掌握行列式的计(特别是低阶的数字行列式和具有特殊形状的文字或数字行列式),会计算简单的行式;理解克拉默法则在线性方程组求解理论中的重要性。

本章的重点;行列式的性质与计算。

难点;n阶行列式的计算(三)考核要求1.行列式的定义。

要求达到“识记”层次。

1.1熟练计算二阶与三阶行列式。

1.2清楚行列式中元素的余子式和代数余子式的定义。

1.3了解行列式的按其第一列展开的递归定义。

1.4熟记三角行列式的计算公式。

2.行列式的性质与计算。

要求达到“简单应用”层次。

2.1掌握并会熟练运用行列式的性质。

2.2掌握行列式的基本方法。

2.3回计算具有特殊形状的数字和文字行列式以及简单的n阶行列式。

2.4低阶范德蒙德行列式的计算。

3.克拉默法则。

要求达到“简单应用”层次。

3.1知道克拉默法则。

3.2会用克拉默法则求解简单的线性方程组。

第二章矩阵(一)考核知识点1.矩阵的各种运算的定义及其运算律。

重点是矩阵的乘法。

2. 分快矩阵的定义及其运算。

3.逆矩阵的定义与性质,伴随矩阵,方阵可逆的判别条件。

4.矩阵的初等变换和初等矩阵。

5.可逆矩阵的逆矩阵的求法。

6.矩阵的秩的定义与求法。

(二)自学要求学习本章,要求掌握矩阵的各种运算及其运算法则;知道方阵可逆的充分必要条件;会求可逆矩阵的逆矩阵;熟练掌握矩阵的初等变换;理解矩阵的秩定义,会求矩阵的秩。

本章的重点;矩阵运算及其矩阵的求法,矩阵的初等变换。

难点;逆矩阵的求法及矩阵的概念。

(三)考核要求1.矩阵的定义。

要求达到“识记”层次。

1.1理解矩阵的定义。

1.2知道三角矩阵、对角矩阵、单位矩阵和零矩阵的定义。

1.3清楚矩阵与行列式是两个有本质区别的概念,清楚矩阵与行列式符号的区别。

自考04184线性代数(经管类)讲义-自考高数线性代数课堂笔记

自考04184线性代数(经管类)讲义-自考高数线性代数课堂笔记

自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。

所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。

行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。

1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;符号叫二阶行列式,其大小规定为:例如号叫为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。

我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。

(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。

其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。

线性代数经管类大一知识点

线性代数经管类大一知识点

线性代数经管类大一知识点一、引言线性代数作为经管类大一学生必修的一门数学课程,对于培养学生的抽象思维、计算能力和解决实际问题的能力具有重要意义。

本文将介绍经管类大一线性代数课程的一些重要知识点,帮助学生更好地理解和掌握这门课程。

二、向量与矩阵1. 向量的概念与运算向量是线性代数中最基本的概念之一。

它可以表示空间中的一个点或者一个有方向的量。

向量的加法、数乘和点乘是常见的运算,它们有着重要的应用。

2. 矩阵的概念和基本运算矩阵是线性代数中的另一个重要概念。

矩阵可以看作是一个矩形的数组,它的元素由实数或复数构成。

矩阵的加法和数乘运算是基本的运算,矩阵的乘法与向量的乘法有着密切关系。

三、线性方程组1. 基本概念和解法线性方程组是线性代数中的一个重要内容,它描述了一组线性方程的集合。

通过消元法、高斯消元法和矩阵的逆等方法,可以求解线性方程组的解。

2. 矩阵的秩和行列式矩阵的秩和行列式是线性方程组的求解过程中常见的概念。

矩阵的秩表示矩阵的线性无关的行(列)数,行列式则体现了矩阵的某些性质,例如矩阵是否可逆。

四、向量空间1. 向量空间的定义和性质向量空间是线性代数的核心内容之一。

通过向量的加法和数乘运算,向量空间具有封闭性、交换律、结合律等性质。

学习向量空间可以帮助理解线性代数的抽象性质。

2. 线性相关和线性无关线性相关和线性无关是向量空间中的概念。

学习线性相关和线性无关有助于判断一组向量是否构成向量空间的基底。

五、特征值与特征向量1. 特征值和特征向量的定义特征值和特征向量是矩阵的重要性质。

特征值可以用于衡量矩阵的变化程度,特征向量则表示在该变化下不变的方向。

2. 对角化与相似矩阵对角化是一种特殊的矩阵变换形式,可以将矩阵化简为对角矩阵。

相似矩阵则表示具有相同特征值和特征向量的矩阵。

六、线性代数在经管类学科中的应用线性代数是经管类学科中广泛应用的数学工具。

例如,线性回归模型、投资组合优化和供应链管理等都可以使用线性代数的知识进行建模和解决。

高等教育自学考试04184线性代数(经管类)-公式必记

高等教育自学考试04184线性代数(经管类)-公式必记

高等教育自学考试04184线性代数(经管类)-公式必记1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -? -;③、上、下三角行列式(= ◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -? -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:0A ≠(是非奇异矩阵);()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价;A 可表示成若干个初等矩阵的乘积;A 的特征值全不为0; ?T A A 是正定矩阵;A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ?? ?= ? ??,则:Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----?? ?= ? ? ??;②、111A O A O O B O B ---??=;(主对角分块)③、111O A O B B O A O ---??= ? ?;(副对角分块)④、11111A C A A CB O B OB -----??-??=;(拉普拉斯)⑤、11111A O A O C B B CAB -----??= ? ?-;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO= ;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ? ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ??Λ= ? ??λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-???? ? ?= ? ? ? ?????;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-=≠ ? ? ? ???;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --???? ? ?=≠ ? ? ? ?????;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ?≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A rB ≤;(※)⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ?? ?的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ??==-??<-?;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ? =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a xb +++= ??+++= +++=?;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ?????? ??? ? ??? ?=?= ??? ? ??? ???????(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β?? ? ?= ? ???(全部按列分块,其中12n b b b β?? ? ?= ? ???);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ?矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ构成m n ?矩阵12T T T m B βββ??= ? ? ???;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ?=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关?0α=;②、,αβ线性相关?,αβ坐标成比例或共线(平行);③、,,αβγ线性相关?,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B ?=有解;()(,)r A r A B ?=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论)8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解②、矩阵列等价:~cA B AQ B ?=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9.对于矩阵m n A ?与l n B ?:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C =,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ? =只有零解;②、0Bx = 有非零解0ABx ? =一定存在非零解;12. 设向量组12:,,,n r r B b b b ?可由向量组12:,,,n s s A a a a ?线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;(87P )②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关;14. 12,,,s ααα线性相关存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)1212(,,,)0s s x xx ααα?? ? ?= ? ???有非零解,即0Ax =有非零解;12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=?==?≠?;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a 11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ?A 经过初等变换得到B ;=PAQ B ,P 、Q 可逆; ()()?=r A r B ,A 、B 同型;②、A 与B 合同 ?=T C AC B ,其中可逆;T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似1-?=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ?的正惯性指数为n ;A ?与E 合同,即存在可逆矩阵C ,使T C AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0;0,0ii a A ?>>;(必要条件)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数(经管类)考点逐个击破第一章 行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数)2,1,(=j i a ij 得到下列式子:11122122a a a a 称为一个二阶行列式,其运算规则为2112221122211211a a a a a a a a -=2.三阶行列式由9个数)3,2,1,(=j i a ij 得到下列式子:333231232221131211a a a a a a a a a称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式 3332312322211312113a a a a a a a a a D =对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M例如 3332232211a a a a M =,3332131221a a a a M =,2322131231a a a a M =再记 ij ji ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式.例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为我们把它称为3D 按第一列的展开式,经常简写成∑∑=+=-==3111131113)1(i i i i i i i M a A aD4.n 阶行列式3131212111113332312322211312113A a A a A a a a a a a a a a a D ++==一阶行列式 11111a a D ==n 阶行列式 1121211111212222111211n n nnn n n nn A a A a A a a a a a a a a a a D +++==其中(,1,2,,)ij A i j n =为元素ij a 的代数余子式.5.特殊行列式上三角行列式111212*********n n nn nn a a a a a a a a a =下三角行列式1122112212000nn n n nn a a a a a a a a a =21对角行列式1122112200000nn nna a a a a a =(二)行列式的性质性质1 行列式和它的转置行列式相等,即TD D =性质2 用数k 乘行列式D 中某一行(列)的所有元素所得到的行列式等于kD ,也就是说,行列式可以按行和列提出公因数.性质3 互换行列式的任意两行(列),行列式的值改变符号.推论1 如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零. 性质4 行列式可以按行(列)拆开.性质5 把行列式D 的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n 阶行列式nija D =等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即),,2,1(2211n i A a A a A a D in in i i i i =+++=或),,2,1(2211n j A a A a A a D nj nj j j j j =+++=前一式称为D 按第i 行的展开式,后一式称为D 按第j 列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n 阶行列式nij a D =的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即)(02211k i A a A a A a kn in k i k i ≠=+++或)(02211s j A a A a A a ns nj s j s j ≠=+++(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k 时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式 52072325121314124-=D解:观察到第二列第四行的元素为0,而且第二列第一行的元素是112=a ,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.42141214156231212115062150********3(2)1725025********312251100813757375D -+⨯=---+-⨯+⨯=行行按第二列展开行行7 列列按第二行展开例2 计算行列式 ab b b b a b b b b a b bb b a D =4解:方法1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为b a 3+(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子b a 3+,再将后三行都减去第一行:3131(3)31311000(3)000000a b b b a b b b b b b b b a b b a b a b b a b ba b b b a b a b b a b b a b b b b aa b b b ab b ab b ba b a b a b a b++==+++-=+-- 3))(3(b a b a -+=方法2 观察到这个行列式每一行元素中有多个b ,我们采用“加边法”来计算,即是构造一个与4D 有相同值的五阶行列式:11234541101000010000100001000b b b b b bb b a b b b a b b b a b b a b b D b a b b a b b b a b b b a b a b b b b ab b b a a b⨯-+--===------行(),,,行 这样得到一个“箭形”行列式,如果b a =,则原行列式的值为零,故不妨假设b a ≠,即0≠-b a ,把后四列的ba -1倍加到第一列上,可以把第一列的(-1)化为零. 4410000400001()(3)()00000000b b b b b a b a b b a b a b a b a b a b a b a b3+--⎛⎫=-=+-=+- ⎪-⎝⎭--例3 三阶范德蒙德行列式 ))()((1112313122322213213x x x x x x x x x x x x V ---== (四)克拉默法则定理1(克拉默法则)设含有n 个方程的n 元线性方程组为11112211211222221122,,n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 如果其系数行列式0≠=nija D ,则方程组必有唯一解:n j DD x j j ,,2,1, ==其中j D 是把D 中第j 列换成常数项n b b b ,,,21 后得到的行列式. 把这个法则应用于齐次线性方程组,则有定理2 设有含n 个方程的n 元齐次线性方程组1111221211222211220,0,0n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩如果其系数行列式0≠D ,则该方程组只有零解:021====n x x x换句话说,若齐次线性方程组有非零解,则必有0=D ,在教材第二章中,将要证明,n 个方程的n 元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章 矩阵(一)矩阵的定义1.矩阵的概念由n m ⨯个数),,2,1;,,2,1(n j m i a ij ==排成的一个m 行n 列的数表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A212222111211 称为一个m 行n 列矩阵或n m ⨯矩阵当n m =时,称()nn ija A ⨯=为n 阶矩阵或n 阶方阵元素全为零的矩阵称为零矩阵,用n m O ⨯或O 表示2.3个常用的特殊方阵:①n 阶对角矩阵是指形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn a a a A0000002211的矩阵 ②n 阶单位方阵是指形如 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 n E 的矩阵③n 阶三角矩阵是指形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n nn n n a a a a a a a a a a a a2122211122211211000,000的矩阵 3.矩阵与行列式的差异矩阵仅是一个数表,而n 阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“*”与矩阵记号“()*”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵n m ij a A ⨯=)(,λ⨯=k ij b B )(,若k m =,λ=n ,则说A 与B 是同型矩阵.若A 与B 同型,且对应元素相等,即ij ij b a =,则称矩阵A 与B 相等,记为B A =因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设n m ij a A ⨯=)(,n m ij b B ⨯=)(是两个同型矩阵则规定n m ij ij b a B A ⨯+=+)( n m ij ij b a B A ⨯-=-)(注意:只有A 与B 为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设n m ij a A ⨯=)(,k 为任一个数,则规定n m ij ka kA ⨯=)(故数k 与矩阵A 的乘积就是A 中所有元素都乘以k ,要注意数k 与行列式D 的乘积,只是用k 乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设k m ij a A ⨯=)(,n k ij b B ⨯=)(,则规定n m ij c AB ⨯=)(其中kj ik j i j i ij b a b a b a c +++= 2211 ),,2,1;,,2,1(n j m i ==由此定义可知,只有当左矩阵A 的列数与右矩阵B 的行数相等时,AB 才有意义,而且矩阵AB 的行数为A的行数,AB 的列数为B 的列数,而矩阵AB 中的元素是由左矩阵A 中某一行元素与右矩阵B 中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地:①不满足交换律,即BA AB ≠②在0=AB 时,不能推出0=A 或0=B ,因而也不满足消去律.特别,若矩阵A 与B 满足BA AB =,则称A 与B 可交换,此时A 与B 必为同阶方阵. 矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A 为n 阶方阵,则规定m A AAA =m 个特别E A =0又若1110()m m m m f x a x a x a x a --=++++,则规定1110()m m m m f A a A a A a A a E --=++++称)(A f 为A 的方阵多项式,它也是一个n 阶方阵6.矩阵的转置设A 为一个n m ⨯矩阵,把A 中行与列互换,得到一个m n ⨯矩阵,称为A 的转置矩阵,记为TA ,转置运算满足以下运算律:A A T =T )(,T T TB A B A +=+)(,T T kA kA =)(,T T T A B AB =)(由转置运算给出对称矩阵,反对称矩阵的定义设A 为一个n 阶方阵,若A 满足A A T=,则称A 为对称矩阵,若A 满足A A T-=,则称A 为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n 阶方阵,有方阵的行列式的概念.设)(ij a A =为一个n 阶方阵,则由A 中元素构成一个n 阶行列式nij a ,称为方阵A 的行列式,记为A方阵的行列式具有下列性质:设A ,B 为n 阶方阵,k 为数,则①A AT=;②A k kA n= ③B A AB ⋅=(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A 为一个n 阶方阵,若存在另一个n 阶方阵B ,使满足E BA AB ==,则把B 称为A 的逆矩阵,且说A为一个可逆矩阵,意指A 是一个可以存在逆矩阵的矩阵,把A 的逆矩阵B 记为1-A ,从而A 与1-A 首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A ,B 为同阶可逆矩阵,0≠k 为常数,则①1-A 是可逆矩阵,且A A =--11)(;②AB 是可逆矩阵,且111)(---=A B AB ;③kA 是可逆矩阵,且111)(--=A kkA ④T A 是可逆矩阵,且T T A A )()(11--=⑤可逆矩阵可从矩阵等式的同侧消去,即设P 为可逆矩阵,则B A PB PA =⇔= B A BP AP =⇔=2.伴随矩阵设)(ij a A =为一个n 阶方阵,ij A 为A 的行列式n ij a A =中元素ij a 的代数余子式,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn nn n n A A A A A A A A A212221212111称为A 的伴随矩阵,记为*A (务必注意*A 中元素排列的特点)伴随矩阵必满足E A A A AA ==** 1*-=n AA (n 为A 的阶数)3.n 阶阵可逆的条件与逆矩阵的求法定理:n 阶方阵A 可逆⇔0≠A ,且*11A AA=- 推论:设A ,B 均为n 阶方阵,且满足E AB =,则A ,B 都可逆,且B A=-1,A B =-1例1 设⎪⎪⎭⎫⎝⎛=d c b a A(1)求A 的伴随矩阵*A(2)a ,b ,c ,d 满足什么条件时,A 可逆?此时求1-A解:(1)对二阶方阵A ,求*A 的口诀为“主交换,次变号”即⎪⎪⎭⎫⎝⎛--=a cb d A *(2)由bc ad dc b a A -==,故当0≠-bc ad 时,即0≠A ,A 为可逆矩阵此时⎪⎪⎭⎫⎝⎛---==-a c b d bc ad A A A 11*1 (四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A 的列分块方式与右矩阵B 的行分块方式一致,然后把子块当作元素来看待,相乘时A 的各子块分别左乘B 的对应的子块.2.准对角矩阵的逆矩阵形如 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛r A A A21的分块矩阵称为准对角矩阵,其中r A A A ,,,21 均为方阵空白处都是零块. 若r A A A ,,,21 都是可逆矩阵,则这个准对角矩阵也可逆,并且⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛----11211121r r A A A A A A(五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A 施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A 的某两行(列);(2)用一个非零数k 乘A 的某一行(列);(3)把A 中某一行(列)的k 倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“→”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E 经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为ij P ,)(k D i 和)(k T ij ,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A 为任一个矩阵,当在A 的左边乘一个初等方阵的乘积相当于对A 作同类型的初等行变换;在A 的右边乘一个初等方阵的乘积相当于对A 作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A 经过若干次初等变换变为B ,则称A 与B 等价,记为B A ≅ 对任一个n m ⨯矩阵A ,必与分块矩阵⎪⎪⎭⎫⎝⎛O O O E r 等价,称这个分块矩阵为A 的等价标准形.即对任一个n m ⨯矩阵A ,必存在n阶可逆矩阵P及n阶可逆矩阵Q ,使得⎪⎪⎭⎫⎝⎛=O O O E PAQ r5.用初等行变换求可逆矩阵的逆矩阵设A 为任一个n 阶可逆矩阵,构造n n 2⨯矩阵(A ,E ) 然后 ),(),(1-→A E E A注意:这里的初等变换必须是初等行变换.例2 求⎪⎪⎪⎭⎫⎝⎛----=421412311A 的逆矩阵解:()()()122113211311213322113100113100(,)214010012210124001011101101110100421012210010412001311001311A E ⨯-+⨯+⨯+⨯-+⨯-+⨯+--⎛⎫⎛⎫⎪⎪=-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭---⎛⎫⎛⎫⎪⎪→--→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭行行行行行行行行行行行行则 ⎪⎪⎪⎭⎫⎝⎛----=-1132141241A例3 求解矩阵方程⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----213411421412311X解:令⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----=213411,421412311B A ,则矩阵方程为B AX =,这里A 即为例2中矩阵,是可逆的,在矩阵方程两边左乘1-A ,得⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----==-2052032134111132141241B A X也能用初等行变换法,不用求出1A -,而直接求B A 1-),(201005201003001214213441211311),(1B A E B A -=⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=则 ⎪⎪⎪⎭⎫ ⎝⎛==-2052031B A X(六)矩阵的秩1.秩的定义设A 为n m ⨯矩阵,把A 中非零子式的最高阶数称为A 的秩,记为秩)(A 或)(A r零矩阵的秩为0,因而{}n m A ,m in )(0≤≤秩,对n 阶方阵A ,若秩n A =)(,称A 为满秩矩阵,否则称为降秩矩阵.2. 秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A ,只要用初等行变换把A 化成阶梯形矩阵T ,则秩(A)=秩(T)=T 中非零行的行数.3.与满秩矩阵等价的条件n 阶方阵A 满秩⇔A 可逆,即存在B ,使E BA AB ==⇔A 非奇异,即0≠A ⇔A 的等价标准形为E⇔A 可以表示为有限个初等方阵的乘积 ⇔齐次线性方程组0=AX 只有零解⇔对任意非零列向量b ,非齐次线性方程组b AX =有唯一解⇔A 的行(列)向量组线性无关⇔A 的行(列)向量组为nR 的一个基⇔任意n 维行(列)向量均可以表示为A 的行(列)向量组 的线性组合,且表示法唯一. ⇔A 的特征值均不为零 ⇔A A T为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********可以表示成矩阵形式b AX =,其中n m ij a A ⨯=)(为系数矩阵,Tm b b b b ),,,(21 =为常数列矩阵,T n x x x X ),,,(21 =为未知元列矩阵.从而线性方程组b AX =与增广矩阵),(b A A =一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.第三章 向量空间(一)n 维向量的定义与向量组的线性组合1.n 维向量的定义与向量的线性运算由n 个数组成的一个有序数组称为一个n 维向量,若用一行表示,称为n 维行向量,即n ⨯1矩阵,若用一列表示,称为n 维列向量,即1⨯n 矩阵与矩阵线性运算类似,有向量的线性运算及运算律.2.向量的线性组合设m ααα,,,21 是一组n 维向量,m k k k ,,,21 是一组常数,则称m m k k k ααα+++ 2211为m ααα,,,21 的一个线性组合,常数m k k k ,,,21 称为组合系数.若一个向量β可以表示成m m k k k αααβ+++= 2211则称β是m ααα,,,21 的线性组合,或称β可用m ααα,,,21 线性表出.3.矩阵的行、列向量组设A 为一个n m ⨯矩阵,若把A 按列分块,可得一个m 维列向量组称之为A 的列向量组.若把A 按行分块,可得一个n 维行向量组称之为A 的行向量组.4.线性表示的判断及表出系数的求法.向量β能用m ααα,,,21 线性表出的充要条件是线性方程组βααα=+++m m x x x 2211有解,且每一个解就是一个组合系数.例1 问T )5,1,1(-=β能否表示成T )3,2,1(1=α,T)4,1,0(2=α,T )6,3,2(3=α的线性组合?解:设线性方程组为 βααα=++332211x x x对方程组的增广矩阵作初等行变换:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-==110020101001564313121201),,,(),(321βαααβA则方程组有唯一解1,2,1321-===x x x所以β可以唯一地表示成321,,ααα的线性组合,且3212αααβ-+=(二)向量组的线性相关与线性无关1.线性相关性概念设m ααα,,,21 是m 个n 维向量,如果存在m 个不全为零的数m k k k ,,,21 ,使得02211=+++m m k k k ααα ,则称向量组m ααα,,,21 线性相关,称m k k k ,,,21 为相关系数.否则,称向量m ααα,,,21 线性无关.由定义可知,m ααα,,,21 线性无关就是指向量等式02211=+++m m k k k ααα 当且仅当021====m k k k 时成立.特别 单个向量α线性相关⇔0=α;单个向量α线性无关⇔0≠α2.求相关系数的方法设m ααα,,,21 为m 个n 维列向量,则m ααα,,,21 线性相关⇔m 元齐次线性方程组02211=+++m m x x x ααα 有非零解,且每一个非零解就是一个相关系数⇔矩阵),,,(21m A ααα =的秩小于m例2 设向量组123(2,1,7),(1,4,11),(3,6,3)T T Tααα=-==-,试讨论其线性相关性.解:考虑方程组0332211=++αααx x x其系数矩阵 ⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--==0001102013117641312),,(321αααA于是,秩32)(<=A ,所以向量组线性相关,与方程组同解的方程组为⎩⎨⎧=-=+023231x x x x 令13=x ,得一个非零解为1,1,2321==-=x x x 则02321=++-ααα3.线性相关性的若干基本定理定理1 n 维向量组m ααα,,,21 线性相关⇔至少有一个向量是其余向量的线性组合.即m ααα,,,21 线性无关⇔任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组m ααα,,,21 线性无关,又m αααβ,,,,21 线性相关,则β可以用m ααα,,,21 线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关. 定理4 无关组的接长向量组必无关.(三)向量组的极大无关组和向量组的秩1.向量组等价的概念若向量组S 可以由向量组R 线性表出,向量组R 也可以由向量组S 线性表出,则称这两个向量组等价.2.向量组的极大无关组设T 为一个向量组,若存在T 的一个部分组S ,它是线性无关的,且T 中任一个向量都能由S 线性表示,则称部分向量组S 为T 的一个极大无关组.显然,线性无关向量组的极大无关组就是其本身.对于线性相关的向量组,一般地,它的极大无关组不是唯一的,但有以下性质:定理1 向量组T 与它的任一个极大无关组等价,因而T 的任意两个极大无关组等价. 定理2 向量组T 的任意两个极大无关组所含向量的个数相同.3.向量组的秩与矩阵的秩的关系把向量组T 的任意一个极大无关组中的所含向量的个数称为向量组T 的秩.把矩阵A 的行向量组的秩,称为A 的行秩,把A 的列向量组的秩称为A 的列秩.定理:对任一个矩阵A ,A 的列秩=A 的行秩=秩(A )此定理说明,对于给定的向量组,可以按照列构造一个矩阵A ,然后用矩阵的初等行变换法来求出向量组的秩和极大无关组.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:)3,4,4,2(),3,4,1,2(),6,6,1,1(),9,2,,2,1(),7,2,1,1(54321==--=---=-=ααααα解:把所有的行向量都转置成列向量,构造一个54⨯矩阵,再用初等行变换把它化成简化阶梯形矩阵()B A TT T T T =⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛------==1000001100010100000133697446224112122111,,,,54321ααααα易见B 的秩为4,A 的秩为4,从而秩{}4,,,,54321=ααααα,而且B 中主元位于第一、二、三、五列,那么相应地5321,,,αααα为向量组的一个极大无关组,而且324ααα--=(四)向量空间1.向量空间及其子空间的定义定义1 n 维实列向量全体(或实行向量全体)构成的集合称为实n 维向量空间,记作nR定义2 设V 是n 维向量构成的非空集合,若V 对于向量的线性运算封闭,则称集合V 是nR 的子空间,也称为向量空间.2. 向量空间的基与维数设V 为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V 的一个基,把向量组的秩称为向量空间的维数.显然,n 维向量空间nR 的维数为n ,且nR 中任意n 个线性无关的向量都是nR 的一个基.3. 向量在某个基下的坐标设r ααα,,,21 是向量空间V 的一个基,则V 中任一个向量α都可以用r ααα,,,21 唯一地线性表出,由r 个表出系数组成的r 维列向量称为向量α在此基下的坐标.第四章 线性方程组(一) 线性方程组关于解的结论定理1 设b AX =为n 元非齐次线性方程组,则它有解的充要条件是)(),(A r b A r = 定理2 当n 元非齐次线性方程组b AX =有解时,即r A r b A r ==)(),(时,那么(1)b AX =有唯一解⇔n r =; (2)b AX =有无穷多解⇔n r <.定理3 n 元齐次线性方程组0=AX 有非零解的充要条件是n r A r <=)( 推论1 设A 为n 阶方阵,则n 元齐次线性方程组0=AX 有非零解⇔0=A 推论2 设A 为n m ⨯矩阵,且n m <,则n 元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组0=AX 的解的全体所组成的向量集合{}0==ξξA V显然V 是非空的,因为V 中有零向量,即零解,而且容易证明V 对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V 成为n 维列向量空间n R 的一个子空间,我们称V 为方程组0=AX 的解空间(三)齐次线性方程组的基础解系与通解把n 元齐次线性方程组0=AX 的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n 元齐次线性方程组0=AX 有非零解时,即n r A r <=)(时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为r n -求基础解系与通解的方法是:对方程组0=AX 先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求⎪⎩⎪⎨⎧=-++=+-+=+-+0022*********43214321x x x x x x x x x x x x 的通解解:对系数矩阵A ,作初等行变换化成简化阶梯形矩阵:12212310341034321211110145111111110000A ⨯⨯⨯⨯---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭行(-1)+2行行(-1)+3行3行(-1)+1行1行(-1)+2行42)(<=A r ,有非零解,取43,x x 为自由未知量,可得一般解为⎪⎪⎩⎪⎪⎨⎧==+-=-=4433432431,54,43x x x x x x x x x x 写成向量形式,令13k x =,24k x =为任意常数,则通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1054014321k k X 可见,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1054,014321ξξ为方程组的一个基础解系. (四)非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设b AX =为一个n 元非齐次线性方程组,0=AX 为它的导出组,则它们的解之间有以下性质:性质1 如果21,ηη是b AX =的解,则21ηηξ-=是0=AX 的解性质2 如果η是b AX =的解,ξ是0=AX 的解,则ηξ+是b AX =的解 由这两个性质,可以得到b AX =的解的结构定理:定理 设A 是n m ⨯矩阵,且r A r b A r ==)(),(,则方程组b AX =的通解为r n r n k k k X --++++=ξξξη 2211*其中*η为b AX =的任一个解(称为特解),r n -ξξξ,,,21 为导出组0=AX 的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组b AX =,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2 当参数a ,b 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:()()23424111110111100122101221(,)01320010132110123110111012210010100010A b a b a b a a a b a +⨯++⨯+⎛⎫⎛⎫ ⎪⎪⎪ ⎪=→ ⎪ ⎪----+ ⎪⎪-----⎝⎭⎝⎭---⎛⎫⎪⎪→ ⎪-+ ⎪-⎝⎭行行1行-3行行行2行-1行当1≠a 时,4)(),(==A r b A r ,有唯一解; 当1,1≠=b a 时,3),(=b A r ,2)(=A r ,无解; 当1,1-==b a 时,2)(),(==A r b A r ,有无穷多解.此时,方程组的一般解为 ⎪⎪⎩⎪⎪⎨⎧==--=++-=44334324312211x x x x x x x x x x令2413,k x k x ==为任意常数,故一般解为向量形式,得方程组通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=10210121001121k k X。

相关文档
最新文档