小学数学四年级下册解方程技巧

合集下载

小学四年级解方程的方法详解

小学四年级解方程的方法详解

小学四年级解方程的方法详解方程:含有未知数的等式叫做方程。

如4x-3=21,6x-2(2x-3)=20方程的解:使方程成立的未知数的值叫做方程的解。

如上式解得x=6解方程:求方程的解的过程叫做解方程。

解方程的依据:方程就是一架天平,“=”两边是平衡的,一样重!1. 等式性质:(1)等式两边同时加上或减去同一个数,等式仍然成立;(2)等式两边同时乘以或除以同一个非零的数,等式仍然成立。

2. 加减乘除法的变形:(1) 加法:a + b = 和则 a = 和-b b = 和-a例:4+5=9 则有:4=9-5 5=9-4(2) 减法:被减数a –减数b = 差则:被减数a = 差+减数b 被减数a-差= 减数b 例:12-4=8则有:12=8+4 12-8=4(3) 乘法:乘数a ×乘数b = 积则:乘数a = 积÷乘数b 乘数b= 积÷乘数a 例:3×7=21则有:3=21÷7 7=21÷3(4) 除法:被除数a ÷除数b = 商则:被除数a= 商×除数b 除数b=被除数a ÷商例:63÷7=9 则有:63=9×7 7=63÷9解方程的步骤:1、去括号:(1)运用乘法分配律;(2)括号前边是“-”,去掉括号要变号;括号前边是“+”,去掉括号不变号。

2、移项:法1——运用等式性质,两边同加或同减,同乘或同除;法2——符号过墙魔法,越过“=”时,加减号互变,乘除号互变。

注意两点:(1)总是移小的;(2)带未知数的放一边,常数值放另一边。

3、合并同类项:未知数的系数合并;常数加减计算。

4、系数化为1:利用同乘或同除,使未知数的系数化为1。

5、写出解:未知数放在“=”左边,数值(即解)放右边;如x=66、验算:将原方程中的未知数换成数,检查等号两边是否相等!注意:(1)做题开始要写“解:”(2)上下“=”要始终对齐【例1】x-5=13 x-5=13法1 解:x-5+5=13+5 法2 解:x=13+5x=18 x=18【例2】3(x+5)-6=18 3(x+5)-6=18法1 解: 3x+3×5-6=18 法2 解:3x+3×5-6=183x+15-6=18 3x+15-6=183x+9=18 3x+9=183x+9-9=18-9 3x=18-93x=9 3x=93x÷3=9÷3 x=9÷3x=3 x=3【例3】3(x+5)-6=5(2x-7)+2解: 1.去括号:3x+3×5-6=5×2x-5×7+23x+15-6=10x-35+23x+9=10x-332.移项:33+9=10x-3x (注意:移小的,如-33, 3x)3.合并同类项:42=7x4.系数化为1:42÷7=7x÷76=x5.写出解:x=66.验算:3×(6+5)-6=5(2x6-7)+23×11-6=5×5+227=27√解方程练习(写出详细过程):4+x=7 x+6=9 4+x=7+54+x-2=7 x-6=9 17-x=9x-6=9+3 9+3=17-x 16+2x =24+x4x=16 15=3x 4x+2=1824-x =15+2x 2+5x=18+3x 6x-2=3x+103(x+6) =2+5x 2(2x-1)=3x+10 30-4(x-5)=2x-162(x+4) -3=2+5x 100-3(2x-1)=3-4x 30+4(x-5)=2x-2620x-50=50 28+6 x =88 32-22 x =1024-3 x =3 10 x ×(5+1)=60 99 x =100- x36÷ x=18 x÷6=12 56-2 x =2036÷ x-2=16 x÷6+3=9 56-3x =20-x4y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3×9=298x-3x=105 x-6×5=42+2x 2x+5=7 ×3 2(x+3)+3=13 12x-9x=9 6x+18=4856x-50x=30 5x=15(x-5)78-5x=2832y-29y=3 5(x+5)=15 89 – 9x =80 100-20x=20+30x 55x-25x=60 76y÷ 76=1 23y÷ 23=23 4x-20=0 80y+20=100-20y 53x-90=16 2x+9x=11 12(y-1)=2480÷ 5x=100 7x÷ 8=14 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8-2x 90y-90=90-90y 80y-90=70÷ 30 78y+2y=160 88-4x=80-2x9÷(4x)=1 20x=40 – 10x 65y-30=10051y-y=100 85y+1=y+86 45x-50=40-45x二、列方程解应用题:(一)口算:a+2a= 3c+5c= 4m-2m= X+3x=5x-x= 6x-2x= 1.5x-x= 3.6x+1.4x=(二)用方程表示数量关系:1.火车每小时行120千米,汽车每小时a千米,火车每小时比汽车快6千米。

小学数学解方程答题技巧附练习题

小学数学解方程答题技巧附练习题

小学数学解方程答题技巧附练习题一、首先是审题,确定未知数审题,理解题意。

就是全面分析已知数与已知数、已知数与未知数的关系。

特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。

即用x表示所求的数量或有关的未知量。

在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

二、寻找等量关系,列出方程是关键“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。

所以寻找等量关系是解题的关键。

如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。

仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。

上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值解方程时应当注意把等号对齐。

如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。

2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。

如果左右两边相等,说明方程解正确了。

如上题的检验过程为:检验:把x=224代入原方程。

左边=2×224+47 右边=495=495因为左边=右边,所以x=224是方程2x+47=495的解。

2)文艺书本数的2倍+47=科技书的本数将224代入以上等式,等式成立。

故所求得的未知数的值符合题意。

总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。

小学数学解方程口诀

小学数学解方程口诀

解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。

特殊方程别犯难,减去除以未知数,加上乘上变一般。

若遇稍微复杂点,舍远取近便了然。

具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。

形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。

形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。

形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。

我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。

总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。

对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。

对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。

总结为:若遇稍微复杂点,舍远取近便了然。

当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。

(完整版)小学数学四年级下册解方程技巧

(完整版)小学数学四年级下册解方程技巧

小学数学解方程技巧
一、知识要点:
1、等式:表示相等关系的式子叫做等式。

方程:含有未知数的等式叫做方程。

使方程左右两边相等的未知数的值叫方程的解。

求方程的解的过程叫解方程。

关系:所有的方程都是等式,但等式不一定是方程。

二、解方程的依据:
1、四则运算各部分间的关系:
加法:加数+加数=和,和–加数=加数
减法:被减数--减数=差;差 + 减数=被减数被减数–差 = 减数
乘法:因数X因数=积;积÷因数 = 因数
除法:被除数÷除数=商;除数X 商 = 被除数
被除数÷商 = 除数
2、等式的基本性质:
性质(1):等式两边都加上(或减去)同一个数,左右两边仍然相等。

性质(2):等式两边都乘以(或除以)同一个不等于0的数,左右两边仍然相等。

四年级解方程的方法和技巧

四年级解方程的方法和技巧

四年级解方程的方法和技巧如下:
1.确定方程式类型和求解目标:要解决方程式,首先需要明确方程式的类型和求解目标,方
程式一般分为一次方程式和二次方程式等多种类型,每种类型的解法也不同,求解目标可以是解出方程的根。

2.化简方程式:对于一些复杂的方程式,可通过化简简化计算,化简方程式的方法有因式分
解、合并同类项、移项等,通过这些方法可以简化方程式,使其更加容易求解。

3.注意方程式中的条件限制:在解题过程中需要注意方程式中的条件限制,比如在求解绝对
值方程时,需要分类讨论求解。

4.积累经验:要想掌握方程式解题的方法和技巧,还需要多练习,多积累经验,通过多做习
题并总结经验,才能更好地掌握方程式解题的技巧。

小学数学解方程口诀

小学数学解方程口诀

小学数学解方程口诀解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。

特殊方程别犯难,减去除以未知数,加上乘上变一般。

若遇稍微复杂点,舍远取近便了然。

具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。

形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。

形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。

形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。

我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。

总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。

对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。

对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。

总结为:若遇稍微复杂点,舍远取近便了然。

当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。

小学四年级解方程的方法详解

小学四年级解方程的方法详解

一、理解方程的含义在解方程之前,首先需要明确方程的含义。

方程是一种等式,表示两个表达式相等。

方程的解就是使等式成立的未知数的值。

例如:x+5=10是一个方程,x是未知数,使得x+5等于10的值就是方程的解。

二、通过逆运算解方程解方程的基本原则是通过逆运算来消去已知数和运算符,直到找到未知数的值。

假设有方程:x+5=10,我们需要找到x的值。

1.反转运算方程中的运算是加法,所以我们可以通过减法来消去已知数。

将方程两边都减去5,得到:x=10-52.简化运算计算右侧的表达式,得到x=53.验证解将x的值代入原方程,看等式是否成立。

代入得到5+5=10,等式成立,所以x=5是原方程的解。

三、注意特殊情况除了基本的解方程方法外,还需要注意一些特殊情况。

1.零的运算当方程涉及到零的运算时,需要特别注意。

例如:x+0=5,无论x是多少,都不会改变0的值,所以方程的解是x=52.未知数的系数当方程中未知数有系数时,需要将系数带入逆运算。

例如:2x-4=6,应通过逆运算得到x=(6+4)/2=10/2=53.有多个未知数的方程当方程中有多个未知数时,需要使用代数法求解。

例如:2x+3y=10,3x-2y=5,需要联立两个方程,使用代数方法解方程。

四、通过问题解方程通过具体问题来解决方程是解方程的另一种常见方法。

根据问题的描述,将问题转化为方程,然后解方程得到问题的解。

例如:问题:有一些苹果,我把其中的3个苹果分给小明,然后剩下的苹果数是5个,问原来有多少个苹果?解法:假设原来有x个苹果,根据问题描述可以得到方程x-3=5、通过解方程可以得到x=5+3=8,所以原来有8个苹果。

五、练习解方程解方程是需要大量练习的,通过解题提高解方程的能力。

可以通过课本、习题册等练习材料来练习解方程的方法。

解题过程中不仅要掌握基本的解方程方法,还要注意问题的描述和逻辑推理。

总结:解方程是数学中一个重要的概念,通过解方程可以培养学生的逻辑思维和分析问题的能力。

小学四年级数学下册解方程口诀+解析+解方程计算题、解应用题专项练习题

小学四年级数学下册解方程口诀+解析+解方程计算题、解应用题专项练习题

解方程口诀解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。

特殊方程别犯难,减去除以未知数,加上乘上变一般。

若遇稍微复杂点,舍远取近便了然。

具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。

形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。

形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。

形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。

我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。

总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。

对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。

对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。

总结为:若遇稍微复杂点,舍远取近便了然。

当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。

方程解析方程的意义1、了解方程的意义:含有未知数的等式叫做方程。

2、掌握方程与等式的关系:方程是等式但等式不一定是方程.或者说方程属于等式,等式包含方程.并能用图形表示.3、根据情境图找出等量关系,会列方程。

四年级方程式解题方法和技巧

四年级方程式解题方法和技巧

四年级方程式解题方法和技巧
四年级方程式解题方法和技巧
在四年级数学中,学生们开始学习解方程式,这是一个重要的数学知识点,也是日常生活中实际运用的数学技能之一。

在学习解方程式时,学生需要掌握一些方法和技巧,以便更快、更准确地解决问题。

1. 理解方程式的含义
方程式是一个等式,其中包含有一个未知数,我们需要通过运用数学知识,找到未知数的值。

在解决方程式问题前,要先理解方程式的含义,明确方程式中各个符号的意义,以便更好地理解问题。

2. 运用代数思想
在解决方程式问题时,需要运用代数思想,将问题转化为数学运算。

例如,将一个问题中的未知数用字母表示出来,再通过运用加减乘除等数学运算规律,得出未知数的值。

3. 逆向思维
在解决方程式问题时,有时需要运用逆向思维,即从结果反推出问题
的答案。

例如,如果一个问题中有两个未知数,可以通过逆向思维,将一个未知数的值代入另一个未知数的式子中,从而得出另一个未知数的值。

4. 检查答案的正确性
在解决方程式问题后,需要对答案进行检查,确保答案的正确性。

可以通过将得出的答案代入原来的方程式中,看是否成立。

总之,解方程式是数学学习中的重要知识点,学生需要掌握相关的方法和技巧,才能更好地解决问题。

除了以上方法和技巧,学生还需要多加练习,不断提高自己的数学能力。

小学数学解方程的方法与技巧

小学数学解方程的方法与技巧

小学数学解方程的方法与技巧
小学数学解方程的方法与技巧
解方程是小学数学的基础知识,它可以帮助我们解决各种数学问题。

下面介绍一些解方程的方法和技巧。

1.加减乘除法的运用
在解方程时,我们可以利用加减乘除法各部分间的关系来求解。

比如,对于加法运算,我们可以利用等式A+B=C,得出一个加数等于和减另一个加数的公式A=C-B。

对于减法运算,我们可以利用等式X-Y=Z,得出被减数等于减数加差的公式X=Y+Z,以及减数等于被减数减差的公式Y=X-Z。

对于乘法运算,我们可以利用等式A×B=C,得出一个因数等于积除以另一个因数的公式A=C÷B。

对于除法运算,我们可以利用等式X÷Y=Z,得出被除数等于除数乘商的公式X=Y×Z,以及除数等于被除数除以商的公式Y=X÷Z。

2.等式的性质
等式具有一些特殊的性质,我们可以利用这些性质来解方程。

比如,等式的两边都加上或减去同一个数,等式仍然成立;等式的两边都乘一个数或除以一个不为零的数,等式仍然成立。

例如,如果X=5成立,那么X+2=5+2,X-3=5-3,X×2=5×2,
X÷2=5÷2也成立。

3.移项的方法
移项是解方程的常用方法之一。

我们可以通过移项将方程中的未知数移到等式的一边,将已知数移到等式的另一边。

例如,对于方程X+5=8,我们可以将等式两边都减去5,得到
X=3.对于方程8X-4=5,我们可以将等式两边都加上4,得到
8X=9,再将等式两边都除以8,得到X=9/8.。

浙教版小学四年级下册数学课件解方程1

浙教版小学四年级下册数学课件解方程1
学生理解了方程的解与解方程的 概念,知道了解方程是求方程的
解的过程。
简单的方程解法
通过本节课的学习,学生能够掌 握简单的方程解法,如一元一次
方程的解法。
解方程在实际生活中应用举例
01
02
03
购物问题
通过解方程可以解决购物 时的找零问题,理解购物 总价与找零之间的关系。
行程问题
学生可以通过解方程来解 决行程问题,如计算两地 之间的距离、速度和时间 之间的关系等。
含有两个未知数,且未知数的最高次数为1的方程。 其特点是有无数多个解,需要两个方程联立求解。
特殊方程
如分式方程、无理方程等,具有特殊的形式和求解 方法。这类方程在求解时需要注意定义域和值域的 限制,以及特殊运算规则的应用。
02
一元一次方程解法
合并同类项法
80%
定义
把方程中同类项合并,使方程简 化。
通过典型例题的解析,掌握行程问题 中一元一次方程的建立和求解方法。
相遇和追及问题
分析相遇和追及问题的特点,利用路 程、速度和时间的关系建立方程。
工程问题建模与求解
工作量、工作效率和工作时间关系
01
根据题意,明确工作量、工作效率和工作时间之间的关系,建
立一元一次方程。
合作和独立完成工作问题
02
分析合作和独立完成工作的特点,利用工作量、工作效率和工
04
多元一次方程组解法
消元法求解二元一次方程组
消元法原理
通过加减消元法或代入消元法,将二元一次方程组转化为一元一次方程进行求解。
消元法步骤
首先观察方程组中未知数的系数,选择一个未知数进行消元,然后通过加减或代入操作消 去该未知数,得到一个关于另一个未知数的一元一次方程,解出该未知数的值,最后回代 求解另一个未知数的值。

小学数学解方程口诀-推荐

小学数学解方程口诀-推荐

解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。

特殊方程别犯难,减去除以未知数,加上乘上变一般。

若遇稍微复杂点,舍远取近便了然。

具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。

形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。

形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。

形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。

我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。

总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。

对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。

对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。

总结为:若遇稍微复杂点,舍远取近便了然。

当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。

小学数学解方程答题技巧

小学数学解方程答题技巧

小学数学解方程答题技巧解方程答题技巧一、首先是审题,确定未知数审题,理解题意。

就是全面分析已知数与已知数、已知数与未知数的关系。

特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。

即用x表示所求的数量或有关的未知量。

在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

二、寻找等量关系,列出方程是关键“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。

所以寻找等量关系是解题的关键。

如上题中“科技书的本数比文艺书的2倍多47本”这是理解本题题目意思的关键。

仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。

上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数的值解方程时应当注意把等号对齐。

如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。

2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。

如果左右两边相等,说明方程解正确了。

如上题的检验过程为:检验:把x=224代入原方程。

左边=2×224+47 右边=495=495因为左边=右边,所以x=224是方程2x+47=495的解。

2)文艺书本数的2倍+47=科技书的本数将224代入以上等式,等式成立。

故所求得的未知数的值符合题意。

总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。

小学数学解方程口诀

小学数学解方程口诀

小学数学解方程口诀!还不快收藏!解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。

特殊方程别犯难,减去除以未知数,加上乘上变一般。

若遇稍微复杂点,舍远取近便了然。

具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。

形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。

形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。

形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。

我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。

总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。

对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。

对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。

总结为:若遇稍微复杂点,舍远取近便了然。

当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。

(2021年整理)小学数学解方程的方法与技巧

(2021年整理)小学数学解方程的方法与技巧

(完整版)小学数学解方程的方法与技巧编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)小学数学解方程的方法与技巧)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)小学数学解方程的方法与技巧的全部内容。

(完整版)小学数学解方程的方法与技巧编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)小学数学解方程的方法与技巧这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)小学数学解方程的方法与技巧〉这篇文档的全部内容。

小学数学解方程的方法与技巧工具:1、依据加减乘除法各部分间的关系.加法: A + B = C加数 + 加数 = 和A = C — B一个加数= 和—另一个加数减法: X — Y = Z被减数—减数 = 差X = Y + Z被减数 = 减数 + 差Y = X - Z减数 = 被减数 - 差乘法: A × B = C因数×因数 = 积A = C ÷ B一个因数= 积÷另一个因数除法: X ÷ Y = Z被除数÷除数 = 商X = Y × Z被除数 = 除数×商Y = X ÷ Z除数 = 被除数÷商2、依据等式的性质●等式的两边都加上或减去同一个数,等式仍然成立.●等式的两边都乘一个数或除以一个不为0的数,等式仍然成立。

提升小学生数学技巧快速解方程练习题

提升小学生数学技巧快速解方程练习题

提升小学生数学技巧快速解方程练习题数学作为一门基础学科,对小学生的学习能力和思维发展起着重要的促进作用。

在数学学习中,解方程是一个重要的内容之一。

掌握解方程的方法和技巧不仅可以提高小学生的数学水平,还能培养他们的逻辑思维和问题解决能力。

下面将介绍几个快速解方程的方法,并通过练习题来帮助小学生提升数学技巧。

Ⅰ. 利用逆运算解方程利用逆运算是解方程的一种常见方法。

根据运算性质,方程两边做相反的运算,可以将未知数的系数和常数项消去,从而得到方程的解。

例如,对于方程2x + 3 = 9,我们可以通过逆运算来解得x的值。

首先,将方程两边减去3,得到2x = 6。

然后,再将方程两边除以2,即可得到x = 3。

练习题1:解方程3y - 5 = 22。

解:首先,将方程两边加上5,得到3y = 27。

然后,再将方程两边除以3,即可得到y = 9。

Ⅱ. 利用移项解方程移项是解方程的另一种常见方法。

通过移项,可以将未知数的项移到一边,常数项移到另一边,从而得到方程的解。

例如,对于方程4x - 7 = 9,我们可以通过移项来解得x的值。

首先,将方程中的常数项7移到等号右边,得到4x = 16。

然后,再将方程两边除以4,即可得到x = 4。

练习题2:解方程2z + 6 = 18。

解:首先,将方程中的常数项6移到等号右边,得到2z = 12。

然后,再将方程两边除以2,即可得到z = 6。

Ⅲ. 利用因式分解解方程在解方程的过程中,有时需要利用因式分解来简化方程,从而得到方程的解。

例如,对于方程3x^2 - 27 = 0,我们可以利用因式分解来解得x的值。

首先,将方程进行因式分解,得到3(x^2 - 9) = 0。

然后,再将方程两边除以3,得到x^2 - 9 = 0。

接下来,继续进行因式分解,得到(x + 3)(x - 3) = 0。

根据因式分解的性质,我们知道当两个数的乘积等于0时,其中一个数为0。

因此,我们可以得到两个方程x + 3 = 0和x - 3 = 0。

小学四年级解方程的方法详解

小学四年级解方程的方法详解

小学四年级解方程的方法详解方程:含有未知数的等式叫做方程。

如4x-3=21,6x-2(2x-3)=20方程的解:使方程成立的未知数的值叫做方程的解。

如上式解得x=6解方程:求方程的解的过程叫做解方程。

解方程的依据:方程就是一架天平,“=”两边是平衡的,一样重!1. 等式性质:(1)等式两边同时加上或减去同一个数,等式仍然成立;(2)等式两边同时乘以或除以同一个非零的数,等式仍然成立。

2. 加减乘除法的变形:(1) 加法:a + b = 和则 a = 和-b b = 和-a例:4+5=9 则有:4=9-5 5=9-4(2) 减法:被减数a –减数b = 差则:被减数a = 差+减数b 被减数a-差= 减数b 例:12-4=8则有:12=8+4 12-8=4(3) 乘法:乘数a ×乘数b = 积则:乘数a = 积÷乘数b 乘数b= 积÷乘数a 例:3×7=21则有:3=21÷7 7=21÷3(4) 除法:被除数a ÷除数b = 商则:被除数a= 商×除数b 除数b=被除数a ÷商例:63÷7=9 则有:63=9×7 7=63÷9解方程的步骤:1、去括号:(1)运用乘法分配律;(2)括号前边是“-”,去掉括号要变号;括号前边是“+”,去掉括号不变号。

2、移项:法1——运用等式性质,两边同加或同减,同乘或同除;法2——符号过墙魔法,越过“=”时,加减号互变,乘除号互变。

注意两点:(1)总是移小的;(2)带未知数的放一边,常数值放另一边。

3、合并同类项:未知数的系数合并;常数加减计算。

4、系数化为1:利用同乘或同除,使未知数的系数化为1。

5、写出解:未知数放在“=”左边,数值(即解)放右边;如x=66、验算:将原方程中的未知数换成数,检查等号两边是否相等!注意:(1)做题开始要写“解:”(2)上下“=”要始终对齐【例1】x-5=13 x-5=13法1 解:x-5+5=13+5 法2 解:x=13+5x=18 x=18【例2】3(x+5)-6=18 3(x+5)-6=18法1 解: 3x+3×5-6=18 法2 解:3x+3×5-6=183x+15-6=18 3x+15-6=183x+9=18 3x+9=183x+9-9=18-9 3x=18-93x=9 3x=93x÷3=9÷3 x=9÷3x=3 x=3【例3】3(x+5)-6=5(2x-7)+2解: 1.去括号:3x+3×5-6=5×2x-5×7+23x+15-6=10x-35+23x+9=10x-332.移项:33+9=10x-3x (注意:移小的,如-33, 3x)3.合并同类项:42=7x4.系数化为1:42÷7=7x÷76=x5.写出解:x=66.验算:3×(6+5)-6=5(2x6-7)+23×11-6=5×5+227=27√解方程练习(写出详细过程):4+x=7 x+6=9 4+x=7+54+x-2=7 x-6=9 17-x=9x-6=9+3 9+3=17-x 16+2x =24+x4x=16 15=3x 4x+2=1824-x =15+2x 2+5x=18+3x 6x-2=3x+103(x+6) =2+5x 2(2x-1)=3x+10 30-4(x-5)=2x-162(x+4) -3=2+5x 100-3(2x-1)=3-4x 30+4(x-5)=2x-2620x-50=50 28+6 x =88 32-22 x =1024-3 x =3 10 x ×(5+1)=60 99 x =100- x36÷ x=18 x÷6=12 56-2 x =2036÷ x-2=16 x÷6+3=9 56-3x =20-x4y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3×9=298x-3x=105 x-6×5=42+2x 2x+5=7 ×3 2(x+3)+3=13 12x-9x=9 6x+18=4856x-50x=30 5x=15(x-5)78-5x=2832y-29y=3 5(x+5)=15 89 – 9x =80 100-20x=20+30x 55x-25x=60 76y÷ 76=1 23y÷ 23=23 4x-20=0 80y+20=100-20y 53x-90=16 2x+9x=11 12(y-1)=2480÷ 5x=100 7x÷ 8=14 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8-2x 90y-90=90-90y 80y-90=70÷ 30 78y+2y=160 88-4x=80-2x9÷(4x)=1 20x=40 – 10x 65y-30=10051y-y=100 85y+1=y+86 45x-50=40-45x二、列方程解应用题:(一)口算:a+2a= 3c+5c= 4m-2m= X+3x=5x-x= 6x-2x= 1.5x-x= 3.6x+1.4x=(二)用方程表示数量关系:1.火车每小时行120千米,汽车每小时a千米,火车每小时比汽车快6千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学解方程技巧
一、知识要点:
1、等式:表示相等关系的式子叫做等式。

方程:含有未知数的等式叫做方程。

使方程左右两边相等的未知数的值叫方程的解。

求方程的解的过程叫解方程。

关系:所有的方程都是等式,但等式不一定是方程。

二、解方程的依据:
1、四则运算各部分间的关系:
加法:加数+加数=和,和–加数=加数
减法:被减数--减数=差;差 + 减数=被减数被减数–差 = 减数
乘法:因数X因数=积;积÷因数 = 因数
除法:被除数÷除数=商;除数X 商 = 被除数
被除数÷商 = 除数
2、等式的基本性质:
性质(1):等式两边都加上(或减去)同一个数,左右两边仍然相等。

性质(2):等式两边都乘以(或除以)同一个不等于0的数,左右两边仍然相等。

相关文档
最新文档