最新七年级代数式(基础篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)
1.如图
(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________
(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由
(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.
【答案】(1)3x+3;3y+21
(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则
a+(a+1)+(a+7)+(a+8)=96,
解得,a=20,
由图2知,所框出的四个数存在,
故存在被框住的4个数的和为96,其中最小的数为20
(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,
a2=(m+7)+(m+6)+(m+8)=3m+21,
∵|a1﹣a2|=6,
∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,
解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,
∴m=16.
【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:
x+(x+1)+(x+2)=x+x+1+x+2=3x+3;
如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:
y+(y+7)+(y+14)=y+y+7+y+14=3y+21.
故答案为:3x+3;3y+21
【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;
(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;
(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.
2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)
5m3和8m3,则应收水费分别是________元和________元.
(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)
(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)
【答案】(1)10;20
(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)
答:应收水费(4a﹣12)元。

(3)解:当0<x≤4时,该户居民4、5两个月共缴水费=2x+12+4×4+6(14﹣x﹣10)=52﹣4x;
当4<x≤6,该户居民4、5两个月共缴水费=2x+12+4(14﹣x﹣6)=﹣2x+44;
当6<x<7时,该户居民4、5两个月共缴水费=12+4(x﹣6)+12+4(14﹣x﹣6)=32.【解析】【解答】(1)解:该户居民1月份用水5m3,应缴水费=5×2=10(元);
2月份用水8m3,应缴水费=6×2+2×4=20(元);
故答案是:10;20
【分析】(1)①按照价目表可知,不超过6m3的用水量的水费=5×不超过6m3的用水量的价格计算即可求解;
②按照价目表可知,超过6m3的不超过10m3的用水量的水费=6×不超过5m3的用水量的价格+超过6m3的用水量×超过6m3的价格计算即可求解;
(2)由题意知,用水量属于第二档,按照(1)中②的方法可求解;
(3)结合(1)的方法,分类可求解.
3.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。

(1)填空:用含a、b、h的代数式表示以下面积:
甲的面积________;乙的面积________;丙的面积________.
(2)当h=20cm时,若甲的面积比丙的面积大200cm2,乙的面积为1400cm2,求a和b 的值;
(3)现将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。

左侧部分刚好分割成两个最大的等圆,和右侧剩下部分刚好做成一个圆柱体模型(如图②),且这样的圆柱体模型的高刚好与木箱的高相等。

问:一个上述长方体木箱中最多可以放________个这样的圆柱体模型。

【答案】(1)ab+ah;ah+bh;ab+bh
(2)解:,
化简得,
解得: .
(3)8
【解析】【解答】(1)甲的面积= ab+ah,乙的面积= ah +bh;丙的面积 =ab+bh;
(3)设圆的直径为d,
∵将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。

左侧部分刚好分割成两个最大的等圆,和右侧剩下部分刚好做成一个圆柱体模型,
∴b=2d,a-d=πd,
∴a=(π+1)d
∵圆柱体模型的高刚好与木箱的高相等,
∴只有比较木箱的上表面有几个正方形ACDF即可,

∴可以放两层,
∴b=2r+πr

∴一个上述长方体木箱中最多可以放8个这样的圆柱体模型.
故答案为:8.
【分析】(1)根据矩形的面积公式,分别求出甲,乙,丙的面积即可;
(2)根据甲的面积-丙的面积=200cm2,乙的面积为1400cm2,列出方程组,将h=20cm代入并解出方程组,即可求出a,b的值;
(3)设圆的直径为d,观察图像由已知可得到b=2d,a=(π+1)d,再根据圆柱体模型的高刚好与木箱的高相等,就可得到只有比较木箱的上表面有几个正方形ACDF即可,因此利用木箱的上表面的面积除以正方形ACDF的面积即可求解。

4.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.
(1)则a=________,b=________,c=________.
(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?
(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点
P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.
【答案】(1)﹣24;﹣10;10
(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.
②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,
③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t= ,不符合题意,排除,
∴t=2s或5s时,P到A、B、C的距离和为40个单位.
(3)解:当点P追上T的时间t1= .
当Q追上T的时间t2= .
当Q追上P的时间t3= =20,
∴当<t<时,位置如图,
∴2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|
=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t
=74-28
=46.
【解析】【解答】解:(1)∵M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,∴a+24=0,b=﹣10,c=10,∴a=﹣24,
故答案为﹣24,﹣10,10.
【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P追上T的时间t1= .当Q追上T的时间t2=
.当Q追上P的时间t3= =20,推出当<t<时,位置如图,利用绝对值的性质即可解决问题.
5.观察下表:
我们把表格中字母的和所得的多项式称为"'特征多项式",例如:第1格的“特征多项式”为4x+y,第 2 格的“特征多项式”为 8x+4y, 回答下列问题:
(1)第 3 格的“特征多项式”为________第 4 格的“待征多项式”为________, 第 n 格的“特征多项式”为________.
(2)若第 m 格的“特征多项式”与多项式-24x+2y-5 的和不含有 x 项,求此“特征多项式”. 【答案】(1)12x+9y;16x+16y;4nx+n2y
(2)解:由(1)可得,第m格的“特征多项式”是4mx+m2y,
∴(4mx+m2y)+(−24x+2y−5)=4mx+m2y−24x+2y−5=(4m−24)x+(m2+2)y−5,
∵第m格的“特征多项式”与多项式−24x+2y−5的和不含有x项,
∴4m−24=0,解得m=6,
∴此“特征多项式”是24x+36y.
【解析】【解答】解:(1)由表格可得:第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,第n格的“特征多项式”为4nx+n2y,
故答案为:12x+9y, 16x+16y, 4nx+n2y;
【分析】(1)根据表格中的数据找出规律即可解答本题;(2)根据(1)中的结果可以写出第m格的“特征多项式”,然后根据“和不含有x项”可以求得m的值,从而可以写出此“特征多项式”.
6.如图是用长度相等的小棒按一定规律摆成的一组图案.
(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;
(2)第n个图案中有多少根小棒?
(3)第25个图案中有多少根小棒?
(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.
【答案】(1)11;16
(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒
(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成
【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;
【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.
7.将7张相同的长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好可以分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.
(1)当a=9,b=2,AD=30时,S1-S2=________.
(2)当AD=30时,用含a,b的式子表示S1-S2.
(3)若AB长度不变,AD变长,将这7张小长方形纸片按照同样的方式放在新的长方形ABCD内,而且S1-S2的值总保持不变,则a,b满足的关系是________.
【答案】(1)48
(2)解:S1-S2
=a(30-3b)-4b(30-a)
=30a-120b+ab
(3)a=4b
【解析】【解答】(1)解:当a=9,b=2,AD=30时,S1=a(30-3b)=9×(30-3×2)=216
S2=4b(30-a)=4×2×(30-9)=168
S1-S2=216-168=48
3)解:设AD=m,
S1-S2
=(am-3ab)-(4bm-4ab)
=am-4bm+ab
若S1-S2的值总保持不变,则S1-S2的值与m的取值无关,所以有am-4bm=0
则a=4b.
【分析】(1)观察图形,分别求出S1和S2的面积,再求差即可;(2)用含a、b的代数式分别表示S1和S2的面积,再求差即可;(3)设AD=m, 用含a、b、m的代数式分别表示S1和S2的面积差,再去括号合并同类项,根据题意S1-S2的值总保持不变,即可解答.
8.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.
(1)设a与b分别对应数轴上的点A、点B,请直接写出a=________,b=________,并在数轴上确定点A、点B的位置;
(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:
①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;
②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?
【答案】(1)﹣4;6
(2)解:①∵PA=2t,AB=6﹣(﹣4)=10,
∴PB=AB﹣PA=10﹣2t.
∵PA﹣PB=6,
∴2t﹣(10﹣2t)=6,解得t=4,
此时点P所表示的数为﹣4+2t=﹣4+2×4=4;
②在返回过程中,当OP=3时,分两种情况:
(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=;
(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=.
【解析】【解答】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,
∴a=﹣4,b=6.
如图所示:
故答案为﹣4,6;
【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P 在原点左边.分别求出点P运动的路程,再除以速度即可.
9.为提倡全民健身活动,某社区准备购买羽毛球和羽毛球拍供社区居民使用,某体育用品
商店羽毛球每盒10元,羽毛球拍每副40元.该商店有两种优惠方案,方案一:不购买会员卡时,羽毛球享受8.5折优惠,羽毛球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按定价购买;方案二:每张会员卡20元,办理会员卡时,全部商品享受8折优惠.设该社区准备购买羽毛球拍6副,羽毛球盒,请回答下列问题:
(1)如果一位体育爱好者按方案一只购买了4副羽毛球拍,求他购买时所需要的费用;(2)用含的代数式分别表示该社区按方案一和方案二购买所需要的钱数;
(3)①直接写出一个的值,使方案一比方案二优惠;
②直接写出一个的值,使方案二比方案一优惠.
【答案】(1)解:如果一位体育爱好者按方案一只购买了4副羽毛球拍,
则他购买时所需要的费用为:元
(2)解:按方案一购买所需要的钱数为:(元,
按方案二购买所需要的钱数为:(元);
(3)解:①根据题意得:,解得:.
答:购买(1 15 之间的整数即可)盒乒乓球时,方案一比方案二优惠;
②根据题意得:,解得:.
答:购买20(任意大于16的整数即可)盒乒乓球时,方案二比方案一优惠
【解析】【分析】(1)直接按方案计算,可得购买时所需要的费用;(2)由方案一的优惠方案及该社区准备购买羽毛球拍6副,羽毛球盒,可得方案一购买所需要的钱;由方案二的优惠方案,可得及该社区准备购买羽毛球拍6副,羽毛球盒,可得方案一购买所需要的钱;(3)①由(2)和题意得:,解之可得答案;②由(2)和题意得:
,解之可得答案.
10.对于三位正整数:121、253、374、495、583、671、880、…,它们都能11整除。

若设百位数字是十位数字是个位数字是
(1)观察这些三位数,根据你的观察、总结, 应满足的关系式是________;
(2)为了说明满足上述关系式的三位正整数都能被11整除,请利用代数式的运算证明你得出的结论的正确性;
(3)除此之外,还有一类三位正整数,例:429、506、528、638、517、759、…,它们也能被11整除。

请观察这组数字的特点,发现有什么规律?再自选一个异于上面3个数字且满足“规律”的三位数,来验证你所发现的“规律”的正确性。

【答案】(1)a+c=b
(2)解:此三位数可表示为:100a+10b+c,
∵a+c=b,
∴100a+10b+c
=100a+10(a+c)+c
=110a+11c
=11(10a+c),
∴满足上述关系式的三位正整数都能被11整除
(3)解:∵429:4+9-11=2、506:5+6-11=0、528:5+8-11=2、638:6+8-11=3、517:5+7-11=1、759:7+9-11=5、…,
∴a+c-11=b,
如a=3,c=9,则b=3+9-11=1,该三位数是319,
∵319÷11=29,
∴满足该特点的三位数能被11整除.
【解析】【解答】(1)解:∵121:1+1=2、253:2+3=5、374:3+4=7、495:4+5=9、583:5+3=8、671:6+1=7、880:8+0=8、…,
∴应满足的关系式是a+c=b
【分析】(1)根据所给数字可以发现,百位数字+个位数字=十位数字,据此解答即可;(2)根据多位数的表示法写出该三位数,把a+c=b代入即可证明其正确性;(3)根据所给数字可以发现,百位数字+个位数字-11=十位数字,据此解答即可.
11.某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为4000 元/人,两家旅行社同时又对10 人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有n(n>10)人,则甲旅行社的费用为________元,乙旅行社的费用为________元;(用含 n 的代数式表示)
(2)假如这个单位现组织共30 名员工到旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.
(3)如果计划在十月份外出旅游七天,这七天的日期之和(不包含月份)为105,则他们于十月________号出发.
【答案】(1)3000n;3200(n-1)
(2)解:当n=30时:
甲: (元),
乙: (元),
因为90000<92800,所以选择甲旅行社更优惠
(3)12
【解析】【解答】解:(1)甲旅行社的费用为
乙旅行社的费用为
故答案为3000n;3200(n-1);
( 3 ) 设 x 号出发,则 x+x+1+x+2+x+3+x+4+x+5+x+6=105,
解得 x=12,所以他们于十月 12 号出发.
【分析】(1)按照两个旅行社的优惠方法,分别表示出各自的费用。

(2)将n=30分别代入(1)中的代数式求值,再比较大小即可得出结果。

(3)设 x 号出发,根据这七天的日期之和(不包含月份)为 105,建立关于x的方程,求解即可。

12.
(1)在如图所示的数轴上,把数﹣2,,4,﹣,2.5表示出来,并用“<“将它们连接起来;
(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同
时小球乙从表示数4的点处出发,以2个单位长度/
秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t(秒).
请从A,B两题中任选一题作答.
A.当t=3时,求甲、乙两小球之间的距离.
B.用含t的代数式表示甲、乙两小球之间的距离.
【答案】(1)解:如图所示:
-2<- < <2.5<4
(2)解:∵甲球运动的路程为:1•t=t,OA=2,∴甲球与原点的距离为:t+2;
乙球到原点的距离分两种情况:
(Ⅰ)当0<t≤2时,乙球从点B处开始向左运动,一直到原点O,
∵OB=4,乙球运动的路程为:2•t=2t,∴乙球到原点的距离为:4-2t;
(Ⅱ)当t>2时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2(t-2)=2t-4;
A、当t=3时,甲、乙两小球之间的距离为:t+2+2t-4=3t-2=7;
B、分两种情况:(Ⅰ)0<t≤2,甲、乙两小球之间的距离为:t+2+4-2t=6-t;
(Ⅱ)t>2,甲、乙两小球之间的距离为:t+2+2t-4=3t-2
【解析】【分析】(1)根据给出的数字,在数轴上进行标注即可,按照数轴上从左往右的顺序用<连接得到答案。

(2)根据两个小球运动的时间以及运动的方式进行计算得到答案即可。

相关文档
最新文档