波谱分析复习资料
有机波谱分析要点例题和知识点总结
有机波谱分析要点例题和知识点总结一、有机波谱分析概述有机波谱分析是有机化学领域中非常重要的研究手段,它能够帮助我们确定有机化合物的结构和成分。
常见的有机波谱分析方法包括红外光谱(IR)、紫外可见光谱(UVVis)、核磁共振(NMR)和质谱(MS)等。
二、红外光谱(IR)(一)原理分子中的化学键会在特定的波长处吸收红外光,从而产生红外光谱。
不同的化学键具有不同的振动频率,因此可以通过红外光谱来确定分子中存在的官能团。
(二)要点1、官能团的特征吸收峰:例如,羰基(C=O)在 1700 cm⁻¹左右有强吸收峰,羟基(OH)在 3200 3600 cm⁻¹有宽吸收峰。
2、指纹区:虽然难以准确归属,但对于区分不同的化合物具有重要意义。
(三)例题例 1:某化合物的红外光谱在 1720 cm⁻¹处有强吸收峰,可能含有什么官能团?答案:羰基(C=O)。
例 2:一个化合物在 3300 cm⁻¹左右有强而宽的吸收峰,在 1050 1100 cm⁻¹有吸收峰,推测其可能的结构。
答案:可能含有羟基(OH)和醚键(COC)。
三、紫外可见光谱(UVVis)(一)原理分子中的电子在吸收特定波长的紫外或可见光后,会从低能级跃迁到高能级,从而产生吸收光谱。
(二)要点1、生色团和助色团:生色团如 C=C、C=O 等能产生紫外可见吸收,助色团如 OH、NH₂等会增强吸收。
2、吸收波长与分子结构的关系:共轭体系越长,吸收波长越长。
(三)例题例 1:比较苯和甲苯的紫外吸收波长。
答案:甲苯由于甲基的助色作用,吸收波长比苯长。
例 2:某化合物的最大吸收波长在 250 nm 左右,可能含有什么结构?答案:可能含有苯环或简单的共轭双键。
四、核磁共振(NMR)(一)原理在外加磁场的作用下,原子核会发生能级分裂,当吸收特定频率的射频辐射时,会发生共振跃迁,产生核磁共振信号。
(二)要点1、化学位移:不同环境的氢原子或碳原子具有不同的化学位移,可以用于判断其所处的化学环境。
《波谱分析》期末复习资料
《波谱分析》期末复习资料·《波谱分析》期末复习资料⼀、名词解释:1、摩尔吸光系数;根据⽐尔定律,吸光度A与吸光物质的浓度c和吸收池光程长b 的乘积成正⽐。
当c的单位为g/L,b的单位为cm时,则A = abc,⽐例系数a称为吸收系数,单位为L/g.cm;当c的单位为mol/L,b的单位为cm时,则A = εbc,⽐例系数ε称为摩尔吸收系数,单位为L/mol.cm,数值上ε等于a与吸光物质的摩尔质量的乘积。
它的物理意义是:当吸光物质的浓度为1 mol/L,吸收池厚为1cm,以⼀定波长的光通过时,所引起的吸光度值A。
ε值取决于⼊射光的波长和吸光物质的吸光特性,亦受溶剂和温度的影响。
显然,显⾊反应产物的ε值愈⼤,基于该显⾊反应的光度测定法的灵敏度就愈⾼。
2、⾮红外活性振动;物质分⼦吸收红外光发⽣振动和转动能级跃迁,必须满⾜两个条件:1. 红外辐射光量⼦具有的能量等于分⼦振动能级能量差△E2. 分⼦振动时必须伴随偶极矩的变化,具有偶极矩的变化的分⼦振动是红外活性振动,否则是⾮红外活性振动。
3、弛豫;⼈们把向平衡状态恢复的过程称为弛豫过程。
原⼦核从激化的状态回复到平衡排列状态的过程叫弛豫过程。
这个过程遵循指数变化规律,其时间常数称为弛豫时间。
弛豫过程所需的时间叫弛豫时间。
即达到热动平衡所需的时间。
热动平衡即因热量⽽导致的动态平衡。
4、碳谱的γ-效应;5、麦⽒重排是MCLATTERTY对质谱分析中离⼦的重排反应提出的经验规则。
具有不饱和官能团C=X(X为O、S、N、C等)及其γ-H原⼦结构的化合物,γ-H原⼦可以通过六元环空间排列的过渡态,向缺电⼦(C=X+ )的部位转移,发⽣γ-H的断裂,同时伴随C=X 的β键断裂(属于均裂),这种断裂称为McLafferty重排,简称麦⽒重排(麦⽒于1956年发现),例如:2-戊酮在质谱中,位于含有杂原⼦双键的γ-位氢原⼦,通过六员过渡态转移到杂原⼦上的过程称之为麦⽒重排。
波谱解析复习题
波谱解析复习题波谱解析复习题波谱解析是一门重要的分析技术,广泛应用于化学、物理、天文学等领域。
在波谱解析中,我们通过观察和分析光谱图来获取物质的信息。
本文将带您回顾一些波谱解析的基础知识,并提供一些复习题,以帮助您巩固对这一主题的理解。
一、紫外-可见吸收光谱紫外-可见吸收光谱是一种常用的波谱技术,用于研究物质在紫外和可见光区的吸收行为。
它通过测量物质对不同波长光的吸收程度来确定物质的结构和浓度。
1. 什么是吸收光谱?如何表示吸收光谱图?吸收光谱是指物质对特定波长或一定范围内的光的能量吸收的图谱。
在吸收光谱图中,横轴表示波长或频率,纵轴表示吸收强度或吸光度。
吸收光谱图通常以峰的形式出现,峰的高度和形状与物质的吸收特性相关。
2. 为什么紫外-可见吸收光谱常用于分析有机化合物?紫外-可见吸收光谱对于分析有机化合物非常有用,因为有机化合物通常在紫外和可见光区域吸收较强。
通过测量有机化合物在不同波长的吸收情况,我们可以推断出它们的结构和浓度。
二、红外光谱红外光谱是一种用于研究物质分子振动和转动行为的波谱技术。
它通过测量物质对红外光的吸收来确定物质的化学成分和结构。
1. 什么是红外光谱?红外光谱图如何表示?红外光谱是指物质对红外辐射(通常是波长在2.5-25微米之间的光)的吸收行为。
红外光谱图通常以波数(cm-1)表示,横轴表示波数,纵轴表示吸收强度或吸收百分比。
2. 红外光谱在有机化学中的应用有哪些?红外光谱在有机化学中有广泛的应用。
通过红外光谱,我们可以确定有机化合物的官能团、分子结构和键的类型。
例如,羟基、羰基、胺基等官能团在红外光谱中有特征性的吸收峰,可以用于鉴定有机化合物的结构。
三、核磁共振光谱核磁共振光谱是一种用于研究物质中原子核的磁共振行为的波谱技术。
它通过测量原子核在外加磁场下的共振吸收来确定物质的结构和环境。
1. 什么是核磁共振光谱?核磁共振光谱图如何表示?核磁共振光谱是指物质中原子核在外加磁场下发生共振吸收的现象。
波谱解析知识点总结
波谱解析知识点总结一、波谱解析的基本原理1. 光谱学基础知识光谱学涉及到物质对光的吸收、发射、散射等现象,它是物质分析的重要手段之一。
常见的光谱包括紫外光谱、可见光谱、红外光谱、拉曼光谱等。
每种光谱方法都有其独特的应用领域和分析特点。
2. 原子光谱原子光谱是指研究原子吸收、发射光谱的一门学科,主要包括原子吸收光谱和原子发射光谱。
原子光谱可以用于分析金属元素和非金属元素的含量,它是分析化学中的重要手段。
3. 分子光谱分子光谱是指研究分子在光的作用下吸收、发射、散射等现象的一门学科,主要包括紫外光谱、红外光谱、拉曼光谱等。
分子光谱可以用于研究分子的结构和性质,对于有机化合物的分析具有重要意义。
4. 核磁共振波谱核磁共振波谱是指研究核磁共振现象的一门学科,它可以用于研究原子核的磁共振现象,得到有关物质结构和性质的信息。
核磁共振波谱在有机化学、生物化学等领域有着广泛的应用。
二、波谱解析的仪器和设备1. 分光光度计分光光度计是用于测量物质吸收、发射光谱的仪器,它可以测量紫外、可见、红外等波段的光谱,是分析化学中常用的仪器之一。
2. 核磁共振仪核磁共振仪是用于测量核磁共振波谱的仪器,它可以测量氢、碳等核的共振信号,得到物质的结构和性质信息。
3. 质谱仪质谱仪是用于测量物质离子的质量和荷质比的仪器,它可以得到物质的分子量、结构等信息,是很多化学分析的重要手段。
4. 激光拉曼光谱仪激光拉曼光谱仪是用于测量拉曼光谱的专用仪器,它可以用激光光源激发样品,得到与分子振动信息有关的拉曼光谱。
三、波谱解析的应用领域1. 化学分析波谱解析技术在化学分析中有着广泛的应用,它可以用于定量分析、质量分析、结构分析等多个方面,对于复杂的化合物和材料有很高的分析能力。
2. 药物研发波谱解析技术在药物研发中有着重要的应用,它可以用于研究药物的成分、结构和性质,对于新药物的研究和开发有很大帮助。
3. 生物医学波谱解析技术在生物医学领域有着广泛的应用,它可以用于研究生物分子的结构和功能,对于临床诊断和治疗有着重要意义。
波谱分析复习.docx
第一章绪论1 •不饱和度的计算不饱和度计算公式:U=n4+l+(n3-nl)/2式中n4、n3、nl分别为4价、3价、1价原子的个数。
2. 波谱分析的一般程序?1 -实验样品的准备;在波谱测定前我们需要根据样品的不同性质、不同纯度及不同波谱测定忖的作样品的准备。
样品准备主要有三方面的工作:一是准备足够的量。
二是在很多情况下要求样品有足够的纯度,所以要作纯度检验。
三是样品在上机前作制样处理。
2.做必要的图谱及元素分析;先选择性做几个觅要、方便的,再根据情况做其他谱。
3.分子量或分子式的确定;(1)经典的分子量测定方法:可用沸点升高、凝固点降低法、蒸汽密度法、渗透压法。
有些样品可用紫外光谱根据Beer定律测定分子量。
误差大。
大分子可用排阻色谱测定。
(2)质谱法:高分辨质谱在测定精确分子量的同时,还能推岀分子式,这是有机质谱最大的贡献。
低分辨质谱由测得的同位素丰度比也可推出分子屮元素的组成,进而得到可能的分子式。
(3)结合核磁共振氢谱、碳谱推测简单坯类等分子的分子式。
(4)综合光谱材料与元素分析确定分子式。
4.计算不饱和度;分子式确定后,可方便的按下式计算出不饱和度来:U=n4+l+(n3-nl)/2式中n4、n3、nl分别为4价、3价、1价原子的个数。
5・各部分结构的确定;Q)不饱和类型红外光谱和核磁共振可用于判断20、C=N等不饱和类型。
UV可用于共辘体系的判断。
(b)官能团和结构单元鉴定可能存在的官能团和部分结构时,各种光谱要交替参照,相互论证,以增加判断的可靠性。
6.结构式的推定;总结所有的官能团和结构片段,并找出各结构单元的关系,提出一种或几种可能结构式。
7.用全部光谱材料核对推定的结构式;①用IR核对官能团。
②用13C-NMR核对碳的类型和对称性。
③用1H-NMR核对氢核的化学位移和它们相互偶合关系,必要时与计算值对④用UV核对分了中共辘体系和一些官能团的取代位置,或用经验规则计算入max值。
波谱解析复习总结
波谱解析复习总结(一)常用解谱数据总结关于数据,是一定要记的···大家想怎么记爱怎么记就怎么记吧,建议自己总结,这样记的好一些。
下面是鄙人的,嘻嘻。
(老师PPT上有很多总结的)一、氢谱化学位移值δ(ppm)影响化学位移值的因素:只有空间效应和共轭效应是屏蔽效应增大,向高场位移,即ζ↑,δ↓.(一)0.4~4.0为饱和C上的H① 0.4~1.8 连饱和C的饱和C上的H② 1.8~2.5 连不饱和C的饱和C上的HI. 1.8~2.1 连C=C、C≡C的饱和C上的HII. 2.1~2.5 连C=O、N、S、苯环的饱和C上的H③ 3.0~4.6 连-O-的饱和C上的H其中,4.1左右可能有酯基④例外的:2.3~3.0是叁键上的H(二)4.6~8.0为不饱和C上的H① 4.6~6.0 C=C上的H② 6.0~8.0 苯环上的H(三)4.0~5.5为脂肪醇-OH的H若有0.5~1.0,为稀溶液(四)3.5~7.7为酚的-OH的H若有10~16,为分子内氢键(五)9.0~10.0为H-C=0的H(六)10.5~13为-COOH的H(七)胺类①~1.0 脂肪胺②4~5(气泡峰)芳香胺③6~7(气泡峰)酰胺,仲胺类其它:J值:①任何情况下J顺<j反< p="">②总体情况:J苯环H<j邻(烯h)<j邻(烷h)<j偕h< p="">③苯环H:J对<j间<="">④烯烃H:J邻(顺)<j邻(反)(j邻(顺)6~14hz;j邻(反)11~18hz)< p="">⑤烷烃H:J邻6~8Hz⑥同碳上的H:J偕10~16Hz要求掌握给图能测量算得J值,再推化合物种类。
二、碳谱碳谱的DEPT值:季碳消失!θ=45°,季C消失;θ=90°,季C消失,只有CH向上;θ=135°,季C消失,只有CH2向下。
波谱分析 复习提纲(研究生)
振动偶合
费米共振 官能团区 指纹区 倍频带
combination band
合频带
4
二,应掌握的知识和技能
E h
ε = A/bc
3
第二节
一,基本概念和原理
infrared spectra(spectrum)
红外吸收光谱
红外光谱
wavenumber
characteristic vibration frequency
波数
特征振动频率 傅里叶变换红外光谱
Fourier transform infrared spectroscopy(FTIR)
5
6,掌握各类化合物红外光谱的特征波数。
7,能对给定结构的化合物图谱吸收峰进行指认和解释。
8,能从红外图谱分析化合物中存在的特征官能团和结构片段。 9,能从简单化合物的红外图谱推导化合物的结构。
6
第三节
一,基本概念和原理
核磁共振波谱
核磁共振 核自旋 共振频率 化学位移 屏蔽效应 去屏蔽效应
nuclear magnetic resonance spectra nuclear spin resonance frequency chemical shift shielded effect deshielded effect
11
6,各类化合物的质谱裂解的规律和相关系列峰。 7,分子离子峰的判断。 8,利用同位素峰求分子式中溴、氯、和硫的个数以及碳 的个数。 9,利用丢失碎片和碎片离子推测结构片段。 10,对已知化合物的质谱图进行指认。 11,推导未知物结构。
波谱分析复习资料
一、名词解释:
1、生色基、助色基、红移现象、蓝移现象、增色效应、减色效应、官能团吸收峰、(n+1 规则)、偶合常数、基频峰、亚稳离子、自旋-自旋偶合?
二、问答题:
1、有机化合物结构测定的经典方法?
2、有机分子电子跃迁有哪几种类型?
4、紫外谱图提供的结构信息有哪些?
5、产生红外光谱的必要条件?
6、影响IR谱峰位置变化的因素有哪些?举例说明之。
7、IR谱图解析的基本步骤?
8、影响化学位移的因素有哪些?举例说明之。
9、NMR谱图可以向我们提供关于有机分子结构的哪些信息?
10、NMR谱图解析的基本步骤?
11、波谱综合分析方法的基本步骤?
12、紫外吸收光谱的基本原理是什么?
13、影响离子断裂的因素有哪些?
14、解析红外谱图应注意哪些事项?
15、化学位移是如何产生的?
三、波谱解析:
1. 分子式为C6H14,红外光谱如下,试推其结构。
2. 分子式为C8H7N ,红外光谱如下,试推其结构。
3. 分子式为C4H6 O2,红外光谱如下,试推其结构。
4. 分子式为C10H14S ,红外光谱如下,试推其结构。
5、C3H6O2IR 3000cm-1 1700cm-1
=1 NMR 11.3 (单峰1H) 2.3 (四重峰2H)
1.2 (三重峰3H)
6、C7H8O IR 3300,3010,1500,1600,730,690cm-1
=4 NMR 7.2 (多重峰5H) 4.5 (单峰2H)
3.7 (宽峰1H)
7、根据下列谱图决定化合物的结构,并解析谱图。
波谱解析复习
第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强.2、发色团:分子中能吸收紫外或可见光的结构系统.3、红移:吸收峰向长波方向移动,强度增加,增色作用.4、蓝移:吸收峰向短波方向移动,减色作用.5、增色作用:使吸收强度增加的作用.6、减色作用:使吸收强度减低的作用.7、吸收带:跃迁类型相同的吸收峰.二、选择题1、不是助色团的是:DA、-OHB、-ClC、-SHD、CH3CH2-2、所需电子能量最小的电子跃迁是:DA、ζ→ζ*B、n →ζ*C、π→π*D、n →π*3、下列说法正确的是:AA、饱和烃类在远紫外区有吸收B、UV吸收无加和性C、π→π*跃迁的吸收强度比n →ζ*跃迁要强10-100倍D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带:BA、很强吸收B、强吸收C、中强吸收D、弱吸收5、近紫外区的波长为:CA、4-200nmB、200-300nmC、200-400nmD、300-400nm6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm的吸收带是:BA、R带B、B带C、K带D、E1带7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了CA、吸收峰的强度B、吸收峰的数目C、吸收峰的位置D、吸收峰的形状8、紫外光谱是带状光谱的原因是由于:DA、紫外光能量大B、波长短C、电子能级差大D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:AA、水B、乙醇C、甲醇D、正己烷10、下列化合物中,在近紫外区(200~400nm)无吸收的是:AA、B、C、D、11、下列化合物,紫外吸收λmax值最大的是:A(b)A、670.7nmB、670.7μC、670.7cmD、670.7m13、化合物中,下面哪一种跃迁所需的能量最高AA、ζ→ζ*B、π→π*C、n→ζ*D、n→π*第二章红外光谱一、名词解释:1、中红外区2、fermi共振3、基频峰4、倍频峰5、合频峰6、振动自由度7、指纹区8、相关峰9、不饱和度10、共轭效应11、诱导效应12、差频二、选择题(只有一个正确答案)1、线性分子的自由度为:AA:3N-5 B: 3N-6 C: 3N+5 D: 3N+62、非线性分子的自由度为:BA:3N-5 B: 3N-6 C: 3N+5 D: 3N+63、下列化合物的νC=C的频率最大的是:DA B C D4、下图为某化合物的IR图,其不应含有:DA :苯环B :甲基C :-NH 2D :-OH5、下列化合物的νC=C 的频率最大的是:AA B C D6、亚甲二氧基与苯环相连时,其亚甲二氧基的δCH 特征强吸收峰为:A A : 925~935cm -1 B :800~825cm -1C : 955~985cm -1D :1005~1035cm -17、某化合物在3000-2500cm -1有散而宽的峰,其可能为:A A : 有机酸 B :醛 C :醇 D :醚8、下列羰基的伸缩振动波数最大的是:C9、 中三键的IR 区域在:BA ~3300cm -1B 2260~2240cm -1C 2100~2000cm -1D 1475~1300cm -110、偕三甲基(特丁基)的弯曲振动的双峰的裂距为:DA 10~20 cm -1 B15~30 cm -1 C 20~30cm -1 D 30cm -1以上第三章 核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫4、屏蔽效应5、远程偶合C R OR A C R O H B C R F C R O Cl C D C N R6、自旋裂分7、自旋偶合8、核磁共振9、屏蔽常数10.m+1规律11、杨辉三角12、双共振13、NOE效应14、自旋去偶15、两面角16、磁旋比17、位移试剂二、填空题1、1HNMR化学位移δ值范围约为0~14 。
波谱分析
波谱分析——复习1. 普朗克公式的意义,波长、能量、频率及波数的相互换算。
答:(1)意义:每一条所发射的谱线的波长,取决于前后两个能级之差;对于特定元素的原子会产生一系列不同波长的特征谱线。
(2)公式:ΔE= E2-E1= hυ=(h:普朗克常量6.624×10-34 J•s υ:频率λ:波长c:光速2.998×1010cm/s)2.朗伯—比尔定律的表达式说明什么?吸光度,透光度的定义是什么?什么叫摩尔吸收系数?影响摩尔吸光系数的因素有哪些?如何测定摩尔吸光系数?答:(1)A =﹣lgT = abc说明:光被吸收的量正比于光程中产生光吸收的分子数目;(2)物质对光的吸收程度称为吸光度A,透射溶液介质的光的强度称为透光度I;(3)当c的单位为mol/L,b的单位为cm时,则A = εbc,比例系数ε称为摩尔吸收系数,单位为L/mol•m,数值上ε等于a与吸光物质的摩尔质量的乘积。
(4)它的物理意义是:当吸光物质的浓度为1 mol/L,吸收池厚为1cm,以一定波长的光通过时,所引起的吸光度值A。
ε值取决于入射光的波长和吸光物质的吸光特性,显然,显色反应产物的ε值愈大,基于该显色反应的光度测定法的灵敏度就愈高。
(5)配制已知浓度C的标准液,在不同波长处测定吸收值A,用公式(b为吸收池厚度)。
3.紫外可见吸收光谱、红外吸收光谱及核磁共振谱各自产生的原因是什么?答: 由于电子能级跃迁而产生的吸收光谱主要处于紫外可见光区(200—780nm),这种分子光谱称为电子光谱或紫外可见光谱;由于分子振动能级的跃迁(同时伴随转动能级跃迁)而产生的称为红外光谱;位于外磁场中的原子核吸收电磁波后从一个自旋能级跃迁到另一个自旋能级而产生的吸收波谱称为核磁共振谱图。
4.有机化合物的电子跃迁有哪几种类型?各类型跃迁需要的能量所对应的吸收波长范围是多少?答:(1)ζ→ζ*、π→π*、n→ζ*、n→π*;(2)所需能量:E(ζ→ζ*) > E(n→ζ*)≧E(π→π*) > E(n→π*);波长最长n→π*(200—400nm),近紫外和可见光区;ζ→ζ*:真空紫外区;π→π*:近紫外光区;n→ζ*:远紫外光区。
波谱分析复习资料
精品文档波谱分析复习资料绪论从而吸收或散射某种【波谱分析的定义】物质在电磁波的照射下,引起分子内部某些运动,(波数、波长的光,将入射光强度变化或散射光的信号记录下来,得到的信号强度与光的波长频率)散射角度的关系图,用于物质的结构、组成及化学变化的分析,称为波普分析。
紫外光谱第一章产生原理?电子跃迁类型、能级大小和相对应的吸收波段、UV1分子中电子的分布及相紫外光发生价电子能级跃迁而产生的吸收光谱。
【原理】分子吸收应的能级,决定了分子紫外吸收光谱特征。
跃迁需要的能量最σ成键和反键轨道间的跃迁。
是单键中的σ电子在*【类型】σ→σ跃迁范围内。
在150~160nm大,相应的激发光波长最短,σ反键轨道跃迁。
跃迁N、S和卤素等杂原子的未成键电子向→n σ*跃迁是O、附近。
半径较大需要的能量较小,相应的吸收带的波长较长,一般出现在200nmIS或),其n轨道的能级较高,此跃迁所需能量较低,故含的杂原子(如S、I的220~250nm附近可能产生这种跃迁。
饱和有机化合物在* π轨道。
孤立双键π→是不饱和键中的π电子吸收能量跃迁到π* π→π*跃迁,但在共轭双键体系中,吸收带向长波方向移跃迁产生的吸收带位于160~180nm跃迁产生的吸收带波长愈大。
π* 动(红移)。
共轭体系愈大,π→n电子C=O当不饱和键上连有杂原子(如、—NO2)时,杂原子上的n→π*跃迁270~300nm *跃迁所需要的能量最小,所对应的吸收带位于n→ππ跃迁到*轨道。
的近紫外区。
* πn→→≥ππ*﹥→各电子跃迁的能级差ΔE存在以下次序:σσ*>n→σ*2、什么叫发色团(生色)和助色团?红移,长移,增色效应,短移,蓝移?【发色团】分子中含有π电子的基团(如C=C、C=O、—N=N—、—C≡N、—NO2、—C6H5)成为发色团。
他们能产生π→π*和(或)n→π*跃迁从而能在紫外—可见光范围能产生吸收。
【助色团】含有未成键n电子的杂原子饱和基团(如—OH、—NH2、—SR、—Cl、—Br、—I),他们本身在紫外—可见光范围内不产生吸收,但当他们与发色团相连时,能使该发色团的吸收峰向长波方向移动,并使吸收峰强度增加,被称为助色团。
最新波谱解析复习提纲(-06-12)
(一)紫外-可见光谱:电子光谱朗伯比尔定律发色团、助色团红移、蓝移是什么?导致红移、蓝移的因素?K 、B 、E 、R 带分别对应哪种跃迁?根据波长以及摩尔吸光系数判断是哪个带?苯胺在酸性条件下E 2和B 带(均为π-π*跃迁)均发生蓝移,苯酚在碱性条件下发生红移原因?共轭烯烃的紫外吸收位置计算规则及应用紫外溶剂的选择(二)红外光谱:分子光谱红外吸收波数计算的基本公式:红外的分区:近红外、中红外、远红外分子振动自由度的数目:线性分子3n-5,非线性分子3n-6分子或震动模式有无红外活性的判断影响红外吸收频率的因素(考虑折合质量以及双键性增强或减弱):质量效应、电子效应(诱导效应、中介效应、共轭效应)、空间效应氢键对羰基和羟基吸收频率的影响各类化合物的特征吸收:烷烃:C-H :3000以下1460cm -1:CH 2的变形振动(δ)和CH 3的反对称变形振动(νas)1375cm -1:CH 3的对称变形振动;异丙基和叔丁基此处吸收峰发生裂分,前者强度相似,后者低频峰比高频峰强度大很多烯烃:C-H :3050±50C=C :1650顺反式的判断(CH 面外弯曲振动吸收峰不同)炔烃:C-H: 3300C ≡C:2100(注:C ≡N:2250)芳香烃:C-H :3050±50C-H :1650-1450(1-4个峰)C-H 面外弯曲振动对应的苯环取代类型:苯:670;单取代:750,700;二取代:1,2-取代(750)、1,3-取代(800,700)、1,4-取代(820)醇酚醚:OH :3300宽峰醇酚的C-O 伸缩振动:1200-1000;区分伯仲叔季醇(1050、1100、1150、1200)醚的C-O-C 伸缩振动:反对称伸缩振动1275-1060,对称伸缩振动弱甲氧基:C-H 对称伸缩振动2850-2815,较一般甲基频率低,对称变形振动从1370移到1460 羰基化合物:Kc21振1.醛酮:1715左右。
波谱分析期末复习
助色团:能使化合物的吸收峰波长向长波长方向位移的含有n电子的杂原子基团。
生色团:含有π电子的不饱和基团,能发生π—π*、n—π*跃迁,从而可以在紫外可见光范围吸收。
拉曼效应:也叫拉曼散射,是指光波在散射后频率发生变化的现象。
基频峰:分子吸收一定频率的红外线,振动能级由基态跃迁至第一激发态所产生的吸收峰。
泛频峰:分子吸收一定频率的红外线,振动能级由基态跃迁至第二、三激发态等所产生的吸收峰。
自旋-自旋偶合:相邻原子核自旋态对谱带多重峰的影响。
质谱:通过一定的手段使待测样品产生气态离子,然后按质荷比(m/z)对这些离子进行分离和检测得到的图谱。
弛豫过程:处于高能态的核可以通过某些途径把多余的能力传递给周围介质而回到低能态的过程。
N-律:分子含有奇数N原子,其分子量整数部分一定是奇数,不含N或含偶数个N原子,其分子量整数部分一定是偶数。
α裂解:由游离基提供一个奇电子与邻接原子形成一个新键,与此同时,这个原子的一个键断裂。
化学等价:在分子中,如果一些原子核可以通过高速旋转或任意一种对称操作实现互换,则这些核在分子中处于相同的化学环境,具有相同的化学位移值。
低级偶合:符合n+1规律的偶合。
质子宽带去偶:在13C通道输入射频脉冲和采样的同时,在1H通道施加足够的宽带去偶射频,使所有质子快翻,原来裂分的多重峰变成一道谱带。
E带:在共轭封闭体系中π—π*跃迁产生的吸收带,是紫外-可见光分光光度法中芳香族化合物的特征谱带。
K带:在共轭非封闭体系中π—π*跃迁产生的吸收带。
磁全同核:既化学等价又核等价的原子核。
NOE效应:当用射频场干扰某一核的信号使之饱和,则在空间上与之相近的另一核的信号强度增加。
红外光谱:利用分子对红外辐射的吸收,并由其振动或转动引起偶极矩净变化,产生分子振动能级和转动能从基态到激发态的跃迁,得到分子振动能级和转动能级变化产生的光谱。
Boltzman分布:是描述理想气体在受保守外力或保守外立场作用不可忽略时,处于热平衡状态的气态分子按能量分布的规律。
波谱分析复习.doc
CZC 二 I 二J L3UP —4H —S —4 X ^-2 — 101 •不饱和度的计算不饱和度计算公式:U=n4+l+(n3-nl)/2式中n4、n3. nl 分别为4价、3价、1价原子的个数。
U —叫一FX 叫■+&+ (O4<J=1 +$♦ (OXJ=■十N 十环出白勺不住包和脸不册堆小教” E 毘 SI 三枣运袤—2. 波谱分析的一般程序?1. 实验样品的准备;在波谱测定前我们需要根拯样品的不同性质、不同纯度及不同波谱测定冃的 作样品的准备。
样品准备主耍有三方面的工作:一是准备足够的量。
二是在很多 情况下耍求样品有足够的纯度,所以耍作纯度检验。
三是样品在上机前作制样处 理。
2•做必要的图谱及元素分析;先选择性做儿个重要、方便的,再根据情况做其他谱。
3. 分子量或分子式的确定; (1) 经典的分子量测定方法:可用沸点升高、凝固点降低法、蒸汽密度法、渗透压法。
有些样品可用紫外 光谱根据Beer 定律测定分子量。
误差大。
大分子可用排阻色谱测定。
(2) 质谱法:高分辨质谱在测定精确分子量的同时,还能推岀分子式,这是有 机质谱最大的贡献。
低分辨质谱由测得的同位素丰度比也可推出分子中元素的组 成,进而得到可能的分子式。
(3) 结合核磁共振氢谱、碳谱推测简单坯类等分子的分子式。
第一章绪论例=(4)综合光谱材料与元素分析确定分子式。
4.计算不饱和度;分子式确定后,可方便的按下式计算出不饱和度来:U=n4+l+(n3-nl)/2式中n4、n3> nl分别为4价、3价、1价原子的个数。
5.各部分结构的确定;Q)不饱和类型红外光谱和核磁共振可用于判断00、C=N等不饱和类型。
UV可用丁共觇体系的判断。
⑹官能团和结构单元鉴定可能存在的官能团和部分结构时,各种光谱要交替参照,相互论证,以增加判断的可靠性。
6.结构式的推定;总结所有的官能团和结构片段,并找出各结构单元的关系,提出一种或儿种可能结构式。
波谱分析复习资料
波谱分析复习资料绪论【波谱分析的定义】物质在电磁波的照射下,引起分子内部某些运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到的信号强度与光的波长(波数、频率)散射角度的关系图,用于物质的结构、组成及化学变化的分析,称为波普分析。
第一章紫外光谱1、UV产生原理?电子跃迁类型、能级大小和相对应的吸收波段【原理】分子吸收紫外光发生价电子能级跃迁而产生的吸收光谱。
分子中电子的分布及相应的能级,决定了分子紫外吸收光谱特征。
【类型】σ→σ*跃迁是单键中的σ电子在σ成键和反键轨道间的跃迁。
跃迁需要的能量最大,相应的激发光波长最短,在150~160nm范围内。
n →σ*跃迁是O、N、S和卤素等杂原子的未成键电子向σ反键轨道跃迁。
跃迁需要的能量较小,相应的吸收带的波长较长,一般出现在200nm附近。
半径较大的杂原子(如S、I),其n轨道的能级较高,此跃迁所需能量较低,故含S或I 的饱和有机化合物在220~250nm附近可能产生这种跃迁。
π→π*跃迁是不饱和键中的π电子吸收能量跃迁到π*轨道。
孤立双键π→π*跃迁产生的吸收带位于160~180nm,但在共轭双键体系中,吸收带向长波方向移动(红移)。
共轭体系愈大,π→π*跃迁产生的吸收带波长愈大。
n→π*跃迁当不饱和键上连有杂原子(如C=O、—NO2)时,杂原子上的n电子跃迁到π*轨道。
n→π*跃迁所需要的能量最小,所对应的吸收带位于270~300nm的近紫外区。
各电子跃迁的能级差ΔE存在以下次序:σ→σ*>n→σ*≥π→π*﹥n→π*2、什么叫发色团(生色)和助色团?红移,长移,增色效应,短移,蓝移?【发色团】分子中含有π电子的基团(如C=C、C=O、—N=N—、—C≡N、—NO2、—C6H5)成为发色团。
他们能产生π→π*和(或)n→π*跃迁从而能在紫外—可见光范围能产生吸收。
【助色团】含有未成键n电子的杂原子饱和基团(如—OH、—NH2、—SR、—Cl、—Br、—I),他们本身在紫外—可见光范围内不产生吸收,但当他们与发色团相连时,能使该发色团的吸收峰向长波方向移动,并使吸收峰强度增加,被称为助色团。
波谱分析期末知识总结
波谱分析期末知识总结一、波谱分析的基本原理1.1 原子和分子能级波谱分析的基础是物质中原子或分子的能级结构。
原子或分子的能级是指在不同能量水平上的电子分布情况。
能级之间的能量差决定了原子或分子在吸收或发射辐射时的能量差异。
1.2 吸收和发射辐射原子或分子能级之间的跃迁可以通过吸收或发射辐射来实现。
当原子或分子吸收能量与能级差相等的辐射时,电子会从较低能级跃迁至较高能级,形成吸收峰。
相反,当电子从较高能级跃迁至较低能级时,会发射辐射,形成发射峰。
1.3 分子结构和波谱特征物质的波谱特征与其分子结构密切相关。
分子中不同原子的振动、转动和电子的跃迁等运动方式会对辐射产生不同的影响,从而在波谱上表现出不同的特征峰。
二、波谱分析的技术和仪器2.1 紫外-可见光谱紫外-可见光谱是一种常用的波谱分析技术,用于研究物质在紫外或可见光区的吸收或发射特性。
紫外-可见光谱的测量仪器主要有分光光度计和光源。
2.2 红外光谱红外光谱是一种用于研究物质在红外波段的吸收特性的技术。
红外光谱的测量仪器主要有红外光谱仪和样品室。
红外光谱可以用于确定化学键、鉴定有机物和研究分子结构等。
2.3 核磁共振核磁共振是一种基于核自旋和外磁场相互作用的波谱技术。
核磁共振的测量仪器主要包括核磁共振仪和样品盒。
核磁共振可以用于确定物质的结构、研究分子间相互作用等。
2.4 质谱质谱是一种用于研究物质的分子结构和相对分子质量的技术。
质谱的测量仪器主要有质谱仪和样品处理系统。
质谱可以用于定量分析、鉴定有机物和研究分子结构等。
三、波谱分析的应用3.1 化学分析波谱分析在化学分析中广泛应用。
通过测量样品在不同波长或波数下的吸收或发射特性,可以确定样品的成分和浓度。
常用的波谱分析技术包括紫外-可见光谱、红外光谱、核磁共振和质谱等。
3.2 材料科学波谱分析在材料科学中的应用主要用于研究材料的结构和性质。
通过测量材料的吸收或发射峰,可以确定材料的化学成分、晶体结构、晶格缺陷等信息。
有机波谱分析复习参考含答案
1、紫外光谱法在有机化合物结构研究中有哪些应用?确定未知化合物是否含有与某一已知化合物相同的共轭体系;确定未知结构中的共轭结构单元;确定构型和构象;确定互变异构体。
2、分子式为C4H8O的红外图谱如下,试推断其可能的结构。
答案:3、某硫杂环化合物的化学式为C6H6OS,其1H NMR和13C NMR图谱如下,推断其可能的结构式。
答案:SOSO4、鉴别如下质谱图,是苯甲酸甲酯(C6H5COOCH3)还是乙酸苯酯(CH3COOC6H5),并说明理由及峰的归属。
答案:C 6H 5COOCH 35、某化合物的紫外光谱:OH H C m ax 52λ 262nm (m ax ε15);红外光谱:3330~2500cm -1间有强宽吸收,1715 cm -1处有强宽吸收;核磁共振氢谱:δ11.0处为单质子单峰,δ2.6处为四质子宽单峰,δ2.12处为三质子单峰,质谱如图所示。
参照同位素峰强比及元素分析结果,分子式为C 5H 8O 3,试推测其结构式。
答案:CH 3COCH 2CH 2COOH1、紫外光谱在有机化合物结构鉴定中的主要贡献是什么?答:在有机结构鉴定中,紫外光谱在确定有机化合物的共轭体系、生色团和芳香性等方面有独到之处2、红外光谱产生必须具备的两个条件是什么?答:一是红外辐射的能量应与振动能级差相匹配,即E 光=△E ν,二是分子在振动过程中偶极矩的变化必须不为零。
3、核磁共振谱是物质内部什么运动在外部的一种表现形式?答:是具有核磁矩的原子核的自旋运动在外部的一种表现形式。
4、解释什么是碳谱的γ-效应答:当取代基处在被观察的碳的γ位,由于电荷相互排斥,被观察的碳周围电子云密度增大,δC 向高场移动。
6、根据图 6-1~图6-4推断分子式为C 11H 20O 4未知物结构答案:1.当体系的共轭双键增多时,紫外光谱图会发生什么变化?阐明发生变化的原因。
答:当体系的共轭双键增多时,吸收光会向长波方向移动,即发生红移现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波谱分析复习资料绪论【波谱分析的定义】物质在电磁波的照射下,引起分子内部某些运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到的信号强度与光的波长(波数、频率)散射角度的关系图,用于物质的结构、组成及化学变化的分析,称为波普分析。
第一章紫外光谱1、UV产生原理?电子跃迁类型、能级大小和相对应的吸收波段【原理】分子吸收紫外光发生价电子能级跃迁而产生的吸收光谱。
分子中电子的分布及相应的能级,决定了分子紫外吸收光谱特征。
【类型】σ→σ*跃迁是单键中的σ电子在σ成键和反键轨道间的跃迁。
跃迁需要的能量最大,相应的激发光波长最短,在150~160nm范围内。
n →σ*跃迁是O、N、S和卤素等杂原子的未成键电子向σ反键轨道跃迁。
跃迁需要的能量较小,相应的吸收带的波长较长,一般出现在200nm附近。
半径较大的杂原子(如S、I),其n轨道的能级较高,此跃迁所需能量较低,故含S或I 的饱和有机化合物在220~250nm附近可能产生这种跃迁。
π→π*跃迁是不饱和键中的π电子吸收能量跃迁到π*轨道。
孤立双键π→π*跃迁产生的吸收带位于160~180nm,但在共轭双键体系中,吸收带向长波方向移动(红移)。
共轭体系愈大,π→π*跃迁产生的吸收带波长愈大。
n→π*跃迁当不饱和键上连有杂原子(如C=O、—NO2)时,杂原子上的n电子跃迁到π*轨道。
n→π*跃迁所需要的能量最小,所对应的吸收带位于270~300nm的近紫外区。
各电子跃迁的能级差ΔE存在以下次序:σ→σ*>n→σ*≥π→π*﹥n→π*2、什么叫发色团(生色)和助色团?红移,长移,增色效应,短移,蓝移?【发色团】分子中含有π电子的基团(如C=C、C=O、—N=N—、—C≡N、—NO2、—C6H5)成为发色团。
他们能产生π→π*和(或)n→π*跃迁从而能在紫外—可见光范围能产生吸收。
【助色团】含有未成键n电子的杂原子饱和基团(如—OH、—NH2、—SR、—Cl、—Br、—I),他们本身在紫外—可见光范围内不产生吸收,但当他们与发色团相连时,能使该发色团的吸收峰向长波方向移动,并使吸收峰强度增加,被称为助色团。
【红移(长移)和蓝移(短移)】吸收峰向长波长方向移动称为红移(长移),想短波长方向移动称为蓝移(短移)【增色效应】3、电磁波分类?能量大小?波长越大,能量越小。
4、UV光谱最大波长的主要影响因素(共轭、立体、溶剂、PH)?【发色团与助色团】助色团使发色团的吸收峰向长波长方向移动,并使吸收峰强度增加。
【共轭效应】随着共轭双键数目的增加,最高占据轨道(成键轨道HOMO)的能量逐渐增高,而最低空轨道(反键轨道LUMO)的能量逐渐降低,所以从HOMO到LUMO跃迁所需的能量逐渐减小,吸收峰红移。
【溶剂极性和PH】溶剂极性的增加可使吸收光谱的精细结构消失。
溶剂极性增大,由π→π*跃迁产生的吸收带红移,而由n→π*跃迁产生的吸收带则发生蓝移【空间位阻效应】要使共轭体系中各因素均成为有效的生色因子,各生色团因子应处于同一平面,才能达到有效的共轭而使吸收带红移。
【顺反异构】一般反式异构体空间位阻较小,能有效的共轭,λmax位于长波长端。
5、什么是K带、R带?【K带】K带为共轭双键的π→π*跃迁引起的,该吸收带的特点为吸收峰很强,ε>10000,最大吸收峰位置一般位于217~280nm,共轭双键增加,λmax红移,ε也随之增加。
【R带】R带为n→π*跃迁引起的吸收带,其特点为吸收强度弱,ε<100,吸收峰波长一般在270nm以上。
【B带】B带为芳香化合物(包括杂环芳香化合物)的特征吸收带。
【E带】E带也是芳香化合物的特征吸收带,是由苯环结构中三个乙烯的环状共轭系统的跃迁产生。
分为E1和E2带,若有发色团取代且与苯环共轭,则B带和E带均发生红移,E2和K带重合。
6、Woodward-Fisher规则?共轭不饱和羰基化合物计算?第二章红外光谱1、IR光谱产生原理?振动类型?【原理】分子跃迁振动能级跃迁需要吸收一定的能量,这种能量对应光波的红外区域(12500~25cm-1),而且只有当红外光能量与分子的振动能极差相等时,才会发生分子的振动能级跃迁,从而产生红外光谱。
振动类型包括伸缩振动和弯曲振动。
【伸缩振动】沿着键的方向,只改变键长,分为对称伸缩振动、不对称伸缩振动。
【弯曲振动】垂直化学键的方向,只改变键角。
分为面内弯曲振动、面外弯曲振动。
2、红外吸收峰位及强度的影响因素?影响峰强的因素:【振动过程中偶极矩的变化】基频峰的强度(除浓度影响以外)主要取决于振动过程中偶极矩的变化,且瞬间偶极矩越大,吸收峰越强。
影响偶极矩大小的因素主要为一下四个:(1)原子的电负性:化学键极性越大,则伸缩振动吸收峰越强。
(2)振动形式:振动形式不同对分子的电荷分布影响不同,故吸收峰强度也有不同。
通常峰强与振动形式之间有下列规律:νas>νs;ν>δ.(3)分子的对称性:结构对称的分子在振动过程中,由于振动方向也是对称的,所以整个分子的偶极矩始终为零,没有吸收峰出现。
(4)其他影响因素如费米共振、氢键等因素。
【能级的跃迁几率】以倍频峰为例,从基态跃迁到激发态时,振幅加大,偶极矩变大,峰强本该增大,但由于这种跃迁几率很小,结果峰强反而很弱。
而样品浓度加大,峰强也随之加大,则是跃迁几率增加的结果。
影响峰位的因素:【内部结构因素的影响】1、电子效应(1)诱导效应:一般为吸电子诱导效应。
以羰基为例,当一强吸电子基团和羰基相邻时,它就要和羰基氧争夺电子,降低羰基的极性,增强其双键性,力常数K增加,故νc=o吸收峰将移向高波数区(1)共轭效应:共轭效应及共轭体系中电子离域现象。
对于π—π共轭而言,其结果是引起电子密度平均化,使双键性降低,力常数K减小,故吸收峰移向低波数区。
2、空间效应(1)空间位阻:空间位阻是指同一分子中各基团间在空间的位阻作用。
,共轭作用对空间位阻最为敏感,空间位阻使共轭体系的共平面性受到影响或破坏,吸收频率向高波数方向移动。
(2)环张力:对环外双键和换上羰基,随着环的缩小,环张力增大,其频率也相应的增加。
环外双键的伸缩振动频率随着环张力的增加或环内角的变小而减小。
(3)场效应:场效应是以它们的静电场通过空间起作用,使电子云密度分布发生变化,从而引起相应的吸收带位移。
通常只有在立体结构上互相靠近的那些基团之间才能产生F效应。
3、氢键效应:通常可使伸缩频率向低波数位移,谱带变宽变强,这是由于形成氢键使偶极矩和键的长短都发生了变化所致。
(1)分子内氢键:分子内氢键的形成与浓度和溶剂无关,分子内氢键的形成可使伸缩振动谱带大幅度地向低频方向移动。
(2)分子间氢键:分子间氢键的形成受溶剂性质、溶液浓度、温度等的影响。
醇与酚的羟基,在极稀的溶液中呈游离状态,随着浓度增加,分子间形成氢键,故νO-H向低频方向移动。
羧酸类极易形成分子间氢键。
出现在3200~2500cm-1区间,变现为一个宽而散的吸收峰,可作为羧酸结构的一个特点。
4、互变异构分子发生互变异构,吸收峰也将发生位移,在红外光谱上出现各异构体的特征吸收。
5、振动偶合效应当两个相同的基团在分子中靠得很近时(且振动频率相近或相同),其相应的特征吸收风长发生分裂,形成两个峰,这种想象叫振动偶合。
6、费米共振是一种特殊的振动偶合。
当倍频峰(或组频)位于某强的基频吸收峰附近时,弱的倍频(或组频)峰的吸收强度常常被大大强化(间或发生峰带裂分),这种倍频与基频峰之间的振动偶合称为费米共振。
7、样品的物理状态的影响【内部因素的影响】(1)溶剂的影响:极性基团的伸缩频率常常随溶剂的极性增大而降低(2)仪器色散元件的影响:棱镜的分辨率低,光栅的分辨率高,尤其是在4000~2500cm-1波段尤为明显。
3、什么是特征区、指纹区和相关峰及其波长范围?【特征区】有机化合物的分子中主要官能团的特征吸收多出现在4000~1333cm-1,该区域吸收峰比较稀疏,容易辨认,通常把该区域成为特征吸收区。
【指纹区】红外光谱上1333~400cm-1的低频区,通常被称为指纹区。
该区域出现的谱带主要是单键C—X(X=C、N、O、S)的伸缩振动和弯曲振动。
不含氢的单键的振动频率相差不大,因此这一区域产生了大量的吸收峰难以归属,但这些吸收峰却反映了化合物分子的具体结构特征,如同人的指纹,故称指纹区。
(该区域对各个化合物来说特异性较强)【相关峰】由一个官能团产生的一组相互依存的吸收峰(相互依存,相互佐证)故一个官能团的存在将产生一组相关峰,因此不能由单一特征峰肯定官能团的存在。
4、九个重要区段范围及相应基团?COOH特征峰?OH和NH峰的区别?饱和烃与不饱和烃C—H的区别(3000的区别)(1)COOH特征峰:3300~2500cm-1,强而且很宽,可超出3000cm-1范围。
(2)OH特征峰:游离—OH,3700~3500cm-1,较强、尖锐;缔合—OH,345-~3200cm-1,宽、强。
在形成分子内氢键之后,酚羟基的伸缩振动峰进一步向低波数方向移动。
(3)OH与NH的区别:伯胺双峰,仲胺单峰,叔胺无峰。
(4)饱和烃与不饱和烃的区别:3300~3000cm-1位区别饱和与不饱和的重要区段。
不饱和碳(烯烃、炔烃及苯环)的碳氢键的伸缩振动频率在3000cm-1以上,而饱和碳的碳氢伸缩振动频率低于3000cm-1,不易混淆。
【醛基CH键伸缩振动区】在2820~2600cm-1产生两个吸收峰,这是由醛基C-H键的面内弯曲振动的倍频与C-H键的伸缩振动区间的费米共振产生的,表现为双峰。
【亚甲二氧基-O-CH2-O】2780和930cm-1附近的峰组成亚甲二氧基的相关峰。
【三键对称伸缩振动区间】当碳碳三键与双键或芳环共轭时,νC≡C向低波数方向移动,但吸收强度增加;νC≡N一般在2240cm-1附近,其吸收强度较高,当与不饱和基团共轭,吸收谱带向低波数方向移动30cm-1。
【羰基的伸缩振动区】因C=O的偶极矩较大,羰基峰一般都尖锐而且吸收强度大。
【双键的伸缩振动区】双键与氧相连时,受到氧的极化作用,吸收强度增大;而与不饱和基团形成共轭,νc=c向低波数方向移动,但强度增大。
【芳香化合物】当芳环与不饱和基团或具有孤对电子的基团共轭,将使(1600±20)cm-1及(1500±20)cm-1两个峰增强,并发生分裂,在1600cm-1、1580cm-1、1500cm-1产生3个峰,该区域的吸收峰与芳环Ar-H伸缩振动峰(3100~3000cm-1)一起作为判断化合物是否含有苯环的重要依据。
【CH键的弯曲振动区】甲基在1380cm-1附近有特征吸收,为鉴定甲基的特征峰。
孤立甲基在1380cm-1附近为单峰,当结构中有相邻甲基存在时,在1380cm-1附近裂分为双峰(共振偶合),相邻甲基数越多,裂距越大。