高一数学必修一值域求值方法
高中数学必修求值域方法

高中数学必修求值域方法函数作为高中数学的重点知识之一,常常成为不少同学困扰的焦点。
下面是小编为大家整理的关于高中数学必修求值域方法,希望对您有所帮助。
欢迎大家阅读参考学习!1高中数学必修方法函数作为高中数学的重点知识之一,常常成为不少同学困扰的焦点。
那么高中数学函数的值域该怎么求呢?下面分享几点高中数学必修一求值域方法。
在高中函数定义中,是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
一般的,函数最值分为函数最小值与函数最大值。
简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。
函数最大(小)值的几何意义——函数图像的最高(低)点的纵坐标即为该函数的最大(小)值。
2三角函数多以选择题和填空题形式考查基础知识,多以解答题的形式考查三角函数的图像和性质。
在高考中,多以解答题的形式和三角函数的概念、简单的三角恒等变换、解三角形联合考查三角函数的最值、单调区间、对称性等,属于难题。
三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。
解这类问题时要注意思维的严密性,如三角函数值正负号的选取、角的范围的确定、各种情况的分类讨论、及各种隐含条件等等。
三角函数求最值常用方法有:配方法、化一法、数形结合法、换元法、基本不等式法等等。
三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。
解这类问题时要注意思维的严密性,如三角函数值正负号的选取、角的范围的确定、各种情况的分类讨论、及各种隐含条件等等。
三角函数求最值常用方法有:配方法、化一法、数形结合法、换元法、基本不等式法等等。
3函数值域换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。
单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。
高一数学必修一值域求值方法.doc

高一数学必修一值域求值方法
部分上高一的学生可能会觉得数学必修一值域,不知道怎么求法,导致数学值域题目大量失分。
以下是小编整理的高一数学必修1值域求法,希望可以分享给大家进行参考和借鉴。
函数值域的求法:
①配方法:
转化为二次函数,利用二次函数的特征来求值;常转化为型如:y=ax^2+bx+c 的形式;
②逆求法(反求法):
通过反解,用 x=f`(y)来表示 ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:对数型
的,y=ax^2+bx+e/cx^2+fx+g;
④换元法:
通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:
转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:
转化成型如:,利用平均值不等式公式来求值域;
⑦单调性法:
函数为单调函数,可根据函数的单调性求值域.
⑧数形结合:
根据函数的几何图形,利用数型结合的方法来求值域.高一
数学,主要是二次函数,幂函数,指数函数,对数函数其中二次函
数考察最多,也最重要.幂函数,指数函数,对数函数要熟记图像.
主要掌握它的基本性质,要运用数形结合,分类讨论的数学思想.
这个需要在做题时注意总结,自己独立思考.求值域是一个比较
大的范围,并非一两句话可以讲得很清楚,题目是活的,需要积累.。
高一值域求法(基本是高一新生的)

1. 函数值域的求法(1)、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。
例1:求函数()11,1y x x x =-++≥的值域。
)2,⎡+∞⎣ 例2:求函数2610y x x =++的值域。
[)1,+∞ 例3:求函数1y x =+的值域。
解:∵0x ≥,∴11x +≥, ∴函数1y x =+的值域为[1,)+∞。
(2)、配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
例1:求函数242y x x =-++([1,1]x ∈-)的值域。
解:2242(2)6y x x x =-++=--+,∵[1,1]x ∈-,∴2[3,1]x -∈--,∴21(2)9x ≤-≤∴23(2)65x -≤--+≤,∴35y -≤≤∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。
(3)、反函数法(这个大家可以先不会,后面会学的):利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
例1:求函数1212xxy -=+的值域。
解:由1212x xy -=+解得121x y y -=+, ∵20x >,∴101y y->+,∴11y -<< ∴函数1212xx y -=+的值域为(1,1)y ∈-。
(5)、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
小结:已知分式函数)0(≠++=c dcx b ax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为)(bc ad d cx c adb c a y ≠+-+=,用复合函数法来求值域。
高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之; (4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
高一值域知识点

高一值域知识点高一阶段的数学学习中,值域是一个重要的概念。
了解和掌握值域知识点对于提高解题能力和数学思维的发展至关重要。
本文将介绍高一阶段数学学习中的值域知识点,帮助同学们深入理解。
一、定义值域是在一个函数或者映射的定义域内,所有可能的函数值或者映射值的集合。
它表示了函数或映射的输出范围。
二、求值域的方法1. 逆向代入法:通过逆向代入的方法,将函数值等式转化成自变量等式,从而求得自变量的取值范围。
2. 图像法:通过绘制函数图像或者观察函数图像的性质,推测函数的值域范围。
3. 分情况讨论法:对于具有多个定义域的函数,可以将值域分为各个定义域下的值域,并再取并集得到最终的值域范围。
三、常见的值域问题1. 一次函数值域问题:对于形如y=mx+c的一次函数,当斜率m大于0时,值域为从最小值到最大值的闭区间;当斜率m小于0时,值域为从最大值到最小值的闭区间。
2. 二次函数值域问题:对于形如y=ax^2+bx+c的二次函数,当系数a大于0时,值域为从最小值到正无穷的开区间;当系数a小于0时,值域为从负无穷到最大值的开区间。
3. 分段函数值域问题:对于分段函数,可以将定义域进行分类讨论,再求得各个部分的值域范围,并取并集得到最终的值域范围。
四、实例分析假设有一个二次函数y=2x^2+3x-2,我们来求其值域。
首先,我们可以观察系数a的取值情况,发现a=2大于0,即这是一个开口向上的二次函数。
所以值域为从最小值到正无穷的开区间。
接下来,我们可以求得函数的最小值。
通过求导数和求得的结果为0的点,我们可以求得最小值对应的自变量x的值为-3/4。
将x=-3/4代入函数中,可以求得函数的最小值为-11/8。
所以,该二次函数的值域为从-11/8到正无穷的开区间。
五、总结值域是在一个函数或者映射的定义域内,所有可能的函数值或者映射值的集合。
我们可以通过逆向代入法、图像法和分情况讨论法等方法来求解值域问题。
在学习高一数学的过程中,我们需要对不同类型的函数或者映射进行分析,判断其值域的范围。
高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全高中数学求函数值域解题方法大全一、观察法:从自变量x的范围出发,推出y=f(x)的取值范围。
例1:求函数y=x+1的值域。
解析:由于x≥-1,所以x+1≥0,因此函数y=x+1的值域为[1,+∞)。
例2:求函数y=1/x的值域。
解析:显然函数的定义域为(-∞,0)∪(0,+∞),当x>0时,y>0;当x<0时,y<0.因此函数的值域是:例3:已知函数y=(x-1)-1,x∈{-1,1,2},求函数的值域。
解析:因为x∈{-1,1,2},而f(-1)=f(3)=3,f(2)=-1,f(1)=-∞,所以:y∈{-1,3}。
注意:求函数的值域时,不能忽视定义域,如果该题的定义域为x∈R,则函数的值域为{y|y≥-1}。
二、配方法:配方法式求“二次函数类”值域的基本方法。
形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法。
例1:求函数y=x2-2x+5,x∈[-1,2]的值域。
解析:将函数配方得:y=(x-1)2+4,当x=1∈[-1,2]时,y取得最小值4,当x=-1或x=2时,y取得最大值8,因此函数的值域是:[4,8]。
变式:已知f(x)=ax2+bx+c,其中a>0,且在区间[-1,1]内的最小值为1,求函数在[-2,2]上的最值。
解析:由已知,可得a>0,且f(x)在x=0处取得最小值1,即b=0.又因为在区间[-1,1]内的最小值为1,所以a≤4.将f(x)配方得:f(x)=a(x-1)2+1,当x=-2或x=2时,f(x)取得最大值5a+1;当x=1时,f(x)取得最小值1.因此,当a=4时,函数在[-2,2]上的最值分别为9和17.当a<4时,函数在[-2,2]上的最值分别为1和5a+1.三、其他方法:对于一些特殊的函数,可以采用其他方法求解。
例:已知函数f(x)=sinx+cosx,求函数的值域。
高一数学必修一重难点讲解

高中必修一一些重点函数值域求法十一种 (2)复合函数 (9)一、复合函数的概念 (9)二、求复合函数的定义域: (9)复合函数单调性相关定理 (10)函数奇偶性的判定方法 (10)指数函数: (12)幂函数的图像与性质 (15)函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-〔1〕当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ 〔2〕当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-〔1〕 ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程〔1〕有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
高一数学《函数的值域》的求法

高一数学《函数的值域》的求法函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点。
本文介绍高一数学中求函数值域的几种常见方法:1.直接法:从自变量$x$的范围出发,推出$y$的取值范围;2.二次函数法:利用换元法,将函数转化为二次函数求值域(或最值);3.反函数法:将求函数的值域转化为求它反函数的定义域;4.判别式法:使用方程思想,依据二次方程有实根,求出$y$的取值范围;5.单调性法:利用函数的单调性求值域;6.图象法:当一个函数图象可作时,通过图象可求其值域(或最值)。
例如,对于函数$y=x^2-2x-3$,我们可以通过以下几种方法求其值域:1.直接法:当$x=-1$时,$y=0$;当$x=0$时,$y=-3$;当$x=1$时,$y=-4$。
因此,所求值域为$\{0,-3,-4\}$。
2.二次函数法:将函数转化为$y=(x-1)^2-4$,然后求出最值。
当$y=-3$时,$y_{\max}=12$;当$x=1$时,$y_{\min}=-4$。
因此,所求值域为$[-4,12]$。
3.反函数法:将函数转化为$y=(x-1)^2-4\geq -4$。
因此,所求值域为$[-4,+\infty)$。
4.判别式法:将函数转化为$y=-x^2+2x+3$,然后求出判别式的取值范围。
由于判别式为$4-4\times (-1)\times 3=16>0$,因此$y$的取值范围为$(-\infty,-4]\cup [1,+\infty)$。
5.单调性法:当$x1$时,函数单调递增。
因此,所求值域为$[-4,+\infty)$。
6.图象法:函数$y=x^2-2x-3$的图象是一个开口向上的抛物线,顶点坐标为$(1,-4)$。
因此,所求值域为$[-4,+\infty)$。
除了以上这些方法,我们还可以通过改变$x$的范围来求函数的值域。
例如,将$x\in R$改为$x\in [-3,2]$或$x\in [-3,+\infty)$等。
高中数学求值域的10种方法

求函数值域的十种方法一.直接法(察看法):对于一些比较简单的函数,其值域可经过察看获得。
例 1.求函数y x1的值域。
【分析】∵ x0 ,∴x11,∴函数 y x1的值域为[1,) 。
【练习】1.求以下函数的值域:① y 3x 2( 1 x 1) ;② f ( x)2 4 x ;x;○4y21,0,1,2 。
③ y x 1 1 , xx1【参照答案】① [ 1,5];② [2,);③ (,1)(1,) ;{1,0,3} 。
4二.配方法:合用于二次函数及能经过换元法等转变为二次函数的题型。
形如F (x) af 2 ( x) bf ( x) c 的函数的值域问题,均可使用配方法。
例 2.求函数y x24x 2( x[ 1,1] )的值域。
【分析】y x24x 2( x2)2 6 。
∵ 1 x 1 ,∴ 3 x2 1 ,∴1 (x2)29,∴ 3(x 2)2 6 5 ,∴ 3 y 5。
∴函数 y x24x 2 ( x[ 1,1])的值域为 [3,5]。
例 3 .求函数y2x24x( x0, 4 ) 的值域。
【分析】本题中含有二次函数可利用配方法求解,为便于计算不如设:f (x)x2 4 x( f (x)0) 配方得: f (x)(x2)24(x0, 4 ) 利用二次函数的有关知识得f (x)0, 4,从而得出: y0,2 。
说明:在求解值域 (最值 ) 时,碰到分式、根式、对数式等种类时要注意函数自己定义域的限制,本题为:f ( x)0 。
例 4 .若x 2 y4, x0, y0,试求 lg x lg y 的最大值。
【剖析与解】 本题可当作第一象限内动点P(x, y) 在直线 x 2 y 4 上滑动时函数 lg x lg y lg xy 的最大值。
利用两点(4,0) , (0,2) 确立一条直线,作出图象易得:x (0,4), y (0,2), 而 lg x lg y lg xy lg[ y(4 2y)] lg[ 2( y 1)2 2] ,y=1 时, lg xlg y 取最大值 lg 2 。
高一数学《函数的值域》的求法

高一数学《函数的值域》的求法《新形势下教育管理理论与实践指导全书》函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点,下面介绍高一数学中求函数值域的几种常见方法。
(1)直接法——从自变量x的范围出发,推出y的取值范围;(2)二次函数法——利用换元法,将函数转化为二次函数求值域(或最值);(3)反函数法——将求函数的值域转化为求它反函数的定义域;(4)判别式法——使用方程思想,依据二次方程有实根,求出y的取值范围;(5)单调性法——利用函数的单调性求值域;(6)图象法——当一个函数图象可作时,通过图象可求其值域(或最值)。
例1、求下列函数的值域:(直接法)(1)y=x2-2x-3,x∈{-1,0,1}解:当x=-1时,y=0当x=0时,y=-3当x=1时,y=-4∴所求值域{0,-3,-4}(2)y=x2-2x-3,x∈[-3,4]解:y=(x-1)2-4当y=-3时,y max=12当x=1时,y min=-4所求值域为[-4,12](3)y=x2-2x-3,x∈R解:y=(x-1)2-4≥-4∴所求值域为[-4,+∞)可改变x的范围,求函数的值域。
如将“x∈R”改为“x∈[-3,2]”;将“x∈R”再改为“x∈[-3,+∞)(4)y=4解:要使原函数有意义,则3+2x-x2≥0-1≤x≤3y=4当x=1时,y min=0当x=-1或3时,y max=4∴所求值域为[0,4](5)y=25243 x x-+解:y=252(2)3 x x-+=252(1)1x -+ ∵2(x -1)2≥0∴2(x -1)2+1≥1∴0<212(1)1x -+≤1 ∴0<252(1)1x -+≤5 ∴所求值域为(0,5]上试中“>0”这个条件很容易被漏掉,讲课时应注意强调。
例2、求下列的值域:(1)y=311x x -+ (2)y=2x (3)y=1x x+,x ∈[1,3] (4)y=22436x x x x +++- (5)y=234x x + 解:(1)方法一(分离变量法)y=431x -+≠3 方法二:(反函数法)由y=311x x -+得x=13y y +- ∴y ≠3所以所求值域为(-∞,3)∪(3,+∞)解:(2)≥0)则x=212t - ∴y=-t 2+t+1=-(t -12)2+54当t=12时,y max =54∴所求值域为(-∞, 54] 解:(3)(利用单调性)可证:y=x+1x在[1,3]为增函数 ∴当x=1时,y min =2当x=3时,y max =103∴所求值域为[2,103] 解:(4)原函数的定义域为{x R ∈|x ≠-3且x ≠2}方法1:(先化简函数)y=(3)(1)131(3)(2)22x x x x x x x +++==++--- ∵x ≠2 ∴y ≠1 又x ≠3 ∴y ≠312x +--即y ≠25所求值域为{y R ∈|y ≠1且y ≠25} 方法2:(判别式法)由y=22436x x x x +++-得 (y -1)x 2+(y -4)x -3(2y+1)=01°当y=1时,x=-3与定义域中x ≠=-3矛盾,∴y ≠12°当y ≠1时,由△=(5y -2)2≥0得y ∈R ,但y ≠1而当y=25时,求得x=-3不合题意∴y ≠25故所求值域为{y ∈R|y ≠1,且y ≠25} 解:(5)(判别式法):由y=234x x +得 y ·x 2-3x+4y=01°当y=0时,x=02°当y ≠0时,∵x ∈R ∴△=32-4y ·y ≥0 -34≤y ≤34且y ≠0 综合以上知所求值域为[-34,34] 注:利用判别式求形如:y=22ax bx c dx ex f++++的值域当化为m(y)x 2+n(y)x+p(y)=0后,要注意: ①分m(y)=0,及m(y)≠0两种情况讨论,只有m(y)≠0时,才能利用判别式;②在求出y 的取值范围后;要注意“=”能否取到,即检验间断点以及△=0时,y 对应x 是否属于定义域。
高中数学求函数值域的解题方法总结(16种)

练习:求函数 y = x2 + 9 + (5 − x)2 + 4 的值域。(答案:{y|y≥ 5 2 })
九、比例法:
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函 数,进而求出原函数的值域。
例:已知 x,y∈R,且 3x-4y-5=0,求函数 z = x2 + y2 的值域。
例:求函数 y = x - 3 + 2x +1 的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值, 确定原函数的值域。
解:设 t = 2x +1 (t≥0),则
x = t2 -1 。 2
于是 y = t2 -1 - 3 + t = (t +1)2 − 4 ≥ 1 − 4 = − 7 .
( )( ) 例:已知 2x2 - x - 3 3x2 + x +1 ≤ 0 ,且满足 x + y = 1,求函数 z = xy + 3x 的值域。
点拨:根据已知条件求出自变量 x 的取值范围,将目标函数消元、配方,可 求出函数的值域。
解:3x2 + x +1 0 ,上述分式不等式与不等式 2x2 - x - 3 ≤ 0 同解,解之得
3 3 3
3
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区 间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值 域。
练习:求函数 y = 3 + 4 - x 的值域。(答案:{y|y≥3})
七、换元法:
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形 式,进而求出值域。
高中数学:求函数值域的方法十三种

精品资料 欢迎下载高中数学:求函数值域的十三种方法一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性八、函数单调性法(☆)九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、一一映射法 十三、 多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。
【例1】求函数1y =的值域。
,∴11≥,∴函数1y =的值域为[1,)+∞。
【例2】求函数x 1y =的值域。
【解析】∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。
【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。
二. 配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
【例1】 求函数225,[1,2]y x x x =-+∈-的值域。
【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。
【解析】由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t(2)当∈t [-3,-2]时,求g(t)的最值。
高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法
一、显函数法:
须先将函数写成显函数的形式,然后通过分析函数表达式的特征,确定其值域。
二、图像法:
一般通过函数的图像来确定其值域,可以在纸上绘制函数的图像,或者利用数学软件进行绘图分析。
三、函数增减性:
通过函数的增减性来确定其值域,即分析函数在定义域上的单调性。
四、函数的周期性:
若函数具有周期性,则值域受周期性的限制。
五、函数的有界性:
若函数在定义域上有上下界,则其值域也受到该有界性的限制。
六、反函数法:
通过求函数的反函数,获得原函数的值域。
七、导数法:
通过求函数的导数,分析其在定义域内的极值和拐点,得出值域的上下界。
八、极限法:
通过求函数在定义域两端的极限,确定函数值域的范围。
九、变量替换法:
可将复杂的函数转化为简单的函数,通过分析简单函数的值域,确定复杂函数的值域。
十、函数值的性质:
根据函数的性质和定义,通过推理和证明,确定函数值域。
以上是求函数值域的十种常见方法,根据不同的题目和函数形式,我们可以选择适用的方法来解决问题。
在实际应用中,经常需要综合运用多种方法来确定函数的值域。
数学必修一求值域的方法

数学必修一求值域的方法
求值域的方法有以下几种:
1. 图像法:将函数的图像画出来,观察函数在定义域内的取值范围即可得到值域。
2. 分析法:根据函数的性质和表达式,利用数学方法进行分析计算。
一般可以通过求导、化简、代数运算等方法来确定函数的极值,进而确定值域。
3. 限制法:对于有限定义域的函数,可以通过对定义域进行限制来确定值域。
例如,对于有界的函数,可以通过求解函数的上下界来确定值域。
4. 求解方程法:对于给定的函数,可以通过求解等式来确定函数取得某个特定值的情况,进而确定值域。
例如,对于一元二次方程,可以通过求解开方后的等式来确定值域。
需要注意的是,对于有些函数,可能存在特殊情况导致值域的确定比较困难,这时可能需要利用更高级的数学工具和方法进行分析和计算。
高一数学函数的定义域与值域的常用方法

高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。
例1、 已知,试求。
解:设,则,代入条件式可得:,t ≠1。
故得:。
说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。
例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。
(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。
例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。
(2)若能将适当变形,用得式子表示就容易解决了。
(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。
(4),同时使得有意义,用代替建立关于,得两个程就行了。
【解题过程】⑴设,由得, 由,得恒等式,得。
故所求函数得解析式为。
(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。
(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。
(4)因为 ① 用代替得 ② 解①②式得。
【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。
对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。
若函数程中同时出现,,则一般将式中得用代替,构造另一程。
高一数学求函数值域的方法仅限高一

仅限高一求函数值域的方法:1、 直接法直接根据函数表达式来求值域,例:y = x 2 , x ∈(2,3)2、 单调性法利用函数的单调性来求值域例:y=x-x 21-;解:定义域⎭⎬⎫⎩⎨⎧≤21|x x ,函数y=x,y=-x 21-均在⎥⎦⎤ ⎝⎛∞-21,上递增,故y≤.21212121=⨯-- ∴函数的值域为⎥⎦⎤ ⎝⎛∞-21,. 3、 图象法利用函数图象来求值域例:y = x 3 x ∈(-2,5)4、 配方法把函数化简成二次函数的形式,利用二次函数的性质来求, 例: y=12+-x x 解:∵y=412+-x x 能构成完全平方而y=412+-x x +43 ∴4321y 2+-=)(x ∵x R ∈ ∴值域为y ≥435、 判别式法把式子化成一元二次方程的形式,利用判别式法来求,例:y=;122+--x x x x解:由y=,122+--x x x x 得(y-1).0)1(2=+-+y x y x∵y=1时,≠∴∅∈y x , 1.又∵∈x R ,∴必须∆=(1-y)2-4y(y-1)≥0. ∴.131≤≤-y ∵,1≠y ∴函数的值域为⎪⎭⎫⎢⎣⎡-1,31. 6、 换元法把带根号或者带分式等不容易看出来的式子用一个新元代替了,换完元后,一定要注意新元的范围,根据新元的范围来求值域。
例1:y=x-x 21-;解:令x 21-=t,则t≥0,且x=.212t - ∴y=-21(t+1)2+1≤21(t≥0), ∴y∈(-∞,21]. 例2:y=|x|21x -. 解:∵1-x 2≥0,令x=sin α,则有y=|sin αcos α|=21|sin2α|, 故函数值域为[0,21].7、分离常数法适用于分子与分母同样的次幂,最终化成只有分母有x 。
例:y=521+-x x ;解:y=-)52(2721++x ,∵)52(27+x ≠0,∴y≠-21. 故函数的值域是{y|y∈R,且y≠-21}. 8、反求法用y来表达x,适用于x的范围知道,且能用y来表示x。
高一数学值域的求法1

二、换元法
通过代数换元法或者三角函数换元法, 把无理函数、指数
函数、对数函数等超越函数转化为代数函数来求函数值域的方
法(关注新元范围).
例2 求下列函数的值域:
(1) y=x- x-1 ; (2) y=x+ 2-x2 ;
[
3 4
,
+∞)
[- 2 , 2]
三、判别式法
能转化为 A(y)x2+B(y)x+C(y)=0 的函数常用判别式法求函 数的值域. 好是满主足要分适母用恒于不形为如零y =).daxx22++ebxx++fc (a, d不同时为零)的函数(最
(6)
y=
2x2-x-2 x2+x+1
;
(8) y=x+ x+1 ;
(6)[
1-2 3
13 ,
1+2 3
13
]
(8)[-1, +∞)
求
2.若函数 f(x)=log3 m 与 n 的值.
mx2+8x+n x2+1
的定义域为 R,
ቤተ መጻሕፍቲ ባይዱ值域为[0, 2],
解: ∵f(x) 的定义域为 R, ∴mx2+8x+n>0 恒成立.
(3) y=x+ 1-x2 ;
(3)[-1, 2 ]
(4) y=|x+1|+ (x-2)2 ; (4)[3, +∞)
;微信小程序开发外包 手机app开发外包 https://xiaozu.app 微信小程序开发外包 手机app开发外包 ;
《鸡毛信》。我并不注重海娃送信的艰辛过程,而是沉浸在那土得掉渣的陕北背景里——那满是沟壑的黄土高坡、愣头
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一值域求值方法
函数值域的求法:
①配方法:
转化为二次函数,利用二次函数的特征来求值;常转化为型如:
y=ax^2+bx+c的形式;
②逆求法(反求法):
通过反解,用x=f`(y)来表示,再由x的取值范围,通过解不等式,得出y的取值范围;常用来解,型如:对数型
的,y=ax^2+bx+e/cx^2+fx+g;
④换元法:
通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:
转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:
转化成型如:,利用平均值不等式公式来求值域;
⑦单调性法:
函数为单调函数,可根据函数的单调性求值域.
⑧数形结合:
根据函数的几何图形,利用数型结合的方法来求值域.高一数学,主要是二次函数,幂函数,指数函数,对数函数其中二次函数考察最多,也最重要.幂函数,指数函数,对数函数要熟记图像.主要掌握它的基
本性质,要运用数形结合,分类讨论的数学思想.这个需要在做题时注
意总结,自己独立思考.求值域是一个比较大的范围,并非一两句话可以讲得很清楚,题目是活的,需要积累.。