电动汽车拆解003 空调压缩机

电动汽车拆解003 空调压缩机
电动汽车拆解003 空调压缩机

【电动汽车拆解】(三)

空调压缩机:不断推进电动化

小野时人三电开发本部全球开发统括室室长

三电(SANDEN)从1971年开始生产车载空调压缩机。如今已在欧洲、北美和亚洲拥有生产基地,掌握着全球25%的份额。

受全球环保规定和高燃效技术发展的影响,在汽车行业中,发动机的小型化和HEV(混合动力车)·EV(电动汽车)化的速度正在加快。

关于应对环保规定的办法,除了提高发动机效率、添设增压器来缩小发动机体积外,HEV还可尽量延长电机驱动时间,EV可在轻量化的同时配备高性能电池等。具体做法因汽车厂商而异。

备有3类压缩机

本公司的空调压缩机大致分为三类。

面向需要提高现有内燃机效率、实现小型化的汽车厂商,供应的是借助传统发动机皮带传动类型的压缩机。面向以发动机为主体、电机为辅的车辆(Mild- HEV)供应的是皮带传动和电机驱动兼顾的混合式压缩机。对于以电机为主体(Strong-HEV、EV)的车辆,则供应电动压缩机。(图1)。

本公司的电动压缩机开发始于1986年。开发伊始虽然也经历过摸索阶段,但是在向推进车辆电动化的美国汽车厂商供货的过程中,产品化速度非常之快。1990年,电动车“EVS-10”在美国投入使用。当时就是本公司供应的电动压缩机,但产量还非常少,在成本、充电电池、基础设施的限制下未能普及。

当时的电动压缩机需要另配逆变器,成本昂贵,空间利用率也比较低。之后,本公司在电动压缩机与逆变器的一体化、压缩机构的高效化及小型轻量化等方面推进了开发。

对于2005年上市的本田“思域混合动力”车型,本公司以此前开发的电动压缩机为基础,又开发出了皮带传动与电机驱动兼顾的混合式压缩机(图2)。这种混合式压缩机能够在车内温度高、车速慢等空调负荷较高的情况下同时使用皮带传动和电机驱动,使制冷能力达到最大(图3)。

图1:空调压缩机的类型包括使用发动机驱动的类型,同时使用发动机和电机驱动的混合动力型,单纯使用电机驱动的类型3种。

图2:本田2005年9月上市的“思域混合动力” (a)车辆。(b)混合式压缩机。同时支持发动机驱动与电机驱动。

图3:混合式压缩机的驱动分为三种:

(a)发动机运转带动压缩机工作时。

(b)空调专用电机运转带动压缩机工作时。

(c)发动机用与电机用压缩机同时运转时。

而在空调负荷较低时,则可以区别使用皮带传动和电机驱动,在车辆停止时单独使用电机驱动,以最低限度的制冷性能抑制车内温度的上升。

最新型电动压缩机

本公司2009年开始向德国戴姆勒(Daimler)的高级混合动力车“S400”供应电动压缩机(图4)。S400的要求非常高,面临低电压驱动等众多难题。但戴姆勒对我们此前的电动压缩机开发进程以及运动型高级车“SL”上使用的皮带传动型压缩机的性能及质量给予了高度评价,因而采用了我们的产品。

图4:德国戴姆勒2009年6月上市的混合动力车“S400HYBRID” (a)机体,(b)发动机与电机部分。

压缩机中的电机使用钕磁铁,虽然是8.2kW功率,使用转数范围为700~9000rpm的高功率配置,而额定电压仅为120V(图5)。

图5:S400采用的电动压缩机(a)机体,(b)截面图。

通常以低电压实现高功率需要大电流,这样就会导致逆变器周围的电子部件成本上升,体积增大。

而此次开发过程中,电机尺寸、成本、噪声均得到了控制,齿槽转矩等特性在设计时也进行了综合考虑。特别是冷媒压缩部分沿袭了传统的皮带传动型的可靠性,采用了使用低压低温侧冷媒冷却逆变器的方式。

随着车辆电动化的全面展开,空调的电动化正在加速。本公司在全球最先向车辆供应的涡旋式压缩机虽然具备效率高、静音性高、驱动转矩变化小等车辆厂商要求的高水准,但不适合改变排放容积,进行精密控制的需求。

此次,在对压缩机进行电动化后,压缩机转数无需与发动机转数挂钩,可以使用电机达到所需转数。从而实现了与排放容积可变型压缩机相同的高效率、静音性能优良等特点,而且能够实施精密控制。

今后的HEV和EV将不再只是汽车厂商的战略车和高级车,还会向中小型的普及车发展。今后的电动压缩机需要实现更高程度的高效化、小型轻量化及低成本化(图6,7)。

图6:电动压缩机的发展现行的A型已向S400供应。B型除支持客户的CAN通信外,还减少了噪声的产生。新一代型通过实现对高输入电压的支持,缩小了机体体积。

而且,根据今后的环保规定,未来的HEV必须进一步削减CO

排放量。这就

2

要缩短发动机驱动时间、延长电机驱动时间。电机驱动时间的延长必然会缩短内燃机的工作时间,减少车辆产生的热量(排热)。

图7:电动压缩机的发展过程本公司于1986年开始开发电动空调压缩机。产品于上世纪90年代开始向“EVS-10”供应。之后,混合式产品于2004年投入量产,并向本田供应。今后,本公司计划对S400用型号进行小型及轻量化,向普及型混合动力车和电动汽车供应。

由于无法再利用排热制暖,因此,对于HEV和EV而言,高效制暖则是重大课题。

制暖效率存在课题

比方说,有实验结果显示,如果现在EV的续航距离为160km,那么,在使用加热器制暖的情况下,续航距离将会减半到80km。也就是说,制冷、制暖会在很大程度上限制EV车辆的商品价值以及用户的使用环境。

这无论对于整车厂商、还是对于空调设备厂商,都是非常紧迫的问题。要想解决这一问题,电池容量的提升、车辆动力效率的提升、空调效率的提升、新机构的采用必须同时达到较高水平。

对于空调设备厂商而言,包括压缩机、冷凝器、蒸发器、加热器铁芯等热交换器的小型及高效化,降低HVAC空气侧的损耗在内,需要在现有产品基础上进行改进的方面还有很多。

而且,如果不能增加新的机构、手法以及控制方式,从空调系统整体出发结合车辆状态进行控制的话,HEV和EV的商品价值将无以维系。

未来以利用热泵为目标

高效制暖方法有一般家庭使用的热泵。虽然将其配备在车辆上就可以解决问题,但实施起来却并不简单。对于住宅与车辆,其外部气体热负荷、负荷变化、

振动环境、空间效率等配置要求和使用环境不尽相同,在汽车上安装热泵非常困难。热泵系统的心脏部件——压缩机也必然置身于恶劣的使用环境中,还需要进一步改进。

除汽车设备业务外,本公司还通过独自的制冷制热技术,为自动售货机、商店、居住环境业务等多个领域开发出了相应的系统。

这些系统中广泛使用了热泵技术,除了与各种使用环境相对应,在简单的空调电路的基础上还采用了二级复合电路,加入了同时调节各个温度区域的技术。对于汽车,当务之急是对此类技术实施小型轻量化,开发廉价且环境耐受性优良的产品。

电动汽车拆解分析报告

电动汽车拆解分析报告 精品汇编资料 【电动汽车拆解】PCU(一):采用双面冷却构造实现小型化 电装已开始向丰田汽车的部分混合动力车型提供PCU(功率控制单元)。丰田汽车现在的混合动力系统全部为水冷式,而非空冷式。混合动力车在前格栅的发动机室内配置了不同于发动机用散热器的混合动力系统专用散热器。混合动力系统采用冷却水来冷却PCU和驱动马达。 图2:PCU(功率控制单元)主体由控制底板电路、双面散热的功率半导体元件、层叠型冷却器及电容器等构成。PCU内的功率半导体从两面进行冷却。过去采用的是单面冷却。 过去,丰田汽车的“普锐斯”及“皇冠Hybrid”等车型一直利用水冷单面冷却PCU内的功率半导体。 而“雷克萨斯LS600h”采用的最新PCU虽然同样是水冷式,但采用的是双面冷却构造(图1,2)。由于散热面积增大,因此比单面冷却更容易冷却。单位体积的输出功率比原来提高了60%。在相同的输出功率情况下,体积则可比原来减小约30%,重量减轻约20%。 PCU具有逆变器和升降压转换器的作用。逆变器具有将充电电池的直流电压转换成马达驱动用交流电压的功能以机将马达再生的交流电压转换成直流电压的功能。升降压转换器用来升高和降低充电电池供应给马达的电压。 向雷克萨斯LS600h等高功率混合动力车提供PCU,需要提高逆变器和升降压转换器的输出功率,也即需要增大电流。解决方法之一是增加PCU的功率半导体元件数量或使元件比原来流过更大电流。PCU存在问题是散热。现在的车载用功率半导体最高可耐150℃高温,因此需要采用始终将温度保持在150℃

以下的冷却结构。雷克萨斯LS600h需要提高PCU的性能,同时减小PCU尺寸。由于不能增加元件数量,因此采用了支持更大电流的功率半导体。 图3:过去的PCU构成(单面冷却)每个功率半导体元件流过200A,元件散热措施设想采用单面冷却时。 图4:新型PCU的构成(双面冷却)通过采用高性能功率半导体,每个元件流过300A以上的电流。采用支持大电流的元件,减少元件数量以实现小型化。通过双面冷却进行散热。( 这样,单面冷却就不足以解决大电流功率半导体的散热问题,因此采用了双面冷却结构。过去,每个元件可流过200A的电流,而雷克萨斯LS600h采用了每个元件可流过300A以上电流的高性能功率元件(图3、4)。由此逆变器和升降压转换器均减少了功率半导体的数量。新型功率半导体为富士电机元件科技制造的产品。(未完待续:特约撰稿人:金子高久,电装EHV机器技术部组长) 【电动汽车拆解】PCU(二):实现了与铅蓄电池相当的尺寸 雷克萨斯LS600h是在高级轿车“雷克萨斯LS460”基础上追加混合动力系统而成。如果是混合动力专用车,PCU的尺寸或许会更大一些,而雷克萨斯LS600h 最优先强调的就是要减小PCU的尺寸。LS460将置于车辆前部的铅蓄电池移至车辆后部,PCU的尺寸只能与空出的铅蓄电池容积相当。

电动车仪表盘拆装及维修方法

. 精选范本电动车仪表盘拆装及维修方法 电动车既方便又环保,近年来广泛采用作为出行的交通工具。但长时间的使用总会出现些故障从而进行维修。在维修上电动车仪表盘拆装及维修的方法都是必知项。跟随学校汽车专家一起来学习下吧。 常用仪表功能描述 电源指示:指示整车电源已经打开 电池电压:用发光二级管或电压表头指示电池的电压 欠压指示:指示电池是否低于正常使用值以下 过流指示:指示当前电机运行的电流超过了允许的最大连续供电电流 电机电流:显示电机运行的电流大小 行驶速度指示智能电动车"1:1助力"、"电动"、"定速"骑行状态 行驶速度当前行驶的整车速度(km/h) 灯具指示指示大灯、左右转向灯、刹车灯是否处于工作状态 累计里程指示电动车累计行驶的公里数 本次里程本次通电行驶的公里数 行驶时间本次通电行驶的时间(时、分、秒) 当前温度当前使用的环境温度 拆装注意事项 一般来说,指针类仪表的集成度比较低,电路的接线比较简单,仪表电路不依赖控制器电路。机械类仪表的故障则主要集中在引线或仪表头故障拆装时,电源的正负极不能搞错。液晶显示仪表最擅长的就是对各种数据,如时速、电池电压、行驶里程等的数字化精确显示。如果是涉及到显示驱动程序的软件与单片机的型号,这种仪表一旦出现故障,只能更换仪表总成了。 仪表板在拆装时,需要格外注意。一般来说需要参照其电路原理了解引线功能,注意引线的颜色和位置。一般仪表电路属于开放式电路,电路上一般集成了喇叭电路、转向和蜂鸣电路等,并形成了显示仪表板上高低压电路并存的情况。在拆装时,需要先拆掉电池,连接好引线后再将各种开关全部置于"关"的位置,利用万用表测量没有短路后,才能安装电池通电。

图解电动车电机拆卸换霍尔

图解电动车电机拆卸换霍尔无刷电机结构示意图:

1.将电机引出线的那一面螺丝全部拆下,找一块木板备用。电机盖最好做好盖和钢圈对应的原位置记号, 不然装上和原位置不对应,有的电机会扫膛的。

2.没拆螺丝那面向下,往木板上用力一敲,电机就脱离出来了。定子有磁性,用力轻的话,会被吸回去。

3.将盖拉出,方便换霍尔。转子线圈最好用软的东西垫着,如泡沫,布。不要把线圈上的铜线擦破皮 了。 4.用刀片将霍尔挖出并刮净槽中的胶质。涂入少量的AB胶,装入霍尔焊接。霍尔有字的为面,面向上,从左至右,1脚是正极,2脚是负极,3脚是信号输出。3个正极和3个负极各自并联,分别接红线和黑线,3根信号线分别接绿、蓝、黄线。通常三个有字的面朝上是60度角,中间那个面向下是120度角。有些电机则相反,具体可用修车宝检测角度。

5.检测电机霍尔好坏:将电机放在两凳上,用扳手固定轴心。接上霍尔插头,打开修车宝电源开关。稍微转一下电机即停,然后再转再停,如此循环,可看到第三行霍尔指示灯有序亮灭。如果一个或几个常亮或常灭,即可判断霍尔损坏。 电机霍尔角度检测:灯亮代表1,灯灭代表0。60度电机指示灯状态:100、110、111、011、001、000;120度电机:100、110、010、011、001、101。 从指示灯的亮灭情况可看到60度电机和120度电机的区别,就是60度电机有111和000两种状态,而120

度电机有010和101。因此,如果出现三个灯同时亮、同时灭的,这个电机就有可能是60度,否则为120度。 如果霍尔接错,也可能出现指示灯错乱而无法判断角度的情况,参考这个帖子:电动车换霍尔后用修车宝测不出电机相位角度是怎么回事?https://www.360docs.net/doc/6814025032.html,/bbs/thread-327168-1-1.html

电动汽车拆解3——空调压缩机

空调压缩机:不断推进电动化 三电(SANDEN)从1971年开始生产车载空调压缩机。如今已在欧洲、北美和亚洲拥有生产基地,掌握着全球25%的份额。 受全球环保规定和高燃效技术发展的影响,在汽车行业中,发动机的小型化和HEV(混合动力车)·EV(电动汽车)化的速度正在加快。 关于应对环保规定的办法,除了提高发动机效率、添设增压器来缩小发动机体积外,HEV还可尽量延长电机驱动时间,EV可在轻量化的同时配备高性能电池等。具体做法因汽车厂商而异。 备有3类压缩机 本公司的空调压缩机大致分为三类。 面向需要提高现有内燃机效率、实现小型化的汽车厂商,供应的是借助传统发动机皮带传动类型的压缩机。面向以发动机为主体、电机为辅的车辆(Mild- HEV)供应的是皮带传动和电机驱动兼顾的混合式压缩机。对于以电机为主体(Strong-HEV、EV)的车辆,则供应电动压缩机。(图1)。 图1:空调压缩机的类型包括使用发动机驱动的类型,同时使用发动机和 电机驱动的混合动力型,单纯使用电机驱动的类型3种。 本公司的电动压缩机开发始于1986年。开发伊始虽然也经历过摸索阶段,但是在向推进车辆电动化的美国汽车厂商供货的过程中,产品化速度非常之快。 1990年,电动车“EVS-10”在美国投入使用。当时就是本公司供应的电动压缩机,但产量还非常少,在成本、充电电池、基础设施的限制下未能普及。

当时的电动压缩机需要另配逆变器,成本昂贵,空间利用率也比较低。之后,本公司在电动压缩机与逆变器的一体化、压缩机构的高效化及小型轻量化等方面推进了开发。 对于2005年上市的本田“思域混合动力”车型,本公司以此前开发的电动压缩机为基础,又开发出了皮带传动与电机驱动兼顾的混合式压缩机(图2)。这种混合式压缩机能够在车内温度高、车速慢等空调负荷较高的情况下同时使用皮带传动和电机驱动,使制冷能力达到最大(图3)。 图2:本田2005年9月上市的“思域混合动力” (a)车辆。(b)混合 式压缩机。同时支持发动机驱动与电机驱动。 图3:混合式压缩机的驱动分为三种(a)发动机运转带动压缩机工作时。 (b)空调专用电机运转带动压缩机工作时。(c)发动机用与电机用压缩 机同时运转时。 而在空调负荷较低时,则可以区别使用皮带传动和电机驱动,在车辆停止时单独使用电机驱动,以最低限度的制冷性能抑制车内温度的上升。 最新型电动压缩机 本公司2009年开始向德国戴姆勒(Daimler)的高级混合动力车“S400”供应电动压缩机(图4)。S400的要求非常高,面临低电压驱动等众多难题。但戴姆

微型电动汽车的结构设计与拆装

2008级综合课程设计 题目:微型电动汽车的结构设计与拆装 组员: XXX(X班) XXX(X班) XXX(X班) XXX(X班) XXX(X班) XXX(X班) 指导老师: 苏航 付立军 赵秀春 二零一一年十二月十六日

目录 一目的 (1) 二文献概述 (1) 三微型电动汽车的结构设计 (2) 3.1 电力驱动系统 (3) 3.2电源系统 (4) 四拆装 (4) 4.1摩托车的“心脏”—发动机 (4) 4.2直流无刷电机 (5) 4.3铅酸电池 (6) 五总结 (7)

一目的 本次的综合课程设计主要目的就是把原来的沙滩四轮车改装为电动的四轮车,将沙滩四轮车的汽油发动机拆掉,用一个直流电动机代替作为驱动系统,再加上电瓶来供电,用一个电阻控制器作为调节电机快慢的控制系统,最后能使四轮车跑起来。大四上学期我们都学了电动汽车的基础知识,对电动汽车的结构与设计有了一定的了解,我们希望学与致用,同时锻炼自己的动手能力,也加强对电动车的了解。 二文献概述 汽车是现代社会的重要交通工具,为人们提供了便捷、舒适的出行服务,然而传统燃油车辆在使用过程中产生了大量的有害废气,并加剧了对不可再生石油资源的依赖。 在能源方面,目前世界汽车保有量约8亿辆,并以每年3000万辆的速度递增,预计到2020年全球汽车保有量将达到12亿辆,主要增幅来自发展中国家。 就整体而言,我国传统能源汽车的研发水平、自主创新能力,与世界水平相比仍有不小差距。但在新能源汽车方面,我国并不落后。进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。油电混合动力技术进入产业化,锂动力电池技术取得重大突破,车用燃料电池技术不断进步。 我国目前每天有超过9亿度低谷电,可供5000万辆左右电动汽车充电。我国锂资源、稀土资源和镁资源丰富,可以为电动汽车关键部件提供原材料资源保障。我国电动自行车、电动摩托车等轻型电动车保有量已超过5000万辆,在世界上遥遥领先,这为新能源电动汽车产业化奠定了良好基础。 我国政府高度关注电动汽车的研发和产业化。2005年国务院政府工作报告提出“要鼓励和发展清洁汽车”,《国民经济和社会发展第十一个五年规划纲要

众泰知豆电动汽车维修手册(下)

第五节、主要电器设备拆装及常见故障排除 一、分线盒 1、概述 分线盒总成是众泰·知豆电动汽车的关键部件,用于电能的分配,以及过流短路保护,对整车的安全运行起到重要作用。提供电机控制器及电机、DC-DC 转换器和空调系统等高压电器的电源输入,提供充电机至动力电池的充电输入。 2、分线盒总成的检修 注意:任何高压器件的检修或维修行为必须在断电为分钟后进行 1、拆除分线盒四个固定螺栓 ◎拧紧力矩:5N?m 2、将分线盒上盖拆除

3、检修方法及要求 序号检修项目检修方法要求 1 外观目测外观良好,无缺件、破损等不良 2 电缆目测电缆无破损,夹紧良好、无松动 3 紧固件目测各紧固件紧固良好,防松线无错位现象 4 密封橡胶件目测未发生氧化变性现象 5 线缆端接插件和端子目测外观良好,应无缺损、掉块、破裂、变形等不良4、清洁 用毛刷将分线盒总成内部的灰尘清除(必要时可以使用无水乙醇进行擦拭清洗)用毛刷将分线盒总成外部线缆的灰尘清除 5、密封件更换 拆下分线盒总成上盖后,将箱体盖端面密封圈拆下报废,将新的密封圈装入 箱体端面相应位置(装入过程中,可以使用适量的室温硫化硅橡胶对密封圈进行 固定) 6、熔断器更换 ①更换LET16 熔断器时,使用M6 扳手工具将固定熔断器的紧固件卸下并 更换上对应LET16 熔断器(更换前需要用多用表对熔断器进行导通测试,以确 定更换的熔断器合格),并按照 6 N?m 力矩要求紧固紧固件,标志防松标线。 ②更换更换TNN300 熔断器时,使用M8 扳手工具将固定熔断器的紧固件卸下,并更换上对应TNN300 熔断器(更换前需要用多用表对熔断器进行导通测试,以确定更换的熔断器合格),并按照12 N?m力矩要求紧固紧固件,标志防松 标线。

电动车仪表盘拆装及维修方法

电动车仪表盘拆装及维修方法 电动车既方便又环保,近年来广泛采用作为出行的交通工具。但长时间的使用总会出现些故障从而进行维修。在维修上电动车仪表盘拆装及维修的方法都是必知项。跟随学校汽车专家一起来学习下吧。 常用仪表功能描述 电源指示:指示整车电源已经打开 电池电压:用发光二级管或电压表头指示电池的电压 欠压指示:指示电池是否低于正常使用值以下 过流指示:指示当前电机运行的电流超过了允许的最大连续供电电流 电机电流:显示电机运行的电流大小 行驶速度指示智能电动车"1:1助力"、"电动"、"定速"骑行状态 行驶速度当前行驶的整车速度(km/h) 灯具指示指示大灯、左右转向灯、刹车灯是否处于工作状态 累计里程指示电动车累计行驶的公里数 本次里程本次通电行驶的公里数 行驶时间本次通电行驶的时间(时、分、秒) 当前温度当前使用的环境温度 拆装注意事项 一般来说,指针类仪表的集成度比较低,电路的接线比较简单,仪表电路不依赖控制器电路。机械类仪表的故障则主要集中在引线或仪表头故障拆装时,电源的正负极不能搞错。液晶显示仪表最擅长的就是对各种数据,如时速、电池电压、行驶里程等的数字化精确显示。如果是涉及到显示驱动程序的软件与单片机的型号,这种仪表一旦出现故障,只能更换仪表总成了。 仪表板在拆装时,需要格外注意。一般来说需要参照其电路原理了解引线功能,注意引线的颜色和位置。一般仪表电路属于开放式电路,电路上一般集成了喇叭电路、转向和蜂鸣电路等,并形成了显示仪表板上高低压电路并存的情况。在拆装时,需要先拆掉电池,连接好引线后再将各种开关全部置于"关"的位置,利用万用表测量没有短路后,才能安装电池通电。 山……东……万……通……汽……修……大……课……堂

特斯拉电驱动系统终极拆解篇(一)

特斯拉电驱系统终极拆解篇(一) 伴随着蔚来ES8出世,来自XPT智能化电动平台,采用了和特斯拉Model X类似的交流异步电机,电池、双电机布局和四驱都比较相仿,两者都采用了弹匣式可换电池技术,不得不佩服,蔚来其实还是做到了一个成功的“跟随者”,这样一来,国内各大BAT再次掀起一股探讨分解Tesla技术的热潮,站在巨人的肩膀上,看看到底有哪些技术值得我们学习的地方。 特斯拉电动汽车三大件(电池、电机、控制)在网上的拆解资料已不了,电池、电机拆解技术文章与视频相对较多,的在此不再详述,还是重点介绍一下电机驱动控制系统(MCU)。 一、特斯拉Model X与蔚来ES8整框架比较 1、Tesla Model X四驱方案

2、蔚来ES8四驱方案

二、特斯拉Model X 电驱动系统 上一代的Tesla采用的是后驱大圆桶式的控制器,各大网上阐述的资料较多,相对体积也较大和复杂,如下图所示:

现在重点讲的是新的一代电驱系统总成,前后驱基本一致只的悬挂上有区别,新一代电驱系统,它集成了电机、减速器、电控于一体,体积非常紧凑,电 机部分如西瓜般大小,电机功率可达300KW。电控制部分如下图:

1、控制器整体外形 下面就一层层来分解,大体分为三层:第一层为主控制部分,简称控制主板,MCU采用TI公司的TMS320F2611P8KO芯片,为了达到高速运行时快速强大的运算和处理能力,还使用了一颗ACTE的LA3P125VQG100芯片配合使用,确保系统的稳定可靠性,更详细的主板硬件下次单独拆解并出原理图。 主板正反面图如下:

第二层为驱动电路部分,简称驱动板。驱动板上电路包括电源转换及驱动电路,电源部分采用TDK变压器,输入电压为DC/DC电压12V;输出三路+15V 和-8V电压,供三相驱动IBGT芯片使用。 驱动电路部分,驱动IGBT模块采用INFIEON的1ED020I12F/A2芯片,驱动电流可达+2A/-2A,一共使用6颗芯片。采用推挽输出,更详细的驱动板下次单独详解。

电动汽车拆解1——PCU

PCU(一):采用双面冷却构造实现小型化 图1:混合动力车的系统构成(雷克萨斯LS600h)由充电电池(镍氢)、PCU(功 率控制单元)、驱动马达及发电机等构成。PCU具有升降压转换器和逆变器功能。 (点击放大) 电装已开始向丰田汽车的部分混合动力车型提供PCU(功率控制单元)。 丰田汽车现在的混合动力系统全部为水冷式, 而非空冷式。混合动力车在前格栅的发动机室内配 置了不同于发动机用散热器的混合动力系统专用散 热器。混合动力系统采用冷却水来冷却PCU和驱动 马达。 过去,丰田汽车的“普锐斯”及“皇冠Hybrid” 等车型一直利用水冷单面冷却PCU内的功率半导体。 而“雷克萨斯LS600h”采用的最新PCU虽然同 样是水冷式,但采用的是双面冷却构造(图1,2)。 由于散热面积增大,因此比单面冷却更容易冷却。 单位体积的输出功率比原来提高了60%。在相同的 输出功率情况下,体积则可比原来减小约30%,重 量减轻约20%。 PCU具有逆变器和升降压转换器的作用。逆变器具有将充电电池的直流电压转换成马达驱动用交流电压的功能以机将马达再生的交流电压转换成直流图 2:PCU(功率控制单元)主体由控制底板电路、双面散热的功率半导体元件、层叠型冷却器及电容器等构成。PCU内的功率半导体从两面进行冷却。过去采用的是单面冷却。(点击放大)

电压的功能。升降压转换器用来升高和降低充电电池供应给马达的电压。 向雷克萨斯LS600h等高功率混合动力车提供PCU,需要提高逆变器和升降压转换器的输出功率,也即需要增大电流。解决方法之一是增加PCU的功率半导体元件数量或使元件比原来流过更大电流。PCU存在问题是散热。现在的车载用功率半导体最高可耐150℃高温,因此需要采用始终将温度保持在150℃ 以下的冷却结构。雷克萨斯LS600h需要提高PCU的性能,同时减小PCU尺寸。由于不能增加元件数量,因此采用了支持更大电流的功率半导体。 这样,单面冷却就不足以解决大电流功率半导体的散热问题,因此采用了双面冷却结构。过去,每个元件可流过200A的电流,而雷克萨斯LS600h采用了每个元件可流过300A以上电流的高性能功率元件(图3、4)。由此逆变器和升降压转换器均减少了功率半导体的数量。新型功率半导体为富士电机元件科技制造的产品。(未完待续:特约撰稿人:金子高久,电装EHV机器技术部组长) 图3:过去的PCU构成(单面冷却)每个功率半导体元件流过200A,元件散热措施 设想采用单面冷却时。(点击放大)

电动汽车拆解003 空调压缩机

【电动汽车拆解】(三) 空调压缩机:不断推进电动化 小野时人三电开发本部全球开发统括室室长 三电(SANDEN)从1971年开始生产车载空调压缩机。如今已在欧洲、北美和亚洲拥有生产基地,掌握着全球25%的份额。 受全球环保规定和高燃效技术发展的影响,在汽车行业中,发动机的小型化和HEV(混合动力车)·EV(电动汽车)化的速度正在加快。 关于应对环保规定的办法,除了提高发动机效率、添设增压器来缩小发动机体积外,HEV还可尽量延长电机驱动时间,EV可在轻量化的同时配备高性能电池等。具体做法因汽车厂商而异。 备有3类压缩机 本公司的空调压缩机大致分为三类。 面向需要提高现有内燃机效率、实现小型化的汽车厂商,供应的是借助传统发动机皮带传动类型的压缩机。面向以发动机为主体、电机为辅的车辆(Mild- HEV)供应的是皮带传动和电机驱动兼顾的混合式压缩机。对于以电机为主体(Strong-HEV、EV)的车辆,则供应电动压缩机。(图1)。 本公司的电动压缩机开发始于1986年。开发伊始虽然也经历过摸索阶段,但是在向推进车辆电动化的美国汽车厂商供货的过程中,产品化速度非常之快。1990年,电动车“EVS-10”在美国投入使用。当时就是本公司供应的电动压缩机,但产量还非常少,在成本、充电电池、基础设施的限制下未能普及。 当时的电动压缩机需要另配逆变器,成本昂贵,空间利用率也比较低。之后,本公司在电动压缩机与逆变器的一体化、压缩机构的高效化及小型轻量化等方面推进了开发。 对于2005年上市的本田“思域混合动力”车型,本公司以此前开发的电动压缩机为基础,又开发出了皮带传动与电机驱动兼顾的混合式压缩机(图2)。这种混合式压缩机能够在车内温度高、车速慢等空调负荷较高的情况下同时使用皮带传动和电机驱动,使制冷能力达到最大(图3)。

电动汽车拆解2——DC-DC转换器

DC-DC 转换器(一):提高电压转换效率 TDK 已开始向混合动力车及电动汽车提供 “DC -DC 转换器”。电动汽车充电电池的电压高达数 百伏。DC-DC 转换器将充电电池的电压降至14V ,提 供给铅蓄电池。再把铅蓄电池作为电源驱动发动机 的辅机类、雨刷及前照灯等器件。 世界首款量产混合动力车的投入使用已经12年。 包括TDK 在内,DC-DC 转换器单位体积的功率密度逐 年提高,估计今后也是这一趋势。 TDK 的DC-DC 转换器于1997年实际应用于混合动力车。本田将在现行的“思域混合动力车”和新款Insight 上采用(图1)。还被部分海外厂 商应用于混合动力车。 Insight 之所以采用TDK 制造的DC-DC 转换器, 是因为能够满足小型与轻量化的要求。本田对Insight 减小了包括DC-DC 转换器和逆变 器在内的PCU (功率控制单元)尺寸及镍氢充电电池的尺寸。这些器件在思域混合动力车中曾配置在后座后面,而在Insight 中,却配置在行李舱下面,以 使行李舱的可用空间比以前增大。DC-DC 转换器的小型化有利于扩大行李舱容量,降低成本。 Insight 上使用的最新款DC-DC 转换器与思域混 合动力车上配备的原产品相比,重量减轻45%,容 积减小5%(图2)。重量低于1kg 。转换效 率确保 在90%以上。 省去交流发电机 混合动力车及电动汽车导入DC-DC 转换器之后, 可省去交流发电机。交流发电机利用发动机的旋转发电,发出的电为铅蓄电池充电(图3)。电动汽车的充 电电池容量很大。因此,以充电电池为电源,能够利用DC-DC 转换器为铅蓄电池充电。从而可以省去原来的交流发电机(图4)。Insight 就未配备 交流 发电机(图5)。 图1: 本田新款混合动力车“Insight”的后座周围采用小型化PCU (功率控制单元)。原来配置在后座后面,通过小型化,得以配置在行李舱下面。后座后面可 以当作行李舱空间使用。 图 2:Insight 采用的DC-DC 转换器将混合动力车配备的数100V 的充电电池电压降至铅蓄电池的14V 电压。Insight 采用的方式(空冷 式)。

电动汽车拆解002+DC-DC转换器

【电动汽车拆解】(二) DC-DC 转换器:提高电压转换效率 近藤朋之,TDK 电力系统业务集团EV 电源部部长 TDK 已开始向混合动力车及电动汽车提供“DC -DC 转换器”。电动汽车充电电池的电压高达数百伏。DC-DC 转换器将充电电池的电压降至14V ,提供给铅蓄电池。再把铅蓄电池作为电源驱动发动机 的辅机类、雨刷及前照灯等器件。 世界首款量产混合动力车的投入使 用已经12年。包括TDK 在内,DC-DC 转换 器单位体积的功率密度逐年提高,估计今 后也是这一趋势。 TDK 的DC-DC 转换器于1997年实际应 用于混合动力车。本田将在现行的“思域 混合动力车”和新款Insight 上采用(图 1)。还被部分海外厂商应用于混合动力车。 Insight 之所以采用TDK 制造的DC-DC 转换器,是因为能够满足小型化与轻量化的要求。本田对Insight 减小了包括DC-DC 转换器和逆变器在内的PCU (功率控制单元)尺寸及镍氢充电电池的尺寸。这些器件在思域混合动力车中曾配置在后座后面,而在Insight 中,却配置在行李舱下面,以使行李舱的可用空间比 以前增大。DC-DC 转换器的小型化有利于 扩大行李舱容量,降低成本。 Insight 之所以采用TDK 制造的 DC-DC 转换器,是因为能够满足小型化与 轻量化的要求。本田对Insight 减小了 包括DC-DC 转换器和逆变器在内的PCU (功率控制单元)尺寸及镍氢充电电池 的尺寸。这些器件在思域混合动力车中 图1:本田新款混合动力车“Insight”的后座周围采用小型化PCU (功率控制单元)。原来配置在后座后面,通过小型化,得以配置在行李舱下面。后座后面可以当作行李舱空间使用。 图2:Insight 采用的DC-DC 转换器将混合动力 车配备的数100V 的充电电池电压降至铅蓄电 池的14V 电压。Insight 采用的空冷散热方式。

电动汽车拆解

【电动汽车拆解】PCU(一):采用双面冷却构造实现小型化 电装已开始向丰田汽车的部分混合动力车型提供PCU(功率控制单元)。丰田汽车现在的混合动力系统全部为水冷式,而非空冷式。混合动力车在前格栅的发动机室内配置了不同于发动机用散热器的混合动力系统专用散热器。混合动力系统采用冷却水来冷却PCU和驱动马达。 图2:PCU(功率控制单元)主体由控制底板电路、双面散热的功率半导体元件、层叠型冷却器及电容器等构成。PCU内的功率半导体从两面进行冷却。过去采用的是单面冷却。 过去,丰田汽车的“普锐斯”及“皇冠H ybrid”等车型一直利用水冷单面冷却PCU内的功率半导体。 而“雷克萨斯LS600h”采用的最新PCU虽然同样是水冷式,但采用的是双面冷却构造(图1,2)。由于散热面积增大,因此比单面冷却更容易冷却。单位体积的输出功率比原来提高了60%。在相同的输出功率情况下,体积则可比原来减小约30%,重量减轻约20%。 PCU具有逆变器和升降压转换器的作用。逆变器具有将充电电池的直流电压转换成马达驱动用交流电压的功能以机将马达再生的交流电压转换成直流电压的功能。升降压转换器用来升高和降低充电电池供应给马达的电压。 向雷克萨斯LS600h等高功率混合动力车提供PCU,需要提高逆变器和升降压转换器的输出功率,也即需要增大电流。解决方法之一是增加PCU的功率半导体元件数量或使元件比原来流过更大电流。PCU存在问题是散热。现在的车载用功率半导体最高可耐150℃高温,因此需要采用始终将温度保持在150℃以下的冷却结构。雷克萨斯LS600h需要提高PCU的性能,同时减小PCU尺寸。由于不能增加元件数量,因此采用了支持更大电流的功率半导体。 图3:过去的PCU构成(单面冷却)每个功率半导体元件流过200A,元件散热措施设想采用单面冷却时。 图4:新型PCU的构成(双面冷却)通过采用高性能功率半导体,每个元件流过300A以上的电流。采用支持大电流的元件,减少元件数量以实现小型化。通过双面冷却进行散热。( 这样,单面冷却就不足以解决大电流功率半导体的散热问题,因此采用了双面冷

电动车仪表盘拆装及维修方法

电动车既方便又环保,近年来广泛采用作为出行的交通工具。但长时间的使用总会出现些故障从而进行维修。在维修上电动车仪表盘拆装及维修的方法都是必知项。跟随学校汽车专家一起来学习下吧。 常用仪表功能描述 电源指示: 指示整车电源已经打开 电池电压: 用发光二级管或电压表头指示电池的电压 欠压指示: 指示电池是否低于正常使用值以下 过流指示: 指示当前电机运行的电流超过了允许的最大连续供电电流 电机电流: 显示电机运行的电流大小 行驶速度指示智能电动车"1:1助力"、"电动"、"定速"骑行状态 行驶速度当前行驶的整车速度(km/h) 灯具指示大灯、左右转向灯、刹车灯是否处于工作状态 累计里程指示电动车累计行驶的公里数 本次里程本次通电行驶的公里数 行驶时间本次通电行驶的时间(时、分、秒)

当前温度当前使用的环境温度 拆装注意事项 一般来说,指针类仪表的集成度比较低,电路的接线比较简单,仪表电路不依赖控制器电路。机械类仪表的故障则主要集中在引线或仪表头故障拆装时,电源的正负极不能搞错。 液晶显示仪表最擅长的就是对各种数据,如时速、电池电压、行驶里程等的数字化精确显示。 如果是涉及到显示驱动程序的软件与单片机的型号,这种仪表一旦出现故障,只能更换仪表总成了。 仪表板在拆装时,需要格外注意。一般来说需要参照其电路原理了解引线功能,注意引线的颜色和位置。一般仪表电路属于开放式电路,电路上一般集成了喇叭电路、转向和蜂鸣电路等,并形成了显示仪表板上高低压电路并存的情况。在拆装时,需要先拆掉电池,连接好引线后再将各种开关全部置于"关"的位置,利用万用表测量没有短路后,才能安装电池通电。

电动汽车用锂离子蓄电池单体拆解 技术规范

电动汽车用锂离子蓄电池单体拆解技术规范 1 范围 本标准规定了电动汽车用锂离子蓄电池单体拆解的术语和定义、要求和作业程序。 本标准适用于电动汽车用锂离子蓄电池单体拆解,电子产品用锂离子蓄电池单体、储能用锂离子蓄电池单体的拆解工作可参照执行。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 5085.7 危险废物鉴别标准通则 GB 18597 危险废物,贮存污染控制标准 GB 18599 一般工业固体废物,贮存处置场污染控制标准 GB/T 19596 电动汽车术语 HJ 2025 危险废物收集贮存运输技术规范 GB/T 2900.41 电工术语原电池和蓄电池 3 术语和定义 GB/T 19596 和 GB/T 2900.41 界定的以及下列术语和定义适用于本文件。 3.1 拆解 dismantling 锂离子蓄电池单体进行解体的作业,包括用于材料回收和结构分析两种场景的拆解。 4 材料回收用锂离子蓄电池单体拆解 4.1 一般要求 4.1.1 被拆解电池应由具有国家法律法规规定的相关资质的正规制造商生产。 4.1.2 电池拆解应按照电池生产企业提供的电池信息或拆解手册,制定拆解作业程序或拆解作业指导书,进行安全拆解。 4.1.3 可采用机械或自动化拆解方式,以提高拆解效率及安全性。 4.2 装备要求 4.2.1 拆解操作间中应具备阻燃、消防及气体处理装置,并具备温度、湿度控制功能。4.2.2拆解人员应配备绝缘手套、防机械伤害手套、安全帽、绝缘鞋(靴)、防护面罩等安全防护装备。 4.3 场地要求 4.3.1 拆解场地及拆解得到的材料或部件储存场地应具备安全防范设施,如消防设施、报警设施、应急设施等。 1

电动汽车拆解3――空调压缩机.

空调压缩机:不断推进电动化 三电(SANDEN 从 1971年开始生产车载空调压缩机。如今已在欧洲、北美和 亚洲拥有生产基地,掌握着全球 25%的份额。 受全球环保规定和高燃效技术发展的影响, 在汽车行业中, 发动机的小型化和HEV (混合动力车·EV(电动汽车化的速度正在加快。 关于应对环保规定的办法, 除了提高发动机效率、添设增压器来缩小发动机体积外, HEV 还可尽量延长电机驱动时间, EV 可在轻量化的同时配备高性能电池 等。具体做法因汽车厂商而异。 备有 3类压缩机 本公司的空调压缩机大致分为三类。 面向需要提高现有内燃机效率、实现小型化的汽车厂商, 供应的是借助传统发动机皮带传动类型的压缩机。面向以发动机为主体、电机为辅的车辆(Mild- HEV 供应的是皮带传动和电机驱动兼顾的混合式压缩机。对于以电机为主体 (Strong-HEV 、 EV 的车辆,则供应电动压缩机。(图 1。 图 1:空调压缩机的类型包括使用发动机驱动的类型,同时使用发动机和 电机驱动的混合动力型,单纯使用电机驱动的类型 3种。 本公司的电动压缩机开发始于 1986年。开发伊始虽然也经历过摸索阶段,但是在向推进车辆电动化的美国汽车厂商供货的过程中, 产品化速度非常之快。 1990年, 电动车“EVS -10”在美国投入使用。当时就是本公司供应的电动压缩机, 但产量还 非常少,在成本、充电电池、基础设施的限制下未能普及。

当时的电动压缩机需要另配逆变器, 成本昂贵, 空间利用率也比较低。之后, 本公司在电动压缩机与逆变器的一体化、压缩机构的高效化及小型轻量化等方面推进了开发。 对于 2005年上市的本田“思域混合动力”车型,本公司以此前开发的电动压缩机为基础,又开发出了皮带传动与电机驱动兼顾的混合式压缩机(图 2。这种混合式压缩机能够在车内温度高、车速慢等空调负荷较高的情况下同时使用皮带传动和电机驱动,使制冷能力达到最大(图 3。 图 2: 本田 2005年 9月上市的“思域混合动力” (a 车辆。(b 混合 式压缩机。同时支持发动机驱动与电机驱动。

【拆解】电动汽车拆解

【拆解】 电动汽车拆解

第一部件PCU (一):采用双面冷却构造实现小型化 图1:混合动力车的系统构成(雷克萨斯LS600h)由充电电池(镍氢)、PCU(功率控制单元)、 驱动马达及发电机等构成。PCU具有升降压转换器和逆变器功能。 电装已开始向丰田汽车的部分混合动力车型提供PCU(功率控制单元)。 图2:PCU(功率控制单元)主体由控制底板电路、双面散热的功率半导体元件、层叠型冷却器及电容器等构成。 PCU内的功率半导体从两面进行冷却。过去采用的是单面冷却。

丰田汽车现在的混合动力系统全部为水冷式,而非空冷式。混合动力车在前格栅的发动机室内配置了不同于发动机用散热器的混合动力系统专用散热器。混合动力系统采用冷却水来冷却PCU和驱动马达。 过去,丰田汽车的“普锐斯”及“皇冠Hybrid”等车型一直利用水冷单面冷却PCU内的功率半导体。 而“雷克萨斯LS600h”采用的最新PCU虽然同样是水冷式,但采用的是双面冷却构造(图1,2)。由于散热面积增大,因此比单面冷却更容易冷却。单位体积的输出功率比原来提高了60%。在相同的输出功率情况下,体积则可比原来减小约30%,重量减轻约20%。 PCU具有逆变器和升降压转换器的作用。逆变器具有将充电电池的直流电压转换成马达驱动用交流电压的功能以机将马达再生的交流电压转换成直流电压的功能。升降压转换器用来升高和降低充电电池供应给马达的电压。 向雷克萨斯LS600h等高功率混合动力车提供PCU,需要提高逆变器和升降压转换器的输出功率,也即需要增大电流。解决方法之一是增加PCU的功率半导体元件数量或使元件比原来流过更大电流。PCU存在问题是散热。现在的车载用功率半导体最高可耐150℃高温,因此需要采用始终将温度保持在150℃以下的冷却结构。雷克萨斯LS600h需要提高PCU的性能,同时减小PCU尺寸。由于不能增加元件数量,因此采用了支持更大电流的功率半导体。 这样,单面冷却就不足以解决大电流功率半导体的散热问题,因此采用了双面冷却结构。过去,每个元件可流过200A的电流,而雷克萨斯LS600h采用了每个元件可流过300A以上电流的高性能功率元件(图3、4)。由此逆变器和升降压转换器均减少了功率半导体的数量。新型功率半导体为富士电机元件科技制造的产品。(未完待续:特约撰稿人:金子高久,电装EHV机器技术部组长)

相关主题
相关文档
最新文档