基于ANSOFT的开关磁阻电动机转矩分析

合集下载

基于Ansoft的内置式永磁电机齿槽转矩优化研究

基于Ansoft的内置式永磁电机齿槽转矩优化研究

基于Ansoft的内置式永磁电机齿槽转矩优化研究崔薇佳;黄文新;邱鑫【摘要】For the interior permanent magnet motor, a method of reducing the cogging torque was studied, the relationship of air gap flux density and the cogging torque was analyzed emphatically. The cogging torque was reduced by optimizing and designing some specific harmonic of air-gap flux density. The different optimization projects were compared by using finite element software Ansoft. The prototype experiments show that the described method can effectively reduce the cogging torque of the motor.%针对内置式永磁同步电机,研究了一种减小其齿槽转矩的方法,着重分析了气隙磁密与齿槽转矩的关系。

通过优化设计气隙磁密的特定次谐波来减小齿槽转矩,利用有限元软件Ansoft仿真分析比较不同的优化方案。

样机试验表明,所述方法能有效减小电机的齿槽转矩。

【期刊名称】《电机与控制应用》【年(卷),期】2014(000)007【总页数】5页(P27-31)【关键词】内置式永磁电机;齿槽转矩;气隙磁密;优化分析;谐波分析【作者】崔薇佳;黄文新;邱鑫【作者单位】南京航空航天大学江苏省新能源发电与电能变换重点实验室,江苏南京 210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室,江苏南京 210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室,江苏南京 210016【正文语种】中文【中图分类】TM3510 引言永磁电机在高性能的运动控制中取得了越来越广泛的应用,然而永磁体与定子齿槽之间的齿槽转矩相互作用会产生振动和噪声,导致系统性能降低,如影响电机在速度控制系统中的低速性能和在位置控制系统中的高精度定位[1-4]。

基于Ansoft 12的小功率开关磁阻电动机仿真研究

基于Ansoft 12的小功率开关磁阻电动机仿真研究

对 小功 率开 关磁 阻电动机 在 小型 电动 车上 的应 用有一 定 的参考 作 用 。
关 键 词 : 关 磁 阻 电 动 机 ; sf M a we ; 开 An ot x l 电动 车 l 中 图分 类号 : TM 5 32 文献标 志 码 : A
LI ua c N Y n hun, Y E n Ba gya n
( c o lo e h n c la d Au o tv g n e ig,S u h C i a Un v r iy o c n l g ,Gu n z o 1 6 0 S h o fM c a ia n t mo i e En i e rn o t h n i e st fTe h o o y a g h u 5 0 4 ,Ch n ) ia Ab ta t Lo p we wi h d r l ca c o o ( RM )h sb e d s r a l s d i malee t i c r u h a o ft u i m sr c : w— o rs t e e u t n em t r S c a e n wi e p e d y u e n s l l c rc a s s c s g l o rs
基 于 An ot sf 1 2的小功 率 开 关磁 阻 电动机 仿 真研 究
林 远春 , 叶邦 彦
( 南理工大 学 机械 与汽车工程 学院, 东 广州 504) 华 广 1 6 0
摘 要 : 近年 来 , 小功 率 开 关磁 阻 电 动机 ( wi h dReutn eMoo , S t e lca c tr 简称 S M) 小型 电动 车 中 c R 在 ( 高 尔夫观 光 电动 车 、 逻 车 等) 应 用越 来越 广 , 文基 于 An ot 件 的 R 如 巡 的 本 sf 软 Mx r 模 块 建 立 4相 8 6 pt /

基于Ansoft的开关磁阻电机有限元分析与研究

基于Ansoft的开关磁阻电机有限元分析与研究

河北工业大学硕士学位论文基于Ansoft的开关磁阻电机有限元分析与研究姓名:高洁申请学位级别:硕士专业:控制理论与控制工程指导教师:孙鹤旭20081101河北工业大学硕士学位论文基于Ansoft 的开关磁阻电机有限元分析与研究摘要开关磁阻电机是近年来随着电力电子技术和控制技术的发展而诞生的一种特种电机,并以其结构简单、坚固、成本低廉、起动转矩大、效率高等优点,在许多领域得到了广泛的应用。

利用电机电磁场理论和有限元法进行开关磁阻电机磁场分析与计算,在其研究中占据至关重要的地位,它是整个电机设计和运行性能分析的基础。

由于开关磁阻电机结构与传统的交直流电机具有很大的差别,加之其显著边缘效应及高度的过饱和特性,以路的观点进行电机性能的理论分析便显出很大的局限性;相反地,以场的观点,全面、系统地分析电机性能,以便进行电机设计、性能分析及仿真计算,便显示出极大的优越性。

本论文以开关磁阻电机电磁场的有限元分析为主题开展研究工作,在系统总结电机电磁场以及工程电磁场数值计算理论的基础上,基于工程电磁场有限元分析软件Ansoft ,采用全场域的分析方法,对开关磁阻电机的磁场分布、静态特性等进行了大量的仿真分析与研究。

一方面得出了开关磁阻电机在几个典型转子位置下的磁场分布图,并据此总结了电机内磁场的分布规律;另一方面绘制出了开关磁阻电机的非线性磁化曲线族,即ψ-θ-i 关系曲线、电感曲线和静态转矩曲线等静态特性曲线。

此外,本论文还分析了开关磁阻电机的稳态温升,建立了其等效磁网络模型,并对开关磁阻电机的稳态特性进行了仿真研究,计算出了电机在稳态运行情况下的相电流、磁链以及动态转矩等曲线。

同时,针对开关磁阻电机运行过程中存在转矩脉动的缺点,本论文还讨论了其减振降躁的一些具体措施。

由仿真结果可知,本论文所建立的开关磁阻电机二维有限元分析模型计算出的性能参数是比较准确可靠的,同时也说明本论文所提出的等效磁网络模型对SRM 稳态特性的研究具有较高的精度,从而为对开关磁阻电机的工作原理和内部电磁关系作系统而详细的分析,研究其工作特点和内在规律,对开关磁阻电机性能校核与稳态特性研究以及进行有效的电机电磁设计工作提供了可靠的依据。

基于ANSOFr的阀门用开关磁阻电机工作性能分析与仿真

基于ANSOFr的阀门用开关磁阻电机工作性能分析与仿真

( 1 .江苏大学 电气信息工程学 院 ,江苏 镇 江 2 1 2 0 1 3 ;2 .常州 电站 辅机 总厂有限公司 ,常州 2 1 3 1 6 4 ) 要 :结合电动 阀门电机 的功能和特点 ,分 析开关磁阻 电机 在 电动 阀 门中的应用优 势。利用仿 真软件 A n s o l f ,通
( 1 .S c h o o l o fE l e c t r i c a l a n d I n f o r ma t i o n E n g i n e e r i n g, Z h e n j i a n g J i a n g s u 2 1 2 0 1 3 ,C h i n a ;
电动 阀 门… 广 泛 应 用 于 石 油 、化 工 、冶 金 、矿 山 、能源 、电力 和 水 处 理 等 行 业 的给 排 水 系 统 ,由
进一 步应 用研究 打下 基础 。
1 电动 阀门 的 特点
电动 阀 门一 般 由下 列 部 分 组 成 :专 用 电 动机 减 速机构 ,用 以降 低 电动 机 的输 出转 速 ;行 程控 制 机 构 ,用 以调节 和 准 确 控 制 阀 门 的启 闭位 置 ;转 矩 限
Abs t r a c t:Co mb i n i n g wi t h t h e f u nc t i o n s a n d f e a t u r e s o f e l e c t ic r v a l v e mo t o r ,t h i s a r t i c l e a n ly a s e d t h e s wi t c h e d r e l u c t a n c e mo t o r a d v a n t a g e s i n e l e c t ic r v a l v e a p p l i c a t i o n.The mo t o r b a s i c p a r a me t e r s we r e c o n.

基于ANSOFT开关磁阻电机建模与控制策略的仿真研究

基于ANSOFT开关磁阻电机建模与控制策略的仿真研究
观 点 , 确 的建 立 电机 模 型 , 面 、 精 全 系统 地 分析
和三 维 有限 元模 型, 采用 不同控 制策 略对开 关磁 阻电机 有 限元 模 型 进行 动 态 仿真 研 究 。 有 限元 仿真 结果 与 将 MAT AB仿真结果进行 比较 , 果表明有 限元法建 立的 L 结
理论与设计
基于A O T NS F 开关磁阻电机建模与控制策略的仿真研究
凌岳伦 王勉 华 王 岩 石 磊 温 东 园
西安 科技 大 学 ( 10 4) 705
Si ul to t yO l o ei ga d Co to t ae yo m a in S ud l M d ln n n r l r t g f S
应 在转 子齿对槽的位置 附近是比较严重的 , 解 决 这一问题 的有效方法就是 采用三维有限元分


本 文 以86 开 关 磁 阻电机 为研 究 对 象 , /极 建
立 其二 维 和 三维 有 限元 模 型 , 对开 关磁 阻 电机 的
t ev r c t n c u a y o i ieee e tmo e , h h e a iy a d a c r c ffn t lm n d l t e
smu a i n r s lso n t l me tmo e n AT i l t e u t ff ie ee n d la d M o i LAB
ha e o pa e ve be n c m r d.Th e ul ndi t d t tt nie e r s ti ca e ha he f t i
模 型 及其驱 动系统 有 利于对 电机 转 矩和 磁链 特 性进 行
准 确分析, 同时能 指导开 关磁 阻电机 及其 控制系统 的设

开关磁阻电机的ANSOFT建模方法

开关磁阻电机的ANSOFT建模方法

Ansoft RMxprt Application NoteA Switched Reluctance Motor ProblemThis application note describes how to set up, solve, and analyze the results of a four-phase switched reluctance motor using RMxprt and EMpulse, the transient solver in Maxwell 2D.RMxprt uses a combination of analytical and magnetic circuit equations to predict the performance of this motor problem.The transient solver of Maxwell2D uses the time domainfinite element method,coupled with the electrical equations of the drive circuit and the motion problem,to predict the dynamic and tran-sient behavior of the switched reluctance motor.You can create the RMxprt project from scratch or open the pre-solved project srm.pjt, located in the/ ansoft/examples/rmxprt/directory. You can create the finite element project from scratch or download srm_fea.pjt from the Technical Support page for EM products on the Ansoft web site at .If you are creating the project from scratch, select Switched Reluctance Motors as the motor type in RMxprt. These projects were created using version3.0of RMxprt and version8.0of Maxwell2D.If any of the defi-nitions within this application note seem unclear, refer to the online documentation for additional infor-mation.Motor CharacteristicsThe operating principle of the switched reluctance motor is as follows: Motion is produced as a result of the variable reluctance in the air gap between the rotor and the stator. When a stator winding is ener-gized,reluctance torque is produced by the tendency of the rotor to move to its minimum reluctance posi-tion.The direction of the torque generated is a function of the rotor position with respect to the energized phase,and is independent of the direction of currentflow through the phase winding.Continuous torque can be produced by intelligently synchronizing each phase’s excitation with the rotor position.The following table displays the characteristics of the SRM used in this application note:Number of phases4Number of stator poles8Number or rotor poles6Stator outer diameter (mm)120Rotor outer diameter (mm)74Shaft diameter (mm)30Airgap (mm)0.5Stack length (mm)65Winding turns per pole142The following figure shows the geometry used in this example (a 4-phase SRM with 8 rotor poles and 6 stator poles):Switched Reluctance Motor AnalysisRMxprt assumes the switched reluctance motor operates with shaft position feedback to synchronize the commutation of the phase currents with precise rotor position.Two modes of operations are supported:the single pulse operation,and the chopping current strategy.In the single pulse operation, each phase is energized at the turn-on angle and switched off at the turn-off angle. The difference between the turn-off and the turn-on angle is called the dwell angle. The chopping current strategy is a hysteresis-type current regulator in which the power transistors are switched off and on according to whether the current is greater or less than a reference current.RMxprt supports only switched reluctance motors in which the number of stator poles is greater than the number of rotor poles. The number of phases in the stator winding is the number of stator poles divided by the smallest common denominator of the number of stator poles and the number of rotor poles.The lead angle, which is positive if the phase is triggered before the aligned position between the phase-axis and the rotor pole, should be constant over the entire range of speed.General DataUse the General window to specify the motor characteristics.➤Before generating the model, select metric units and the American wire setting:1.Choose Tools/Options, and make certain the Wire Setting is American(AWG).2.Choose OK to accept the wire gauge settings.3.Choose Tools/Model Units, and select Metric Unit.➤Now define the general data:1.Choose the General tab.2.Enter0.55 kW in the Rated Output Power field. This is the mechanical power developed at theshaft.3.Enter300 V in the DC Rated Voltage field.4.Enter1500 rpm in the Rated Speed field. The operating point is defined by the rated outputpower and the nearest speed value from the rated output speed. If the auto-design mode forthe stator coils is enabled, the load point is defined by the output power and the rated speed.5.Enter12 W in the Friction Loss field. This is the mechanical loss due to bearing friction and airresistance at the given speed.6.Enter0 in the Lead Angle of Trigger field. An angle of 0 means that each phase is triggeredwhen its axis is aligned with the rotor pole axis.7.Enter84 in the Trigger Pulse Width field. This value is the period for the “on” status of thetransistors.The maximum“on”period is given by360degrees divided by the number of statorphases.8.Enter2V in the Transistor Drop field.This value is the voltage drop on all the transistors in oneconduction path.9.Enter2 V in the Diode Drop field. This is the voltage drop on all the diodes in one dischargepath (anti-parallel diodes).10.Enter75degrees in the Operating Temperature field.The temperature has a direct influence onthe stator winding resistance.11.Select Full-Voltage as the Circuit Type.12.Leave the Chopped Current Control box deselected. If you want to use the chopping currentstrategy, select the Chopped Current Control box, and define the maximum and minimumcurrents.The general data for the motor is now defined.Stator DataUse the Stator Core and Stator Coil windows to define the stator characteristics.Define the Stator DimensionsUse the Stator Core window to define the stator dimensions.➤Define the stator:1.Enter8in the Number of Poles field to specify the number of poles in the stator.This is the totalnumber of poles, or the number of pole pairs multiplies by two.2.Enter120 mm in the Outer Diameter field to specify the outer diameter of the stator.3.Enter75 mm in the Inner Diameter field to specify the inner diameter of the stator.4.Enter9 mm in the Yoke Thickness field. This value refers to the thickness of the stator core.5.Enter0.5 in the Pole Embrace field. The pole embrace is defined as the ratio of the actual polearc to the maximum pole angle. (The maximum pole angle is 90 mechanical degrees for a four pole motor. If the actual pole arc is 45 mechanical degrees, the ratio is 0.5). The pole embraceranges from between 0 and 1.6.Enter65mm in the Length of Stator field.This value is the effective magnetic length of the core,defined as the total iron length minus the total insulation length between the laminations. The value (usually between 0.93 and 1) is defined as a ratio from the total core length.7.Enter0.95 in the Stacking Factor field. This gives a value of 61.75 mm as the net length of thesteel, after taking lamination into account.8.Select GBA3 as the Steel Type to specify the steel type used in manufacturing the statorlamination.The stator core of the motor is now defined.Define the Stator WindingUse the Stator Coil window to define the stator winding.Define the stator coils:1.Enter0.3mm in the Slot Insulation field.This value is the thickness of the slot insulation in thestator coil.2.Enter0mm in the End Adjustment field. This value refers to the distance from the end of thestator to the stator coil.3.Enter1 in the Parallel Branches field. This value indicates the number of parallel branches inthe stator coil per phase.4.Enter142 in the number of Turns per Pole field. This value is the number of turns for eachstator pole.5.Enter1 in the number of Wires per Conductor field.6.Enter0.08 mm in the Wire Wrap field.7.Enter0 in the Wire Diameter field.8.Select AUTO as the wire Gauge.AUTO allows the software to calculate the optimal value of thewire diameter, while USER allows you to specify a diameter that does not correspond to aparticular gauge.The stator winding coils are now defined.The following diagrams show the end adjustment and the wire wrap for the stator coil:Rotor DataUse the Rotor Core window to define the rotor characteristics.➤Define the rotor core dimensions:1.Enter6 in the Number of Poles field to specify the number of poles in the rotor. This numberdiffers from the number of stator poles.2.Enter0.5 mm in the Air Gap field. This defines the width of the air gap between the rotor andthe stator.3.Enter30 mm in the Inner Diameter field to specify the inner diameter of the rotor.4.Enter9 mm in the Yoke Thickness field. This value refers to the thickness of the rotor core.5.Enter 0.5 in the Pole Embrace field. This value is the ratio of the actual pole angle to themaximum possible pole angle. The range falls between 0 and 1.6.Enter65 mm in the Length of Rotor field.7.Enter 0.95 in the Stacking Factor field. This gives a value of 61.75 mm as the net length of thesteel, after taking lamination into account.8.Select GBA3 as the Steel Type to specify the steel type used in manufacturing the rotorlamination.The rotor core of the motor is now defined.Process the Analytical DesignOnce the data for the model has been specified, generate the motor design.➤Generate the design:■Choose Analysis/Analytical Design. RMxprt calculates the motor performance parameters. Check the LaminationOnce the analysis is complete, observe the laminations on the objects.➤Check the lamination:1.Choose Tools/Options, and make certain that Lamination is on for all of the items.2.Choose OK to accept the lamination settings and close the window.3.Choose Post/Process/View Lamination. A cross-section of the motor appears, displaying thelaminations.4.Choose File/Exit when you have finished viewing the laminations.Design OutputChoose Post Process/Design Output to examine the motor's parameters.The Design Output window is bro-ken down into the following sections: General Data, Stator Core Data, Stator Coil Data, Rotor Core Data, Full-Load Operation Data,No-Load Operation Data,Start Operation Data,and Transient FEA Input Data.GENERAL DATAThis information is the same as the data you entered in the General window.STATOR CORE DATAThis information is the same as the data you entered in the Stator Core window.STATOR COIL DATAThis information is generally the same as the data you entered in the Stator Coil window, except for the wire information, which was computed during the design phase (because you selected AUTO as the Gauge).RMxprt calculated the wire diameter to be 0.5733 mm.ROTOR CORE DATAThis information is the same as the data you entered in the Rotor Core window.FULL-LOAD OPERATION DATAThe following motor performance parameters are calculated at the rated output power: Input DC Current (A)The DC value of the current at the input DC source. Phase RMS Current (A)The RMS value for the phase current.Phase Current Density (A2/mm3)The current density through the cross-section of one stator winding.Frictional and Wind Loss(W)The mechanical loss due to bearing friction and air resistance atthe operation speed.Iron-Core Loss (W)The total core loss in the stator and rotor based on loss curve orconstant loss.Winding Copper Loss (W)The power loss due to the resistance of the stator winding. Thisis the total copper loss.Diode Loss (W)The power loss based on the operation of the diodes. Transistor Loss (W)The power loss based on the operation of the switching transis-tors.Total Loss (W)The total power loss is equal to the combined losses of the fric-tion and wind loss, the iron core loss, the copper loss, the tran-sistor loss, and the diode loss.Output Power (W)The mechanical power at the shaft.Input Power (W)The rated DC voltage multiplied by the DC Input Current.Efficiency (%)The output power divided by the input power.Rated Speed (rpm)The running speed at the specified rated output power.Rated Torque (N.m)The mechanical torque available at the rated output power. Flux Linkage (Wb)The total flux linkage seen by one phase.Stator-Pole Flux Density The maximum flux density in the stator pole.Stator-Yoke Flux Density The maximum flux density in the stator yoke.Rotor-Pole Flux Density The maximum flux density in the rotor pole.Rotor-Yoke Flux Density The maximum flux density in the rotor yoke.Coil Length per Turn (mm)The length of one turn.NO-LOAD OPERATION DATAThis section displays the speed, DC current, and input power, assuming only friction loss.START OPERATION DATAThis section displays the estimated start torque, DC current, and maximum start current.TRANSIENT FEA INPUT DATAThis information is used when calculating the motor performance using the 2D time transient finite ele-ment field solver, EMpulse.For the armature winding, this section displays:■the number of turns, as seen from the terminal.■the number of parallel branches.■the terminal resistance.■the end leakage inductance.This section also displays the 2D equivalent values for the air-gap and the stacking factors, to be used in the finite element calculation. If the length of the stator equals the length of the rotor, then the problem is an exact 2D configuration, and the 2D equivalent length is given by the input data.This section also displays the estimated rotor inertia, without taking into account any mechanical load attached on the shaft.When you have reviewed the output data, choose Exit to exit the Design Output window.Winding Resistance in Phase(ohm)The resistance per phase at the operating temperature fixed in the General window.Winding Leakage Inductance(mH)The leakage inductance per phase.Iron-Core-Loss Resistance The equivalent resistance based on the input voltage and thecore-loss.Frequency of Phase Current (Hz):The frequency of the phase current.Maximum Output Power (W)The maximum output power for the motor.Plot the Performance CurvesExamine the performance curves for the model.➤Plot the performance curves:1.Choose Post Process/Performance Curves. The PlotData window appears, with an Openwindow visible. The following plot titles are available to open:flxlinks.dat Family of Flux Linkage vs Current for different currentsand positionsn_curr.dat Input DC Current vs Speedn_effi.dat Efficiency vs Speedn_pow2.dat Output Power vs Speedn_torq.dat Output Torque vs Speedwv_curm.dat Maximum Phase Current vs Position in electrical degreeswv_curr.dat Rated Phase Current vs Position in electrical degreeswv_flux.dat Flux Linkage vs Position in electrical degreeswv_indc.dat Air-Gap Inductance vs Position in electrical degreeswv_volt.dat Phase Voltage vs Position in electrical degrees2.Select the name of the plot to view.3.Choose OK. The plot appears in the PlotData window. After you’ve opened one plot, choosePlot/Open to open a different plot.The following two figures show the performance plots for the rated phase current (wv_curr.dat) and the linkage flux (wv_flux.dat):4.When you have finished viewing the performance curves, choose File/Exit to exit PlotData.Analyze the GeometryNow that the motor design is complete, examine the geometry, and define the options to be used for the time transient finite element analysis (FEA).➤Analyze the geometry:1.Choose Tools/Options, and make certain the Maxwell Path is set to the directory where theMaxwell software is installed. There are three check boxes in the Field section of this window.Make certain that they are all deselected. Choose OK to exit this window.2.Choose Analysis/View Geometry. A full cut-away cross-section of the motor appears in theMaxwell 2D Modeler. Since the model has four poles and the windings are symmetrical, youcan reduce this model from 360 to 180 degrees. Choose File/Exit to exit the Maxwell 2DModeler.3.Again, choose Tools/Options. In the Field section, select Periodic, and leave the value set to1.Choose OK to exit this window.4.Choose Analysis/View Geometry to view the model again.Notice that only half(180degrees)ofthe motor is modeled.If the Periodic field in the Options window was set to two,the full motorgeometry would be created. Choose File/Exit to exit the Maxwell 2D Modeler again andexamine some other options for creating the geometry.5.Choose Tools/Options. Notice the check boxes for Difference and Teeth-Teeth. The Differenceoption allows you to specify the angular difference between the rotor and the stator (inelectrical degrees) when creating the geometry. The Teeth-Teeth option specifies that none ofthe rotor teeth or permanent magnets will be cut in half; only entire teeth or permanentmagnets will be modeled. You can modify some of these options to determine their effect onthe geometry.6.For this analysis, use a geometry that includes a Periodic multiplier of1 with the Teeth-Teethbox selected and the Difference box deselected.7.Choose OK to accept the options and exit.Create the Maxwell 2D ProjectOnce the geometry has been analyzed, create the Maxwell 2D project.➤Create the Maxwell project:1.Choose Analysis/View Geometry again, and then choose File/Exit to exit the Maxwell 2DModeler. Because Create Maxwell 2D Project may be disabled after you change the options,you need to view the geometry again before trying to create the project.2.Choose Analysis/Create Maxwell 2D Project. A window appears.3.Specify a Project Name and Path for this switched reluctance motor. The name of the pre-solved project is srm_fea.4.Choose Create. A Maxwell 2D project is created using the specified geometry options.5.Choose OK to close the message window.6.Return to the Project Manager to continue with the rest of this example.Leave RMxprt open torefer to later in the example.This completes the RMxprt design of the switched reluctance motor.You can continue the analysis of this design using the time transient FEA software program, EMpulse.Finite Element AnalysisDefine the finite element parameters for the switched reluctance motor.The transient solver of Maxwell 2D uses the time domain finite element method; it solves the magnetic fields, together with the electrical equations of the drive circuit and the motion problem, to predict the dynamic and transient behavior of the switched reluctance motor.Taking into account the symmetry,the following geometry needs to be solved(a4-phase SRM with8rotor poles and 6 stator poles):Open the srm_fea.pjt project you previously exported from RMxprt. If it does not appear in the projects list, you may need to refresh the list by clicking on the project directory again.Set Up the Geometry➤Open the project, and set up the geometry:1.From the Project Manager in the Maxwell Control Panel, open the Maxwell 2D project youcreated in the previous section. If you are using the pre-solved project, its name is srm_fea.pjt.Upon opening the project, notice that the Transient Solver, the XY Drawing Plane, and DefineModel are already set.2.Choose Define Model/Draw Model to open the Maxwell 2D Modeler. The model appears in themodeler window.3.Choose Window/Change View/Zoom In, and zoom in on the air gap. There is an additionalobject in the air gap,called Band,which is used during the solution process to determine whichobjects are stationary and which objects rotate. This Band object is used later in the exampleand should not be deleted.4.Choose Exit, and save the changes.Assign Material PropertiesAssign material properties to each object. Because this example requires materials not included in the material database, you need to create them in the Material Manager.Add a New MaterialAdd a new nonlinear material called Steel_gba to the local material database, with a zero electric conduc-tivity and the B-H curve exported from the RMxprt model. The core is assumed to be laminated; there-fore, the electric conductivity is considered to be zero. If you prefer to use a better approximation for the lamination, please consult the online technical support FAQ for EMpulse, on the Ansoft web site at .➤Add a new material:1.Choose Setup Materials to access the Material Manager.2.Choose Material/Add.3.Change the name to Steel_gba in the Material Properties area.4.Select Nonlinear Material.5.Choose B H Curve. The B-H Curve Entry window appears.6.Choose Import. The Import Data window appears.7.Select the statr_eq.bh file, which was created inside the RMxprt project srm.pjt. Make certainthat the bh Format button is selected.8.Choose OK to import the file and return to the B-H Curve Entry window.9.Choose Exit to exit the window and return to the Material Manager.10.Choose Enter. The new material is now available in the database for this project.Assign the Materials➤Assign materials to the objects:1.Assign the following materials:•Assign vacuum to the AirGap,AirRotor, and Band.•Assign copper to all the windings.•Assign Steel_gba to the Rotor and Stator.•Assign steel_stainless to the Shaft.•Exclude the background from the model. The problem will have boundary conditions assigned to every outside edge; therefore, the background is excluded from the solution.2.Choose Exit, and save the changes made in the Material Manager.Setting the Boundaries and SourcesThefirst step in defining the boundary conditions is to define the Master/Slave boundary.You then need to define the value boundary and set up the sources. Finally, you need to define the external circuit. Choose Setup Boundaries/Sources to define the electric circuit and the boundaries.Define the Master Boundary➤Define the master boundary:1.Choose Window/New and then Window/Tile to open an additional window and arrange thewindows in tile format.2.Choose Window/Change View/Zoom In, and zoom in on the air gap so that the area where theBand and the inside diameter of the stator cross the x-axis (positive direction) can be easilyseen.3.Choose Edit/Select/Trace.Starting in the window with the full model shown,click on the centeraxis of the motor (u=0, v=0), and then click on the following intersection:•Rotor Inside Diameter (u=15, v=0)4.Switch to the window where the air gap in enlarged, and click on each of the followingintersections:•Rotor Outside Diameter (u=37, v=0)•Band (u=37.25, v=0)•Stator Inside Diameter (u=37.5, v=0)5.Switch back to the window with the full model,and double-click on the following intersectionto end the definition:•Stator Outside Diameter (u=60, v=0).6.Choose Assign/Boundary/Master.7.Choose Assign.Define the Slave BoundaryAgain, use the Edit/Select/Trace command to define the slave boundary.➤Define the slave boundary:1.In the second window, zoom in on the air gap so that the area where the Band and the insidediameter of the stator cross the x-axis (negative direction) can be easily seen.2.Choose Edit/Select/Trace.Starting in the window with the full model shown,click on the centeraxis of the motor (u=0, v=0), and then click on the Rotor Inside Diameter (u=-15, v=0).3.Switch to the window where the air gap in enlarged, and click on each of the followingintersections:•Rotor Outside Diameter (u=-37, v=0)•Band (u=-37.25, v=0)•Stator Inside Diameter (u=-37.5, v=0)4.Switch back to the window with the full model, and double-click on the Stator OutsideDiameter (u=-60, v=0) to end the definition.5.Choose Assign/Boundary/Slave,and select Slave = — Master. When solving for one or an oddnumber poles of an electrical machine, use the Slave = — Master symmetry. When solving foran even number of poles, use the Slave = +Master symmetry.6.Choose Assign.Define the Value BoundaryDefine the remaining boundaries.➤Define the value boundary:1.To assign the outside diameter of the stator a zero value boundary, choose Edit/Select/Edge ,and click on the outside diameter of the stator. Click the right mouse button when doneselecting.2.Choose Assign/Boundary/Value ,and change the name from value1to Zero_Flux .Keep the Value set to 0. A zero value boundary means that all of the flux will be contained in the motor; there will be no leakage flux.3.Choose Assign .Source SetupThe stator phases in the switched reluctance motor are triggered according to the rotor position. Starting with the current version of the software, a graphical definition of the electric drive circuit is fully sup-ported in a Spice type schematic capture.The coupling between the magnetic field and the electric circuit is “tight”; the matrix system which is solved at each time step contains magnetic unknowns (magnetic vector potential in each node) and electric unknowns (loop currents).➤Define the sources:1.Choose Edit/Select/Object/By Clicking , and then select the two objects making up the phase “A” (the positive path and the negative path of the coil). Click the right mouse button to end your selection.2.Next click on Assign/Source/Solid ,and select External Connection .This means that you want to draw the electric connection of this phase in the Schematic Capture Editor. Change the name from Source1 to A .3.Click on Winding ,and specify the polarity of each object (positive for the positive path of the coil, and negative for the negative path). Choose Assign to assign each polarity.4.Enter 284 in the Total turns as seen from terminal field, and enter 1 in the Number of Parallel Branches field.Enter 0in the Initial Current field.Click OK to exit the Winding Setup window.5.Choose Assign .ing the same procedure as in steps 1 through 5, above, define the remaining 3 phases of the motor. For the “D” phase, two return paths belonging to different coils are displayed on the screen, so assign a negative polarity to both objects.7.Choose Edit/External Circuit . The Edit External Circuit window appears, displaying a list of the externally connected windings set up in your model. Your external circuit will contain an inductor corresponding to each of these windings.8.Select Create new circuit , and then choose Launch Schematic Capture .Schematic Capture appears.9.Choose Option/Sizing ,select B (16 x 10) as the Paper Size , and choose OK .Note:In general,PhA and PhReA,and so on,represent a single winding (go and return).Inthis example, the entire coil is displayed for the phases “A”, “B”, and “C”. However,since you are only modeling a portion of the motor, for “D”, the positive path is notcurrently displayed; instead, two return paths belonging to different coils are dis-played.10.Draw the circuit shown in the following figure:Each phase of the motor is represented as an inductor (LA, LB, LC, and LD) connected in series with its resistance and its end turn inductance.The phase inductance has a predefined value of1H,but the actual value is derived from the finite element model. The resistance and the end turn inductance values must be entered, since they are not derived from the finite element calculation.Transistors are represented by unidirectional switches(diodes in series with position controlled switches). Anti-parallel diodes(or freewheeling diodes)ensure that the current has a return path when the switches are open and the phases are disconnected from the source. The small subcircuit defined at the top left of the main circuit controls the switches.The following tables contain detailed descriptions of circuit components:VSA–Pulsed voltage source:V1 (initial value) = 0 VV2 (pulsed value) = 1 VTD (delay time) = 15 secTR (rise time) = 1e-9 secTF (fall time) = 1e-9 secPF (pulse width) = 14 secPER (period) = 60 secVSB–Pulsed voltage source:V1 (initial value) = 0 VV2 (pulsed value) = 1 VTD (delay time) = 0 secTR (rise time) = 1e-9 secTF (fall time) = 1e-9 secPF (pulse width) = 14 secPER (period) = 60 sec。

基于Ansoft的高速开关磁阻电机有限元分析

基于Ansoft的高速开关磁阻电机有限元分析

2 . S c h o o l o f E l e c t r i c a l E n g i n e e r i n g ,Na n t o n g Un i v e r s i t y , Na n t o n g J i a n g s u 2 2 6 0 1 9 ,C h i n a )
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 3 — 9 8 3 3 . 2 0 1 3 . 0 4 . 0 1 3
基于 A n s o f t 的高速开 关磁阻 电机有限元分析
朱宏基 ,周 飞 ,瞿遂春 ,李建忠
( 1 . 湖南工业大学 电气与信息工程学院 ,湖南 株洲 4 1 2 0 0 7 ;2 . 南通 大学 电气工程学院 ,江苏 南通 2 2 6 0 1 9)
Ab s t r a c t :An a l y z e s t h e s t r u c t u r e a n d ma t h e ma t i c l a mo d e l o f s wi t c he d r e l u c t a n c e mo t o r a n d d e s i g n s s t r u c t u r e p a r a m。

Z h u Ho n g j i ’ ,Z h o u F e i ,Q u S u i c h u n ,L i J i a n z h o n g
(1 _ S c h o o l o fE l e c t r i c a l a n dI n f o r ma t i o nE n g i n e e r i n g ,Hu n n Un a i v e r s i t y o f T e c h n o l o g y,Zh u z h o uHu n a n4 1 2 0 0 7,Ch i n a ;

基于Ansys的开关磁阻起动/发电机转子槽型设计

基于Ansys的开关磁阻起动/发电机转子槽型设计

如 O 0

大 值 在 材 料 允 许 的 范 围 内。 当 转 速 达 到 2 0 / iH 材料 配合 面应 力达 到 40k a转 1 0rmn ̄, 0 0 P , 速 若大 于此转 速 , 填 充 块从 转 子 槽 中脱 出进 入 则
气隙 , 电机损 毁 。
Un I 'I Pl
r pc Eq u 1 al n I 、 O n — 、 v c (
T il I c.I l 2l 一7 I 39 Jll -1
结果 分别 如 图 6 图 7所示 。 、
A SI 】 ieIinI 【 c SI l ir r Equ i a c n l St ss  ̄ l re
20 0~ 00 0rr n内 变化 时 , 充块 与转 子 槽 0 2 0 a /i 填
配 合面 处应 力 随转 速 呈 指数 上 升 趋 势 , 应力 最 且
热场分析 中首次提 出 厂多场联合有 限元仿真 的温度场分析方法 。为开关磁阻 电机槽型 的设计提供 了参考 , 并 对两种槽 型的适 用场合提供了理论依据 。
关 键 词 : 关 磁 阻起 动 / 电 机 ;转 子 槽 型 ;有 限 元 分 析 开 发 中 图分 类 号 : M 32 T 5 文 献标 志 码 : 文 章编 号 :6 36 4 (0 2 0 0 10 T 0 : M 32 A 17 — 0 2 1 ) 1 0 — 5 5
ao( RS G)w saa zd ae ntea a s f nt e m n s ua o ,w pi zds t t c rso S t S / r a nl e .B sdo n l i o i l et i lin toot e l r t e f R y h ys f e e i m t mi o su u

基于Ansoft的永磁交流伺服电动机转矩波动分析

基于Ansoft的永磁交流伺服电动机转矩波动分析

永磁电机专题2008年第4期 15基于Ansoft 的永磁交流 伺服电动机转矩波动分析黄 越 唐任远 韩雪岩(沈阳工业大学特种电机研究所,沈阳 110023)摘要 永磁交流伺服电动机的转矩波动直接影响系统的控制精度,是最为关注的伺服性能指标之一。

本文基于Ansoft 公司的Maxswell 2D 的仿真环境,建立了永磁交流伺服电动机的系统仿真模型。

在所建立的模型基础上,对电机参数的改变对转矩波动的影响进行了仿真研究,仿真结果与实验结果基本一致,为电机的优化设计提供了依据。

关键词:永磁交流伺服电动机;转矩波动;AnsoftTorque Ripple Analysis of Permanent-magnetAC Servo Motor Base on AnsoftHuang Yue Tang Renyuan Han Xueyan(Shenyang University of Technology Research Institute of Special Electric Machines, Shenyang 110023)Abstract Torque ripple of permanent-magnet AC servo motor directly influences system control accuracy, is one of the most attention performance index .This paper establish the modeling of permanent-magnet AC servo motor using Maxwell 2D of Ansoft corporation. According to the change of the motor parameters, the torque ripple is analyzed based on the model .Compared with experiment data , the simulation results are uniform, and it offer optimized method.Key words :AC servo motor ;torque ripple ;Ansoft1 引言转矩波动是各类伺服控制系统中最关注的伺服性能指标之一,它是指电机在输出转矩围绕预期给定值而出现的转矩偏差。

基于ANSOFT的永磁同步伺服电机齿槽转矩分析

基于ANSOFT的永磁同步伺服电机齿槽转矩分析

①r 0第 32 卷 第 4 期 佳 木 斯 大 学 学 报 ( 自 然 科 学 版 ) Vol . 32 No . 4 2014 年 07 月 Journal of Jiamusi University ( Natural Science Edition) July 2014文章编号: 1008 - 1402( 2014) 04 - 0559 - 04基于 ANSOFT 的永磁同步伺服电机齿槽转矩分析黄金霖1 , 易 靓2 , 曹光华1( 1. 安徽机电职业技术学院电气工程系,安徽 芜湖 241000; 2. 江西理工大学电气工程与自动化学院,江西 赣州 341000)摘 要: 齿槽转矩是永磁电机的固有属性,引起电机的转矩波动,产生振动和噪声. 为减小齿槽 转矩,提高永磁伺服电机的控制精度,在研究永磁电机齿槽转矩产生机理的基础上,根据永磁电 机齿槽转矩的解析式,研究定子齿部开辅助槽和转子磁极偏移对永磁电机齿槽转矩的影响; 利用 有限元软件 ANSOFT ,建立 36 槽 8 极永磁伺服电机的有限元分析模型,计算不同尺寸辅助槽和 磁极偏心距离时的齿槽转矩,分析辅助槽尺寸和磁极偏心距离对齿槽转矩的影响. 研究结果表 明,合理的辅助槽尺寸和磁极偏心距离可有效削弱永磁伺服电机的齿槽转矩. 关键词: 齿槽转矩; 磁极偏心; 辅助槽; 永磁电机中图分类号: TM303 文献标识码: A随着矢量控制算法、电力电子器件和计算机 控制技术的不断发展,永磁伺服电机的应用越来越 广. 在数控机床、小型机器人、机械传动设备以及混 合电动汽车等领域,永磁伺服电机已经代替传统的 异步电机和直流电机,成为许多领域必不可少的传 其中,μ0 是空气磁导率.根据式( 1) 、( 2) 以及气隙磁密随着电机定转 子相对位置角和沿气隙切向不同位置分布的解析 表达式,得到齿槽转矩的表达式为: 动设备[1].T= -12πL Fe ( R2 - R2)∞nG B sinnz α 永磁伺服电机结构与普通异步电机相比,转子 永磁体取代了传统的转子绕组,转子永磁体的存 cog2μ0α∫B dV = 4μ2 1∑ n = 1 nzn 2p( 3)在,使得电机的效率和功率密度高; 与此同时,转子 永磁体与定子槽相互作用,产生齿槽转矩,使得电 机转矩波动增加,产生振动与噪声,影响伺服电机 的控制精度. 齿槽转矩是永磁电机特有的属性,因 此,怎样减小永磁电机的齿槽转矩成为相关专家学 者研究的重点之一[2].1 齿槽转矩产生机理齿槽转矩是永磁电机固有属性,是指电机空载 运行时,永磁体磁极和定子铁心之间的相互作用而 产生的转矩. 它体现了磁极与电枢槽口之间相互作 用力的切向分量的波动[3].根据其定义,可得出齿槽转矩的计算表达式如下:T = - Wcogθ气隙与永磁体磁场中的能量又可以表示为:由式 3 可知,永磁电机的齿槽转矩随着定子槽 数、永磁体的尺寸、极弧系数等值的变化而变化,式 3 为齿槽转矩的削弱提供了理论研究依据[4].2 有限元模型的建立2. 1 电机结构本文设计一台 36 槽 8 极永磁同步伺服电机,以此 为 研 究 对 象,利用有限元分析软 件 Ansoft Mawell 14. 0,研究定子齿开辅助槽、磁极偏移对永 磁同步伺服电机齿槽转矩的影响,提出减小齿槽转 矩的一些方法. 电机的技术指标和具体尺寸分别如 表 1,2 所示. 根据主要尺寸,建立电机的有限元分析模型,1 2W = W air + W PM =2μ ∫B dV( 2)如图 1 所示. 电机由定子铁芯、定子绕组、永磁体、①收稿日期: 2014 - 04 - 30基金项目: 国家自然科学基金青年基金项目( 51267006) ; 江西省自然科学基金项目( 20122BAB206031) . 作者简介: 黄金霖( 1988 - ) ,女,江西赣州人,硕士研究生,助教,研究方向: 永磁电机的设计与分析.定子外径 122. 3mm 转子外径 78mm 定子内径 80mm 转子内径 30mm 定子槽数36 磁极对数 4 减重孔个数8气隙长度 / mm1h 560 佳 木 斯 大 学 学报 ( 自 然 科 学 版 ) 2014 年转子铁心和转轴等部分组成; 永磁同步伺服电机对 控制精度的要求较高,为减小电机的转动惯量,采 用转子开减重孔的结构.表 1 永磁同步伺服电机的技术指标对永磁体的磁动势和磁导分别进行傅里叶分 解,得到:Λ( θ) = ∑Λn cos( kQ θ)( 5) nF 2( θ,θ ,l) = f cos2pv( θ - θ )( 6)额定功率 / kW 4. 5 额定电压 / V 220 额定转速 / rpm 3000 额定转矩 / N . m14. 33表 2 电机的主要尺寸∑ vv式中 θ0 为永磁电机中,定子某齿的中心轴线 与磁极中心线的的初始角度,θ 是磁极与某固定定 子齿相差的角度; Q 为定子槽数,p 为磁极对数,Λn 为 第 n 次磁导谐波幅值,f v 为第 n 次磁动势谐波幅值. 将式( 5) ,( 6) 带入式( 2) 中得到: n12πT cog = - 式中,D4 D α l ∑Λn f n I ∫0 cosn θcos( θ - θ0) d θ ( 7)枢直径,n 为定子槽数 Q 与磁极对数 2p图 1 电机结构图2. 2 空载磁场分布建好模型后,确定合适的求解场,分配正确的 材料属性,施加边界条件,选择合适的激励源方式, 确定所需的时间步长,得出电机的空载磁通分布如 图 2 所示.图 2 永磁同步伺服电机空载磁通分布图 网格剖分时应注意,齿槽转矩的大小受网格剖分的 影响较大,应该精确剖分电机的 band 和气隙部分.3 定子齿开槽减小齿槽转矩由磁路的基础知识,永磁体的磁导为μ0a 电的最小公倍数. 由式( 7) 可知,只有当磁动势的谐波次数与磁导的谐波次数相同时,永磁电机才会产 生齿槽转矩; 且随着谐波次数的增加,与之对应的 磁势谐波与磁导谐波幅值随之减小,则齿槽转矩也 减小,当在每个定子齿上开 m 个槽,相当槽数由 Q 增 加 为 ( m + 1) Q , 则 当 LCM( ( Q + 1) m ,2p) / LCM( Q ,2p) 不等于 1 时,就增加了基本齿槽 转矩次数,则降低了齿槽转矩,其中 LCM( Q ,2p) 为 Q 与 2p 的最小公倍数.文献 5 研究表明,定子齿开辅助槽可有效的减 小永磁伺服电机的齿槽转矩,达到减小电机的振动 和噪声的目的[5]. 开辅助槽时,应注意辅助槽的间 隔相等,大小相等,均匀分布在定子齿上.图 3 不同结构的辅助槽3. 1 辅助槽槽型对齿槽转矩的影响辅助槽的形状和电机的定转子槽一样,也可以 选择不同的槽型结构,确定具体槽型尺寸的前提 下,分别选取不同的槽型结构( 三角形槽、矩形槽、 圆形槽) ,如图 3 所示. 对其进行有限元分析,分析不 同槽型结构对永磁同步伺服电机齿槽转矩的影响.三种 辅助槽型尺寸分别为矩形槽槽宽为 1mm ,槽深为 0. 4mm; 三角形槽的槽宽为 2mm ,槽 深为 0. 8mm; 圆形槽的半径为 0. 5mm . 得到的齿槽 Λ( θ) =m ( 4)+ g( θ)转矩波形图如图 4 所示.第4 期黄金霖,等: 基于ANSOFT 的永磁同步伺服电机齿槽转矩分析561图4 不同槽型结构的齿槽转矩波形由图 4 可知,不同槽型的辅助槽,永磁电机齿槽转矩幅值的大小不同.其中,矩形槽降低齿槽转矩的效果最好,圆形槽次之,三角形槽最差.图5 槽口宽度对齿槽的影响图6 槽深对齿槽转矩的影响3.2 辅助槽尺寸对齿槽转矩的影响定子齿开辅助槽虽可有效减小永磁电机的齿槽转矩,但辅助槽的尺寸对齿槽转矩有较大影响,选择合适的尺寸可以进一步减小永磁电机齿槽转矩[6]; 若槽口和槽深选择不当,反而会增大电机的齿槽转矩.建立定子齿开矩形槽的永磁同步伺服电动机有限元分析模型,研究不同辅助槽型尺寸对电机齿槽转矩的影响,得出齿槽转矩波形图.图 5 与图6给出了辅助槽的槽口宽度和槽深,对电机齿槽转矩的影响.由图5、6可知,永磁电机的齿槽转矩随着辅助槽槽口宽度的增大先增大后减小再增大,当辅助槽槽口的宽度为0.6mm 时,即为定子槽口宽度的一半时,齿槽转矩达到最小值; 齿槽转矩随着辅助槽槽深的增大先减小后增大,当辅助槽深为0.4mm时,齿槽转矩达到最小值.此外,开辅助槽时,辅助槽要均匀的分布在电枢齿上,辅助槽的槽口宽度和槽深要选取合适,太深会导致齿部磁密过大,太浅达不到明显的效果.图7 磁极偏心结构图8 偏心电机的齿槽转矩波形图9 偏心电机的空载反电势波形4 磁极偏心对齿槽转矩的影响开辅助槽虽可有效的降低齿槽转矩,但加工难度较高,而且定子齿开辅助槽会产生高次谐波,有些场合对电机的控制精度要求很高,开辅助槽一般不能满足需要.对于表面式结构的永磁伺服电机,r 562 佳 木 斯 大 学 学 报 ( 自 然 科 学 版 ) 2014 年还可以采用磁极偏心的结构来减小永磁电机的齿槽转矩[7,8].不采用采用偏心磁极的结构时,其气隙径向磁 密为h m( 1) 定子齿部开辅助槽可有效减小永磁电机 的齿槽转矩; ( 2) 辅助槽型的形状影响齿槽转矩的 大小,其中矩形槽的效果最好,三角形槽最差; ( 3 ) 辅助槽的尺寸影响齿槽转矩的变化,随着辅助槽深 度的增加,齿槽转矩的幅值先减小,后增大; 随着辅 B( θ) = B r ( θ)( 8) h m + g( θ)助槽槽口宽度的增大,齿槽转矩先增大,再减小,最采用偏心磁极的结构时,永磁电机的永磁体内 外径不同心( 如图 7 所示) ,外圆的圆心为,半径为 Ro1 ,内圆的圆心为,半径为 Ro2 . O 1 和 O 2 之间的距 离为永磁体的偏心距离,用 h_px 表示.其气隙磁密的径向分布为:后增大; ( 4 ) 在保证永磁伺服电机性能的条件下, 采用磁极偏心的结构可有效的降低永磁电机的齿槽 转矩. 参考文献:h_px h _p x[1] 刘细平,郑爱华,王晨. 偏心与此同步伺服电动机优化设计 B'( θ) = B r ( θ) h_px + g( θ) ' = B r ( θ) h m + g( θ) [J ]. 微特电机,2012,40( 10) : 23 - 25. [2] Kyu Yun Hwang ,Hai Lin ,Se Hyun Rhyu . A Study on the Novel=h_pxB ( θ)h m h mm θh m= B r '( θ)h + g( θ)m ( 9)Coefficient Modeling for a Skewed Permanent Magnet and Over-hang Structure for Optimal Design of Brushless DC Motor [J ].I EEE Transactions on Magnetics ,2012,48( 5) : 1918 - 1923.由公式( 3) 和( 9) 可知,当 Ro1 和 Ro2 等参数不 变时,永磁电机齿槽转矩的大小只与气隙磁密的分 布有关,因此只要改变磁极形状,使得相应的径向 磁密分布减小,就可减小齿槽转矩[9,10].建立偏心永磁伺服电机的有限元分析模型,分 析磁极偏心的距离对齿槽转矩的影响,如图 8 所 示. 图 9 是磁极偏心时,电机空载反电势的波形图.由图 8 可知,磁极偏心距离 h_px = 15mm 时, 电机的齿槽转矩达到最小值; 由图 9 可知,改变磁 极的偏心距离,电机空载反电势的大小基本不变, 波形正弦性保持较好. 因此,合适的磁极偏心距离 可有效削弱永磁电机的齿槽转矩.5 结 论本文在研究齿槽转矩解析式的基础上,采用有 限元分析的方法,提出减小齿槽转矩的一些方法, 研究表明:[3] 王秀和. 永磁电机[M ]. 2 版. 北京: 中国电力出版社,2007. [4] 王秀和,丁婷婷,杨玉波. 自起动永磁同步电动机齿槽转矩的研究[J ]. 中国电机工程学报,2005,25( 18) : 166 - 170. [5] 夏加宽,于冰. 定子齿开槽对永磁电机齿槽转矩的影响[J ].微电机,2010,43( 7) : 13 - 16. [6] 罗宏浩,廖自力. 永磁电机齿槽转矩的谐波分析与最小化设计[J ]. 电机与控制学报,2010,14( 4) : 36 - 40. [7] 杨玉波,王秀和,张鑫等. 磁极偏移削弱永磁电机齿槽转矩方 法[J ]. 中国电机工程学报,2006,21( 10) : 22 - 25.[8] Zhu Z Q . Evaluation of Superposition Technique for Calculating Cogging Torque in Permanent Magnet Brush Less Machines [J ].I EEE ,Trans . on magnetics . 2006,42( 5) : 1597 - 1603.[9] Nakamura K ,Fujimoto H ,Fujitsuna M . Torque Ripple Suppres- sionControl for Pm Motor with Current Control based on PTC .I n: Proc 0f Power Electronics . Conference ( IPEC ) ,Sapporo , 2010: 1077 - 1082.[10] 杨玉波,王秀和,丁婷婷. 基于单一磁极宽度变化的内置式 永磁同步电 动 机 齿 槽 转 矩 削 弱 方 法[J ]. 电 工 技 术 学 报, 2009,24( 7) : 41 - 45.Cogging Torque Analysis of Permanent Magnet SynchronousMotor Based on ANSOFTHUANG Jin - lin 1, YI Liang 2, CHAO Guang - hua1( 1. Department of Electrical Engineering ,Anhui Technological College of Machinery and Electricity ,Wuhu 241000,China; 2. School of Electrical Engineering and Automation ,Jiangxi University of Science and Technology ,Ganzhou 341000,China)Abstract: Cogging torque could cause the motor 's torque ripple occurred ,and lead to mechanical vibration and acoustic noise . In order to weaken the PMSM 's cogging torque and improved control precision ,this paper based on the study of cogging torque 's generating mechanism ,according to the analysis formula of cogging torque , the impact of assist slot and PM eccentric distance affected the cogging torque was researched . The FEA software ANSOFT was used ,the FEA model of 36 slots 8 pole was established ,the cogging torque of different assist slot 's size and PM eccentric distance has been calculated ,and the influence of assist slot 's size and PM eccentric dis- tance to cogging torque were analyzed . The results indicate that a reasonable assist slot size and eccentric dis- tance could help to reduce the PMSM 's cogging torque .Key words: cogging torque; eccentric; assist slot; permanent magnet machines。

基于Ansoft的开关磁阻电机建模与仿真(可编辑)

基于Ansoft的开关磁阻电机建模与仿真(可编辑)

基于Ansoft的开关磁阻电机建模与仿真维普资讯 ////0>.∞喇理论与设计基于的开关磁阻电机建模与仿真杨丽伟张奕黄北京交通大学摘要:采用公司的和模目前,国内外对开关磁阻电机及其控制系统块建立了开关磁阻电机的模型,给出了电机的功率变换电的仿真大多是用或者来进行的,路,构建了一个完整的仿真系统。

通过对模型的有限这些方法一般根据电机的状态方程进行仿真。

由元分析,得到了的随转子位置变化的电感曲线,同时于开关磁阻电机的运行过程中的非线性特性,在得到了转矩、相电流及磁链曲线。

仿真结果为的优化它运行过程必然会有一些参数发生非线性变化】设计及进一步的研究提供了理论依据。

关键词:开关磁阻电机有限元法仿真分析例如电流、电感等等 ,以固定参数代入方程进 :行求解的方法必然带会来很大的误差,而且由于电机结构特殊性,它的参数也很难由传统的参. ?数计算方法来精确确定。

有限元法是一种离散化数值计算方法,能够精确地对电机的性能进行仿.真。

文中采用公司的和 , ..模块,利用电磁场有限元方法对开关磁阻电机的 .瞬态性能进行精确分析,从而完成对开关磁阻电机的瞬态仿真研究。

.:开关磁阻电机有限元模型的建立开关磁阻电机是近年来随着电力电本文以电动汽车用开关磁阻电机为研究对子技术和控制技术的发展而诞生的一种特种电象。

首先根据的基本参数在中机。

开关磁阻电机以其结构简单、坚固、成本低生成了二维几何模型,然后利用本身的接廉、可靠性强、起动转矩大、效率高等优点,已经口将几何模型导入 ,再用在许多领域得到了应用。

但是,由于开关磁阻中的瞬态模块进行有限元计算。

求解中运用了 ?电机的结构的特殊性,许多问题极待解决。

例如软件可以定义外加电路的特点,建立了的的振动、噪声问题,开关磁阻电机的特殊应驱动电路模型,与模型构成一个完整系统进行仿用,以及现代控制理论在开关磁阻电机中的应用真。

这使得仿真结果更加接近电机实际运行的情研究等。

因此,对开关磁阻电机的瞬态性能进行况,更为精确地反映了电机的运行性能。

开关磁阻电机结构参数对电机性能的影响研究

开关磁阻电机结构参数对电机性能的影响研究

开关磁阻电机结构参数对电机性能的影响研究
孔庆奕;李艳超;容烨
【期刊名称】《河北交通职业技术学院学报》
【年(卷),期】2017(014)004
【摘要】为了研究同功率电机的不同结构对开关磁阻电机性能的影响,采用实验研究法。

基于Ansoft电磁仿真软件,从绕组自感、绕组互感、转矩大小及脉动影响、绕组电流等方面,对额定参数相同的四相8/6极开关磁阻电机和四相16/12极开关磁阻电机仿真性能进行了对比分析。

结果表明:8/6极开关磁阻电机与
16/12极相比,8/6极各相绕组自感值大,互感值大,转矩大,转矩脉动小、电流小。

【总页数】5页(P55-58)
【作者】孔庆奕;李艳超;容烨
【作者单位】[1]河北科技大学电气工程学院,石家庄050018;[2]河北交通职业技术学院,石家庄050035;;[1]河北科技大学电气工程学院,石家庄050018;;[2]河北交通职业技术学院,石家庄050035
【正文语种】中文
【中图分类】TM303
【相关文献】
1.模块组合式开关磁阻电机结构参数的分析 [J], 李争;孙甜甜;赵思博
2.12/10极永磁磁通切换电机结构参数对电磁性能影响研究 [J], 朱德明;张富浩
3.音圈电机喷油器结构参数对喷油性能的影响研究 [J], 王政凯;张付军;高宏力;武浩
4.基于不同电机极对数对开关磁阻电机性能的影响研究 [J], 孔庆奕; 容烨; 李艳超; 刘尚合; 王福星; 齐文达; 骆志昆
5.开关磁阻电机的性能分析与结构参数优化研究 [J], 臧涛;华成超
因版权原因,仅展示原文概要,查看原文内容请购买。

基于Ansoft_Maxwell2D的开关磁阻电机起动性能仿真分析与实验研究

基于Ansoft_Maxwell2D的开关磁阻电机起动性能仿真分析与实验研究

中图分类号 : TM352 文献标志码 : A 文章编号 : 100126848 (2009) 0820019203基于 Ansoft /Maxwell 2D 的开关磁阻电机起动性能 仿真分析与实验研究杨泽斌 , 黄振跃 , 张新华(江苏大学 电气信息工程学院 , 镇江 212013)摘 要 : 为了获得良好电机的起动性能 , 基于 Ansoft/M axwell 2D 的仿真环境 , 建立了六相 12 /10 极开关磁阻电机 ( SR M ) 有限元仿真模型 ; 仿真分析了关断角 、开通角对电机起动性能的影响 , 并 进了实验验证 。

研究结果为 SR M 及其控制系统的设计和优化提供了重要依据 , 有一定参考意义。

关键词 : 开关磁阻电机 ; 仿真 ; 关断角 ; 开通角 ; 起动性能 ; 实验 ; 优化设计S im ula tion and Ana lysis of Starting Performance of S w itchedReluctance M otor Ba sed on An soft/M axwell 2D Y AN G Ze 2bin, HUANG Zhen 2yue, ZHAN G Xin 2hua( School of Electrical and Info rm ation Engineering, J iangsu University, Zhenjiang 212013, China ) Abstract: Based on the si m ulation environm ent of Ansoft /Maxwell 2D, Created the finite elem ent meth 2 od ( FE M ) models of sw itched reluctance mo to r ( SR M ) of 12 /10 pole. Analysed and the influence of turn 2off angle and turn 2on angle on starting perfo rm ance of SR M. The result of sim ulation can be availa 2 ble to design and op tim ize this new typ e mo to r and contro l system .Key W ords: Sw itched reluctance mo to r; Sim ulation; Turn 2off angle; Turn 2on angle; Starting per 2 fo r m a nce; Experim e n t ; Op tim iz e design1 SRM 起动分析常见的四相 ( 8 /6) SR M 有一相绕组通电起动方式和两相绕组同时通电起动方式 [ 123 ]。

基于AnsoftMaxwell2D的开关磁阻电机仿真研究

基于AnsoftMaxwell2D的开关磁阻电机仿真研究

基于A n soft M axw ell 2D 的开关磁阻电机仿真研究收稿日期:2004-11-22修回日期:2005-10-08周会军 丁文 鱼振民(西安交通大学电气工程学院,西安,710049)摘 要:基于A nsoft M axw ell 2D 的仿真环境,建立了开关磁阻电动机(SRM )的系统仿真模型。

在建立仿真模型基础上,对电动机的基本特性进行了仿真研究,获得了电机不同位置时的磁场分布、静态电磁参数和动态性能仿真结果。

仿真结果可以用于指导该型电机及其控制系统的设计和优化。

关键词:开关磁电动机;A nsoft 软件;M axw ell ;2维磁场中图分类号:TM 352 文献标识码:A 文章编号:1001-6848(2005)06-0010-03Si m ula tion and Ana lysis of Switched Reluctance M otorZHOU H u i -jun ,D I N G W en ,YU Zhen -m in(Shoo l of E lectrical Engineering ,X i’an J iao tong U niversity ,X i’an ,Ch ina )Abstract :T h is paper introduces the modeling of s w itched reluctance mo to r using M axw ell 2Dof A nsoft co rpo rati on .T he basic perfo r m ances of SRM are analyzed based on the model ,w h ich include the distributi on of m agnetic field at the vari ous ro to r po siti on ,static electrom agnetic characteristics and dynam ic si m ulati on results .T he results o si m ulati on can be available to design and op ti m ize th is new type m ach ine and contro l system .Key words :SRM ;A nsoft ;Si m ulati on ;M axw ell 2D0 引 言开关磁阻电机驱动系统由电机本体(Sw itchedR eluctanceM o to r ,简称SRM )、功率变换器、位置传感器和控制器4部分组成[1]。

Ansoft软件在电机教学中的应用

Ansoft软件在电机教学中的应用

第31卷 第5期2009年10月电气电子教学学报JO U RN A L O F EEEVol.31 No.5Oct.2009Ansoft 软件在电机教学中的应用费德成,孙玉坤,朱熀秋(江苏大学电气信息工程学院,江苏镇江212013)收稿日期:2008 11 24;修回日期:2009 07 25基金项目:江苏省研究生教育教学改革研究与实践课题(YJ G08-YB31);江苏大学校基金资助项目(09J DG014)第一作者:费德成(1979 ),男,博士,讲师,主要从事特种电机和混合动力汽车研究,E m ail:feidech eng@摘 要:本文借助Ans oft 软件工具对开关磁阻电机进行优化设计、静态矩角特性分析和电动运行分析,并在后处理中制作了瞬态磁场分布动画。

通过使用静态分析和动态分析图形教学,便于学生理解电机的结构原理以及运行特性,提高学生的形象思维能力,从而提高教学效果。

本文方法对于其他电机的教学具有很好的参考价值。

关键词:An soft;开关磁阻电机;静态分析;动态分析中图分类号:T M 3文献标识码:A 文章编号:1008 0686(2009)05 0095 03The Teaching Research of Electrical Machinary Based on AnsoftFEI De cheng,SUN Yu kun,ZHU Huang qiu(Sc hool of Electrical and I nf or mational Eng ine ering ,Jiang su Univ er sity ,Zh enj iang 212013,China)Abstract:The Ansoft softw are has been used for the optim ized design,static torque angle char acteristic analysis and electric operation analysis of sw itched r eluctance motor.The Animation for transient magnetic field distribution field distribution is made.T he static and transient analysis g raphs hav e been used in the electr ical m achinary teaching.T he structure principle and running characteristics are easy to be under stood fo r the students.The image thinking ability and learning interest are increasing.So the teaching effects and the students'creativity are improved.The metho d has r eference v alue for the teaching pr ocess of other electr ical m achine.Keywords:ansoft;sw itched reluctance motor ;static analysis;transient analy sis 开关磁阻电机结构简单坚固、调速范围宽、性能较好和系统可靠性高,其应用范围不断扩大。

(完整版)三相6_4极开关磁阻电机转矩特性分_析与优化设计毕业设计

(完整版)三相6_4极开关磁阻电机转矩特性分_析与优化设计毕业设计

密级:内部三相6/4极开关磁阻电机转矩特性分析与优化设计Analysis and Optimal Design of Torque Characteristics of Three-phase 6/4 Pole SwitchReluctance Motor学院:电气工程学院专业班级:电气工程及其自动化1003班姓名:陈运楷指导教师:张殿海(讲师)2014年6月摘要近年来随着电力电子技术和控制技术的发展,诞生了一种新的特种电机—开关磁阻电机。

该电机具有结构简单、调速性能优良、成本低廉、可靠性高、起动转矩大、效率高等优点。

因此,被广泛应用于牵引传动、通用工业、家用电器等众多领域。

然而,由于开关磁阻电机的双凸极结构所引起的磁路非线性和饱和效应以及特殊的供电方式,与传统的电机相比存在着振动和噪声大的缺点,这就大大限制了开关磁阻电机向更多应用领域的拓展。

因此为了得到更好的开关磁阻电机的动静态性能,如何降低转矩脉动和抑制噪声已经成为今后开关磁阻电机控制系统的研究重点。

首先根据开关磁阻电机的运行机理,以三相6/4极开关磁阻电机作为分析模型,利用ANSOFT软件中的Maxwell模块完成电机的建模和分析。

其次通过修改开关磁阻电机转子极弧系数以及在转子表面开口的方法,改善电机的输出转矩特性。

结合MATLAB软件分析修改转子对平均转矩和转矩脉动的影响。

最后利用实验室自行开发的多目标优化软件对平均转矩和转矩脉动进行多次优化,经过比较后找到最佳解,得到平均转矩提高、转矩脉动下降的结果,达到优化设计的最终目的。

关键词:开关磁阻电机;转矩脉动;平均转矩;优化设计AbstractIn recent years, with the development of power electronic technology and control technology, a new motor called switch reluctance motor, which has so many advantages such as simple structure, excellent performance of speed adjustment, low cost, high reliability, and large starting torque, high efficiency was developed. Therefore, it was applied in many fields such as traction drive, general industrial, and household appliances etc.However, due to the double salient structure of switch reluctance motor which caused nonlinearity of the magnetic circuit and saturation effect as well as the special power supply pattern, compared with the traditional motor the vibration and noise is significant. This feature greatly limited the application of switch reluctance motor to more fields. Therefore, in order to achieve the better dynamic and static performance for the switch reluctance motor, how to reduce the torque ripple and noise has become the hot spot of the future research of switch reluctance motor and its control system.Firstly, according to the operating mechanism of the switch reluctance motor, a three-phase 6/4 pole switch reluctance motor is taken as the analysis model, the torque characteristics is analyzed by utilizing the ANSOFT Maxwell module.Secondly, in the optimization model, the rotor pole arc coefficient and sub-slot on the surface of rotor are taken as the design variables, the torqueripple and average torque are taken as two objective functions. The MATLAB software is applied to calculate the average torque and torque ripple from the Maxwell results.Finally, a multi-objective optimization algorithm which was developed by the laboratory is applied to find out the optimal solution. In order to determine the global optimal solution, the optimization procedure was carried out twice. From the results, the average torque and torque ripple characteristic were improved.Keywords:Switch reluctance motor; torque ripple; average torque; optimal design目录摘要 (I)A bstract........................................................................................................................ I I 第1章绪论 (1)1.1课题背景及意义 (1)1.2课题国内外研究现状及趋势 (3)1.2.1国内发展趋势 (3)1.2.2国外发展趋势 (4)1.3课题主要研究内容 (5)1.4本章小结 (6)第2章开关磁阻电机特点与设计方法 (7)2.1三相6/4极开关磁阻电机的结构与原理分析 (8)2.1.1三相6/4极开关磁阻电机的结构 (8)2.1.2三相6/4极开关磁阻电机的运行原理 (9)2.2开关磁阻电机分析与设计方法 (11)2.2.1 基于Ansoft 的开关磁阻电机有限元分析介绍 (11)2.2.2 转矩脉动、噪声和振动产生的根源 (13)2.2.3 采用的设计方法 (13)2.3本章小结 (14)第3章开关磁阻电机建模 (15)3.1创建电机几何模型 (15)3.1.1创建项目 (15)3.1.2建模过程 (16)3.2材料定义及分配 (21)3.3激励源与边界条件定义及加载 (23)3.4运动选项设置 (27)3.5求解选项参数设定 (28)3.6磁力线与磁密云图 (31)3.7外电路与有限元连接 (33)3.8本章小结 (34)第4章开关磁阻电机优化设计 (35)4.1优化与设计 (35)4.1.1多目标优化简介 (35)4.1.2响应表面的应用 (36)4.2修改转子极弧系数及结构 (37)4.3求解转矩 (38)4.4利用MATLAB求解平均转矩和转矩脉动 (41)4.5优化过程 (44)4.5.1一次优化 (45)4.5.2 二次优化 (46)4.6本章小结 (50)第5章结论 (51)参考文献 (53)致谢 (56)第1章绪论1.1课题背景及意义开关磁阻电机(Switch Reluctance Motor简称SR电机)具有结构简单、转子无绕组、无永磁体、可靠性高等特点,且有控制方式灵活、调速性能好等许多优点。

基于Ansoft的单相开关磁阻发电机系统仿真与试验

基于Ansoft的单相开关磁阻发电机系统仿真与试验
d ce Th a i e fr n e wa n lz d b s d on te m o e.Th es lso i ua in c n b v ia l O de in u d. e b sc p ro ma c sa ay e a e h dl e r ut fsm lto a e a al be t sg a d o tmie t s n w y c i e a d c n r ls tm . Th he i a uita S n pi z hi e tpe ma h n n o to yse e t ss h sb l RG x rme t ls se ,te e p r— e pe i n a y tm h x ei me tr s t r o sse tt he e ia nay i e uls n e ul we e c n it n o t ortc la l ssr s t. s Ke y wor ds:sng e ph s wic d r l t i l a e s t he eucanc e r o e g ne at r;A n o tsm ul i s f i aton;c nt o c m e o r ls he
0 引 言
开关 磁 阻发 电机 ( wthd R lc neG n r S i e eut c ee— c a
相 S G输 出 的脉 动 电流 有 利 于 消除 蓄 电池 的 电 RMaw l2 no i x e D是 一 个 功 能 强 大 、 l
2 .西安 交通 大学 ,陕 西 西安

704 1 0 9)
要 : 于 A sf Maw l2 的仿 真环 境 , 立 了 8 8极 单 相 开 关 磁 阻 发 电 机 ( R 的 系 统 仿 真 模 基 no/ x e D t l 建 / S G)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中图分类号 : 1 WI 3 5 2 文献标识码 : A 文章编号 : 1 0 0 4 — 7 0 1 8 ( 2 0 1 4 ) 0 1 — 0 0 2 2 — 0 3
T o r q u e An a l y s i s o f S w i t c h e d Re l u c t a n c e Mo t o r B a s e d o n An s o f t
< 设 计分新

z ≯ ∞

够特 宴
彭德奇, 等 2 0 1 4 / g  ̄ 4 2 鲞 葶 期


基 于 AN S OF T的 开 关 磁 阻 电动 机 转 矩 分 析
彭德奇 , 李华柏 , 谭 平
( 1湖南铁道 职业技术 学院, 湖南株 洲 4 1 2 0 0 1 ; 2中国兵器工业集团江麓机 电科技有限公司 , 湖南湘潭 4 1 1 1 0 0 )
摘 要: 基于工程电磁场有限元分析软件 A n s o f t , 采 用全场域的分析方法, 对开关磁阻电动机的磁场分布 、 瞬态 特性等进行了仿真分析与研究 , 主要就开关磁 阻 电动机 的气 隙、 定转子 极弧 、 导通角对 转矩 的影 响作 了详 细 的研 究, 研究结果表明合理的电机结构尺寸及导通角可 以较好地抑制 电机 的转矩脉动 。 关键词 : 有限元分析软件 ; 开关磁阻 电动机 ; 转矩脉动 ; 导通角
Abs t r a c t : Th e s i mu la t i o n a n a l y s i s a n d r e s e a r c h o f t h e ma g n e t i c ie f l d d i s t r i b u t i o n a n d t r a n s i e n t c h a r a e t e r i ti o c s o f s w i t c h e d r e l u c t a n c e mo t o r we r e c a r r i e d o u t b a s e d o n An s l f n u s i n g t h e d o ma i n a n ly a s i s me t h o d An d a d e t a l i e d tu o d y ma i n l y o n t h e mo t o r a i r g a p , t h e s t a t o r a n d r o t o r p o l e a r c a n d c o n d u c t i o n a n g l e S i n lu f e n c e o n t o r q u e wa s ma d e T h e r e s e a r c h r e s u l t s
2 C h i n a No r t h I n d u s t r i e s Gr ou p C o r p o r a t i o n J i a n g l i u Ma c h i n e r y a n d
E l e c t r o n i c s G r o u p C o, L t d ,Xi a n g t a n 41 1 1 0 0, C h i n a )

. .
饱 和的磁路, 很难得 到精 确 的电机解析 式…。在研

a ( i …i.一. i

究S R M转矩脉 动的方法 中, 其中一个重要的方法就 是 利用有限元法对 S R M磁场进行 分析 , 这种方法计
算 速度快 , 具有 一定精度 。本文将利用 A n s o f t 有 限 元 分析软件对 非线 性 的 S R M 的磁场 分布 、 磁化曲 线、 电感以及瞬态转矩进行分析与计算 , 在此基础上 对气 隙、 定转子极弧 、 开关角对转矩 的影 响进行仿真 分析 , 为S R M的优化设 计提供可靠依据 。
s h o w t h a t r e a s o n a b l e s t r u c t u r e s i z e a n d c o n d u c t i o n a n l g e c a n e f e c t i v e l y s u p p r e s s t h e m o t o r t o r q u e r i p p l e K e y w o r d s : A n s l; f n s w i t c h e d r d u c t a n c e mo t o r( S R M) ; t o r q u e r i p p l e ; c o n d u c t i o n a n le g


开关 磁阻电动机 ( 以下 简称 S R M) 具 有典 型 的


川 ㈦
1 2转矩方程
双 凸极结构和固有 的供电方式 , 使得 S R M的转矩脉
动 非常突出。由于 S R M不 规则 的气 隙和 局部高度
根据机 电能量转换原理 , S R M稳态 运行时 电磁 转矩 可表示 … :
PENG De —q i , L 1 Hu a—b o , T AN 。
( 1 Hu n a n Ra i l w a y P r o f e s s i o n a l T e c h n o l o g y C o l l e g e ,Z h u z h o u 4 1 2 0 0 1 , C h i n a;
相关文档
最新文档