有关平均值的不等式及其证明
均值不等式的证明精选多的篇
均值不等式的证明篇一:均值不等式(AM-GM不等式)是数学中常用的一种不等式关系,它说明了算术平均数和几何平均数之间的关系。
具体表达式为:对于任意非负实数集合{a1,a2,an},有(a1+a2+.+an)/n ≥ (a1 a2 .*an)^(1/n)其中,等号成立当且仅当所有的非负数都相等。
下面,我们将给出AM-GM不等式的证明。
证明:首先,我们可以假设所有的a1,a2,an都是正实数。
因为AM-GM不等式对于非负实数也是成立的,所以我们可以通过限制条件来放缩实数集合。
考虑对数变换。
定义函数f(x) = ln(x),其中x>0。
因为ln(x)在整个定义域都是凸函数,所以根据对数函数的性质,我们有:f((a1+a2+.+an)/n) ≥ (1/n)(f(a1)+f(a2)+.+f(an))即,ln((a1+a2+.+an)/n) ≥ (1/n)(ln(a1)+ln(a2)+.+ln(an))这是因为凸函数的定义是在一条直线上任取两个点,它总是在两点的连线上方。
继续推导,根据ln的性质,我们有:ln(a1 a2 .*an) = ln(a1) + ln(a2) + . + ln(an)将上述不等式代入这个等式中,得到ln((a1+a2+.+an)/n) ≥ ln(a1 a2 .*an)^(1/n)移项化简得到(a1+a2+.+an)/n ≥ (a1 a2 .*an)^(1/n)即AM-GM不等式得证。
最后,我们来说明等号成立的条件。
根据对数函数的性质,等号成立当且仅当所有的非负数的对数都相等,即a1 = a2 = . = an。
至此,我们完成了AM-GM不等式的证明。
总结: AM-GM不等式是数学中常用的一种不等式关系。
它表明算术平均数大于等于几何平均数,并且等号成立的条件是所有的非负数相等。
该不等式的证明可以通过对数变换和凸函数的性质进行推导得到。
篇二:在数学中,均值不等式是一类用于比较多个数的重要不等式。
均值不等式所有公式
均值不等式所有公式
均值不等式(平均值不等式)是数学中的一种基本不等式,它表示对于两个数 a 和 b,它们的平均值不小于它们的几何平均值。
一般来说,均值不等式的公式可以表示为:
(a + b) / 2 ≥√(ab)
当且仅当 a = b 时,等号成立。
这里列举一些常见的均值不等式:
1. 算术平均数(均值)不小于几何平均数:
(a + b) / 2 ≥√(ab)
2. 调和平均数不小于算术平均数:
(a + b) / (1/a + 1/b) ≥ 2√(ab)
3. 几何平均数不小于平方根平均数:
sqrt(ab) ≤ (a + b) / 2
4. 平方根平均数不小于算术平均数:
sqrt(a * b) ≤ (a + b) / 2
5. 三次方根平均数不小于算术平均数:
cube_root(a * b * c) ≤ (a + b + c) / 3
这些公式在不同情况下可以用来估计各种平均值之间的关系。
注意,这些不等式在 a 和 b 为正实数时成立。
对于负实数,需要对不等式进行适当调整。
n维均值不等式的证明过程
n维均值不等式的证明过程n维均值不等式是数学中的一个重要不等式,它描述了一组n个非负实数的算术平均值与几何平均值之间的关系。
下面是n维均值不等式的证明过程:1.假设有n个非负实数x1, x2, ..., xn。
2.定义算术平均值A和几何平均值G:-算术平均值:A = (x1 + x2 + ... + xn) / n-几何平均值:G = (x1 * x2 * ... * xn)^(1/n)3. 考虑函数f(t) = ln(t),其中t是正实数。
这是一个凸函数,即对于任意的实数a和b以及0 ≤ λ ≤ 1,有f(λa + (1-λ)b) ≤ λf(a) + (1-λ)f(b)。
4. 应用Jensen不等式(凸函数不等式):-对于任意的正实数x1, x2, ..., xn和权重w1, w2, ..., wn,满足w1 + w2 + ... + wn = 1,有f(w1x1 + w2x2 + ... + wnxn) ≤ w1f(x1) + w2f(x2) + ... + wnf(xn)5. 将权重设置为1/n,即w1 = w2 = ... = wn = 1/n,代入Jensen 不等式:f((x1 + x2 + ... + xn) / n) ≤ (1/n)f(x1) + (1/n)f(x2) + ... + (1/n)f(xn)6. 由于f(t) = ln(t),所以上述不等式可以写为:ln((x1 + x2 + ... + xn) / n) ≤ (1/n)(ln(x1) + ln(x2) + ... + ln(xn))7. 对上述不等式两边同时取指数,得到:(x1 + x2 + ... + xn) / n ≤ (x1 * x2 * ... * xn)^(1/n)8. 由于x1, x2, ..., xn是非负实数,所以上述不等式成立。
综上所述,经过上述证明过程,我们得到了n维均值不等式的证明。
这个不等式表明,对于任意n个非负实数,它们的算术平均值不会超过它们的几何平均值。
算术—几何平均值不等式的证法
算术—几何平均值不等式的证法记A、B两个集合的元素分别为$a_1,a_2,...a_n$和$b_1,b_2,...b_m$,则几何平均值不等式的证法有以下几种:一、全等不等式若A集合的平均数$\frac{\sqrt[n] {a_{1} a_{2} \cdots a_{n}}}{n}$大于B集合的平均数$\frac{\sqrt[m] {b_{1} b_{2} \cdots b_{m}}}{m}$,则有$\sqrt[n] {a_{1} a_{2} \cdots a_{n}} >\sqrt[m] {b_{1}b_{2} \cdots b_{m}}$,若A集合的平均数$\frac{\sqrt[n] {a_{1} a_{2} \cdots a_{n}}}{n}$小于B集合的平均数$\frac{\sqrt[m] {b_{1} b_{2} \cdots b_{m}}}{m}$,则有$\sqrt[n] {a_{1} a_{2} \cdots a_{n}}<\sqrt[m] {b_{1}b_{2} \cdots b_{m}}$二、非全等不等式若$c_i$为正数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2} \cdotsa_{n}}}{n} > \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m}}{c_1 + c_2 + \cdots +c_m}$,若$c_i$为负数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2} \cdotsa_{n}}}{n} < \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m}}{c_1 + c_2 + \cdots +c_m}$三、全小或全大不等式若$c_i$ 为大于0的数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2} \cdotsa_{n}}}{n} \ge \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m}}{c_1 + c_2 + \cdots + c_m}$,若$c_i$ 为小于0的数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2}\cdots a_{n}}}{n} \le \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m}}{c_1 + c_2 +\cdots + c_m}$四、主子不等式若$c_i$为正数,$d_i$为负数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2}\cdots a_{n}}}{n} > \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m + \sum_{i=1}^{m} d_i}}{c_1 + c_2 + \cdots + c_m + \sum_{i=1}^{m} d_i}$。
均值不等式
均值不等式xx年xx月xx日contents •均值不等式的定义•均值不等式的性质•均值不等式的证明方法•均值不等式的扩展•均值不等式的应用实例目录01均值不等式的定义•均值不等式(Mean Inequality)是指在实数范围内,任何一个数的平方与它的算术平均数的平方之差,等于0。
也就是说,对于任意实数x,有x^2=(x-x)^2=0。
什么是均值不等式•均值不等式的常见形式是:对于任意实数a和b(a≥0,b≥0),有√a≥b。
这个不等式表示,当a和b都是非负实数时,a的算术平均数大于等于b的几何平均数。
均值不等式的形式•均值不等式的证明方法有多种,其中一种是利用微积分中的积分函数。
设f(x)=x^2,则f'(x)=2x,令f'(x)=0,得x=0,则f(x)在x=0处取得极小值0。
因此,对于任意实数a和b(a≥0,b≥0),有√a≥b。
均值不等式的证明02均值不等式的性质算术平均数与几何平均数之间的关系:$AM \geq GM$均值的不等式性质:$\frac{a+b}{2} \geq \sqrt{ab}$均值不等式的形式二次幂和不等式当且仅当a=b时,均值不等式取等号。
一次幂和不等式当且仅当a+b为定值时,均值不等式取等号。
均值不等式的条件算术平均数的几何意义:长度为a和b的两线段的中点。
几何平均数的几何意义:面积的算术平均数。
均值的几何意义03均值不等式的证明方法总结词微积分方法证明均值不等式是通过研究函数的单调性和极值,证明在不同情况下,变量的和至少等于其平均值。
详细描述首先,定义一个实值函数 $f(x)$,并设其最小值 $m$ 和最大值 $M$ 存在。
由极值定理可知,对任意 $x_1, x_2$ 有 $[f(x_1) + f(x_2)]/2 \geq m$。
由此得出,对任意正整数 $n$,都有 $[f(x_1) + f(x_2) + \ldots + f(x_n)]/n \geq m$利用微积分知识证明矩阵相乘的性质证明均值不等式是通过利用矩阵相乘的顺序无关性,将矩阵相乘转化为向量点积,再利用柯西不等式证明。
几个常用不等式证明不等式方法辛
不等式是高等数学中的一个重要工具。
运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。
这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。
几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。
2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。
3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。
4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。
《平均值不等式》课件
详细描述
赫尔德不等式是数学分析中一个非常有用的工具,它 在解决一些数学问题时具有广泛的应用。这个不等式 可以用来证明一些重要的数学定理,如AM-GM不等 式和Holder不等式。赫尔德不等式在优化理论、概率 论和统计学等领域也有着广泛的应用。
详细描述
切比雪夫不等式表明,对于任何随机变量X,其概率分布 P(X)满足:P(|X - E(X)| ≥ k) ≤ Var(X) / k^2,其中E(X) 是X的期望值,Var(X)是X的方差,k是任意正实数。这个 不等式在概率论和统计学中有着广泛的应用,如大数定 律、中心极限定理等。
赫尔德不等式
总结词
01
平均值不等式的性 质
平均值不等式的传递性
总结词
如果$a_1, a_2, ..., a_n$和$b_1, b_2, ..., b_n$都是正数,且$a_1/b_1, a_2/b_2, ..., a_n/b_n$是递增(或递减)的,那么 $frac{a_1+a_2+...+a_n}{b_1+b_2+...+ b_n} geq frac{a_1}{b_1} geq frac{a_2}{b_2} geq ... geq frac{a_n}{b_n}$(或$leq$)。
01
平均值不等式的应 用
在数学中的应用
解决最值问题
平均值不等式可以用来解决函数的最值问题,通过比较函数在不同区间的平均值和极值,可以找到函数的最小值或最 大值。
证明不等式
平均值不等式可以用来证明一些数学不等式,例如通过比较不同项的平均值和最小值,可以证明一些数学序列或函数 的不等式关系。
均值不等式公式完全总结归纳
均值不等式公式完全总结归纳均值不等式是数学中常用的一种不等式,它可以用来比较数列或者函数中数值的大小关系。
均值不等式有很多种形式,常用的有算术均值不等式、几何均值不等式、调和均值不等式以及均方根不等式。
下面将逐个进行详细介绍:1.算术均值不等式:算术均值不等式又称为平均不等式,它是最基本的均值不等式。
对于非负实数a和b,算术均值不等式的表达式为:(a+b)/2≥√(a*b)其中,等号成立当且仅当a=b。
2.几何均值不等式:几何均值不等式也是比较常见的一种不等式。
对于非负实数a和b,几何均值不等式的表达式为:√(a*b)≤(a+b)/2其中,等号成立当且仅当a=b。
3.调和均值不等式:调和均值不等式用来比较两个正实数的大小关系。
对于正实数a和b,调和均值不等式的表达式为:2/(1/a+1/b)≤(a+b)/2其中,等号成立当且仅当a=b。
4.均方根不等式:均方根不等式是一种用于比较多个非负实数大小关系的不等式。
对于非负实数a1, a2, ..., an,均方根不等式的表达式为:√((a1^2 + a2^2 +... + an^2)/n) ≥ (a1 + a2 + ... + an)/n 其中,等号成立当且仅当a1=a2=...=an。
以上四种形式的均值不等式都是基于平均值的概念推导出来的。
它们在数学中有广泛的应用,例如在证明其他不等式时常常被用到。
需要注意的是,以上只是四种常见的均值不等式形式,实际上还存在很多种不同形式的均值不等式。
比如幂均值不等式、可重均值不等式等,它们在一些特定的条件下有着重要的应用。
总结起来,均值不等式是数学中非常重要的一类不等式,它包含了算术均值不等式、几何均值不等式、调和均值不等式以及均方根不等式等形式。
这些不等式在数学推导和证明过程中发挥着非常重要的作用。
常用均值不等式及证明证明
常用均值不等式及证明证明常用的均值不等式有以下几个:1.算术均值-几何均值不等式:对于任意非负实数$a_1,a_2,...,a_n$,有$\dfrac{a_1 + a_2 + ... + a_n}{n} \geq \sqrt[n]{a_1 a_2 ... a_n}$证明:设 $S = \dfrac{a_1 + a_2 + ... + a_n}{n}$,则 $a_1 + a_2+ ... + a_n = nS$。
由均值不等式 $a_1 + a_2 + ... + a_n \geq n \sqrt[n]{a_1a_2 ... a_n}$,将等式两边同时除以 n 得到$S = \dfrac{a_1 + a_2 + ... + a_n}{n} \geq \sqrt[n]{a_1a_2 ... a_n}$2.二次均值不等式(柯西-施瓦茨不等式):对于任意实数$a_1,a_2,...,a_n$和$b_1,b_2,...,b_n$,有$(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2) \geq (a_1 b_1 + a_2 b_2 + ... + a_n b_n)^2$证明:设$x=(a_1b_1+a_2b_2+...+a_nb_n)^2$,$y=(a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2)$。
对于任意非零实数$t$,考虑函数$f(t)=t^2y-x$。
由于 $f(t)$ 是一个二次函数,且 $f(t) \geq 0$,则 $f(t)$ 的判别式不大于 0。
即 $4y(a_1 b_1 + a_2 b_2 + ... + a_n b_n)^2 - 4y(a_1^2 +a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2) \leq 0$。
简化之后得到 $(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2+ ... + b_n^2) - (a_1 b_1 + a_2 b_2 + ... + a_n b_n)^2 \geq 0$,即所证明的不等式。
常用均值不等式及证明证明
常用均值不等式及证明证明概念:1、调和平均数:⎪⎪⎭⎫ ⎝⎛+++=n a a a nHn 111212、几何平均数:()n n a a a Gn 121 =3、算术平均数:()na a a A n +++=21n4、平方平均数: na a a Q n22221n +++=这四种平均数满足Qn An Gn H ≤≤≤n+∈R n a a a 21、、、 ,当且仅当n a a a 21=== 时取“=”号均值不等式的一般形式:设函数()rr nr r n a a a x D 121⎥⎦⎤⎢⎣⎡+++= (当r ≠时);()()nn D 121a a a x =(当=r 时)(即()()n nD 121aa a 0 =则有:当r=-1、1、0、2注意到Hn ≤Gn ≤An ≤Qn 仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2) 由以上简化,有一个简单结论,中学常用2211222b a b a ab b a +≤+≤≤⎪⎭⎫⎝⎛+均值不等式的变形:(1)对实数a,b ,有a b2b a22≥+ (当且仅当a=b 时取“=”号), ab 20b ,a 22>>(2)对非负实数a,b ,有02≥≥+ab b a ,即()02a ≥≥+ab b(3)对负实数a,b ,有 02-<<+ab b a(4)对实数a,b ,有()()b a b b a --a ≥(5)对非负实数a,b ,有02a 22≥≥+ab b(6)对实数a,b ,有ab b a b 22a 222≥+≥+(7)对实数a,b,c ,有3c b a 2222c b a ++≥++(8)对实数a,b,c ,有acbc ab c b a 222++≥++(9)对非负数a,b ,有()43a 222b a b ab +≥++(10)对实数a,b,c ,有33a abc cb ≥++ 均值不等式的证明:方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等用数学归纳法证明,需要一个辅助结论。
均值不等式的多种证明方法许兴华数学
均值不等式是数学中常见的一类不等式,它指出了一组数的平均值和它们的其他性质之间的关系。
在本文中,我们将介绍均值不等式的多种证明方法,并以许兴华数学中的相关内容为例加以说明。
1. 均值不等式的定义均值不等式是数学中一类具有广泛应用的不等式定理,它描述了数列的平均值与其他性质之间的关系。
一个常见的均值不等式是算术平均数与几何平均数之间的关系,即对于任意非负实数集合,它们的算术平均数大于等于几何平均数。
2. 均值不等式的证明方法均值不等式的证明方法有多种,其中比较常见的方法包括数学归纳法、几何法、代数法等。
下面我们将分别对这些方法进行介绍,并结合许兴华数学中的相关例题进行说明。
2.1 数学归纳法证明数学归纳法是一种常用的数学证明方法,它通常用于证明对于一切自然数n成立的命题。
在均值不等式的证明中,数学归纳法可以用于证明一些形如An≤Bn的不等式,其中n为自然数。
对于n个非负实数的情况,可以使用数学归纳法证明它们的算术平均数不小于几何平均数。
许兴华数学中的例题:证明n个非负实数的算术平均数不小于几何平均数。
解:首先证明n=2的情况成立,即对于两个非负实数a和b,有(a+b)/2≥√(ab)。
然后假设对于n=k的情况成立,即对于k个非负实数成立均值不等式,即(k个非负实数的算术平均数不小于几何平均数)。
那么对于n=k+1的情况,我们可以通过考虑第k+1个数与前面k个数的平均值的大小关系,来证明均值不等式对于n=k+1的情况也成立。
2.2 几何法证明几何法是另一种常用的证明方法,它通常通过在平面几何图形上进行推理,来证明一些数学定理。
在均值不等式的证明中,几何法可以用于证明一些形如a²+b²≥2ab的不等式。
在许兴华数学中,可以通过在平面上绘制平行四边形、三角形等几何图形,来证明一些均值不等式。
3. 结语以上,我们介绍了均值不等式的多种证明方法,并结合许兴华数学中的相关内容进行了说明。
均值不等式作为数学中的重要概念,在不同的数学领域都有着重要的应用,它的证明方法也有很多种。
均值不等式的证明方法及应用word文档良心出品
均值不等式的证明方法及应用摘要均值不等式在不等式理论中处于核心地位,是现代分析数学中应用最广泛的不等式之一。
应用均值不等式,可以使一些较难的问题得到简化处理。
本文首先系统全面地总结了均值不等式的十种证明方法,其中包括柯西法、数学归纳法、詹森不等式法、不等式法、几何法、排序法、均值变量替换法、构造概率模型法、逐次调整法、泰勒公式法;其次, 结合相关例题给出均值不等式在证明不等式、比较大小、求最值、证明极限的存在性、判断级数敛散性、证明积分不等式方面的应用。
关键词:均值不等式;数学归纳法;最值;极限;积分不等式页20共页1第PROOFS AND APPLICATIONS ON A VERAGE VALUE INEQUALIT YABSTRACTAverage value inequality occupies a core position in inequality theory and is one of themake inequality can modern mathematics. Using average inequalities most widely used insome difficult problems simple. In this paper, ten proof methods of average value inequalityinduction, mathematical method, summarized, including Cauchy are first systematicallyJensen inequality, inequality method, geometry method, sorting method, variable substitutionadjustment successive model method, constructing method of average value, probabilitymethod, Taylor formula method, respectively. Secondly, we give applications of average valueinequality combining the corresponding examples on comparing the size, solving maximumand minimum, proving the existence of the limit, judging convergence of series and provingintegral inequality.Key words average value inequality; mathematical induction; maximum and minimum;:limit; integral inequality页20共页2第目录前言--------------------------------------------------------------------- 41 均值不等式的证明方法--------------------------------------------------- 51.1 柯西法------------------------------------------------------------ 51.2 数学归纳法-------------------------------------------------------- 61.3 詹森不等式法------------------------------------------------------ 71.4 不等式法---------------------------------------------------------- 71.5 几何法------------------------------------------------------------ 81.6 排序法------------------------------------------------------------ 91.7 均值变量替换法---------------------------------------------------- 91.8 构造概率模型法---------------------------------------------------- 91.9 逐次调整法------------------------------------------------------- 101.10 泰勒公式法------------------------------------------------------ 102 均值不等式的应用------------------------------------------------------ 122.1 均值不等式在证明不等式中的应用----------------------------------- 122.2均值不等式在比较大小问题中的应用--------------------------------- 132.3 均值不等式在求最值问题中的应用----------------------------------- 132.3.1 均值不等式求最值时常见错误 --------------------------------- 14 2.3.2 均值不等式求最值“失效”时的对策 --------------------------- 16 2.4 均值不等式在证明极限的存在性时的应用----------------------------- 172.5 均值不等式在判断级数敛散性中的应用------------------------------- 192.6 均值不等式在证明积分不等式中的应用------------------------------- 193 结论------------------------------------------------------------------ 21参考文献:--------------------------------------------------------------- 22 致谢-------------------------------------------------------------------- 23页20共页3第前言不等式在数学的各个领域和科学技术中都是不可缺少的基本工具, 而均值不等式是重中之重. 通过学习均值不等式,不仅可以帮助我们解决一些实际问题,还可以培养逻辑推理论证能力和抽象思维能力,以及养成勤于思考、善于思考的良好学习习惯. 因此,研究均值不等式的证明方法及应用,是一个既有理论意义又有广泛现实意义的问题.均值不等式的证明及运用均值不等式来解决数学中的某些问题,在数学研究中历历可见. 如,比较大小、求函数的最值、证明不等式常利用均值不等式的方法进行解答.均值不等式还是高等数学中最基本的运算之一,作为最基本不等式,在解决高等数学问题中也发挥着重要的作用. 运用均值不等式可以使复杂的问题简单化,繁琐的问题清晰化.??1最先运用了均值不等式,证明了球和圆柱的相关问题.此后科著名数学家阿基米德学家们对均值不等式的证明方法进行了深入的研究,并在此基础上把均值不等式应用到了其他领域. 当前, 我国许多学者对均值不等式的证明方法及应用进行了大量的研究??8??142?.如,陈益琳在学生利用均值不等式解题时遇到的常见问题作了总结性的工作.??9冉凯对均值不等式在数学分析中的应用做了探讨. 均值不等式在解决许多问题中发挥着重要的作用.本文将对均值不等式的证明方法及应用进行归纳和总结.页20共页4第1 均值不等式的证明方法. ,我们给出均值不等式首先是个正数,则定理1 设a,...,,aan n12a??a?a??n12,1?1aaa??n n21n.上式当且仅当时等号成立a?aa??n12我们把以后简称均值不等式. 上述不等式我们称之为算术—几何平均不等式,a??a?a n12分别记做个数的算术平均数和几何平均数,和分别叫做这aaa?n n n12n??????)aa?AGAaa(G.式即为和,(1-1)nnnn.下面给出均值不等式的几种证明方法柯西法1.12. ,由于.,得有当时0?a0,a?a?2aa(a?a)??0a2n?21212211)aa??a)?(a?a?a?a?(a,当时4?n42241331aaa4aa?aa?2aa?4aa?2a.4433423112142)?aa?aaa?a)?(?(a?a?时,当8?n85413627.aaaa?8aaaa?a4aaaa?4aaa8448541123747825663n令次之后将会得到, 这样的步骤重复a?a??a??n1221?A?aa,a?a,a?;a???a?2nnnn?111?n2n有1nn A)?nnA?(2?1nA?aa?(aAa?a)aA??222nn1122n2即n n2?nna?a??a n12?a?aa.n n21n这个归纳法的证明是柯西首次提出的,我们将它称之为柯西法.页20共页5第1.2 数学归纳法证法一当时,不等式显然成立. 2n?假设当时,命题成立. kn?则当时,1k?n?a?a??a?a11?k2k.,a?aG?a?A1k?1K?1?2K?1k11k?因为具有全对称性,所以不妨设ai a?min{a|i?1,2,,k,k?1}a?max{a|i?1,2,,k,k?1}.,ii11k??????AA0a?a?aa?A?.于是以及显然 ,,1?11kK?1?K1k?K?11A(a?a?A)?aa. 1kKK?1?111?k?1所以(a?a??a?A)AA?kA(k?1)121?K1k?1K?1KK?1???A?1?K kkk)(a?a?Aa??a?2?11kKk?1.=)A?a??aa?(a k1K1k?112?k?k k?aa(a?a?AA)A,得即两边乘以1Kkkk??1112?1?KK?1?1k??GaAaa(aa)aaA(a??A)?.2K?k1k112kK?1k?11k?1?1K?A?G.从而,有11K??K??aGa)?A(. 所以,由数学归纳法,均值不等式对一切成立,即n nn 证法二当时,不等式显然成立;2?n假设当时成立.kn?k1?G?G?k?(k?1)a,于是则当有1n?k?k时,1??1kk?1k1k?111G?1)a?(k1k?1k?)??G(GaG(G?) kk22k1k?1kk?1k?k a?(k?1)Ga?(k?1)G11k??k11?1k?1k?)??)(A?(G .kk2k2k2k?G?(k?1)A?(k?1)GG?A.,所以所以1?k1?1k?k1?1?kk页20共页6第当且仅当且时等号成立. G1)(k?k?G?aa?G?1?k?1kkk?1k??.G a A(a)?由数学归纳法知,均值不等式对一切成立,即n nn1.3 詹森不等式法f(x)xII,对任意)若的凸函数为区间,上式引理1(Jensen不等?in???,则,且1?)n1,?0(i?2,,ii1?i nn????x)()f(?fx (1-3)iiii1i?i?1成立.下面利用詹森不等式证明均值不等式.a?0(i?1,2,n,)令由,于易令 ,,知在是凸函数.)(0,f(0)x)ln f(x)??x??(x?i1?,1有下式,则由引理?i na?a??a1ln(?n12.)a??ln?(ln a?ln a)?n21nn则?a?a?a11a ln(n21,)a ln(a(ln)?a?ln a?)?a?ln nn2121nnn因此1a??a?a a ln(n21)a?ln(a),nn21n即a?a??a n12,a?aa?n n21n aa?a??.当且仅当时等号成立n121.4 不等式法x?1?ex进行推导在均值不等式的证明中,可以运用一个特殊的不等式.xx e)?ef(x?f(x)应用迈克劳林展开式并取拉格朗日余项得:设,对1?xx2x1?xe?e?, 2页20共页7第x?.当因此, 时,等号成立,, 其中, .. x1e??00xx?00???1x?. 下面给出均值不等式的证明过程n?0?x.,使取一组数,.令A(1?x)a?xn1,2,,k?knkkk1?k x,可得全为零时,取等号)则由(e??(1x)x k kk111nnn??nx???k,AeAG?(a)??(1?x)A?nn??nknknn??1k?k?1k?1)G(aA(a)?.所以nn 1.5 几何法x ex G?y)e(G,可见这条切线,,作函数的图像它是凸曲线,并在点处作切线e?y n n G na ea i Gi .所因此,可以得以到见在函数的下面(图),0?e?)n,i?1,2,3,(11?n G n)??aa?a(ea n12nA eaea Gnnn21?nA?G e)((e?()?)?,,即且从上述证明中可知,,于是n nn G GGG nnnn G??a?a?a.时,等号成立当且仅当nn121-1图页20共页8第排序法1.6aaaaaaaaa n12112?n1211??xx??x?x,取其中的一个,做序列: ,…,,n112n?n1n2?GGGG nnnnaxaaxx nn2211???1?b?xxb?xb?,则,…,,,…,,排列. :n11n1?2n GbbGbG n2n1nn111???0?0x?x??x?则由排序原理可知不妨设..n12xxx2n1xxxx111n321??????x???x??n?x , 21n xxbxbbb2n3n112aaa aa??a?n21n????n21,,即aa?a?n n12GGG n nnn)(a(a)?GA.所以nn 1.7 均值变量替换法. 本节运用数学归纳和变量替换相结合的方法证明均值不等式. 易证时,不等式显然成立2n?. 假设当时,不等式成立kn?1?k?x)1,?A(i?2,,nx?axx必有一个,不全为零设则当,则1?n?k0?设时,.1ik?iii i1i?x?x?0, ,另一个为负,不妨设 ,由于为正)?x?A(A?x)Aaa?(?x)(A?x1i2?k?11211k?1211kk?从而(A?x?x)?a??a?A k?131k?12?(A?x?x)aaa k1k?11k42?3k?1kk1?Gaa1?k21??aaa.kk14?3k AA1k?k?1?1k?1k,即 .所以GA?GA?1?1kk?1?1k?k??a)?G(Aa aa?a??0x?成立.,)时取等号故原不等式当且仅当易证,(时即n12inn1.8 构造概率模型法首先给出证明过程中要用到的一个引理.页20共页9第有则存在,变量,并且数学期望引理2 设是一个随机EXX??22?,.41)(?EXEX)EX?E(ln X ln1.其中,建立概率模型,设随机变量的概率分布为,n,i?1,2,X0?a?)?aP(X ii n,由引理2可知111nnn???aaaa,,ln??ln aa lnln n n12iii n nn1ii?1?i?1a??a?an12.成立即a?a?a n n12n1.9 逐次调整法}a?min{a}a?max{a,a,...,aa易见中必存在最值数,不妨设,. in221i1a?(a?a)a22121不变.,但是增大.于是,用,即取代AGaa,a]?a[nn122122n)?a)(a(a?a11?2121a????(a?a),i3n n22n1i?)aa)(a?(a?2121a?a?aaa? .nn3n1n222n因此,次(有限次对于各个).,这种代换至多进行1-n aa?221)?aa??AAA?G?aaa?(A.nnnn2nn3nnnn12G?Aa?a??a时,当且仅当,取等号.即n1nn21.10 泰勒公式法1x log?(x)fa?1,x?0)(0?x处展开,有,将在设,则0?)??f''(x)xf(a02ln ax''(xf)2'0)?x)?(x)x?f(x)(x?xxf()?f(.00002因此有?',n2,)b),(i?1,?x(a,a?a,)xx)(x?()f(fx)?(x?f,n1,取000i0i n1?i nnn111???'a)(i?1,2,,?(fa()?()a?f)(aan)f.从而iiiii nnn1i?11i?i?页20共页10第??????'a()a)a)?(?a?f(a)?nf((a)?fnf故,iiiiii nnn11i??1i??11ii?1?ii1nn111)??a?a(a??n12aaa nnnnnn111)loglog???log?(log)(f()a?af,即.因此有n n21iiaaaa nnn11i?i?1111)a?a?(a?)a(a???a nn12n12)a(a?a)(a?aa1)?log?log(0?a loglog?,即 ,亦即nn n12n12aaaa na?a??a n21.,故有)1,n2,,0,a(?i?aa?a?n in12n页20共页11第2 均值不等式的应用2.1 均值不等式在证明不等式中的应用一般不等式的证明,常常考虑比较法,综合法,分析法,这是高中比较常用的方法,但有些不等式运用上述方法不好入手,故考虑均值不等式或者均值不等式与综合法相结合,这样处理,常常使复杂问题简单化,从而达到证明的目的.下面举几个例子予以说明.111. 且.求证例1已知为互不相等的正数,?b?c??a?c,a,b1abc?abc1111/b?1/c1/a?1/c1/a?1/b111???b??c??????a.证明bcacab222abc.故原不等式得证22b?a?b?1?aba?.证明例22222ab?2b??ba2b2a1??a1?.,证明由均值不等式得,,????2222ba??ab??1ab?原不等式得,即有,以上三式相加得,. bab?a?a?b1??22.证1,两弦和的半径为均与直径例3设圆交,记与和的交o CD?45CDEFEFABAB 2点分别为和Q,求证 .1?PD?QF2PC?QE?2P1?2图证明如图,设为弦的中点,连接,,则△为等腰直角三角形,POMCOCDMOM?12且.MOMP?222222222CO2?MO?)MC?MC)?(MPMCPDPC??(?)?MCMP?2(?MP)2(页20共页12第211??.??2??22??122. 同理,??QEQF2由均值不等式得,2222QF?PCPD?QE?QFQE?PD??PC?222222)??PDQF)?((PCQE?211?122.??22.即,原不等式得证1?QE?2PD?QF2PC? 2.2均值不等式在比较大小问题中的应用准确巧妙地运用均值不等式是快速解决这比较大小问题是高中数学中常见的问题,.类问题的关键ba?1之间试判断若,,,,例4lg R)Q?(lg a?lg b?bp lg a??lg RP,Q,1a?b?22.的大小关系由均值不等式,得解1.Pb?)b?lg a?lg Q?(lg a?lg21a?b.Q??lg b)abR?lg?lg?(lg a22.即由于,所以不能取等号,Pa?bQ?R?ba?,2.3 均值不等式在求最值问题中的应用是重要知识点解决一些取值范围问题时运用非常广泛,均值不等式在求函数最值,达到解,,我们应因题而宜地进行变换,并注意等号成立的条件在实际应用问题中之一.熟练运用该,利用熟悉知识求解是常用的解题技巧,,题的目的变换题目所给函数的形式.,对于提高思维的灵活性和严密性大有益处技巧例5求下列函数的值域:页20共页13第112;(1) (2). y?y?3x?x?2xx21122?x3x? =6y?3?2,解 (1)因为. 所以,. 值域为)6,+?[22xx2211?xy??2x??2时,(2)当. 0?x xx111-2?x??)?y?x??2???(x值域为,故时当,.??)]?[2,(-?,-20x?xxx . 的最大值求函数例6若,)x3x(8?3f(x)?2?0?x)3xx?(8?3????xf,的最大值是.解因为, 所以,故4x(8?3x?3fx) ??20??x24.使r h 和底面半径的比为何值时,例7制作容积一定的有盖圆柱形罐头, 当圆柱高)用的材料最省? (不计加工损耗VVV2V322222??????, 解 ,设圆当且仅当rr2???2?rh22r?Vr??32?2?S rrrr233???即圆柱形的高与底面此时有,故即 , 时, 材料最省. h2rrV?2?r2:1?h:r.使用的材料最省时,半径之比为2:1均值不等式求最值时常见错误2.3.1;(3)定正;(2)运用均值不等式解题是一项重要内容,运用这种方法有三个条件:(1)或不等式之间进行缩小, .在此运用过程中,往往需要对相关对象进行适当地放大、相等.,而且错误不易察觉,在此过程中,学生常常因为忽视条件成立而导致错误传递等变形.,就这一问题列举几个例子进行说明因此1??. 求的值域例81y?x??x1?x我们常常写成在解题时,分析111??31????1??12x??yx?1?x,1?1x?x?1x1????y?3,与1x?忽视均值不等式中,虽然.故但的积是常数,不一定是正数1?x1?x.下面给出正确解法因此解法是错误的的各项为“正”致错, .页20共页14第111???11?3??1?2y?x??x?x?1,当且仅时解当,当1 ?xx?11x?1x?1,即时等号成立; ?1x?2?x x?1111???1??x?1?y??x?211?1?x??,,所以,当时1?y?1?x1?x1?x1?x????. ?????,?13,当且仅当时取等号,所以原函数的值域为0?x2?5x的最小值.例9求?y24x?分析在解题时,我们常常写成22?4?1?5x1x122?2??2xy??x4??4?,22224?4?44xxx?x?1 22??x4,即2.可是在当且仅当中,这是不可,所以的最小值是3x??y2?y24?x能的,所以等号不成立,这个问题忽视均值不等式中等号成立条件.故原式的最小值不是2.下面给出正确解法.11122?y?x4??y??ty?t在(),中,令, 则解在易证4??tx2t?tt24x?152,,即当且仅当,取时上递增,所以的最小值是,?2?y2x??4)??[2,0xt??222号.”“?例10若正数满足,求的最大值.xyy,x6y?x?22yx???即,仅当且常常写成,当且解分析在题时,我们y?x6?x?2y?xy?? 2??xy其实很有道理, 4.初看起来可得时取号, 将其代入上式,,的最大值为2??xy”?“在用均值不等式求最值时,在各项为正的前提下,应先考虑定值,再考虑等号是否成立.2y?x??xy这个问题忽视了均值不等4.的最大值不是所以不是定值中但在,,y?x?xy??2??.下面给出正确解式中积或和是定值的条件.页20共页15第2392y1x?1??取此时)当且仅当时(解因, y?2x?3,yx?”“????2y?xxy???22222??9??. , 所以号?xy max22.3.2 均值不等式求最值“失效”时的对策.运用均值不等式是求最值的一种常用方法, 但由于其约束条件苛刻,在使用时往往顾此失彼,从而导致均值不等式“失效”. 下面例说几种常用的处理策略. 4.,求的最大值例11已知?xy?lg 1?0 ?x lg x从而有,因为,所以,解00??lg xx lg? 1?0 ?x??4??,44????y??2?lg x??lg x??14y??4?x??lg. 即即,当且仅当时等号成立,故?x 4y??max lg x1004??4lg x为定值,本题满足但因为,,所以此时不能直接应用均0?lg x 10 ?x?lg x值不等式,需将负数化正后再使用均值不等式.1????x0的最大值.例12求)x(1 ? 2y?x??2??21x1?2211x???????解,??12x1?2x???2x??y?x??8222??11y?x?. 故当且仅当,即时等号成立.x2?1?2x max48本题不是定值,但可通过平衡系数来满足和为定值.)2x?x?(164?y?a.13已知求的最小值,例0b?a???bba?646464??3??ba?b?b??3?y?a?6412?a?b,,解当且仅当??????bb?a?bbbaa?by?12.时等号成立,即.故4? 8a?b min页20共页16第64?a.但可通过添项、减项来满足积为定值不是定值本题 ,??bba?4?.,求的最小值例14 已知?x?y sin?0 ?x x sin33141??. 解5????y?sin x?sin x???2sin x??1x sin x sinsin x sin x??31. .故且,即当且仅当时等号成立5y?3??x sin1x?sin min x sin x sin44故可通过拆项来满足等号., 本题虽有为定值但不可能成立?sinsin x?xxx sinsin.成立的条件25xx??45???xf______.则15 已知,有例?x4?2x255??????. BAC1. 最小值最小值最大值1 最大值)D(442??21?x?2151?4x?x1?????????x?2x????1f,,解当且仅当??2x????2xx?2x2?42?22x??? . 时等号成立.故选即)(D3?x便可创造出使用均值不等式但对函数式进行分离,本题看似无法使用均值不等式,.的条件 2.4 均值不等式在证明极限的存在性时的应用需证明数列单调极限概念是高等数学中的重要概念,在证明数列极限的存在性时,.下面举例说明而在此过程中便运用了均值不等式的相关内容及数列有界..1n.例16证明重要极限的存在性e)?lim(1?n??n1n.}单调递增先证数列证明 {)?(1n1??11?1?a?a?1?aa??,,则由均值不等式,令得1n?n21n11111?(1?)?[(1).1???(1))?1](1?.nn1nnn?1n?个n个n11n?1)?(1?,即1n?nn?1页20共页17第11n?1n.所以)?? (1?)(1nn?11n}单调递增{.所以数列)(1?n1n}有上界{.再证数列)(1?n11nk?1({为正整数)}以下面的证明可以看到一个更强的命题:数列)(1?)??(1Mk nk为上界.11n?1k?1., 当先证不等式, 时)(1?)??(1k?n nkk设,.1a?a????a?a?a n2k?11?2k k?1k1knk1n?k?)?1?([(k?1)??(n?k)]?,由均值不等式1n?k?1n?1k?1n?1kn11n?1k1?n?11k?. ,因此,所以)?)?)?()(1(1(?k?1n?1nk11111nn?1nk?1.所以,,其次由有)?(1?)?)???1?1(1(1(1?)nnnnk11k?1n},的上界{.均是数列当时,任取一个正整数)M?(1?)(1?kn?k kn111nnk?1仍然成立时,不等式又数列{.}单调递增,所以,当)??(1(1?)?)(1kn?nnk111nnk?1(为正整数). 因此,对于数列 {恒有}, 任)(1?(1?))??(1)(n1,2?k nnk11k?1n}的上界均是数列意选定一个值,{.)?(1M?(1?)k kn11nn} 极限存在{.极限值单调有界,由单调有界定理,所以数列{数列} )?(1(1?)nn1n.,即为e)?lim(1?e n??x1n?1}极限存在且其极限是证明数列{.例17)?(1e n1n?1}{(1?)x?.证明令n n n??11)(n?n?1n1n11?n2?nn?21n?1n??([)(?)?]??().x2n?n?1n?nx1?21?nn????xx0?x有下界,则数列. 又,所以数列单调减少.nnn页20共页18第111??n1n?)1?(?)((l)?im?1?l1im. ??nnn??????nn11n, 所以因为和的极限都存在)?(1(1?)nn111??n1n?e?(1?(1?lim(1?)))??lim. ??nnn????n??n11?n 数列{.}极限存在且其极限是因此, )?(1e n n1?n lim.18 证明例??n:)有由均值不等式(1-1证明1????1?n?1n n n?n?n?n?11??n??个?2n2n?n?22, 1???nn2nn n?1lim?n?0?1.从而有 ,故n??n2.5 均值不等式在判断级数敛散性中的应用均值不等式的应用很广泛,在证明级数的敛散性时也有很重要的应用.????aaa.收敛,证明级数已知正项级数也收敛例191n?nn1n??n11a?0,由均值不等式,有因为,,已知级数证明)aaa?(?a)(n?1,2,n1n?1nn?n2????111????)aaa(a?a从而级数与都收敛,收敛,所以级数再由比也收敛,?aa收敛较判别法,知级数.1nnn?n?1n2221n??1n?1n?1n?1n?nn?12.6 均值不等式在证明积分不等式中的应用积分不等式是一种特殊的不等式,而均值不等式又是证明不等式的重要方法.因此,在积分不等式的证明中我们自然会想到运用均值不等式来进行证明. ??ba,上是正值可积的, ,在20例证明函数且,则nk?1,2,(f)x b0?a?页20共页19第??nnnn????.1111bbbb??????dxf(x)dx)?f()ff(x)?dx(x)dxxf(x)?f(x??????n1n221??????aaaa a??a?an12,证明有利用.a?a?a n n21n)xf()(xf(x)f???dx)xf()dx)dx(ffx(x n12aaa??f(x))xf(x)f(1??n.n21?bbbn12??????bbb n???dx))f(xdxff((x)dxx????n21aaa111????????nnn??)xf()x)f(xf(??b???????n12于是dx?????????bbba???dxx)ff(x)dxf(x)dx(??????????????n21aaa???????dxx(x)dx)f(ff(x)dx1??n21aaa,1?????bbb????bbb n???dxxdx)f(f(x)dx)f(x????n21aaa1111bbbb????????nnnn????. 即dx(x)f)?f(x)ff(x)dx?(xf(x)dx)?dxxf(??????nn2112??????aaaa1?1dx)(x ln f?.在上非负连续,证明例21设dx)(?xfe)(fx[0,1]00证明由题设知在上可积,将等分,作积分和n()fx[0,1][0,1]1nnn i1ii1??????)?lim(f)f(xdx. ,)f)?limlnln f(x)dx?lim(ln f(??nn nnn0??n0??n??n??1i?1i?1?i11nn11????n??)e?ef lim(?. 所以??1?i0??n??n??1?i a?a?...?a n12?a?aa得由均值不等??n i?1)f(limln n??i??n?dxx)ln f(n式,???.n n12n1nn i1i??n1dxx)f((f)?lim)f(lim???nnn0????nn??1?i1i?1?1dx)ln f(x?.故dx)e?(fx00页20共页20第3 结论均值不等式是数学中的重要内容,对培养数学思维发展有很大帮助.本文重在梳理均值不等式的相关证明方法和应用.如,运用均值不等式时,一定时刻谨记一正、二定、三相等原则,具体问题具体分析,有时可以通过转化达到运用均值不等式解题的目的.本文系统地归纳总结均值不等式的各种证明方法及其在具体解题分析和论证推理过程中的应用.通过本论文的撰写,更深刻地理解均值不等式在证明问题和解题中的重要作用.页20共页21第参考文献:[1]中译本(朱恩宽、李文铭等译):《阿基米德全集》[M]. 西安:陕西科学技术出版社,1998.[2]陈侃.算术-几何平均值不等式的证明[J].巢湖学院学报,2008,6(3):129-130.[3]熊桂武 .概率方法在不等式证明中的应用[J].重庆师范大学学报,2003,12:89-91.[4]敦茂.算术平均值与几何平均值不等式的各种证法[J].云梦学刊,1980,1(3):65-80.[5]Norman schaumberger.A coordinate approach to the AM-GM inequality[J].Mathematics Magazine,1991,64:273.[6]刘鸿雁.由Jensen不等式导出某些重要不等式[J].成都大学学报,2003,22(3):32-35.[7]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004.[8]陈益琳.高中教学导练(高二)[M].北京:冶金工业出版社,2004.[9]冉凯.均值不等式在数学分析中的应用[J].青海师专学报,1997,4(2):35-38.[10]赵建勋.浅谈均值不等式的应用[J].高中数学教与学,2011,5(3):7-10.[11]蓝兴苹.均值不等式的推广与应用[J].云南民族大学学报,2006,15(4):22-24.[12]高飞、朱传桥《高中数学教与学》[M]. 济南:山东科学技术出版社,2007.[13]章国凤.均值不等式在高等数学中的应用[J].广西教育学院学报,2008,05(1):151-152.[14]陈复华.均值不等式在微积分中的应用及其它[J].湖北民族学院学报(自然科学版),1994,2(3):88-89.页20共页22第致谢毕业论文暂告收尾,这也意味着我在鞍山师范学院四年的学习生活既将结束。
高中数学均值不等式证明过程
高中数学均值不等式证明过程在高中数学中,均值不等式是一种重要的数学定理。
它是用来比较几个数的平均值的大小关系的定理。
下面我将通过证明过程来介绍这个定理。
我们来看均值不等式的基本形式。
对于任意给定的正实数a1,a2,…,an,它们的算术平均数A和几何平均数G满足以下不等式:A ≥ G其中,算术平均数定义为这些数的和除以它们的个数,几何平均数定义为这些数的乘积的n次方根。
现在我们来证明这个不等式。
假设n=2,也就是只有两个数a1和a2。
根据算术平均数和几何平均数的定义,我们有:A = (a1 + a2) / 2G = √(a1 * a2)为了证明A ≥ G,我们可以将不等式两边平方,得到:A^2 ≥ G^2展开计算后得到:(a1 + a2)^2 / 4 ≥ a1 * a2化简后得到:a1^2 + 2a1a2 + a2^2 ≥ 4a1a2继续化简得到:a1^2 - 2a1a2 + a2^2 ≥ 0这是一个平方差的形式,可以写成:(a1 - a2)^2 ≥ 0由于平方的结果永远是非负的,所以不等式成立。
因此,当n=2时,均值不等式成立。
接下来,我们来证明当n=k时,均值不等式也成立。
假设对于任意的k个正实数a1,a2,…,ak,均值不等式成立。
即:(a1 + a2 + … + ak) / k ≥ √(a1 * a2 * … * ak)现在,我们考虑n=k+1的情况。
即有k+1个正实数a1,a2,…,ak,ak+1。
我们可以将a1,a2,…,ak的和记作S,即S=a1 + a2 + … + ak。
对于这k+1个数,它们的算术平均数记作A,几何平均数记作G。
根据定义,我们有:A = (S + ak+1) / (k + 1)G = √(a1 * a2 * … * ak * ak+1)为了证明A ≥ G,我们可以将不等式两边平方,得到:A^2 ≥ G^2展开计算后得到:[(S + ak+1) / (k + 1)]^2 ≥ a1 * a2 * … * ak * ak+1化简后得到:[(S + ak+1)^2] / (k + 1)^2 ≥ a1 * a2 * … * ak * ak+1再继续化简得到:(S^2 + 2Sak+1 + ak+1^2) / (k + 1)^2 ≥ a1 * a2 * … * ak * ak+1接下来,我们将右边的乘积展开,得到:a1 * a2 * … * ak * ak+1 = (a1 * a2 * … * ak) * ak+1然后,我们利用假设,将左边的不等式中的(S^2 + 2Sak+1 + ak+1^2) / (k + 1)^2替换成(S / k) * (S / k) + 2(S / k) * (ak+1 / k) + (ak+1 / k)^2,得到:(S / k) * (S / k) + 2(S / k) * (ak+1 / k) + (ak+1 / k)^2 ≥ (a1 * a2 * … * ak) * ak+1继续化简得到:(S / k) * (S / k) + 2(S / k) * (ak+1 / k) + (ak+1 / k)^2 ≥ a1 * a2 * … * ak * ak+1这是一个平方和的形式,可以写成:[(S / k) + (ak+1 / k)]^2 ≥ a1 * a2 * … * ak * ak+1由于平方的结果永远是非负的,所以不等式成立。
选修4-5 第二节 平均值不等式与不等式的证明
[冲关锦囊] 1.利用综合法证明不等式时,应注意对已证不等式的使 用,常用的不等式有:(1)a2≥0;(2)|a|≥0;(3)a2+b2≥2ab;
2 2 a+b a + b 2 2 它 的 变 形 形 式 又 有 (a + b) ≥4ab , 2 ≥ 2 等;
a+b 1 (4) 2 ≥ ab(a≥0,b≥0),它的变形形式又有 a+a≥2 b a b a (a>0),a+b≥2(ab>0),a+b≤-2(ab<0)等.
由 θ 为锐角可得 sin θ>0,cos θ>0 sin θ cos θ 由基本不等式,得 cos2 θ + sin2 θ ≥2 2 2 = ≥2 2.所以 λ 的最大值为 2 2 sin2 θ
答案:2 2
sin θcos θ cos2 θsin2 θ
返回
[冲关锦囊] (1)利用平均值不等式求最大(小)值问题时要注意等号成
相结合,题目难度不大,属中档题.
返回
返回
一、平均值不等式 1.定理 1 设 a1,a2„,an 为 n 个正数,则 ; 等号成立⇔a1=a2=„=an.
a1+a2+„+an n ≥ a1a2„an n
返回
2.定理 2 设 a1,a2„an 为 n 个正数,则 n n ;等号成立⇔a1=a2=„=an. a1a2„an≥ 1 1 1 a +a +„+a
返回
2.分析法证明不等式的注意事项:用分析法证明不等式 时,不要把“逆求”错误地作为“逆推”,分析法的过程仅 需要寻求充分条件即可,而不是充要条件,也就是说, 分析法的思维是逆向思维,因此在证题时,应正确使用 “要证”、“只需证”这样的连接“关键词”.
返回
[精析考题] [例 4] 设 m 是|a|,|b|和 1 中最大的一个,当|x|>m 时,求
平均值不等式公式四个
平均值不等式公式四个
均值不等式是在中学时期是一个值得大家去深入学习的知识点,因为它经常出现在各大考试中,而且会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。
特别是在解决极值问题时,直接利用均值不等的推论比其它方法要方便许多。
我们所说的均值
此外关于均值不等式的证明方法有很多,例如数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:
(注:在此证明的,是对n维形式的均值不等式的证明方法。
)
用数学归纳法证明,需要一个辅助结论。
引理:设A≥0,B≥0,则不等式公式四个具体如下:
,且仅当B=0时取等号。
注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。
原题等价于:均值不等式公式四个该怎么用?均值不等式的证明方法时取等号。
值得一提的是利用琴生不等式法也可以很简单地证明均值不等式,同时还有柯西归纳法等等方法。
建议感兴趣的小伙伴们可要深入学习,
多多咨询老师,让自己掌握更多的解题方法与思路。
均值不等式公式四个该怎么用?均值不等式的证明方法时取等号。
当n=2时易证;
假设当n=k时命题成立。
均值不等式及其应用
均值不等式及其应用一、均值不等式定义1.均值不等式:如果,0a b >,那么2a b +≥,当且仅当a b =时,式中等号成立. 对于均值不等式的理解:(1)对任意两个正实数,a b ,2a b +叫做,a b叫做,a b 的几何平均值.(2)均值不等式可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.2.均值不等式的两种证明:(1)代数法:20,0,0222a b a b a b ++->>∴==≥,即2a b +≥.当且仅当a b =时,式中等号成立. (2)几何法:如图,AB 是圆O 的直径,点Q 是AB 上任一点,,AQ a BQ b ==,过点Q 作PQ 垂直AB 于Q ,连接,AP PB .易证Rt APQ Rt PBQ ∽,那么2PQ AQ QB =⋅,即PQ =22AB a b PO +==.根据三角形三边关系可得:PO PQ ≥,即2a b +≥当且仅当点Q 与圆心O 重合,即a b =时,等号成立.几何意义可简记为:“半径不小于半弦”要点提炼:(2)等号成立的条件:当且仅当a b =时取等号.常见基本不等式1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2称为正数a ,ba ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.3.利用基本不等式求最值已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大). 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三相等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值1、基本题型例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x2、常见解题技巧:技巧一:凑项(不正时)例1:已知54x <,求函数14245y x x =-+-的最大值。
关于平均数的不等式证明(老黄学高数第70讲)
1、证明:(1)当an>0时,(n=1,2,…),An≥Gn. 证:当n=1时, An=a1=Gn;
当n=2时, An=
当a1=a2时, An=Gn.
1、证明:(1)当an>0时,(n=1,2,…),An≥Gn. 证:当n=1或n=2时,已证! 运用数学归纳法,设当n=k时,命题成立,即
≥a1·a2·…·ak; 当n=k+1时,记S=a1+a2+…+ak,则
Hn=Gn=An=Qn.
老黄学高数
第70讲 数列前n项
平均数的不等式证明
常见的平均数: 1、算术平均数:An= 2、调和平均数:Hn=
3、几何平均数:Gn= 4、平方平均数:Qn=
若an>0,(n=1,2,…), 1、求证: Hn≤Gn≤An≤Qn; 2、试问在什么条件下,Hn=Gn=An=Qn.
设a≥0,b≥0(或a+b≥0),则(a+b)n≥an+nan-1b. 由牛顿二项展开式易证!
命题得证!
≥a1·a2·…·ak+1.
1、证明:(2)当an>0时,(n=1,2,…),Gn≥Hn. 证:(2)由(1)的结论有:
∴Hn= 命题得证!
=Gn ;
1、证明:(3)当an>0时,(n=1,2,…),Qn≥An. 证:由
得:An= 命题得证!
=Qn.
2、在什么条件下,Hn=Gn=An=Qn. 解:当n=1或a1=a2=…=an时,
常见均值不等式
四个常用均值不等式
均值不等式公式如下:
不等式在初中、高中甚至竞赛中都是比较相对综合、有难度的一块内容,经常会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。
公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
基本性质
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
&
即有 *+ & 处取得 /
& ’( ) *( & ’( ) *( 9 ( 9 $%+ , $ &’ ( ,8 $%+ $ &’ ( , , # ) )
而且等号成立 # 当且仅当 + *+ *1*+ *+ /因此 ( 5 & & ’(
7 ) *( 7 ) *( 9 ( 9 $ %+ , 78 $ %+ 7 , ) )
& & 2即 & & + 7 & 取得最大值为 *2于是有 5 4 % % $% 6 # * 7 !* 9 .% & 8% + , & / / / 0 + / 0 + & & , , 2 取得最大值的原因时 计算得 < = > < = 注 文献 : 在说明 (在 *2#2# + ; $# # 0 1 ,及 , & & & < % < % < % % / ? / / , , < = < = > , 从而得出 @ 但该计算是错误的 # 实际 上 ,0 " 而 从而无 法得出 0" # A" 4 # 0 * B? # = / < % % < % % < % / ? / ? / , A" 4 @=
J 两个平均值不等式的一阶导数证法
定理 J 设 K 则 M* A N+ A ! A OA A QRA L P P L
P L N+ P L N+ P L N+ P L N+ + T P W W # SK $ T PU # VK $ A # SK T P $ X# SK $ T P # W U+ $ ( L L L L
* G B" # O G OAP Q# * G 0" # * G 01 Q# * G 0P Q4
* R S -
* R V -
* R Z -
* R @ -
其中 J 当G 得到加权调和平均值 \ 当G 得到加权几何平均值 \ 当G 0 .F 4 01+时 # 0"时 # 0+ & /
/ 0+
时# 得到加权算术平均值 9 * G * G 定理 ] H& 是G 的连续函数 9当 F 就变为下述定义 , * # 0$0F 0+时 # # 4 % F H& * % F + & 定义 ] 设 % 是正数的有限数列 # 是广义实数 # 则G 阶平均值定义为 0* # $# % % G + &
第! !卷
第 "期
华 侨 大 学 学 报 #自 然 科 学 版 $ $ & . / 0 1 ’ & 2 3. 1 4 5 1 &60 5 7 8 / 9 5 : ;# )1 : . / 1 ’ < = 5 8 0 = 8
( ! ! )& ( " %& ’ ( ! * * + . ’
! * * +年 ,月 文章编号
阶平均值 C D
调和 3 几何和算术平均值 # 仅仅是下面将要定义的更一般的平均值的特殊情形 9 定 义 E 对于 正数列 % 正 权数 F 和广义实 数 G 阶加权平均 # $# # # $# 0* 0* # % F % F G + & + & 值定义为
G G + K .F M7 % / / * G 0+ H& * % # F -0 / L J & N I J * G / 8% * % # F -0 T H& /U / 0+ I * G H& * % # F -0 WX Y * % # $# % + & I * G H& * % # F -0 WS [ * % # $# % + & & I & + 7 J & &a学 学 报 * 自 然 科 学 版+
; C C 5年
函数 ! 即对于 "#$% &’ $(# 有
* % + * ’ + ), * ! . +& ), * ! . + /
7
作B 辅助函数为 C D E C F D G L $ + # + # 1# + # M ,* + + 1+ $ %+ , 6 ( 5 7 ( 5 7’ M )2 I
) *(
$ 5 ,
L N L I 从而 令N 解得 + *" # *" # *+ *1*+ * # ( 5 7 N + N M 7 ) J $ + # + # 1# + ,* + + 1+ ( 5 7 ( 5 7 7 I I I 有唯一可能的极值点 $ # # 又 J在有界闭区域 O 2I *" # 1# , 6 $ # # 1# , %+ !" # ) + + + + + ( 5 7 ( 5 ) *( 7 7 7
+ T Z 由假设 # 所以 [ 的最小值大于或等于 * YOYK $ T \^ K OK $ ( $ T U# $ A C从而 A Z SK Z VK [ Z + Z L L L N+ L N+ Z Z Z
Z
收稿日期
! * * * > + ! > + ?
作者简介
宋海洲 # 男A 讲师 + a , + > $ A
* ^ S -
* ^ V -
* ^ Z -
H * % -0 WS [ * % # $# % * G 0P Q4 * ^ @ + & 当G 得到调和平均值 # 当G 得到几何平均值 \ 当G 则可以得到加权算术 01+时 # 0"时 # 0+时 # 平均值 4
_ 平均值的不等式推广形式和其证明
* 1+ * " * + 定理 +的结论是 H& 我们有更为一般的结论 9 * 6H& * 6H& * 9实际上 # % % % * G * G 定理 C 若 % 则 H& 否则 # 是 关于 G 的严 格递增 0% 0$0% 0% # * # 0% 4 # % F H& * % F + , & " "
Z Z [ [ 时A] 而当 K 时A] 因此 A ^ ^ # Y+ $ K OK _* ‘ N\# YOYK $ Y# Y+ $ K OK M* ( Z K Z + Z Z Y+ + Z + Z ] K ] K Z Y+ Z Y+
取得唯一最小值 A 该唯一最小值为 Z ^ N\# YOYK $ Y# Y+ $ K OK OK # # [在 K K Z K K K Z Y+ + Z + Z + ! Z +
9 9 ( 9 由假设 $ 故 0 的最小值大于或等于 " 从而 0 $ $ , , , 6 , 8$ , # # !" /而 0 的 %+ & %+ & %+ & ) ) ) ) *( ) *( ) *( & & &
最 小值要等于 " 当且仅当 + 这时最小值在 + # *+ *1*+ *$ , *+ *+ *1 %+ & ( 5 & 成立 / & ’( ) ( 5
对一切自然数 7成立 # 而且等号成立 # 当且仅当 + *+ *1*+ 6 ( 5 7
证法 A的修正 = 均值不等式文献 > ? @
H @ 证法 > /设 B C D E C F D G 7 ) *(
%+ *" # J $ + # + # 1# + ,* + + 1+ )2 I ( 5 7 ( 5 7 * K6
&
&
等号成立 # 当且仅当 + *+ *1*+ / ( 5 7
9 ( 9 9 ( 9 显然成立 /假设 7 有$ 而且等 *(时 # ( 8$ ( , *&时 # , 8$ , $ 5 ,当 7 + + %+ & %+ & ( ( ) ) ) *( ) *( 9 号成 立 # 当且仅当 + 构 造 函 数 0$ /当 7 , * $%+ $ ’( , , 2 *& ’ (时 # & + ) (* + 5* 1 * + & & ’( ) *( & ’( & &
! G 文献F 给 出了下 面两 个有关平 均 值的 不 等 式 F 的 "种 证 明 方 法 C本 文 修 正 了 其 证 法 " + G 乘数法 $ 并给出了这两个有关平均值的不等式的只用一元函数一阶导数的证明方 # A H 1 I / 1 0 I 8 法 C进一步 A 给出了有关平均值的不等式推广形式及其证明 C
+ * * * > ? * + " # ! * * + $ * " > * ! ! + > * @