衡水中学物理最经典-超重与失重现象
高一物理超重和失重2

N′
理解:超重和失重是物体在竖直方向上具有加速度 时,物体对水平支持物的压力(或对悬挂物的拉力 )不再等于重力,而非重力发生变化. 二.超重和失重的条件 向上加速 加速度向上
超重
向下减速 向上减速
向下加速 加速度向下 失重
例题1.如图所示的弹簧秤上放一物体, 静止时弹簧秤的读数为30N.若保持秤 盘水平,使弹簧秤竖直向上抛出,不 计空气阻力,对于运动过程中弹簧秤 的读数,下列说法正确的是
mg N ma
N
N m( g a) mg
物体对水平支持物的压力N′ (或对悬 挂物的拉力)小于物体的重力,这种现 象叫做失重现象 . ③当物体具有竖直向下的加速度,且加速 度大小等于重力加速度时,物体对水平支 持物的压力(或对悬挂物的拉力)大小为 零,这种状态叫做完全失重状态.
a,v G
m2 g N 1600 2 a 10 2m/s m2 200
(2)升降机减速下降,加速度方向竖直向上,杠铃 处于超重状态,则 .
N m3 g m3 a
N 1600 m3 1.3 10 2 kg g a 10 2
例题3 .如图所示,A为电磁铁,C为 胶木秤盘,A和C(包括支架)的总质量 为M,B为铁片,质量为m。整个装置 用轻绳悬挂于O点.当电磁铁通电,铁 片被吸引上升的过程中,轻绳上拉力F 的大小为 A.F=mg B.Mg<F<(M+m)g C.F=(M+m)g D.F>(M+m)g
解:(1)举重运动员在地面和升降机中对杠铃的最 大支持力是相同的,设最大支持力为N,在地面上有
N m1 g 0
N m1 g 160 10 1.6 103 N
高中物理力学——超重和失重

高中物理力学——超重和失重超重和失重是高中物理学习过程中应用规律分析现象的典型实例,是对牛顿运动定律的运用,也是高考重要知识点和学生易混淆的知识点之一。
想要厘清超重和失重的本质现象,首先要清楚几个概念。
概念视重:当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的读数称为视重。
视重的大小等于秤所受的拉力或压力。
超重:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象。
超重产生的条件是物体要具有向上的加速度。
失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象。
失重产生的条件是物体要具有向下的加速度。
完全失重:物体对支持物的压力(或对悬挂物的拉力)等于零的现象。
它产生的条件是物体的加速度等于重力加速度,且方向向下。
对视重、超重和失重的理解1、不论超重、失重或完全失重,物体的重力都不变,只是视重的改变。
千万不要错误地认为超重就是超过重力,失重就是失去重力。
2、物体是否处于超重或失重状态,不在于物体向上运动还是向下运动,而在于物体具有向上的加速度还是向下的加速度。
这也是判断物体超重或失重的根本所在。
而有些学生容易把超重、失重现象的运动学特征与物体的运动方向相联系,认为超重一定是物体向上运动、失重一定是物体向下运动。
然而真实情况是,物体处于超重状态时,不一定向上加速运动,也可能向下减速运动;物体处于失重状态时,不一定向下加速运动,也可能向上减速运动。
几个常见模型一:电梯电梯在运行过程中,电梯中的人所处的状态就包含了超重、失重状态。
现在我们分析下电梯的运行过程。
(1)电梯上升过程①加速阶段,电梯加速度向上,人处于超重状态,人对电梯的压力大于重力;②平稳运行阶段,电梯匀速上升,此时加速度为零,人既不超重也不失重,人对电梯的压力等于重力;③减速阶段,电梯做减速上升运动,直至电梯停止上升,速度减为零,此阶段加速度向下,人处于失重状态,人对电梯的压力小于重力。
(2)电梯下降过程①加速阶段,电梯加速度向下,人处于失重状态,人对电梯的压力小于重力;②平稳运行阶段,电梯匀速下降,此时加速度为零,人既不超重也不失重,人对电梯的压力等于重力;③减速阶段,电梯做减速下降运动,直至电梯停止下降,速度减为零,此阶段加速度向上,人处于超重状态,人对电梯的压力大于重力。
4.6超重和失重(知识解读)

4.6超重和失重(知识解读)(解析版)•知识点1 超重与失重的概念、特点和判断•知识点2 根据超重或失重图像或状态计算物体的运动情况 •作业 巩固训练1、实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关。
(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力。
此时弹簧测力计的示数或台秤的示数即为视重。
2、超重、失重和完全失重的比较【典例11】匹克球是一种用球拍击球的运动,它是网球、羽毛球和乒乓球的混合运动.近年来匹克球在我国部分地区逐渐成为“新晋网红运动”.若忽略空气阻力,由我们所学的物理知识可知,以下说法正确的是( )A.球在空中飞行时,受重力和推力的作用B.球撞击球拍时,球拍对球的力大于球对球拍的力C.球的速度越大,惯性越大D.球在空中飞行时,处于失重状态【答案】D【详解】A.球在空中飞行时,只受重力作用,而不受推力,故A错误;B.球撞击球拍时,由牛顿第三定律可知球拍对球的力等于球对球拍的力,故B错误;C.球的惯性由质量决定,则球的速度越大,惯性依然不变,故C错误;D.球在空中飞行时,只受重力,则处于完全失重状态,故D正确。
故选D。
【典例12】(多选)如图甲所示,轻弹簧竖直固定在水平面上,0t 时刻,将一金属小球从弹䈝正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧至最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复,通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t的变化图像如图乙所示。
则()A.1t时刻小球速度最大B.2t时刻小球速度最大C.2t至3t时间内,小球速度先增大后减小D.3t至4t时间内,小球处于完全失重状态【答案】CD【详解】A.小球落到弹簧表面后,开始压缩弹簧,此后弹簧的弹力开始增大,小球受t时刻到的合力减小,但方向仍然向下;当重力等于弹力时合力为零,速度达最大,故1小球速度没有达到最大,故A错误;B.当重力等于弹力时合力为零,速度达最大,之后弹力继续增大,弹力大于重力,小球t时刻弹力最大,小球速度为0,故B 向下做减速运动,最低点时弹力最大,由图可知2错误;C.2t至3t这段时间内,小球受到的弹力逐渐变小,开始时弹力大于重力,小球向上做加速运动,当弹力等于重力时,速度最大;当弹力小于重力时,小球向上做减速运动,故小球的速度先增大后减小,故C正确;D.3t至4t这段时间内,弹簧的弹力为0,说明小球离开弹簧,只受重力作用,具有向下的加速度g,小球处于完全失重状态,故D正确。
高一物理超重和失重2(教学课件2019)

①当物体具有竖直向上的加速度时,由
牛顿第二定律
a,v
N
N mg maFra bibliotekN m(g a) mg
G
物体对水平支持物的压力N′(或对悬挂 物的拉力)大于物体的重力,这种现象 叫做超重现象 .
N′
②当物体具有竖直向下的加速度时,由 牛顿第二定律
mg N ma
N
N m(g a) mg
a,v
物体对水平支持物的压力N′ (或对悬
G
挂物的拉力)小于物体的重力,这种现
象叫做失重现象 .
③当物体具有竖直向下的加速度,且加速
度大小等于重力加速度时,物体对水平支
持物的压力(或对悬挂物的拉力)大小为
零,这种状态叫做完全失重状态.
N′
理解:超重和失重是物体在竖直方向上具有加速度 时,物体对水平支持物的压力(或对悬挂物的拉力 )不再等于重力,而非重力发生变化.
二.超重和失重的条件
向上加速 向下减速 向上减速 向下加速
加速度向上
超重
加速度向下
失重
;场外炒股配资 炒股配资 炒股配资公司 炒股配资开户 炒股配资论坛 / 炒股配资门户 炒股配资平台
炒股配资软件 炒股配资网
;
不盈者名曰闰馀 《春秋古经》十二篇 赐金五千斤 斩郅支首 秦国用之 数岁 谦退不伐 夫三淮南之计不负其约 合於尧之克攘 躬战七十 凡五奉泰畤 后土之祠 星遂至地 士卒多死 功不可必立 辄语中国 衣皮毛 汉兵罢 於是覆劾延年阑内罪人 复为太常 众寡之计 岁馀 可坐而策也 莽曰截 虏 且汉王不可必 鲜扁陆离 武帝遣使者发吏卒捕丹 以奉周祀 春二月 请与相见 行於众庶 水为辰星 沛公左司马得杀之 与左将军相误 山川其舍诸 言
30高一物理超重与失重4(1)PPT课件

根据牛顿第二定律:G - F =ma
即F=G-ma=mg-mg =0
弹簧秤的示数为零,就象不受重力。
g
完全失重:
G
物体对悬挂物的拉力(或对支持物的压力)
等于零的状态。
4
5
太空行走
6
刚才看到的是美国宇航员在太空行走、 进行机器检修的画面。据报道:我国 神舟七号将于2008年发射,将首 次把女宇航员送进太空,且他们会离 开飞船进行太空行走活动。但是,在 航天领域,我们还落后于美国和俄罗 斯。希望同学们通过自己的努力,成 为飞行员,再成为宇航员,为祖国的 航天事业贡献自己的力量吧!
动画
11
例题: 如图所示,一台秤上固定一质量为M的斜 面,斜面上有一质量为m的物块,求: (1)当物块以速度V匀速下滑时台秤的示数 (2)当物块以加速度a匀加速下滑时台秤的示数
FN a ay
解(1):因物块匀速下滑,处于平 衡状态,把M和m看作一个整体, 则台称示数 FN = (M+m)g
解(2):因物块匀加速下滑,存在竖直向下 的加速度分量 ay = asinθ,所以处于 失重状态,对整体,在竖直方向,
1
一、超重现象
1、实验:
2、分析:
根据牛顿第二定律: F-G=ma
Fa
所以F=G+ma > G
F是弹簧秤的读数,( 物体的视重)
G
3、超重现象?物体对悬挂物的拉力(或对支持
物的压力)大于物体所受重力的
现象。
思考:物体怎样运动,会出现超重?
物体有向上的加速度时,包括向上加速和向下减速。
2
二、失重现象
7
四、注意
1、物体处于超重或失重状态时, 只是物体对支持物的压力或物 体对悬线的拉力不等于物体的 重力,物体受到的重力大小和 方向还是不变的。
衡水中学物理最经典-“滑块—木板模型”问题(高频14)

“滑块—木板模型”问题(高频14)1.模型特点涉及两个物体,并且物体间存在相对滑动.2.两种位移关系滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长.设板长为L,滑块位移大小为x1,木板位移大小为x2,同向运动时:如图1所示,L=x1-x2图1反向运动时:如图2所示,L=x1+x2图23.解题步骤审题建模→弄清题目情景,分析清楚每个物体的受力情况、运动情况,清楚题给条件和所求建立方程→根据牛顿运动定律准确求出各运动过程的加速度(两过程接连处的加速度可能突变)明确关系→错误!命题点1水平面上的滑块—木板模型9.(2017·课标卷Ⅲ,25)如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.【解析】(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为f1、f2和f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有f1=μ1m A g①f2=μ1m B g②f3=μ2(m+m A+m B)g③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有f1+f3=(m B+m)a2⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2⑫对A有v2=-v1+a A t2⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B⑯联立以上各式,并代入数据得s0=1.9 m(也可用如图所示的速度—时间图线求解)【答案】(1)1 m/s(2)1.9 m10.(2015·课标卷Ⅰ,25)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m,如图(a)所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1 s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1 s时间内小物块的v t图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2.求:(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.【解析】(1)根据图(b)可以判定碰撞前小物块与木板共同速度为v=4 m/s碰撞后木板速度水平向左,大小也是v=4 m/s小物块受到滑动摩擦力而向右做匀减速直线运动,加速度大小a 2=4-01 m/s 2=4 m/s 2.根据牛顿第二定律有μ2mg =ma 2,解得μ2=0.4木板与墙壁碰撞前,匀减速运动时间t =1 s ,位移x =4.5 m ,末速度v =4 m/s 其逆运动则为匀加速直线运动可得x =v t +12a 1t 2解得a 1=1 m/s 2对小物块和木板整体受力分析,滑动摩擦力提供合外力,由牛顿第二定律得: μ1(m +15m )g =(m +15m )a 1,即 μ1g =a 1 解得μ1=0.1.(2)碰撞后,木板向左做匀减速运动,依据牛顿第二定律有μ1(15m +m )g +μ2mg =15ma 3 可得a 3=43m/s 2对小物块,加速度大小为a 2=4 m/s 2由于a 2>a 3,所以小物块速度先减小到0,所用时间为t 1=1 s过程中,木板向左运动的位移为x 1=v t 1-12a 3t 21=103 m, 末速度v 1=83 m/s 小物块向右运动的位移x 2=v +02t 1=2 m 此后,小物块开始向左加速,加速度大小仍为a 2=4 m/s 2 木板继续减速,加速度大小仍为a 3=43 m/s 2假设又经历t 2二者速度相等,则有a 2t 2=v 1-a 3t 2 解得t 2=0.5 s此过程中,木板向左运动的位移x 3=v 1t 2-12a 3t 22=76 m ,末速度v 3=v 1-a 3t 2=2 m/s 小物块向左运动的位移x 4=12a 2t 22=0.5 m此后小物块和木板一起匀减速运动,二者的相对位移最大, Δx =x 1+x 2+x 3-x 4=6.0 m小物块始终没有离开木板,所以木板最小的长度为6.0 m.(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度大小为a 1=1 m/s 2 向左运动的位移为x 5=v 232a 1=2 m所以木板右端离墙壁最远的距离为x =x 1+x 3+x 5=6.5 m. 【答案】 (1)0.1 0.4 (2)6.0 m (3)6.5 m 命题点2 斜面上的滑块—木板模型11.(2015·课标卷Ⅱ,25)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin 37°=35)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图所示.假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为38,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2 s 末,B 的上表面突然变为光滑,μ2保持不变.已知A 开始运动时,A 离B 下边缘的距离l =27 m ,C 足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g =10 m/s 2.求:(1)在0~2 s 时间内A 和B 加速度的大小; (2)A 在B 上总的运动时间.【解析】 (1)在0~2 s 时间内,A 和B 的受力如图所示,其中F f 1、F N1是A 与B 之间的摩擦力和正压力的大小,F f 2、F N2是B 与C 之间的摩擦力和正压力的大小,方向如图所示.由滑动摩擦力公式和力的平衡条件得F f 1=μ1F N1① F N1=mg cos θ② F f 2=μ2F N2③ F N2=F N1+mg cos θ④规定沿斜面向下为正.设A 和B 的加速度分别为a 1和a 2,由牛顿第二定律得 mg sin θ-F f 1=ma 1⑤ mg sin θ-F f 2+F f 1=ma 2⑥联立①②③④⑤⑥式,并代入题给条件得 a 1=3 m/s 2⑦ a 2=1 m/s 2⑧(2)在t 1=2 s 时,设A 和B 的速度分别为v 1和v 2,则 v 1=a 1t 1=6 m/s ⑨v 2=a 2t 1=2 m/s ⑩2 s 后,设A 和B 的加速度分别为a 1′和a 2′.此时A 与B 之间摩擦力为零,同理可得 a 1′=6 m/s 2⑪ a 2′=-2 m/s 2⑫由于a 2′<0,可知B 做减速运动.设经过时间t 2,B 的速度减为零,则有 v 2+a 2′t 2=0⑬ 联立⑩⑫⑬式得t 2=1 s在t 1+t 2时间内,A 相对于B 运动的距离为 x =⎝⎛⎭⎫12a 1t 21+v 1t 2+12a 1′t 22 -⎝⎛⎭⎫12a 2t 21+v 2t 2+12a 2′t 22=12 m <27 m 此后B 静止不动,A 继续在B 上滑动.设再经过时间t 3后A 离开B ,则有 l -x =(v 1+a 1′t 2)t 3+12a 1′t 23 可得t 3=1 s(另一解不合题意,舍去) 设A 在B 上总的运动时间t 总,有 t 总=t 1+t 2+t 3=4 s【答案】 (1)3 m/s 2 1 m/s 2 (2)4 s12.(2018·重庆八中一模)如图所示,质量M =1 kg 的木板静置于倾角为37°的足够长的固定斜面上的某个位置,质量m =1 kg 、可视为质点的小物块以初速度v 0=5 m/s 从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上的外力F =14 N ,使木板从静止开始运动,当小物块与木板共速时,撤去该外力,最终小物块从木板的下端滑出.已知小物块与木板之间的动摩擦因数为0.25,木板与斜面之间的动摩擦因数为0.5,最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)物块和木板共速前,物块和木板的加速度; (2)木板的最小长度;(3)物块在木板上运动的总时间.【解析】 (1)物块与木板共速前,对物块分析有mg sin θ+μ1mg cos θ=ma 1,得a 1=8 m/s 2,方向沿斜面向下,物块减速上滑;对木板分析有F +μ1mg cos θ-Mg sin θ-μ2(m +M )g cos θ=Ma 2, 得a 2=2 m/s 2,方向沿斜面向上,木板加速上滑.(2)物块与木板共速时有v 共=v 0-a 1t 1,v 共=a 2t 1, 代入数据解得t 1=0.5 s ,v 共=1 m/s ,共速时物块与木板的相对位移Δx 1=v 0t 1-12a 1t 21-12a 2t 21=1.25 m ,撤掉F 后,物块相对于木板上滑,加速度大小仍为a 1=8 m/s 2,物块减速上滑, 对木板有Mg sin θ+μ2(M +m )g cos θ-μ1mg cos θ=Ma 2′, 则a 2′=12 m/s 2,方向沿斜面向下,木板减速上滑. 由于Mg sin θ+μ1mg cos θ=μ2(M +m )g cos θ,则木板速度减为零后,物块在木板上滑动时,木板保持静止,经过t 2=112 s ,木板停止,经过t 2′=18s ,物块速度减为零,此过程,物块和木板的相对位移Δx 2=v 共2t 2′-v 共2t 2=148 m ,故木板的最小长度L min =Δx 1+Δx 2=6148 m.(3)物块在木板上下滑时,木板静止不动, 物块的加速度a 1′=g sin θ-μ1g cos θ=4 m/s 2, L min =12a 1′t 23,得t 3=6196s , 物块在木板上运动的总时间t =t 1+t 2′+t 3=⎝⎛⎭⎫58+6196s. 【答案】 (1)8 m/s 2,方向沿斜面向下 2 m/s 2,方向沿斜面向上 (2)6148m (3)⎝⎛⎭⎫58+6196 s分析滑块—滑板模型时要抓住一个转折和两个关联思想方法系列(四) 动力学中的图象问题分析思路与方法 1.常见的动力学图象v -t 图象、a -t 图象、F -t 图象、F -a 图象等. 2.图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.(3)明确能从图象中获得哪些信息:把图象与具体的题意、情境结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.类型一 与牛顿运动定律相关的v -t 图象问题例1 (2018·山东烟台高三上学期期中)如图甲所示,质量M =5 kg 的木板A 在水平向右F =30 N 的拉力作用下在粗糙水平地面上向右运动,t =0时刻在其右端无初速度地放上一质量为m =1 kg 的小物块B ,放上物块后A 、B 的v -t 图象如图乙所示.已知物块可看作质点,木板足够长,取g =10 m/s 2.求:(1)物块与木板之间动摩擦因数μ1和木板与地面间的动摩擦因数μ2; (2)物块与木板之间摩擦产生的热量; (3)放上物块后,木板运动的总位移.【解析】 (1)放上物块后,当A 、B 有相对运动时,分别对A 、B 受力分析,可知: μ1mg =ma Bμ1mg +μ2(M +m )g -F =Ma A 结合图象可知:μ1=a B g =Δv Bg Δt =0.4a A =Δv AΔt=2 m/s 2 μ2=Ma A +F -μ1mg (M +m )g=0.6.(2)物块与木板相对运动过程中,相对位移为Δs 相对=12×18×3 m =27 m物块与木板之间的摩擦热:Q =μ1mg Δs 相对=108 J. (3)A 、B 共同运动时,μ2(M +m )g -F =(M +m )aa =1 m/s 2A 、B 共同运动时间t =Δva=12 s放上物块后木板运动的总位移s 木板=12×(12+18)×3 m +12×12×12 m =117 m.【答案】 (1)0.4 0.6 (2)108 J (3)117 m 类型二 与牛顿运动定律相关的F -t 图象问题例2 (2018·山东菏泽市高三上学期期中)一个物块放置在粗糙的水平面上,受到的水平拉力F 随时间t 变化的关系如图所示,速度v 随时间t 变化的关系如图所示(g =10 m/s 2),下列说法正确的是( )A .5 s 末物块所受摩擦力的大小为15 NB .物块在前6 s 内的位移大小为12 mC .物块与水平地面间的动摩擦因数为0.75D .物块的质量为5 kg【解析】 5 s 末处于静止状态,根据平衡知,F f =F =10 N ,故A 错误;物块在前6 s 内的位移大小等于前4 s 内的位移大小,根据图线的面积得:S =12×(2+4)×4 m =12 m ,故B 正确;在0~2内物块做匀速直线运动,滑动摩擦力f =15 N ,物块匀减速运动的加速度大小为: a =42m/s 2=2 m/s 2, 根据牛顿第二定律得:f -F =ma , 解得m =15-52kg =5 kg ,则动摩擦因数为:μ=f mg =1550=0.3,故C 错误,D 正确.【答案】 BD根据F -t 图象可得F 合与时间t 的关系,F 合-t 图象与a -t 图象具有对应关系,根据对应关系列出关系式即可解决相关问题.类型三 与牛顿运动定律相关的F -x 图象问题例3 如图甲所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连,这个系统处于平衡状态,现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动(如图乙),研究从力F 刚作用在木块A 瞬间到木块B 刚离开地面瞬间的这一过程,并选定该过程中木块A 的起点位置为坐标原点,则下面图中能正确表示力F 和木块A 的位移x 之间关系的是( )【解析】 初始状态弹簧被压缩,弹簧对A 的弹力与A 所受的重力平衡,设弹簧压缩长度为x 0,末状态弹簧被拉长,由于B 刚离开地面,弹簧对B 的弹力与B 所受的重力平衡,由于A 、B 所受重力相等,故弹簧伸长量也为x 0.初始状态A 处于平衡状态,则kx 0=mg ,当木块A 的位移为x 时,弹簧向上的弹力的减少量为kx ,外力F 减去弹力的减少量为系统的合外力,故F -kx =ma ,则得到F =kx +ma ,可见F 与x 是线性关系,当x =0时,ma >0.【答案】 A根据胡克定律F =kx 得k =F x =ΔFΔx ,即弹簧弹力的变化量和形变量的变化量成正比.弹簧弹力随位移的变化而做线性变化,A 做匀加速直线运动,因此作用力F 也随位移的变化而做线性变化.[高考真题]1.(2016·上海卷,7)在今年上海的某活动中引入了全国首个户外风洞飞行体验装置,体验者在风力作用下漂浮在半空.若减小风力,体验者在加速下落过程中( )A .失重且机械能增加B .失重且机械能减少C .超重且机械能增加D .超重且机械能减少【解析】 据题意,体验者漂浮时受到的重力和风力平衡;在加速下降过程中,风力小于重力,即重力对体验者做正功,风力做负功,体验者的机械能减小;加速下降过程中,加速度方向向下,体验者处于失重状态,故选项B正确.【答案】 B2.(2016·海南卷,5)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s,5~10 s,10~15 s内F的大小分别为F1、F2和F3,则()A.F1<F2B.F2>F3C.F1>F3D.F1=F3【解析】根据v-t图象可知,在0~5 s内加速度大小为a1=0.2 m/s2,方向沿斜面向下;在5~10 s内,加速度大小为a2=0;在10~15 s内加速度大小为a3=0.2 m/s2,方向沿斜面向上;受力分析如图:在0~5 s内,根据牛顿第二定律:mg sin θ-f-F1=ma1,则:F1=mg sin θ-f-0.2m;在5~10 s内,根据牛顿第二定律:mg sin θ-f-F2=ma2,则:F2=mg sin θ-f;在10~15 s内,根据牛顿第二定律:f+F3-mg sin θ=ma3,则:F3=mg sin θ-f+0.2m;故可以得到:F3>F2>F1,故选项A正确.【答案】 A3.(2013·课标卷Ⅱ,25)一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图象如图所示.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度的大小g=10 m/s2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.【解析】(1)从t=0时开始,木板与物块之间的摩擦力使物块加速,使木板减速,此过程一直持续到物块和木板具有共同速度为止.由图可知,在t 1=0.5 s 时,物块和木板的速度相同.设t =0到t =t 1时间间隔内,物块和木板的加速度大小分别为a 1和a 2,则a 1=v 1t 1① a 2=v 0-v 1t 1② 式中v 0=5 m/s 、v 1=1 m/s 分别为木板在t =0、t =t 1时速度的大小.设物块和木板的质量均为m ,物块和木板间、木板与地面间的动摩擦因数分别为μ1、μ2,由牛顿第二定律得μ1mg =ma 1③(μ1+2μ2)mg =ma 2④联立①②③④式得μ1=0.20⑤μ2=0.30.⑥(2)在t 1时刻后,地面对木板的摩擦力阻碍木板运动,物块与木板之间的摩擦力改变方向.设物块与木板之间的摩擦力大小为f ,物块和木板的加速度大小分别为a ′1和a ′2,则由牛顿第二定律得f =ma ′1⑦2μ2mg -f =ma ′2⑧假设f <μ1mg ,则a ′1=a ′2;由⑤⑥⑦⑧式得f =μ2mg >μ1mg ,与假设矛盾.故f =μ1mg ⑨由⑦⑨式知,物块加速度的大小a ′1等于a 1;物块的v -t 图象如图中点划线所示.由运动学公式可推知,物块和木板相对于地面的运动距离分别为s 1=2×v 212a 1⑩ s 2=v 0+v 12t 1+v 212a ′2⑪ 物块相对于木板的位移的大小为s =s 2-s 1⑫联立①⑤⑥⑧⑨⑩⑪⑫式得s =1.125 m.【答案】(1)0.200.30(2)1.125 m[名校模拟]4.(2018·山东师大附中模拟)图甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的·表示人的重心.图乙是根据传感器采集到的数据画出的力—时间图象.两图中a~g 各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2.根据图象分析可知()A.人的重力为1 500 NB.c点位置人处于超重状态C.e点位置人处于失重状态D.d点的加速度小于f点的加速度【解析】由题图甲、乙可知,人的重力等于500 N,质量m=50 kg,b点位置人处于失重状态,c、d、e点位置人处于超重状态,选项A、C错误,B正确;d点位置传感器对人的支持力F最大,为1 500 N,由F-mg=ma可知,d点的加速度a d=20 m/s2,f点位置传感器对人的支持力为0 N,由F-mg=ma可知,f点的加速度a f=-10 m/s2,故d点的加速度大于f点的加速度,选项D错误.【答案】 B5.(2018·潍坊中学高三上学期开学考试)如图甲所示,足够长的木板B静置于光滑水平面上,其上放置小滑块A,木板B受到随时间t变化的水平拉力F作用,木板加速度a随力F变化的a-F图象如图乙所示,g取10 m/s2,则()A.滑块A的质量为4 kgB.木板B的质量为1 kgC.当F=10 N时木板B加速度为4 m/s2D.当F=10 N时滑块A的加速度为2 m/s2【解析】 当F 等于8 N 时,加速度为:a =2 m/s 2,对整体分析,由牛顿第二定律有:F =(M +m )a ,代入数据解得:M +m =4 kg ,当F 大于8 N 时,对B ,由牛顿第二定律得:a =F -μmg M =1M F -μmg M ,由图示图象可知,图线的斜率:k =1M =Δa ΔF =28-6=1,解得,木板B 的质量:M =1 kg ,滑块A 的质量为:m =3 kg ,故A 错误,B 正确;根据F 大于8 N 的图线知,F =6 N 时,a =0,由a =1M F -μmg M ,可知:0=11×6-μ×3×101,解得:μ=0.2,由图示图象可知,当F =10 N 时,滑块与木板相对滑动,B 的加速度为:a B =a =1M F -μmg M=11×10-0.2×3×101m/s 2=4 m/s 2,故C 正确;当F =10 N 时,A 、B 相对滑动,木块A 的加速度:a A =μMg M=μg =2 m/s 2,故D 正确,故选BCD. 【答案】 BCD6.(2018·江苏无锡高三质检)如图所示,在光滑的水平面上有一个质量为M 的木板B 处于静止状态,现有一个质量为m 的木块A 从B 的左端以初速度v 0=3 m/s 开始水平向右滑动,已知M >m .用①和②分别表示木块A 和木板B 的图象,在木块A 从B 的左端滑到右端的过程中,下面关于二者速度v 随时间t 的变化图象,其中可能正确的是( )【解析】 木块滑上木板,A 做匀减速直线运动,B 做匀加速直线运动,根据牛顿第二定律得加速度大小a A =μmg m =μg ,a B =μmg M,已知M >m ,则a A >a B .图线①斜率的绝对值应大于图线②斜率的绝对值,故A 、B 错误;若A 不能够滑下,则两者最终拥有共同的速度,若能够滑下,则A 的速度较大,故C 正确,D 错误.【答案】 C课时作业(九)[基础小题练]1.电梯早已进入人们的日常生活,设某人乘坐电梯时的v -t 图象如图所示,取向上为正方向,下列说法正确的是( )A.0至t1时间内人处于失重状态B.t2至t4时间内人处于失重状态C.t2至t3时间内与t3至t4时间内电梯的加速度方向相反D.0至t1时间内和t3至t4时间内电梯的加速度方向相同【解析】由v-t图象可知,0至t1时间内向上匀加速运动,人处于超重状态,选项A 错误;t2至t4时间内,加速度向下,人处于失重状态,选项B正确;t2至t3时间内与t3至t4时间内电梯的加速度方向相同,0至t1时间内和t3至t4时间内电梯的加速度方向相反,选项C、D错误.【答案】 B2.为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图所示,当此车减速上坡时(仅考虑乘客与水平面之间的作用),则关于乘客下列说法正确的是()A.不受摩擦力的作用B.受到水平向左的摩擦力作用C.处于超重状态D.所受合力竖直向上【解析】对乘客进行受力分析,乘客受重力,支持力,由于乘客加速度沿斜面向下,而静摩擦力必沿水平方向,又因为乘客有水平向左的分加速度,所以受到水平向左的摩擦力作用,故A错误,B正确.当此车减速上坡时,整体的加速度沿斜面向下,乘客具有向下的分加速度,所以根据牛顿运动定律可知乘客处于失重状态,故C错误.由于乘客加速度沿斜面向下,根据牛顿第二定律得所受合力沿斜面向下,故D错误.【答案】 B3.如图所示,是某同学站在压力传感器上,做下蹲—起立的动作时记录的力随时间变化的图线.由图线可知,该同学体重约为650 N,除此以外,还可得到的信息是()A.该同学做了两次下蹲—起立的动作B .该同学做了一次下蹲—起立的动作,且下蹲后约2 s 起立C .下蹲过程中人一直处于失重状态D .下蹲过程中人先处于超重状态后处于失重状态【解析】 人下蹲动作分别有失重和超重两个过程,先是加速下降处于失重状态,达到一个最大速度后再减速下降处于超重状态,同理起立对应先超重再失重,对应图象可知,该同学做了一次下蹲—起立的动作,A 错误;由图象看出两次超重的时间间隔就是人蹲在地上持续的时间,约2 s ,B 正确;下蹲过程既有失重又有超重,且先失重后超重,C 、D 均错误.【答案】 B4.(2018·河南南阳一中月考)如图甲所示,粗糙斜面与水平面的夹角为30°,质量为0.3 kg 的小物块静止在A 点,现有一沿斜面向上的恒定推力F 作用在小物块上,作用一段时间后撤去推力F ,小物块能达到的最高位置为C 点,小物块从A 到C 的v -t 图象如图乙所示,g 取10 m/s 2,则下列说法正确的是( )A .小物块到C 点后将沿斜面下滑B .小物块从A 点沿斜面向上滑行的最大距离为1.8 mC .小物块与斜面间的动摩擦因数为33D .推力F 的大小为4 N【解析】 当撤去推力F 后,物块在滑动摩擦力作用下做匀减速直线运动,由v -t 图象可求得物块在斜面上加速和减速两个过程中的加速度大小分别为a 1=103m/s 2,a 2=10 m/s 2,物块在匀减速运动阶段,由牛顿第二定律知mg sin 30°+μmg cos 30°=ma 2,解得μ=33,所以mg sin 30°=μmg cos 30°,故小物块到C 点后将静止,A 错误,C 正确;物块在匀加速运动阶段,有F -mg sin 30°-μmg cos 30°=ma 1,解得F =4 N ,D 正确;物块从A 点到C 点运动的位移大小与v -t 图线与t 轴所围成的面积相等,x =12×1.2×3 m =1.8 m ,B 正确. 【答案】 BCD5.(2018·山东师大附中高三上学期二模)如图甲所示,静止在光滑水平面上的长木板B (长木板足够长)的左端静止放着小物块A .某时刻,A 受到水平向右的外力F 作用,F 随时间t 的变化规律如图乙所示,即F =kt ,其中k 为已知常数.设物体A 、B 之间的滑动摩擦力大小等于最大静摩擦力F f ,且A 、B 的质量相等,则下列可以定性描述长木板B 运动的v -t 图象是( )【解析】 A 、B 相对滑动之前加速度相同,由整体法可得:F =2ma ,当A 、B 间刚好发生相对滑动时,对木板有F f =ma ,故此时F =2F f =kt ,t =2F f k,之后木板做匀加速直线运动,故只有B 项正确.【答案】 B6.(2018·黑龙江哈六中月考)如图所示,m =1.0 kg 的小滑块以v 0=4 m/s 的初速度从倾角为37°的斜面AB 的底端A 滑上斜面,滑块与斜面间的动摩擦因数为μ=0.5,g 取10 m/s 2,sin 37°=0.6.若从滑块滑上斜面起,经0.8 s 滑块正好通过B 点,则AB 之间的距离为( )A .0.8 mB .0.64 mC .0.76 mD .0.6 m【解析】 滑块向上滑行时,设加速度大小为a ,由牛顿第二定律得mg sin 37°+μmg cos 37°=ma ,代入数据解得a =10 m/s 2,滑块上滑时速度从v 0=4 m/s 减速到零需要的时间为t 0=v 0a =410 s =0.4 s ,上滑的最大距离s =v 202a =4220m =0.8 m ,经过0.4 s ,滑块达到最高点,速度为零,然后向下滑行,设下滑的加速度大小为a ′,由牛顿第二定律得mg sin 37°-μmg cos 37°=ma ′,代入数据解得a ′=2 m/s 2,下滑时间为t ′=t -t 0=0.8 s -0.4 s =0.4 s ,下滑的距离为s ′=12a ′t ′2=0.5×2×0.42 m =0.16 m ,AB 间的距离为s AB =s -s ′=0.8 m -0.16 m =0.64 m ,故选B.【答案】 B[创新导向练]7.生活实际——自动扶梯中的超重、失重现象如图所示,一些商场安装了智能化的台阶式自动扶梯.为了节约能源,在没有乘客乘行时,自动扶梯以较小的速度匀速运行;当有乘客乘行时,自动扶梯经过先加速再匀速两个阶段运行.则电梯在运送乘客的过程中()A.乘客始终受摩擦力作用B.乘客经历先超重再失重C.乘客对扶梯的作用力先指向右下方,再竖直向下D.扶梯对乘客的作用力始终竖直向上【解析】在加速阶段,电梯对乘客竖直向上的支持力大于重力,对乘客有向左的摩擦力作用,电梯对乘客的合力斜向左上方,则乘客对电梯的作用力斜向右下方;当电梯匀速运动时,人与电梯间没有摩擦力,电梯对人的作用力竖直向上,则乘客对电梯的作用力竖直向下,C正确,A、D错误.加速上升阶段,乘客处于超重阶段,而匀速阶段,既不超重也不失重,B错误.【答案】 C8.科技探索——用力传感器研究超重、失重现象某同学为研究超重和失重现象,将重为50 N的重物带上电梯,并将它放在电梯中水平放置的压力传感器上.电梯由静止开始运动,测得重物对传感器的压力F随时间t变化的图象如图所示.设电梯在第1 s末、第4 s末和第8 s末的速度大小分别为v1、v4和v8,g取10 m/s2,以下判断中正确的是()A.电梯在上升,且v1>v4>v8B.电梯在下降,且v4>v1>v8C.重物在第2 s内和第8 s内的加速度大小相同D.电梯对重物的支持力在第1 s内和第9 s内的平均功率相等【解析】根据牛顿第二定律分析可知,电梯的运动情况是在0~2 s内向下做匀加速运动,在2~7 s内做匀速直线运动,7~9 s内做匀减速运动;选取向下为正方向,由牛顿第。
高一物理下册知识点:超重与失重(K12教育文档)

高一物理下册知识点:超重与失重(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一物理下册知识点:超重与失重(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一物理下册知识点:超重与失重(word版可编辑修改)的全部内容。
高一物理下册知识点:超重与失重定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。
产生原因:物体具有竖直向上的加速度。
2、失重现象定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象.产生原因:物体具有竖直向下的加速度。
3、完全失重现象定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。
产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。
是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可.只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力.假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重"小于mg叫“失重”(等于零时叫“完全失重”)。
注意:物体处于“超重"或“失重”状态,地球作用于物体的重力始终存有,大小也无变化。
发生“超重”或“失重”现象与物体的速度V方向无关,只取决于物体加速度的方向。
在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如单摆停摆、浸在水中的物体不受浮力等。
另外,“超重"或“失重"状态还能够从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释.上述状态中物体的重力始终存有,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。
高一物理{超重与失重}第五章第四节

超重和失重
第五章 第四节
学生分组实验
实验用具:弹簧秤、钩码
1:测量钩码的重量 2:
为什么有的弹簧秤示数变大了? 为什么有的弹簧秤示数变小了?
3: 在什么情况下示数发生了变化?
总结:
在钩码向上加速的过程中,弹簧秤的示 数 变大了 。
在钩码向下加速的过程中,弹簧秤的示 数 变小了 。
运动过程 v 方向 FN 与 G的关系 a方 视重与实 向重
加速上升
电 梯 匀速上升
的 运
减速上升
FN > G
FN = G
0FN < G Nhomakorabea大于
等于 小于
动 过
加速下降
程 匀速下降
FN < G
小于
FN = G
0
等于
减速下降
FN > G
大于
一、实重与视重 二、超重与失重 1.超重:物体对支持物压力(或对悬挂物的拉力)大于物体所受 重力的现象(视重>实重)
条件:物体具有向上的加速度 F= m(g +a)
2.失重:物体对支持物压力(或对悬挂物的拉力)小于物体所受 重力的现象(视重<实重)
条件:物体具有向下的加速度 F= m(g-a)
3.完全失重:物体对支持物压力(或对悬挂物的拉力)为零的现象 (视重=0)
条件:物体具有向下的加速度 F=0
例题1:
某人站在一台秤上,当它猛地下蹲到停止 的过程中的,下列说法正确的是(BD)
课堂 练 习
质量是60kg的人站在升降机中的体重计上, 当升降机作下列各种运动时,体重计的读数是 多少?
高一物理《超重和失重1》(课件)

N
可以举起处于失重状态的质量m为
200kg的杠铃;
以杠铃为研究对象,根据牛
a
顿第二定律可知,G-N=ma,即
G
a=(G-N)/m,
∴a=(G-N)/m=7.5m/s2
关心航天科学
超重与失重
一个质量为70Kg的宇航员,如果在某一段时间内与火 箭、航天飞机一道以 a=g的加速度竖直升空,那麽宇航员所 承受的竖直方向的压力有多大?(g =10N/kg)
关心航天科学
超重与失重
一个质量为70Kg的宇航员,如果在某一段时间内与火 箭、航天飞机一道以 a=g的加速度竖直升空,那麽宇航员所 承受的竖直方向的压力有多大?(g =10N/kg)
v
a
N
G
测力计的示数为300N。
超重和失重
小结:电梯加速下降时,人对测力计的压力比人
受到的重力小,我们把这种现象叫做失重。
超重和失重
小结:电梯加速下降时,人对测力计的压力比人
受到的重力小,我们把这种现象叫做失重。 失重—— 物体对支持物的压力(或对悬挂物的拉力)小于
物体所受的重力的情况称为失重现象。
超重和失重
超重和失重
如果物体和弹簧秤一起做匀速直线运动,那么弹 簧秤的读数仍然等于物体的重力,但如果物体和弹簧 秤一起做变速直线运动,情况就有所不同了。
超重和失重
如果物体和弹簧秤一起做匀速直线运动,那么弹 簧秤的读数仍然等于物体的重力,但如果物体和弹簧 秤一起做变速直线运动,情况就有所不同了。
O
关心航天科学
G
超重与失重
一个质量为70Kg的宇航员,如果在某一段时间内与火 箭、航天飞机一道以 a=g的加速度竖直升空,那麽宇航员所 承受的竖直方向的压力有多大?(g =10N/kg)
高一物理超重和失重知识精讲

高一物理超重和失重【本讲主要内容】超重和失重超失重⎪⎪⎩⎪⎪⎨⎧失重超重视重实重【知识掌握】【知识点精析】实重:物体实际所受的重力视重:物体对水平支撑面的压力或对竖直悬绳的拉力超重:物体视重大于实重现象失重:物体视重小于实重现象 分析实例:【解题方法指导】例1. 弹簧秤上挂一个14kg 物体,在下列情况下弹簧秤读数是多少?(2s /m 10g =)(1)以2s /m 5.0的加速度竖直加速上升(2)以2s /cm 10的加速度竖直减速上升(3)以2s /cm 10的加速度竖直加速下降(4)以2s /m 5.0的加速度竖直减速下降解:(1)ma mg T =-N 147)5.010(14)a g (m T =+⨯=+=(2)ma mg T -=-N 6.138)1.010(14)a g (m T =-⨯=-=(3)ma T mg =-)a g (m T =-=(4)T mg =-)a g (m T =+=例2. A. B. C. D. 解:)a g (m N ma N mg -==-∴ 失重:读数减小后减速下降,)a g (m N ma N mg +=-=-∴超重,读数增大最后不动 ∴N=mg 不失重,不超重,等于重力∴C 正确分析:解此题一定分清物理过程。
例3. 某人在一以2s /m 5.2的加速度匀加速下降的电梯里最多能举80kg 物体,在地面上能举多少千克物体?若此人在一匀加速上升的电梯中最多能举40kg 物体,此电梯上升加速度多大?解:(1)⎩⎨⎧==-gm N a m N g m 2111kg 6080105.210m g a g m 112=⨯-=-= (2)233a m g m N =-2323s /m 510104060g m g m g m N a =-⨯=-=-=【考点突破】【考点指要】有关超重、失重这一知识点在近几年高考中也常出现。
【典型例题分析】例1. (2004·全国理综I ·20)下列哪个说法是正确的?( )A. 体操运动员双手握住单杠吊在空中不动时处于失重状态B. 蹦床运动员在空中上升和下落过程中都处于失重状态C. 举重运动员在举起杠铃后不动的那段时间内处于超重状态D. 游泳运动员仰卧在水面上静止不动时处于失重状态解:A 、C 、D 三种情况物体都是处于平衡状态,视重等于实重。
高一物理超重和失重知识点归纳

高一物理超重和失重知识点归纳高一课程标准实验教科书物理必修1第四章第7节讲了超重和失重的内容,下面是店铺给大家带来的高一物理超重和失重知识点归纳,希望对你有帮助。
高一物理超重和失重知识点(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力F N (或对悬挂物的拉力)大于物体的重力mg,即F N =mg+ma。
(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当 a=g 时 F N =0,物体处于完全失重。
(3)对超重和失重的理解应当注意的问题①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物合合=ma,F 合是力,ma 是力的作用效果,特别要注意的方向总是一致的.F 合的压力(或对悬挂物的拉力)不等于物体本身的重力。
②超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重。
③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等。
高一物理学习方法一、课前认真预习预习是在课前,独立地阅读教材,自己去获取新知识的一个重要环节。
课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。
对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。
二、主动提高效率的听课带着预习的问题听课,可以提高听课的效率,能使听课的重点更加突出。
课堂上,当老师讲到自己预习时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。
同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。
分享高中超重和失重物理知识点

提供高中超重和失重物理知识点高中各科目的对们提高综合成绩非常重要,大家一定要认真掌握,为大家了高中物理知识点(超重和失重),希望同学们学业有成!(1)超重:物体有向上的加速度称物体处于超重。
处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma。
(2)失重:物体有向下的加速度称物体处于失重。
处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg。
即FN=mg-ma。
当a=g时FN=0,物体处于完全失重。
(3)对超重和失重的理解应当注意的问题①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力。
②超重或失重现象与物体的速度无关,只决定于加速度的方向。
"加速上升"和"减速下降"都是超重;"加速下降"和"减速上升"都是失重。
③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等。
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}注:(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;(3)其它相关内容:电磁场〔见第二册P215〕/电磁波〔见第二册P216〕/无线电波的发射与接收〔见第二册P219〕/电视雷达〔见第二册P220〕。
你还在为高中物理学习而苦恼吗?别担忧,看了“高中物理学法:物理学习与复习方法六”以后你会有很大的收获:高中物理学法:物理学习与复习方法六要做一定数量的习题。
高一物理必修一第四章超重和失重知识点总结

高一物理必修一第四章超重和失重知识点总结超重和失重是人教版高一物理必修一第四章第七节的内容,下面是店铺给大家带来的高一物理必修一第四章超重和失重知识点总结,希望对你有帮助。
高一物理超重和失重知识点1.超重现象(1)定义(力学特征):物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况叫超重现象。
(2)产生原因(运动学特征):物体具有竖直向上的加速度。
(3)发生超重现象与物体的运动(速度)方向无关,只要加速度方向竖直向上—物体加速向上运动或减速向下运动都会发生超重现象。
2.失重现象(1)定义(力学特征):物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。
(2)产生原因(运动学特征):物体具有竖直向下的加速度。
(3)发生超重现象与物体的运动(速度)方向无关,只要加速度方向竖直向下—物体加速向下运动或减速向上运动都会发生失重现象。
3.完全失重现象—失重的特殊情况(1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的情况(即与支持物或悬挂物虽然接触但无相互作用)。
(2)产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。
(3)是否发生完全失重现象与运动(速度)方向无关,只要物体竖直向下的加速度等于重力加速度即可。
注意1.超重和失重的实质:物体超重和失重并不是物体的实际重力变大或变小,物体所受重力G=mg始终存在,且大小方向不随运动状态变化。
只是因为由于物体在竖直方向有加速度,从而使物体的视重变大变小。
2.物体由于处于地球上不同地理位置而使重力G值略有不同的现象不属于超重和失重现象。
3.判断超重和失重现象的关键,是分析物体的加速度。
要灵活运用整体法和隔离法,根据牛顿运动定律解决超重、失重的实际问题。
高一物理学习方法复习有的同学课后总是急着去完成作业,结果是一边做作业,一边翻课本、笔记。
而在这里我要强调我们首先要做的不是做作业,而应该静下心来将当天课堂上所学的内容进行认真思考、回顾,在此基础上再去完成作业会起到事半功倍的效果。
高一物理超重与失重5(PPT)5-1

失重 现象: 物体对支持物的压力(或对悬挂物 的拉力)小于物体所受重力的现象
F =N
F=F’
F>G
或
F<G
F>G
或
Hale Waihona Puke GF<G G F’
N
起都向后梳的发式:留~。 【背债】∥动欠债;负债。 【背子】?〈方〉名用来背东西的细而长的筐子,山区多用来运送物品。 【椑】[椑柿]()〈方〉 名①油柿,落叶乔木,是柿树的一个变种,果实小,青黑色,不能吃,汁液可用来做涂料。②这种植物的果实。 【悲】①悲伤:~痛|~喜交集。②怜悯:; 书法班加盟 书法加盟 书法培训机构加盟 硬笔书法加盟 书法培训加盟 书法培训班加盟 硬笔书法培训加盟 书法加盟品牌排行榜;~|~天 悯人。 【悲哀】’形伤心:感到~|显出十分~的样子。 【悲惨】形处境或遭遇极其痛苦,令人伤心:~的生活|身世~。 【悲愁】形悲伤忧愁:她成天 乐呵呵的,不知道什么叫孤独和~。 【悲楚】〈书〉形悲伤凄楚;悲苦。 【悲怆】〈书〉形悲伤:曲调~凄凉。 【悲悼】动伤心地悼念:~亡友。 【悲愤】 形悲痛愤怒:~填膺(悲愤充满胸中)。 【悲歌】①动悲壮地歌唱:慷慨~|~当哭。②名指悲壮的或哀痛的歌:一曲~。 【悲观】形精神颓丧,对事物的 发展缺乏信心(跟“乐观”相对):~失望|虽然试验失败了,但他并不~。 【悲号】动伤心地号哭。 【悲欢离合】泛指团聚、别离、欢乐、悲伤的种种遭 遇。 【悲剧】名①戏剧的主要类别之一,以表现主人公与现实之间不可调和的冲突及其悲惨结局为基本特点。②比喻不幸的遭遇:决不能让这种~重演。 【悲苦】形悲哀痛苦:脸上露出~的神情。 【悲凉】形悲哀凄凉:~激越的琴声。 【悲悯】动哀怜;怜悯:~她的不幸遭遇。 【悲鸣】动悲哀地叫:绝望 地~◇号角~。 【悲凄】ī形悲伤凄切:远处传来~的哭声。 【悲戚】ī形悲痛哀伤:~的面容。 【悲泣】动伤心地哭泣:暗自~。 【悲切】形悲哀;悲痛: 万分~。 【悲情】①名悲伤的情感:诗中充满~。②形令人产生悲伤情怀的;充满悲伤情感的:~故事|~告白。 【悲伤】形伤心难过:他听到这一噩耗, 不禁~万分。 【悲声】〈书〉名悲痛的哭泣声:大放~。 【悲酸】形悲痛心酸:阵阵~,涌上心头。 【悲叹】动悲伤叹息:老人~时光的流逝。 【悲天悯 人】对社会的腐败和人民的疾苦感到悲愤和不平:抗战时期,这位作家以~的情怀关注社会。 【悲恸】形非常悲哀:~欲绝。 【悲痛】形伤心:十分~| 化~为力量。 【悲喜交集】悲伤和喜悦的感情交织在一起:劫后重逢,~! 【悲喜剧】名戏剧类别之一,兼有悲剧和喜剧的因素,一般具有圆满的结局。 【悲辛】ī形悲痛辛酸。 【悲咽】动悲哀哽咽:说到伤心处,她不禁~起来。 【悲壮】形(声音、诗文等)悲哀而雄壮;(情节)悲哀而壮烈:~的乐曲| 剧情~,催人泪下。 【碑】名刻着文字或图画,竖立起来作为纪念物或标记的
高一物理失重和超重知识点

高一物理失重和超重知识点高一物理:失重和超重知识点引言:在高一学习物理的过程中,我们会遇到许多有趣的现象和概念。
其中,失重和超重是我们经常会遇到的一个话题。
本文将为大家介绍失重和超重的知识点,帮助大家更好地理解和应用这些概念。
一、失重是什么?1. 失重是物体在某些特定条件下不受地球引力的作用而产生的一种现象。
当物体所受的作用力等于或者小于零时,物体表现出失重状态。
2. 失重的条件:一般情况下,只有在处于真空中的物体才能真正实现失重状态,因为真空中没有任何气体分子的阻碍。
但是在实际中,我们可以通过其他方式模拟失重的状态,例如在高空中的飞机或者太空中的航天器中。
二、失重和质量的关系1. 失重和质量是两个不同的概念。
质量是物体所固有的属性,是一个物体所具有的物质的多少的度量。
失重是物体受到的重力作用的消失或减小。
2. 在失重状态下,物体的质量不会发生改变。
无论在地球上还是在太空中,物体的质量都是恒定的。
只是由于失重的产生,物体所受的重力作用变小,给人一种失去质量的感觉。
三、失重现象的应用1. 在航天器的设计和发射过程中,失重现象是十分重要的。
当航天器进入轨道后,航天员就会感受到失重的状态。
这也是航天员进行各种实验和操作的最佳时机。
2. 同样地,在飞机上也可以模拟失重的状态。
飞机在进行特定的机动动作时,通过改变飞行姿态和速度,可以使乘客感受到失重的状态。
这也是我们乘坐过山车时产生的类似失重的体验。
四、超重是什么?1. 超重是相对于正常重力状态而言的一种现象。
当物体所受的作用力大于重力的时候,物体表现出超重状态。
2. 超重的常见表现是乘坐高速转弯的电梯或者过山车时,人们会感受到额外的“重量”。
这是因为在高速转弯的情况下,物体会受到一个向外的离心力。
五、超重现象的应用1. 超重的应用十分广泛。
在过山车、云霄飞车等娱乐设施中,设计师会利用超重现象来制造更加刺激、惊险的体验。
2. 在科学实验中,超重也是被广泛应用的概念之一。
高一物理超重和失重2(PPT)5-3

物体对水平支持物的压力N′ (或对悬
G
挂物的拉力)小于物体的重力,这种现
象叫做失重现象 .
③当物体具有竖直向下的加速度,且加速
度大小等于重力加速度时,物体对水平支
持物的压力(或对悬挂物的拉力)大小为
零,这种状态叫做完全失重状态.
N′
水、奶油、糖、果汁等物混合搅拌,在低温下冻成的砖形硬块。 【冰锥】īī(~儿)名雪后檐头滴水凝成锥形的冰。也叫冰锥子、冰柱、冰溜()。 【并】ī 名山西太原的别称。 【兵】ī①兵器:短~相接|秣马厉~。②名军人;军队:当~|~种|骑~。③名军队中的最基层成员:官~一致。④指军事或战
最高点都具有竖直向下的重力加速度g .而弹簧秤的读
数是物体对秤盘压力的大小,由牛顿第三定律,秤盘 对物体的支持力与物体对秤盘压力的大小相等.设秤
盘对物体支持力的大小为N,以物体为研究对象,由
牛顿第二定律
ag
mg N ma
答案D
N mg ma 0
有战斗力。 【兵权】ī名军权。 【兵戎】ī〈书〉名指武器、军队:~相见(武装冲突的婉辞)。 【兵士】ī名士兵。 【兵书】ī名讲兵法的书。 【兵团】ī名 ①军队的一级组织,下辖几个军或师。②泛指团以上的部队:主力~|地方~。
解:将物体和弹簧秤作为整体,不计空气阻力,抛出 后整体只受重力作用,物体和弹簧秤在上升、下降和
争:~法|~书。;细胞株 细胞库 细胞 https:/// 细胞株 细胞库 细胞;军队哗变:发动~。 【兵不血刃】ī兵器上面没有沾血,指未 经交锋而取得胜利。 【兵不厌诈】ī用兵打仗可以使用欺诈的办法迷惑敌人(语本《韩非子?难一》:“战阵之间,不厌诈伪。”不厌:不排斥;不以为非)。 【兵车】ī名①古代作战用的车辆。②指运载军队的列车、汽车等。 【兵船】ī名旧时指军舰。 【兵丁】īī名士兵的旧称。 【兵法】ī名古代指用兵作战的策略 和方法:熟谙~。 【兵符】ī名①古代调兵遣将的符节。②兵书。 【兵戈】ī〈书〉名兵器,借指战争:不动~|~四起。 【兵革】ī〈书〉名兵器和甲胄,借 指战争:~未息。 【兵工】ī名军工。 【兵工厂】ī名制造武器装备的工厂。 【兵贵神速】ī用兵以行动特别迅速最为重要(语出《三国志?魏书?郭嘉传》)。 【兵荒马乱】ī形容战时社会动荡不安的景象。 【兵火】ī名战火,指战争:~连天|书稿毁于~。 【兵家】ī名①古代研究军事理论、从事军事活动的学派。 主要代表人物有孙武、孙膑等。②用兵的人:胜败乃~常事|徐州历来为~必争之地。 【兵舰】ī名军舰。 【兵谏】ī动用武力胁迫君主或当权者接受规劝: 发动~。 【兵来将挡,水来土掩】ī,比喻不管对方使用什么计策、手段,都有对付办法。也比喻针对具体情况采取相应对策。 【兵力】ī名军队的实力,包 括人员和武器装备等:~雄厚|集中~。 【兵临城下】ī指大军压境,城被围困。形容形势危急。 【兵乱】ī名由战争造成的混乱局面;兵灾:屡遭~。 【兵 马俑】ī名古代用来殉葬的兵马形象的陶俑。 【兵痞】ī名指在旧军队中长期当兵、品质恶劣、为非作歹的人。 【兵棋】ī名特制的军队标号图型和人员、兵器、 地物等模型,在沙盘和地图上可以像棋子一样摆放或移动,供指挥员研究作战和训练等情况时使用。 【兵器】ī名武器?。 【兵强马壮】形容军队实力强,富
高一物理《超重和失重》

(2)物体处于超重状态时, 物体不一定 是向上加速运动, 也可以是向下减速运动, 即只要物体的加速度方向是向上的, 物体就 处于超重状态, 物体的运动方向可能向上也 可能向下. 同理, 物体处于失重状态时, 物体 的加速度向下, 物体即可以做向下的加速运 动, 也可以做向上的减速运动.
拉力还等于重力?
一、超重现象:
1、定义:对悬挂物的拉力(或对支持 物的压力)大于重力的现象。
2、分析: v 由牛顿第二定律得: F-mg = ma F=mg+ma > mg
F
a
v
F
a
mg
F'
mg
减速下降 加速上升 F'=F > mg 3、条件:物体具有向上的加速度。
〔例题〕升降机的底板上放一台秤, 台秤上放一物体,当升降机匀速运动时, 台秤的示数为10N;现在台秤的示数突
然变为12N,则升降机可能做的运动是
( )
A. 加速上升
C. 减速上升
B. 加速下降
D. 减速下降
〔例题〕升降机的底板上放一台秤, 台秤上放一物体,当升降机匀速运动时, 台秤的示数为10N;现在台秤的示数突
然变为12N,则升降机可能做的运动是
( )AD
A. 加速上升
C. 减速上升
B. 加速下降பைடு நூலகம்
D. 减速下降
F a v
F a
F = mg-ma< mg 加速下降 减速上升 F'=F < mg 3、条件:物体具有向下的加速度。
mg
mg
F a g
F = mg-ma = m(g-a)
第22讲超重失重高中物理必修一

第22讲超重失重高中物理必修一知识点总结1. 实重与视重(1)实重:物体实际所受的重力,物体所受的重力不会因物体运动状态的改变而变化。
(2)视重:当物体在竖直方向有加速度时(即),物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力,此时弹簧测力计或台秤的示数叫物体的视重。
说明:正因为当物体竖直方向有加速度时视重不再等于实重,所以我们用弹簧测力计测物体重力时,强调应在静止或匀速运动状态下进行。
2. 超重和失重现象(1)超重现象:当支持物存在向上的加速度时,物体对支持物的压力(或对悬挂物的拉力)大于物体本身重力的现象称为超重现象。
若支持物或悬挂物为测力计,则超重时“视重”大于实重,超出的部分为ma,此时物体可有向上加速或向下减速两种运动形式。
(2)失重现象:当支持物存在向下的加速度时,物体对支持力的压力(或对悬挂物的拉力)小于物体本身重力的现象称为失重现象。
失重时“视重”小于实重,失去的部分为ma,此时物体可做向上减速运动或向下加速运动。
在失重现象中,物体对支持物体的压力(或对悬挂物的拉力)等于零的状态称为完全失重状态。
此时“视重”等于零,物体运动的加速度方向向下,大小为g。
(3)超重与失重的原因①超重:在升降机中的机板的测力计上挂有一质量为m的物体,整个升降机系统有向上的加速度a,那么物体对升降机测力计的压力是否还等于自身的重力?压力如何求呢?物体受到重力和支持力,如下图所示,由牛顿第二定律,得,∴由牛顿第三定律,物体受到支持力和物体对测力计的压力大小相等。
②失重若升降机系统具有向下的加速度a,如下图所示则由牛顿第二定律得,,∴由牛顿第三定律,物体受到的支持力和物体对测力计的压力大小相等。
③完全失重在图上中,若a=g时,则由牛顿第二定律,得,则物体对支持物的压力变为零。
(4)超重和失重仅仅是一种现象①物体处于超重和失重现象时,好像物体的重力时大时小。
物体处于平衡状态时,物体受到的重力大小等于支持力或拉力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超重与失重现象
1.
2.情景拓展(如图所示)
[诊断小练]
(1)超重就是物体的重力增加,失重就是物体的重力减小.()
(2)物体超重时,加速度向上,速度也一定向上.()
(3)减速下降的物体处于失重状态.()
(4)加速度大小等于g的物体处于完全失重状态.()
(5)站在台秤上的人下蹲过程,台秤示数减小.()
【答案】(1)×(2)×(3)×(4)×(5)×
命题点1非竖直方向超重、失重的判断
1.(2018·广东华南师大附中高三上学期综合)如图所示的装置中,重4 N的物块被平行于斜面的细线拴在斜面上端的小柱上,整个装置保持静止,斜面的倾角为30°,被固定在测力计上,如果物块与斜面间无摩擦,装置稳定以后,当细线被烧断物块下滑时,与稳定时比较,测力计的读数(g=10 m/s2)()
A.增加4 N B.增加3 N
C.减少1 N D.不变
【解析】对物块和斜面体整体受力分析,受总重力和支持力,平衡时,有
N-(M+m)g=0①
加速下滑时,再次对物块和斜面体整体受力分析,受总重力、支持力和静摩擦力,根据牛顿第二定律,有
竖直方向:(M+m)g-N′=ma sin 30°②
对物块受力分析,受重力和支持力,根据牛顿第二定律,有
mg sin 30°=ma③
由①②③解得:
N-N′=ma sin30°=mg(sin 30°)2=0.4×10×0.25 N=1 N.
【答案】 C
1.尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量即a y≠0,物体就会出现超重或失重状态.当a y方向竖直向上时,物体处于超重状态;当a y方向竖直向下时,物体处于失重状态.
2.尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重状态.
命题点2超重、失重法的灵活应用
2.一木箱静止在地面上,木箱连同固定在箱子上的杆总质量为M,有一质量为m的环套在杆上,给环一初速度,使其沿杆向上减速运动,试求环向上运动的加速度多大时,才使箱子对地面的压力为零?
【解析】解法一:如图所示,以小环为研究对象,设其与杆间作用力为f,加速度大小为a,则:mg+f=ma
再对箱子分析受力列平衡方程:
F N+f′=Mg
f =f ′
令F N =0
由以上各式解得a =(M +m )g m
. 解法二:利用超重、失重法
小环有向下的加速度,处于失重状态,若失重部分恰等于整体重力,则箱子对地面压力为零.
令ma =(M +m )g ,a =(M +m )g m
. 【答案】 (M +m )g m
超重和失重现象判断的“三”技巧
1.从受力的角度判断.当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态,小于重力时处于失重状态,等于0时处于完全失重状态.
2.从加速度的角度判断.当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.
3.从速度变化的角度判断
(1)物体向上加速或向下减速时,超重;
(2)物体向下加速或向上减速时,失重.。