齿轮传动设计(很实用的!!)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锻钢 中碳合金钢
35SiMn、40MnB、40Cr等
低碳合金钢
20Cr、20CrMnTi等
铸钢 铸铁
ZG310-570、ZG340-640等 HT350、QT600-3等
如何选材?
塑料、夹布胶木等
考虑工作条件、载荷性质、 经济性、制造方法等
《机械设计》
§3-3 齿轮材料、热处理及精度
二、热处理(heat treatment)
§3-3 齿轮材料、热处理及精度
一、对齿轮材料性能的要求
齿轮的齿体应有较高的抗折断能力,齿面应有较强的抗点蚀、 抗磨损和较高的抗胶合能力,即要求:齿面硬、芯部韧
二、常用齿轮材料 钢材韧性好,耐冲击,可通过热处理和化学处
理来改善其机械性能,最适于用来制造齿轮
金属 材料
非金属 材料
45钢
最常用,经济、货源充足
设计齿轮——设计确定齿轮的主要参数以及结构形式
主要参数有:模数m、齿数z、螺旋角β以及齿宽b、中心距a、 直径(分度圆、齿顶圆、齿根圆)、变位系数、力的大小
《机械设计》
§ 3-1 齿轮传动概述
齿轮类型: — 外形及轴线: — 根据装置形式:
开式齿轮
齿轮完全外露,润滑条件差,易磨 损,用于低速简易设备的传动中
闭式齿轮
齿轮完全封闭,润滑条件好
半开式齿轮 有简单的防护罩
《机械设计》
§ 3-1 齿轮传动概述
— 根据齿面硬度(hardness):
硬度:金属抵抗其它更硬物体压入其表面的能力
硬度越高,耐磨性越好
P
硬度检测方法: 布氏硬度法(HBS) 洛氏硬度法(HRC)
D
d
软齿面 硬齿面
齿面硬度 ≤ 3百度文库0HBS
《机械设计》
§3-2 齿轮传动的失效形式和设计准则
4、齿面磨损
磨损后齿廓形状破坏,齿厚减薄 是开式传动的主要失效形式 措施:改善润滑和密封条件
5、齿面塑性变形 机理:
若齿面材料较软 且载荷及摩擦力很大 齿面金属会沿摩擦力的方向流动
现象: 主动轮在节线附近形成凹沟;
从动轮则形成凸棱
措施:提高齿面硬度,采用油性好的润滑油
《机械设计》
§3-2 齿轮传动的失效形式和设计准则
二、齿轮传动的设计准则(design criteria)
主要针对轮齿疲劳折断和齿面疲劳点蚀这两种失效形式
齿轮工作时,要保证足够的齿根弯曲疲劳强度和齿面接触疲劳强度
1、闭式软齿面 主要失效:疲劳点蚀 先按sH≤sHP算出齿轮主要尺寸, 再校核sF≤sFP
调质 软齿面
正火
用于中碳或中碳合金钢,如45、40Cr、35SiMn等。因为硬 度不高,故可在热处理后精切齿形,且在使用中易于跑合
能消除内应力、细化晶粒、改善力学性能和切削性能。机 械强度要求不高的齿轮可用中碳钢正火处理。大直径的齿 轮可用铸钢正火处理
表面淬火
用于中碳钢和中碳合金钢,如45、40Cr等。表面淬火后轮 齿变形小,可不磨齿,硬度可达52~56HRC,面硬芯软, 能承受一定冲击载荷
措施:增大模数(主要方法)、增大齿根 过渡圆角半径、增加刚度(使载荷分布均 匀)、采用合适的热处理(增加芯部的韧 性)、提高齿面精度、正变位等
疲劳折断是闭 式硬齿面的主 要失效形式!
《机械设计》
§3-2 齿轮传动的失效形式和设计准则
2、疲劳点蚀(Fatigue pitting)
产生机理:齿面受交变的接触应力
或 ≤ 38HRC
齿面硬度 > 350HBS
或 > 38HRC
P
120o
h
《机械设计》
§ 3-1 齿轮传动概述
§3-2 齿轮传动的失效形式和设计准则
一、齿轮传动的失效形式
1、轮齿折断(Tooth breakage)
◆ 疲劳折断
齿根受弯曲应力
初始疲劳裂纹
裂纹不断扩展
轮齿折断
◆ 过载折断 短时过载或严重冲击 静强度不够 全齿折断— 齿宽较小的齿轮 局部折断— 斜齿轮或齿宽较大的直齿轮
产生初始疲劳裂纹
润滑油进入裂纹并产生挤压
注意:
表层金属剥落 麻点状凹坑
◆ 凹坑先出现在节线附近的齿根表面上,再向其它部位扩展
◆ 其形成与润滑油的存在密切相关
◆ 常发生于闭式软齿面(HBS≤350)传动中
◆ 开式传动中一般不会出现点蚀现象 (磨损较快)
措施: 提高齿面硬度和质量、增大直径 (主要方法)等
《机械设计》
§3-3 齿轮材料、热处理及精度
特点及应用:
调质、正火处理后的硬度低,HBS ≤ 350,属软齿面,工 艺简单、用于一般传动
注意:当大小齿轮都是软齿面时,因小轮齿根薄,弯 曲强度低,故在选材和热处理时,小轮比大轮硬度高: 30~50HBS
表面淬火、渗碳淬火、渗氮处理后齿面硬度高,属硬齿 面。其承载能力高,但一般需要磨齿。常用于结构紧凑 的场合
第3章 齿轮传动设计
§3-1 概 述
优点:
◆ 传动效率高
缺点:
◆ 工作可靠、寿命长
◆ 制造成本高
◆ 传动比准确
◆ 精度低时振动和噪声较大
◆ 结构紧凑
◆ 不宜用于轴间距离较大的传动
◆ 功率和速度适用范围很广
《机械设计》
§ 3-1 齿轮传动概述
学习本章的目的
本章学习的根本目的是掌握齿轮传动的设计方法,也 就是要能够根据齿轮工作条件的要求,能设计出传动可靠 的齿轮
硬齿面
渗碳淬火
渗碳钢为含碳量0.15 % ~0.25%的低碳钢和低碳合金钢, 如20、20Cr等。齿面硬度达56~62HRC,齿面接触强度高, 耐磨性好,齿芯韧性高。常用于受冲击载荷的重要传动。 通常渗碳淬火后要磨齿
表面氮化 一种化学处理方法。渗氮后齿面硬度可达60~62HRC。氮
化处理温度低,轮齿变形小,适用于难以磨齿的场合,如 内齿轮。材料为:38CrMoAlA.
按接触疲劳强度设计,校核弯曲疲劳强度
2、闭式硬齿面 主要失效:轮齿折断 先按sF≤sFP算出齿轮的主要尺寸, 再校核sH≤sHP
按弯曲疲劳强度设计,校核接触疲劳强度
3、开式齿轮
主要是:齿面磨损 其次是:轮齿折断
按弯曲疲劳强度设计,不需校核接触疲劳强度 把模数增大10%左右考虑磨损的影响
《机械设计》
§3-2 齿轮传动的失效形式和设计准则
《机械设计》
§3-2 齿轮传动的失效形式和设计准则
3、齿面胶合
产生机理:
高速重载 摩擦热使油膜破裂 齿面金属直接接触并粘接 齿面相对滑动 较软齿面金属沿滑动方向被撕落
热胶合
低速重载
不易形成油膜 表面膜被刺破而粘着
现象:齿面上相对滑动方向形成伤痕 措施:采用异种金属、降低齿高、提高齿面硬度
冷胶合
(配对齿轮采用异种金属时,其抗胶合能力比同种金属强)