3静定结构的内力分析习题解答分解

合集下载

03结构力学 第三章 静定结构的内力计算3.3 静定刚架的内力计算(邓军)

03结构力学 第三章 静定结构的内力计算3.3 静定刚架的内力计算(邓军)
剪力图: 剪力符号规定与直梁中的规定相同;剪力图可画在杆件的任一 侧,但剪力图上要标明正负号。 轴力图:
轴力仍以受拉为正,受压为负;轴力图可画在杆件的任一侧或 与纵坐标对称地画在杆件的两边,但需在轴力图上标明正负号。
§3.3 静定刚架的计算
例1 绘制如图所示门式刚架在半跨均布荷载作用下的内力图。
§3.3 静定刚架的计算
§3.3 静定刚架的计算
§3.3 静定刚架的计算
§3.3 静定刚架的计算
静定刚架的组成及类型
平面刚架是由直杆(梁和柱)组成的平面结构。
刚架中的结点部分或全部是刚节点。
在刚节点处,各杆件连成一个整体,杆件之间不能发生相对 移动和相对转动,刚架变形时各杆之间的夹角保持不变,因 此刚节点能够承受弯矩、剪力和轴力。
解:
1)求支座反力 由整体平衡方程可得
M A 0, 6 3 12FyB 0 M B 0, 6 9 12FyA 0
X 0, FxA FxB 0
取铰C右边部分为隔离体
MC 0, 6.5FxB 6FyB 0
求得
FyB =1.5kN() FyA=4.5kN() FxA =1.384 kN()
§3.3 静定刚架的计算
2)作弯矩图
求出杆端弯矩(设弯矩方正向为使刚架内侧受拉)后,画于受 拉一侧并连以直线,再叠加简支梁的弯矩图。
以DC杆为例
M DC 1.384 4.5 6.23kN m, MCD 0
CD中点弯矩为 1.3845.5 133 1 1 4.5 6 1.388kN m 22
(2)为计算静定刚架位移和分析超静定刚架打下基础。
2)刚架各杆内力的求法
从力学观点看,刚架是梁的组合结构,因此刚架的内力求法 原则上与梁的内力计算相同。 通常是利用刚架的整体或个体的平衡条件求出各支座反力和 铰接点处的约束反力,然后用截面法逐个计算杆件内力。

静定结构内力分析-3静定拱

静定结构内力分析-3静定拱
N Q0sin FHcos
采用描点法绘制内力图
四、三铰拱的合理拱轴线
M M 0 FH y(x) 0
使拱在给定荷载下只产生轴力的拱轴线,称 为与该荷载对应的合理拱轴。
M 0 (x) y(x)
FH
在竖向荷载作用下,三 铰拱的合理拱轴线的纵坐标 与相应简支梁弯矩图的竖标 成比例。
第二章 静定结构受力分析
§2-3 三铰拱受力分析
一.概述 1.拱的定义
P
0
曲梁
拱—杆轴线为曲线,在竖向荷载作用
下会产生水平推力的结构。
P
2P /3 l/3
2l/3
2P /3 l/3
2l/3
2 Pl 9
M图
P
2 Pl
M图
9

2.拱的受力特点

M图
三铰拱
两铰拱
无铰拱
三铰拱
带拉杆三铰拱
例 已知三铰拱的高度为f,跨度为l,试求在满跨竖向 均布荷载作用下的合理拱轴,荷载分布集度为q 。
解: M 0 (x) 1 q(lx x2 )
2
FH

ql 2 8f
q y
C f
A
Bx
y(x) M 0 (x) FH

4f l2
(lx x2 )
l/2
l/2
A
q
B
ql x
ql
2
2
FAx

1 f
M
0 C
FBx

FAx

FH

1 f
M
0 C
三. 三铰拱的内力计算
y
P1 D C φ
P2
y FH A

结构力学 第三章 静定结构的内力计算(典型例题练习题).

结构力学 第三章 静定结构的内力计算(典型例题练习题).

[例题3-2-1]作简支梁的剪力图与弯矩图。

解:求支座反力荷载叠加法平衡方程[例题3-2-2]作外伸梁的剪力图与弯矩图。

解:求支座反力荷载叠加法平衡方程[例题3-2-3]作外伸梁的剪力图与弯矩图。

解:求支座反力荷载叠加法平衡方程[例题3-3-1]作多跨静定梁的内力图。

解:求支座反力荷载叠加法[例题3-3-2]作三跨静定梁的内力图。

解:求支座反力[例题3-3-3] 作多跨静定梁的内力图。

解:求支座反力[例题3-4-1] 作静定刚架的内力图解:求支座反力[例题3-4-2]作静定刚架的内力图解:求支座反力[例题3-4-3]作静定刚架的内力图解:求支座反力[例题3-4-4]作静定刚架的内力图解:求支座反力[例题3-4-5]作三铰刚架的内力图解:求支座反力[例题3-4-6]作三铰刚架的内力图解:求支座反力??[例题3-4-7]作静定刚架的内力图解:求支座反力[例题3-4-8]作静定刚架的图解:[例题3-4-9]作静定刚架的图解:[例题3-4-10]作静定刚架的图解:[例题3-4-11]作静定刚架的图解:[例题3-4-12]作静定刚架的图解:[例题3-4-13]作静定刚架的图解:[例题3-4-14]作静定刚架的图解:求支座反力?[例题3-4-15]作静定刚架的图解:[例题3-5-1]???求支座反力当时?????? ? ?????[例3-5-2]??? 试求对称三铰拱在竖向均布荷载作用下的合理轴线。

解:相应简支梁的弯矩方程为水平推力合理轴线方程为合理轴线为一抛物线。

[例3-6-1]用结点法求桁架各杆的内力。

解:求支座反力解题路径:以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-2]用结点法求桁架各杆的内力。

解:求支座反力平衡方程荷载叠加法解题路径:以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-3]用结点法求桁架各杆的内力。

解:利用对称性,求支座反力解题路径:以结点为对象?以结点为对象以结点为对象以结点为对象例3-6-4]指出桁架的零杆。

3静定结构的内力分析习题解答

3静定结构的内力分析习题解答

第3章 静定结构的力分析习题解答习题3.1 是非判断题(1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。

( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。

( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。

( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。

( )习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。

( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。

( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。

( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。

( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。

从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。

荷载发生改变时,合理拱轴线将发生变化; (7)错误。

合理拱轴线与荷载大小无关;(8)错误。

一般从仅包含两个未知轴力的结点开始。

习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。

P习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。

习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。

习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。

习题3.2(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。

3静定结构的内力计算

3静定结构的内力计算
工程中的单跨静定梁,按其支座情况可分为三种: (1)简支梁:该梁的一端为固定铰支座,另一端为可动铰支座。 (2)外伸梁:一端或两端向外伸出的简支梁称为外伸梁。 (3)悬臂梁:该梁的一端为固定端支座,另一端为自由端。
①简支梁
②外伸梁
③悬臂梁
3
二、梁的内力
1、内力计算法——截面法
P1
A
m
FAx
K
n
P2 B
8
斜梁介绍
工程中,斜梁和斜杆是常遇到的,如楼梯梁、刚架中的斜杆等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重),用 q’ 表示。
q 与 q’间的转换关系:
qdx = qds q = q
cos
dM dx
= FQ
无荷载区段 平行轴线
FQ图
M图
斜直线
均布荷载区段 集中力作用处 集中力偶作用处
↓↓↓↓↓↓
+ -
二次抛物线
凸向即q指向
发生突变
+P -
出现尖点
尖点指向即P的指向
无变化
发生突变
m
两直线平行
注备
FS=0区段M图 FS=0处,M 平行于轴线 达到极值
12
三、叠加法作弯矩图
1. 叠加原理: 几个载荷共同作用的效果,等于各个载荷单独
吊杆
带拉杆的三铰拱
拉杆折线形
拉杆
花篮螺丝
带吊杆的三铰拱
3、三铰拱的内力计算
1)、拱的内力计算原理仍然是截面法。 2)、拱通常以受压为主,因此规定轴力以受压为正。 3)、计算时常将拱与相应简支梁对比,通过对比完成计算。
45

第三章 静定结构的内力计算(组合结构)

第三章 静定结构的内力计算(组合结构)

A A A A 0 0 0 0
0 0 0 0
8 8 8 8
HC
3、求梁式杆内力 处理结点A处力
结构力学
第3章静定结构的内力计算
静定结构特性
结构力学
第3章静定结构的内力计算
静定结构特性 静定结构特性 一、结构基本部分和附属部分受力影响
A
F1
B
C
F2
D
E
F3
F
如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; Ⅰ Ⅱ Ⅲ 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 特性一、静定结构基本部分承受荷载作用,只在基本部分上产 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 生反力和内力;附属部分上承受荷载作用,在附属部分和基本 部分上均产生反力和内力。
第3章静定结构的内力计算
q = 1 kN/m A FR Ax FR Ay FNDA F C FNFD VC
8 8 8 8
M M图 图 ( m M图 (kN· kN· m) ) M 图 (kN· m) (kN· m) F 图 FQ 图 Q ( ) FkN 图 ( kN Q ) FkN 图 ( Q ) (kN) F 图 FN N图 ( ) FkN ( kN ) N图 FkN N图 ( ) (kN)
结构力学
第3章静定结构的内力计算
二、平衡荷载的影响
F C B D
A B q C

建筑力学之 静定结构的内力分析知识详解

建筑力学之 静定结构的内力分析知识详解

第二个脚标表示该截面所属杆件的另一端。例如 则表M示BA AB杆B端截面的弯矩。
表M示AB AB杆A端截面的弯矩,
❖ (3)内力图绘制
❖ 静定刚架内力图有弯矩图、剪力图、轴力图。刚架的内力图由各杆的内力图组合 而成,而各杆的内力图,只需求出杆端截面的内力后,即可按照梁内力图的绘制 方法画出。
❖ 6.平面刚架计算步骤
第十一章 静定结构的内力分析
❖ 第一节 楼梯斜梁和多跨静定梁 ❖ 1. 楼梯斜梁 ❖ 楼梯斜梁承受的荷载主要有两种,一种是沿
斜梁水平投影长度分布的荷载,如楼梯上人群 的重量等;另一种是沿倾斜的梁轴方向分布的 竖向荷载,如梁的自重等。 ❖ 一般在计算时,为计算简便可将沿梁轴方 向分布的竖向荷载按等值转换为沿水平方向分 布的竖向荷载,如图11-1 (a),沿梁轴线方向分 布 则的 由荷 于载 是等′值转转换换为,沿所水q 以平有方:向分布的荷q 载 ,
❖ (2)杆端内力的表示:如:FNAB 、 、 、 FNBA FQAB FQBA 、M AB 、M BA 等。 ❖ 注意:刚结点处不同方向有不同的杆端内力。
❖ 为了明确表示刚架上不同截面的内力,特别是为了区别汇交于同一结点的不同杆
端截面的内力,在内力符号右下角采用两个脚标;第一个脚标表示内力所属截面,
❖ 详解见教材
图11-21
❖ (6)结点法与截面法的联合应用 ❖ 欲求图11-23所示a杆的内力,如果只用结点法计算,不论取哪个结
点为隔离体,都有三个以上的未知力无法直接求解;如果只用截面法 计算,也需要解联立方程。 ❖ 为简化计算,可以先作Ⅰ-Ⅰ截面,如图所示,取右半部分为隔离 体,由于被截的四杆中,有三杆平行,故可先求1B杆的内力,然后以 B结点为隔离体,可较方便地求出3B杆的内力,再以3结点为隔离体, 即可求得a杆的内力。

第五章 静定结构的内力分析

第五章 静定结构的内力分析
1 a) A 1 B
MB
2 2
MC
C
解:1.计算外力偶矩
M A 9549
m T 1592N· 637N· m
b) T c)
M B 9549
x
637N· m
x
2.求各段扭矩 AB段:T1= MA=1592N· m BC段:T2= MA- MB=1592-955=637N· m
30 955N m 300 20 M C 9549 637N m 300
压缩与弯曲的组合
弯曲与扭转的组合
在进行结构设计时,为保证结构安全正常工
作,要求各构件必须具有足够的强度和刚度。解
决构件的强度和刚度问题,首先需要确定危险截
面的内力,内力计算是结构设计的基础。
5—1 轴向拉压杆
沿杆件轴线作用一对相反的外力,杆件将发生沿轴线方向
的伸长或缩短,这种变形称为轴向拉伸或压缩。
建筑力学
第5章 静定结构的内力分析
杆件结构——由杆件组成的结构。
杆件——长度远大于其横截面的宽度和高度的构件。
几何特点:横截面是与杆件长度方向垂直的截面,而轴线 是各横截面形心的连线。细而长,即l>>h,l>>b。
杆件结构
杆又可分为直杆和曲杆。
受外力作用后,其几何形状和尺寸一般都要发生改 变,这种改变称为变形。作用在构件上的荷载是各种 各样的,因此,杆件的变形形式就呈现出多样性,并 且有时比较复杂,但分解来看,变形的基本形式却只 有四种:
3.求截面2-2的内力
Fy 0 : FAy F FQ 2 0, 5 1 得FQ 2 FAy F F F F 4 4 M 2 0 : 2Fl M 2 0,

静定结构的内力分析习题解答分解

静定结构的内力分析习题解答分解

静定结构内力分析习题集锦(一)徐丰武汉工程大学第3章 静定结构的内力分析习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。

( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。

( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。

( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。

( )ABCDEF习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。

( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。

( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。

( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。

( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。

从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。

荷载发生改变时,合理拱轴线将发生变化; (7)错误。

合理拱轴线与荷载大小无关;(8)错误。

一般从仅包含两个未知轴力的结点开始。

习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。

ABCDElllllP F PF PF PF习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。

6k N /m4k N /m6m AB C D4m 4m习题3.2(2)图(3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。

建筑力学10-静定结构内力三

建筑力学10-静定结构内力三




由上述各式可以得出: VA=V0A VB=V0B HA=HB=M0C/f 支座水平推力与拱轴曲线形状无关,而只与荷载 及三个铰的位置有关;当荷载与跨度确定时,M0C为定 值,水平推力与矢高成反比关系,f愈大,拱愈高,则 推力愈小;f愈小,拱愈扁平,则推力愈大。
图8.37



(2) 内力的计算 拱的内力计算时,仍按截面法计算,且截面应与 拱轴垂直,该截面的位置由截面形心的坐标x、y及该 截面处拱轴切线的倾角φ来确定。 如图8.38(a)所示,设计算截面K的三个参数分别为 xK、yK、φK,该截面上的内力有MK(内侧受拉为正)、 QK(绕隔离体顺时针转动者为正)和NK(以压力为正)。 下面分别讨论三种内力的计算方法。


BE段:取结点B为隔离体,如图8.33(b)所示,
∑MB=0:MBE+MBC-MBD=0 MBE=0 以竖向为y坐标轴,向上为正,以水平向为x坐标轴,向右为 正,以B为原点,则: ∑X=0:QBE+NBDcosα-NBCcosα+QBDsinα-QBCsinα=0 QBE=0




① 弯矩的计算
取K截面以左为隔离体,如图8.38(c)所示,对K截 面取矩:
∑MK=0: HAyK-VAxK+P1(xK-a1)+MK=)]-HAyK
相应简支梁在相应位置处的弯矩也可由静力平衡 条件求出,如图8.38(b)、(d)所示:

图8.34
8.7.3 刚架的内力求解
1,内力求解的方法——与梁有相似之处,内力有弯矩、剪力还有轴力; 2,刚架结构内力计算的步骤:
1)支坐反力; 2)用简易法画各段的受力图; 3)分段画出内力图(M、Q、N)。

结构力学(2.1.2)--静定结构内力分析习题及参考答案

结构力学(2.1.2)--静定结构内力分析习题及参考答案
2
Fp
Fp
4×d
(d)
3-7 试求图示抛物线( y 4 fx(l x) / l 2 ) 三铰拱距左支座 5m 的截面内力。
4m 4m 3d
4m
5 kNF P 1
d
10 kN 1 F3(Pf×)d F2P
2
NN N
习题 3-6 图
2
d
N
15 kN
1
d2/02kN/md d/2
40 kN·m
y
A
B 20 kN
8×1 m
习题 3-5 图
杆件的内力。
80 kN
1 N
2 N
4m 2m
4m
2m
(a)
2m 2m 2×d
20 kN
3.6 试 用 较 简单的 方法求 图示桁 架指定
4
3
1
N 2
NN
Fp
Fp
Fp Fp 8×d
Fp
Fp N
Fp N
(b)
3×2 m d
60 kN
1
N
2
N
4×2 m (c)
Fp 1
2m
6m
6m
2m
(b)
习题 3-16 图
l
3m
4m 4m
3-17 试作图示组合结构的弯矩图和轴力图。
20 kN/m
B
C
A 4m 4m 4m 4m
(a)
习题 3-17 图
20 kNA 20 kN/m
BCD源自4m4m4m(b)
3-1 略
参考答案
3-2 (a) FNAB 25kN (b) FNAB 2.5FP
A
3m
(a) C

03 静定结构的内力分析(四)

03 静定结构的内力分析(四)

第三章
§3-5
静定结构的内力分析
静定桁架
截面法
计算方法
截面法定义 作一截面将桁架分成两部分,然后任取一部分为隔离体 (隔离体包含一个以上的结点),根据平衡条件来计算所截杆件 的内力。 1、求指定杆件的内力; 应用范围 2、计算联合桁架。
联合桁架(联合杆件)
指定杆件(如斜杆)
第三章
§3-5
静定结构的内力分析
FN1 FN3 F N1= F N2 F N3= 0 FN2
第三章
§3-5
静定结构的内力分析
静定桁架
结点法
计算方法
结点法计算简化的途径 1. 对于一些特殊的结点,可以应用平衡条件直接判断该结点 的某些杆件的内力为零。 零杆 (3) X型结点:四杆交于一点,其中 两两共线,若结点无荷载,则在同 一直线上的两杆内力大小相等,且 性质相同。
α FN1
α
FN2
第三章
§3-5
静定结构的内力分析
静定桁架
结点法 值得注意:若事先把零杆剔出后 再进行计算,可使计算大为简化。
计算方法
FP FP FP/ 2
FP/2
第三章
§3-5
静定结构的内力分析
静定桁架
结点法 值得注意:若事先把零杆剔出后 再进行计算,可使计算大为简化。
计算方法
FP
第三章
§3-5
静定结构的内力分析
静定桁架
B FBx=120kN A FAx=120kN FAy=45kN 4m C 15kN 4m F 15kN 4m G 15kN
例 求以下桁架各杆的内力
D E 3m
a.求支座反力
FAy=45kN
FAx=120kN
FBx=120kN

《结构力学》课后习题答案__重庆大学出版社

《结构力学》课后习题答案__重庆大学出版社

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

西北工业大学结构力学课后题答案第三章__静定结构的内力与变形

西北工业大学结构力学课后题答案第三章__静定结构的内力与变形

Q
对于结点 2:
2
N2-4
N 2 −4 = Q
F4
N 2-4
4
对于结点 4:
N 1-4
2
杆件 内力
2
N 1− 4 = − N 2 − 4 = − Q
1-2 0 1-4
N1−4 = − 2Q
2-3 0 2-4 3-4 0
− 2Q
Q
3-2 平面桁架的形状、尺寸和受载情况如图所示,求桁架中 3 个指定元件的内力。
N 1− 2 = 0
N 9-10
N 9-8
9
对于结点 9:
N 9-11
N 9 −10 + 2
杆件 内力 杆件 内力 杆件 内力 7-8 1-2 0 3-8
2
× N 9 −11 = N 9 −8
2-3 0 4-5 0
N 9 −10 = − 2
2-8 0
2
P
3-4 3-7
2-9
2
5-6
2
P
−P
6-7 0
2P
− 5P
P
2P
1 a
2
3
4
5
10 a
9
8
7
6
P
11 a a a a
(e) (d)解: ( 1) f = 16 + 3 × 2 − 11 × 2 = 0 故该结构为无多余约束的几何不变结构。 ( 2)零力杆:杆 4-5,杆 5-6,杆 4-6,杆 7-6,杆 2-3,杆 2-8,杆 2-9,杆 1-2,杆 9-11, 杆 8-9,杆 9-11.
拉力图:
8P/√3
+ +
-
P/3
17P/3
+

3静定结构的内力分析习题解答

3静定结构的内力分析习题解答

第3章静定结构的内力分析习题解答习题3.1是非判断题(1)在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。

()(2)区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。

()(3)多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。

()(4)习题3.1(4)图所示多跨静定梁中,CDE和EF部分均为附属部分。

()ABCDEF习题3.1(4)图(5)三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。

()(6)所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。

()(7)改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。

()(8)利用结点法求解桁架结构时,可从任意结点开始。

()【解】(1)正确;(2)错误;(3)正确;(4)正确;EF为第二层次附属部分,CDE为第一层次附属部分;(5)错误。

从公式F H M C/f可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。

荷载发生改变时,合理拱轴线将发生变化;(7)错误。

合理拱轴线与荷载大小无关;(8)错误。

一般从仅包含两个未知轴力的结点开始。

习题3.2填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C所传递的弯矩M C的大小为______;截面B的弯矩大小为______,____侧受拉。

F P FPF PF PAB DEClllll习题3.2(1)图(2)习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB=______kN·m,____侧受拉;左柱B截面弯矩M B=______kN·m,____侧受拉。

CBm/Nk m4/Nk6A D m 4 m 46m习题3.2(2)图(3)习题3.2(3)图所示三铰拱的水平推力F H等于。

FPaaa习题3.2(3)图(4)习题3.2(4)图所示桁架中有根零杆。

F P F P习题3.2(4)图【解】(1)M C=0;M C=F P l,上侧受拉。

结构力学——3静定结构的内力分析

结构力学——3静定结构的内力分析
x=1.6m 3.K截面弯矩的计算
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)

静定结构的内力分析—静定平面刚架(建筑力学)

静定结构的内力分析—静定平面刚架(建筑力学)
静定平面刚架的类型
1.刚架的概念及特点
(1)概念:多个杆件组成,包含刚结点 (2)特点:通过刚结点,不同杆件之间不但可以传递力 还可以传递弯矩
①力学计算复杂; ②结构内力分布均匀,节省材料; ③杆件数目较少,节省空间。
静定平面刚架的类型
2.刚架的类型
悬臂刚架(图a):部分杆件一端刚结点,一端悬臂 简支刚架(图b):其支座类似于简支梁
分别绘制BE的轴力图、剪力图及弯矩图如图所示。 (4)DE杆件内力图
取DE为隔离体,受力分析如图所示。 直接绘制DE的轴力图、剪力图及弯矩图如图所示。
YD’ MD’
XD’
YE’ DE受力图 ME’ XE’
ME XE
YE
3.5kN

1.5kN
+
XB
YB BE受力图
轴力图
1.5kN

剪力图 轴力图
8.5kN +
例题分析
求作图示刚架内力图。
解:(1)求约束反力(略) (2)AD杆件内力图 取AD为隔离体,受力分析如图所示。
X 0, X A X D 0, 得 X D 1.5kN() Y 0, YA YD 0, 得 YD 8.5kN() MD 0, X A 5 M D 0, 得 M D 7.5kNm(左)
分别绘制AD的轴力图、剪力图及弯矩图如图所示。
MD XD
YD
XA
YA AD受力图
8.5kN

1.5kN

7.5kNm
轴力图
剪力图
弯矩图
例题分析
(3)BE杆件内力图 取BE为隔离体,受力分析如图所示。
X 0, X B X E 0,得 X E 1.5kN() Y 0, YB YE 0, 得 YE 3.5kN() MD 0, X B 5 M E 0, 得 M E 4.5kNm(右)

结构力学2-静定结构内力分析知识重点及习题解析

结构力学2-静定结构内力分析知识重点及习题解析
(1)为求解静定结构位移作准备。求解静定结构位移时,首先要求出外荷载和单 位荷载作用下的内力,然后用虚功原理(单位荷载法)进行求解。
(2)为求解超静定结构作准备。无论是位移法还是力法都要用到力的平衡条件。 (3)为求解移动荷载乃至动力荷载作用下结构的内力与位移作准备。例如影响线 和结构动力分析。 根据结构的形式及受力特点,静定结构内力分析可以分为: (1)梁与刚架的内力分析。梁与刚架由受弯杆件组成,杆件内力一般包含轴力、 剪力和弯矩,内力分析的结果是画出各杆的 N 图、Q 图及 M 图。通常做法是“逐杆绘制, 分段叠加”,并要求能做到快速准确地画出内力图。 (2)桁架结构的内力分析。桁架由只受轴力的杆件组成,因此内力分析的结果是 给出各杆件轴力。基本分析方法是结点法、截面法以及二者的联合应用。根据特殊结点 准确而快速地判断零杆,并要善于识别结点单杆和截面单杆。 (3)三铰拱的内力分析。拱是在竖向荷载作用下具有水平支座反力的结构,主要 受压,一般同时具有轴力、剪力和弯矩。对于三铰平拱可以由相应的简支梁进行快速分 析,且弯矩为 M=M0-FHy。 (4)组合结构的内力分析。组合结构由链杆和梁式杆件组成,链杆部分只受轴力, 而梁式杆除受轴力外,还受弯矩和剪力作用。因此求解的首要问题是识别链杆和梁式杆, 正确选取隔离体进行分析,为简化分析,一般尽最避免截断梁式杆。 虽然静定结构的结构形式干在万别,但其内力分析万变不离其宗,基本过程是“选 隔离体→列平衡方程→解方程求未知力”,熟练应用这一基本过程是解决复杂问题关键。 因此过程的关键一步在于选隔离体,也就是“如何拆”原结构的问题,这是问题的切入点。 值得注意的是拆原结构要以相应的内力或支座反力代替,因此要充分掌握上述各类结构
《结构力学》 静定结构内力分析知识重点及习题解析
一、知识重点 在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定,这样的结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静定结构内力分析习题集锦(一)徐丰武汉工程大学第3章 静定结构的内力分析习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。

( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。

( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。

( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。

( )ABCDEF习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。

( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。

( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。

( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。

( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分; (5)错误。

从公式可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。

荷载发生改变时,合理拱轴线将发生变化; (7)错误。

合理拱轴线与荷载大小无关;(8)错误。

一般从仅包含两个未知轴力的结点开始。

习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。

ABCDlllllP PF PF PF习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。

6k N /m4k N /m6m AB C D4m 4m习题3.2(2)图(3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。

aa aPF习题3.2(3)图(4) 习题3.2(4)图所示桁架中有 根零杆。

F PF P习题3.2(4)图【解】(1)M C = 0;M C = F P l ,上侧受拉。

CDE 部分在该荷载作用下自平衡;(2)M AB =288kN·m ,左侧受拉;M B =32kN·m ,右侧受拉; (3)F P /2;(4)11(仅竖向杆件中有轴力,其余均为零杆)。

习题3.3 作习题3.3图所示单跨静定梁的M 图和图。

2m4m 2m 20kN/mABC DCa aP F aPF P F a 2BA(a) (b)qll/2ABCaaaaPF P F PACD BE(c) (d)qqaqa 2aaABC5kN/m 20kN·m10kN·m2m2m2m2mABD CE(e) (f)习题3.3图【解】A4040808040CDCDBM 图 (单位:kN·m ) F Q 图(单位:kN )(a)F P 2aF F BA2a4F PBA54F P 4F P 54F PM 图 F Q 图(b)AC8ql 38ql 9B8ql 28ql 2BAC2ql 8ql 58ql 3M 图 F Q 图(c)P aF P a F P a F 3P 2F 3P 7AB C EDABEDC F 3P F P4F 3P F 3P 2M 图 F Q 图(d)BACqa 21.5qa 28qa 2M 图 F Q 图(e)M 图 (单位:kN·m )F Q 图(单位:kN )(f)习题3.4 作习题3.4图所示单跨静定梁的内力图。

(a)(b)m(c) (d)习题3.4图【解】M 图 (单位:kN·m ) F Q 图(单位:kN )(a)M 图 (单位:kN·m ) F Q 图(单位:kN )(b)M 图 (单位:kN·m ) F Q 图(单位:kN )(c)M 图 (单位:kN·m ) F Q 图(单位:kN )(d)习题3.5 作习题3.5图所示斜梁的内力图。

习题3.5图【解】M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )习题3.6 作习题3.6图所示多跨梁的内力图。

(a)(b)A(c)(d) 习题3.6图【解】DM 图 (单位:kN·m ) F Q 图(单位:kN )(a)21M 图 (单位:kN·m ) F Q图(单位:kN )(b)AM 图(单位:kN·m )AF Q 图(单位:kN )(c)M 图(单位:kN·m )ABC DEF106F Q 图(单位:kN )(d)习题3.7 改正习题3.7图所示刚架的弯矩图中的错误部分。

PF CABPF CAB(a) (b) (c)CABP F ABC(d) (e) (f)习题3.7图【解】(a) (b) (c)(d) (e) (f)习题3.8 作习题3.8图所示刚架的内力图。

(a) (b) (c)q(d) (e) (f)习题3.8图【解】M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(a)M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(b)M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(c)M 图 F Q 图 F N 图(d)3.5M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(e)F PM 图 F Q 图 F N 图(f)习题3.9 作习题3.9图所示刚架的弯矩图。

(a) (b) (c)(d) (e)(f)(g) (h) (i)习题3.9图【解】P(a) (b) (单位:kN·m)(c)(单位:kN·m)(d) (e)(f)(单位:kN·m)27ACFDB E 186274599927182727954a aF P FaF P F PF PF PaF P A B DCEABCD E F6066618606060(g) (单位:kN·m ) (h) (i) (单位:kN·m )习题3.10 试用结点法求习题3.10图所示桁架杆件的轴力。

4m4m4m30kN30kNll l lF PF P(a) (b)习题3.10图【解】 (1)1234566060303000-3030kN30kN-67.142.4提示:根据零杆判别法则有:;根据等力杆判别法则有:。

然后分别对结点2、3、5列力平衡方程,即可求解全部杆件的内力。

(2)F P F P000F PF P F P012345678-3F P-3F P-3F P3.2FP提示:根据零杆判别法则有:;根据等力杆判别法则有:;。

然后取结点4、5列力平衡方程,即可求解全部杆件的内力。

习题3.11 判断习题3.11图所示桁架结构的零杆。

F PF PF PF P F P F P(a) (b)F P2ll llF PF Pl l(c)习题3.11图【解】F PF PF PF PF PF P0000000(a) (b)F P2F PF P000000000000000000ⅠⅠ312(c)提示:(c)题需先求出支座反力后,截取Ⅰ.Ⅰ截面以右为隔离体,由,可得,然后再进行零杆判断。

习题3.12 用截面法求解习题3.12图所示桁架指定杆件的轴力。

l l l llF PF Pab cl l ll l lF Pabc(a) (b)2m 2m 2m 2m 2m 2m4kN 4kN 4kN 4kN 4kN acb3m4kN4kN2m 2m 2m 2m 2m 2m2m2m2macb(c) (d)习题3.12图【解】 (1);;提示:截取Ⅰ.Ⅰ截面可得到、;根据零杆判断法则,杆26、杆36为零杆,则通过截取Ⅱ.Ⅱ截面可得到。

F Pabc ⅠⅠ123456789ⅡⅡ(2);;提示:截取Ⅰ.Ⅰ截面可得到;由结点1可知;截取Ⅱ.Ⅱ截面,取圆圈以内为脱离体,对2点取矩,则。

F PbⅠⅠF PⅡⅡ12c a(3);;提示:先计算支座反力。

取Ⅰ.Ⅰ截面以左为脱离体,由,得;由,得;再取结点A 为脱离体,由,得。

4kN 4kN 4kN 4kN 4kNac b 4kNⅠⅠ010kN10kNABA =F N b F xbF yb F N cF N F N c=F N F N b(4);;4kN4kNac b ⅢⅠⅡⅢⅠⅡ7kN1kN1234提示:先计算支座反力。

取Ⅰ.Ⅰ截面以左为脱离体,将移动到2点,再分解为x 、y 的分力,由,得,则; 取Ⅱ.Ⅱ截面以左为脱离体,由,得,则;取Ⅲ.Ⅲ截面以右为脱离体,注意由结点4可知,再由,得。

习题3.13 选择适当方法求解习题3.13图所示桁架指定杆件的轴力。

llllF Pabc3m 3m6m 3m3m 24kNcba(a) (b)llll llF PF PcbaF PF Pl l ll lbac(c) (d)F PF Pl l l lll2abF Pl l l lll2ab c(e) (f)10kN8kN4m 4m4m 4m3m3mcb a4m 4m4m4m3m15kN15kN a b c(g) (h)习题3.13图【解】 (1) ;;。

提示:由,可得。

则根据零杆判别原则,可知。

根据结点5和结点2的构造可知,,再根据结点3的受力可知。

F Pabc123456(2);;。

提示:先计算支座反力。

取Ⅰ.Ⅰ截面以左为脱离体,由,可得;取B 结点为脱离体,由,得;由,可得;取Ⅱ.Ⅱ截面以右为脱离体,由,可得。

24kNcba18kN6kN 0ⅡⅠⅡⅠBBCADN B DF N aF N cF(3);;。

提示:先计算支座反力。

取Ⅰ.Ⅰ截面以左为脱离体,由,可得;由,可得;由,可得;取结点3为脱离体,由,可得; 取结点A 为脱离体,由,可得。

注意。

F PF Pcba1234ⅠⅠ3ABAN bF N 34F N cF N 1AF F PF PF P(4);;。

提示:先计算支座反力。

取Ⅰ.Ⅰ截面以上为脱离体,由,可得;取Ⅱ.Ⅱ截面以右为脱离体,由,可得;取Ⅲ.Ⅲ截面以右为脱离体,注意由结点B 可知,再由,得。

F Pba c123ABⅢⅠⅡⅢⅠⅡF PF PF PC(5);。

提示:根据求得的支反力可知结构的受力具有对称性,且结点A 为K 形结点,故可判别零杆如下图所示。

再取结点B 为脱离体,由,可得;由,可得。

F PF Pab AB000000CF PF P(6);;。

提示:原结构可分为以下两种情况的叠加。

对于状态1,由对称性可知,,则根据零杆判别法则可知。

相关文档
最新文档