一阶RC低通滤波和信号调制解调实验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自适应信号处理

姓名:战飞

学号:2013021314

专业:通信与信息系统

班级:2013级13班

2014年8月15日

RC 低通滤波和信号调制解调 利用Simulink 生成系统及波形仿真

一、实验目的:

1、学习使用MATLAB 附带的Simulink 软件做系统仿真实验。

2、研究矩形脉冲通过RC 低通网络的波形变化。

3、验证调制解调的过程。

二、实验原理:

1、RC 低通网络如下图所示

其模型可用微分方程

1

c i

c dv v v dt CR

CR += 表示 系统函数为 RC

j RC j H 11

)(+

=

ωω

这里的时间常数为RC=0.1s ,这个数值不同,输出波形会随之变化。

u i

R

C

u c

令wc=1/RC ,得到:

ωωωωj j H c c +=

)(

其幅频特性为

:

(j )H ω=

带宽可由输出电压从最大值下降到0.707倍时的频率来定义

其相频特性为: c ()arctan ωϕωω⎛⎫

=-

⎪⎝⎭

我们采用的激励信号

)

2()(τ

τ-=t Eg t v i 激励信号vi(t)的傅里叶变换式为

2

)2

(

)(ωτ

ωτ

τωj i e

Sa E j V -

=

得到响应)(t V c 的傅里叶变换为:

)

(2

|)(|)2

(

)()()(ωϕωτωω

ωωωτ

τωωωj c c c j i c e j V j e

Sa E j H j V j V =+=⋅=-

-(ϕ-(j

H ωc

响应

)()]()()[1()(00τετεεωω-+---=--t Ee t t e E t v t

t c 2、调制只是频谱搬移,不改变带宽。载波信号为cos(w0t),将调制信号g(t)与cos(w0t)进行时域相乘,得到f(t)=g(t)cos(w0t) 所以f(t)的傅里叶变换为

)]]([)]([[2

1

)]()([*)(21)(0000ωωωωωωπδωωπδωπω-++=-++=

j G j G j G j F 可见信号调制只是将信号左右平移w0,系数同时乘以0.5,得到的已调信号的频谱为F (jw )。

解调端,将已调信号乘以cos(w0t),使频谱F (jw )左右分别平移±w0(并乘以系数1/2),得到频谱G0(jw)。

)2cos()(2

1

)(21))2cos(1)((21)cos()]cos()([)(00000t t g t g t t g t t t g t g ωωωω+=+=

=)]]2([)]2([[4

1

)(21)(000ωωωωωω-+++=j G j G j G j G

再利用一个低通滤波器(带宽大于wm,小于2w0-wm ),滤掉频率在2w0附近的分量,即可取得g(t),完成解调。

三、实验步骤

运行MALTAB 软件,打开simulink 图形库,依次选择脉冲发生器,示波器,传递函数等相应器件,并连接组成系统(如图1),各器

图1 方波通过一阶RC 低通滤波器系统组成

(备注:pulse Genenator 是周期性矩形脉冲,Transter Fcn 是传递函数,scope 是示波器,用来看输出波形)

点击工具栏的向右黑箭头运行该系统,再点击两个示波器分别记录波形。改变RC 时间常数,并观察示波器的波形变化。保存文件。

建立另一个新的simulink 文件,系统连接如图2。上面的第一个正弦波发生器发出低频调制信号,频率参数选100Hz (这个就是调制信号g(t));下一个正弦波发生器发出高频载波信号,频率参数选10kH (这个就是载波信号cos(w0t))。改变传递函数的参数使其有理分式选择

1000

1000

)(+=

s s H ,示波器时间范围参数选择

0.05,乘法器参数选择默认值。

4、运行该系统,记录下每个示波器所显示的波形图。

图2 调制解调系统

(备注:sine Wave是调制信号g(t)=cos(2Pi100t), sine Wave1是载波信号cos(w0t)=cos(2Pi10000t),Product1的输出端是g0(t), Transter Fcn是低通网络的传递函数,其中时间常数RC=1/1000=0.001, scope1看到的是调制后的结果,scope2看到的是解调后的结果)

四、实验结果

1、图1所示系统的输入输出波形。

2、图2所示系统输入信号、调制信号及解调后的信号波形。

五、思考

1、第一个系统的输出波形与RC时间常数存在的关系。

答:RC时间常数越小,低通的带宽增加(因为带宽=w0=1/RC),允许通过的高频分量增多;响应波形的上升时间和下降时间就越短(也可以说电容充放电速度越快,因为e-w0t的衰减速度加快了),波形就越接近方波。

相关文档
最新文档