新课标高一数学同步测试—期末

合集下载

2023-2024学年广东省高一(上)期末数学试卷【答案版】

2023-2024学年广东省高一(上)期末数学试卷【答案版】

2023-2024学年广东省高一(上)期末数学试卷一、单选题1.已知集合A ={x |x >﹣1},B ={x |x <3},则A ∩B =( ) A .(﹣1,3)B .(﹣∞,3)C .(﹣1,+∞)D .φ2.函数y =2x ﹣4的零点为( ) A .0B .﹣4C .2D .(2,0)3.函数f(x)=√2x −3+1x−3的定义域为( ) A .[32,+∞)B .(﹣∞,3)∪(3,+∞)C .[32,3)∪(3,+∞)D .(32,3)∪(3,+∞)4.若函数f (x )=x 2﹣x +m (2x +1)在(1,+∞)上是增函数,则实数m 的取值范围是( ) A .[12,+∞)B .(−∞,12]C .[−12,+∞)D .(−∞,−12]5.已知sin(θ−π6)=13,则sin(2θ+π6)的值为( )A .−79B .79C .−89D .136.已知函数f(x)=cos(2x −3π4),先将f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移π4个单位长度,得到g (x )的图象,则g (x )的解析式为( )A .g (x )=sin xB .g (x )=﹣sin xC .g (x )=﹣cos xD .g(x)=cos(4x +π4)7.函数f (x )=﹣10x 3ln |x |的图象大致为( )A .B .C .D .8.关于x 的方程x 2﹣ax +b ﹣1=0有两个相等的正根,则3a+2b a+b( )A .有最大值115B .有最大值52C .有最小值115D .有最小值52二、多选题9.下列函数中为奇函数的是( ) A .f (x )=|x | B .f(x)=x +1xC .f (x )=x 3+2xD .f (x )=x 2+x +110.2x 2﹣5x ﹣3<0的必要不充分条件可以是( ) A .−12<x <3B .﹣1<x <4C .0<x <2D .﹣2<x <311.已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如图所示,将f (x )的图像向左平移π4个单位长度,再向上平移1个单位长度后得到函数g (x )的图像,则( )A .f(x)=2cos(2x −π3)B .g(x)=2cos(2x −π12)+1 C .g (x )的图像关于点(π6,0)对称D .g (x )在[−π12+kπ,5π12+kπ](k ∈Z)上单调递减 12.已知α,β是锐角,cosα=√55,cos(α−β)=3√1010,则cos β=( ) A .√22B .7√210C .√210D .−√22三、填空题13.如果函数f (x )=a⋅3x+4−a4(3x−1)是奇函数,则a = . 14.函数y =(13)1+2x−x 2的值域是 .15.已知sin2θ=a ,cos2θ=b ,0<θ<π4,给出tan (θ+π4)值的五个答案:①b 1−a ;②a 1−b ;③1+b a;④1+a b;⑤a−b+1a+b−1.其中正确的是 .(填序号)16.已知函数f (x )=a sin ωx ﹣cos ωx (a >0,ω>0)的最大值为2,则a = ,若函数f (x )图象的一条对称轴为直线x =πm,m ∈N *,则当ω取最小整数时,函数f (x )在(0,10)之间取得最大值的次数为 . 四、大题17.(10分)求实数m 的取值范围,使关于x 的方程x 2﹣2x +m +1=0有两个正根. 18.(12分)设函数f(x)=sin(ωx −π6)+sin(ωx −π2),其中0<ω<3,已知f(π6)=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )的单调递减区间.19.(12分)已知函数f (x )=4x ﹣2•2x +1+a ,其中x ∈[0,3]. (1)若f (x )的最小值为1,求a 的值;(2)若存在x ∈[0,3],使f (x )≥33成立,求a 的取值范围.20.(12分)已知函数f(x)=sinωx(sinωx +cosωx)−12(ω>0)的图象相邻对称轴之间的距离为2π.(1)当x ∈[﹣π,π]时,求f (x )最大值与最小值及相应的x 的值; (2)是否存在锐角α,β,使a +2β=2π3,f(α+π2)⋅f(2β+3π2)=√38同时成立?若存在,求出角α,β的值;若不存在,请说明理由.21.(12分)已知函数f (x )=√|x +1|+|x −3|−m 的定义域为R . (Ⅰ)求实数m 的取值范围.(Ⅱ)若m 的最大值为n ,当正数a 、b 满足23a+b +1a+2b=n 时,求7a +4b 的最小值.22.(12分)(1)已知关于x 的不等式ax 2+bx +c <0的解集是{x|x <−2或x >13},求cx 2﹣bx +a ≥0的解集;(2)求关于x 的不等式ax 2﹣2x +a <0的解集.2023-2024学年广东省高一(上)期末数学试卷参考答案与试题解析一、单选题1.已知集合A ={x |x >﹣1},B ={x |x <3},则A ∩B =( ) A .(﹣1,3)B .(﹣∞,3)C .(﹣1,+∞)D .φ解:∵集合A ={x |x >﹣1},B ={x |x <3},∴A ∩B ={x |﹣1<x <3}=(﹣1,3). 故选:A .2.函数y =2x ﹣4的零点为( ) A .0B .﹣4C .2D .(2,0)解:令y =2x ﹣4=0,解得x =2. 故选:C .3.函数f(x)=√2x −3+1x−3的定义域为( ) A .[32,+∞)B .(﹣∞,3)∪(3,+∞)C .[32,3)∪(3,+∞)D .(32,3)∪(3,+∞)解:由题意得:{2x −3≥0x −3≠0,解得:x ≥32且x ≠3,故函数的定义域是[32,3)∪(3,+∞).故选:C .4.若函数f (x )=x 2﹣x +m (2x +1)在(1,+∞)上是增函数,则实数m 的取值范围是( ) A .[12,+∞)B .(−∞,12]C .[−12,+∞)D .(−∞,−12]解:函数f(x)=x 2+(2m −1)x +m =(x +2m−12)2+m −(2m−1)24的单调增区间为(−2m−12,+∞),∴−2m−12⩽1,∴m ⩾−12.故实数m 的取值范围为[−12,+∞). 故选:C .5.已知sin(θ−π6)=13,则sin(2θ+π6)的值为( )A .−79B .79C .−89D .13解:由sin(θ−π6)=13,得sin (π6−θ)=−13,∴sin(2θ+π6)=cos (π3−2θ)=cos2(π6−θ)=1−2sin2(π6−θ)=1−2×(−13)2=79.故选:B.6.已知函数f(x)=cos(2x−3π4),先将f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移π4个单位长度,得到g(x)的图象,则g(x)的解析式为()A.g(x)=sin x B.g(x)=﹣sin xC.g(x)=﹣cos x D.g(x)=cos(4x+π4)解:先将f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到y=cos(x−3π4)的图象,再向左平移π4个单位长度,则g(x)=cos(x−3π4+π4)=sinx.故选:A.7.函数f(x)=﹣10x3ln|x|的图象大致为()A.B.C.D.解:因为f(﹣x)=10x3ln|x|=﹣f(x),所以函数为奇函数,故排除A、D;当x→+0时,f(x)→0,故排除B,故选:C.8.关于x的方程x2﹣ax+b﹣1=0有两个相等的正根,则3a+2ba+b()A.有最大值115B.有最大值52C.有最小值115D.有最小值52解:因为关于x 的方程x 2﹣ax +b ﹣1=0有两个相等的正根, 所以{a >0b −1>0Δ=a 2−4(b −1)=0,故b =1+a 24,a >0, 则3a+2b a+b=2+a a+b =2+a 1+a+a24=2+11+1a +a 4≤1+2√a 4⋅1a2=52, 当且仅当a =b =2时取等号,所以3a+2ba+b 有最大值52. 故选:B . 二、多选题9.下列函数中为奇函数的是( ) A .f (x )=|x | B .f(x)=x +1xC .f (x )=x 3+2xD .f (x )=x 2+x +1解:对于A ,f (x )=|x |的定义域为R ,关于原点对称,而f (﹣x )=|﹣x |=f (x ),为偶函数, 对于B ,f(x)=x +1x 的定义域为(﹣∞,0)∪(0,+∞),关于原点对称,且f(−x)=−x −1x=−f(x),为奇函数,对于C ,f (x )=x 3+2x 的定义域为R ,关于原点对称,且f (﹣x )=(﹣x )3+2(﹣x )=﹣f (x ),为奇函数,对于D ,f (x )=x 2+x +1的定义域为R ,关于原点对称,而f (﹣x )=x 2﹣x +1≠﹣f (x ),不是奇函数, 故选:BC .10.2x 2﹣5x ﹣3<0的必要不充分条件可以是( ) A .−12<x <3B .﹣1<x <4C .0<x <2D .﹣2<x <3解:2x 2−5x −3<0⇔(2x +1)(x −3)<0⇔−12<x <3,即2x 2﹣5x ﹣3<0的充要条件是−12<x <3,其必要不充分条件必须满足,其集合的一个真子集是充要条件的集合, 观察选项发现{x|−12<x <3}是{x |﹣2<x <3},{x |﹣1<x <4}的真子集.故选:BD .11.已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如图所示,将f (x )的图像向左平移π4个单位长度,再向上平移1个单位长度后得到函数g (x )的图像,则( )A .f(x)=2cos(2x −π3)B .g(x)=2cos(2x −π12)+1 C .g (x )的图像关于点(π6,0)对称D .g (x )在[−π12+kπ,5π12+kπ](k ∈Z)上单调递减 解:由图象可知函数f (x )的最大值为2,最小值为﹣2,所以A =2,T 2=2π3−π6=π2,故T =π;又T =2πω⇒ω=2,又f(π6)=2⇒2cos(2×π6+φ)=2,所以π3+φ=2kπ(k ∈Z),φ=2kπ−π3,(k ∈Z);又|φ|<π2,所以φ=−π3,所以f(x)=2cos(2x −π3),故A 正确,将f (x )的图像向左平移π4个单位长度,再向上平移1个单位长度后得g(x)=2cos(2x +π6)+1,故B项错误. 由2x +π6=π2+kπ(k ∈Z),x =π6+kπ2,(k ∈Z);所以g (x )的图像关于点(π6,1)对称,故C 错误. 由2kπ≤2x +π6≤2kπ+π,(k ∈Z),即−π12+kπ≤x ≤5π12+kπ,(k ∈Z); 故选项D 正确. 故选:AD .12.已知α,β是锐角,cosα=√55,cos(α−β)=3√1010,则cos β=( ) A .√22B .7√210C .√210D .−√22解:由α是锐角,cosα=√55,则sinα=√1−cos 2α=2√55, 又α,β是锐角,则−β∈(−π2,0),得α−β∈(−π2,π2),又cos(α−β)=3√1010,则sin(α−β)=±√1010, 则cos β=cos[α﹣(α﹣β)]=cos αcos (α﹣β)+sin αsin (α﹣β)=√55×3√1010±2√55×√1010=3√2±2√210得cos β=√22或cos β=√210.故选:AC . 三、填空题13.如果函数f (x )=a⋅3x+4−a4(3x−1)是奇函数,则a = 2 . 解:函数f (x )=a⋅3x +4−a4(3x−1)是奇函数,则f (﹣x )+f (x )=0, 即有a⋅3−x +4−a4(3−x −1)+a⋅3x +4−a4(3x −1)=0,则a 2+13−x −1+13x −1=0,化简得到,a2+3x1−3x +13x −1=0,即a 2=1,故a =2.故答案为:214.函数y =(13)1+2x−x 2的值域是 [19,+∞) .解:∵t =1+2x ﹣x 2=﹣(x ﹣1)2+2≤2,且y =(13)t 为定义域内的减函数,∴y =(13)1+2x−x 2≥(13)2=19.即函数y =(13)1+2x−x 2的值域是[19,+∞).故答案为:[19,+∞).15.已知sin2θ=a ,cos2θ=b ,0<θ<π4,给出tan (θ+π4)值的五个答案:①b 1−a ;②a 1−b ;③1+b a ;④1+a b;⑤a−b+1a+b−1.其中正确的是 ①④⑤ .(填序号)解:∵tan (θ+π4)=sinθ+cosθcosθ−sinθ=1+sin2θcos2θ=cos2θ1−sin2θ=b 1−a =1+ab,∴①④是正确的,将sin2θ=a ,cos2θ=b 代入⑤验证知,此代数式也是正确的答案. 故答案为:①④⑤.16.已知函数f (x )=a sin ωx ﹣cos ωx (a >0,ω>0)的最大值为2,则a = √3 ,若函数f (x )图象的一条对称轴为直线x =πm,m ∈N *,则当ω取最小整数时,函数f (x )在(0,10)之间取得最大值的次数为 3 .解:由已知,函数f (x )=a sin ωx ﹣cos ωx =√a 2+1sin (ωx ﹣φ),其中tan φ=1a(a >0,ω>0),由于f (x )的最大值为2,所以√a 2+1=2,得a =√3(a =−√3舍去); tanφ=13,取φ=π6,则f (x )=2sin (ωx −π6),由ωx −π6=kπ+π2(k ∈Z ),得ωm π=kπ+2π3(k ∈Z ),即ω=m(k +23),k ∈Z , 由于m ∈N *,则正数ω的最小整数值为2,从而f(x)=2sin(2x −π6),当2x −π6=π2+2kπ,k ∈Z ,即x =π3+kπ,k ∈Z 时, 函数f (x )取得最大值, 若k =0,则x =π3∈(0,10), 若k =1,则x =4π3∈(0,10), 若k =2,则x =7π3∈(0,10), 若k =3,则x =10π3>10, 从而有3次取得最大值. 故答案为:√3,3. 四、大题17.(10分)求实数m 的取值范围,使关于x 的方程x 2﹣2x +m +1=0有两个正根. 解:设两个实根分别是x 1,x 2,则有两个正根的条件是:{Δ=4−4(m +1)≥0x 1+x 2=2>0x 1x 2=m +1>0解得﹣1<m ≤0.18.(12分)设函数f(x)=sin(ωx −π6)+sin(ωx −π2),其中0<ω<3,已知f(π6)=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )的单调递减区间.解:(1)由f(x)=sin(ωx −π6)+sin(ωx −π2)得:f(x)=√32sinωx −12cosωx −cosωx =√32sinωx −32cosωx =√3(12sinωx −√32cosωx)=√3sin(ωx −π3).由f(π6)=0知(sin π6ω−π3)=0,则ωπ6−π3=kπ,k ∈Z ,故ω=6k +2,k ∈Z , 又0<ω<3,所以ω=2.(2)由(1)知f(x)=√3sin(2x−π3),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得y=√3sin(x−π3)的图象;再将得到的图象向左平移π4个单位,得到函数y=g(x)=√3sin(x−π12)的图象.由π2+2kπ≤x−π12≤3π2+2kπ,k∈Z解得7π12+2kπ≤x≤19π12+2kπ,k∈Z,所以g(x)的单调递减区间为[7π12+2kπ,19π12+2kπ](k∈Z).19.(12分)已知函数f(x)=4x﹣2•2x+1+a,其中x∈[0,3].(1)若f(x)的最小值为1,求a的值;(2)若存在x∈[0,3],使f(x)≥33成立,求a的取值范围.解:(1)因为f(x)=4x﹣2•2x+1+a,其中x∈[0,3],令t=2x,则t∈[1,8],原式化为g(t)=t2﹣4t+a=(t﹣2)2+a﹣4,当t=2时,g(t)min=a﹣4=1,解得a=5;(2)若存在x∈[0,3],使f(x)≥33成立,即f(x)max≥33,由(1)可知g(t)=(t﹣2)2+a﹣4,t∈[1,8],即g(t)max≥33,当t=8时,g(t)max=a+32≥33,解得a≥1,即a∈[1,+∞).20.(12分)已知函数f(x)=sinωx(sinωx+cosωx)−12(ω>0)的图象相邻对称轴之间的距离为2π.(1)当x∈[﹣π,π]时,求f(x)最大值与最小值及相应的x的值;(2)是否存在锐角α,β,使a+2β=2π3,f(α+π2)⋅f(2β+3π2)=√38同时成立?若存在,求出角α,β的值;若不存在,请说明理由.解:(1)因为f(x)=sin2ωx+sinωxcosωx−12=1−cos2ωx2+12sin2ωx−12=12sin2ωx−12cos2ωx=√22sin(2ωx−π4),∵f(x)图象相邻对称轴之间的距离为2π,∴T=4π=2π2ω,ω=14,f(x)=√22sin(12x−π4),∵﹣π≤x≤π,∴−3π4≤12x−π4≤π4,∴−1≤sin(12x−π4)≤√22,∴f(x)min=−√22,此时12x−π4=−π2,x=−π2,f(x)max=12,此时12x−π4=π4,x=π;(2)存在,理由如下:∵f(α+π2)=√22sinα2,f(2β+3π2)=√22sin(β+π2)=√22cosβ,∴f(α+π2)⋅f(2β+3π2)=12sinα2cosβ=√38,∴sin α2cosβ=√34,又∵α+2β=2π3,α=2π3−2β,∴sinα2cosβ=sin(π3−β)cosβ=√34,∴(√32cosβ−12sinβ)cosβ=√34,∴√32cos2β−12sinβcosβ=√34,∴√32×1+cos2β2−14sin2β=√34,即√3cos2β−sin2β=0,∴tan2β=√3,又∵β为锐角,0<2β<π,∴2β=π3,β=π6,从而α=2π3−2β=π3.21.(12分)已知函数f(x)=√|x+1|+|x−3|−m的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足23a+b +1a+2b=n时,求7a+4b的最小值.解:(1)∵函数定义域为R,∴|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,则m不大于函数g(x)的最小值,又|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b=14(6a+2b+a+2b)(23a+b+1a+2b)=14(5+2(3a+b)a+2b+2(a+2b)3a+b)≥14(5+2×2√3a+ba+2b⋅a+2b3a+b)=94,当且仅当a+2b=3a+b,即b=2a=310时取等号.∴7a+4b的最小值为9 4.22.(12分)(1)已知关于x的不等式ax2+bx+c<0的解集是{x|x<−2或x>13},求cx2﹣bx+a≥0的解集;(2)求关于x的不等式ax2﹣2x+a<0的解集.解:(1)由题意知{−2+13=−ba−2×13=caa<0,则有{b=53ac=−23aa<0,代入不等式cx2﹣bx+a≥0,得−23ax2−53ax+a≥0(a<0),即﹣2x2﹣5x+3≤0,解得x≤﹣3或x≥1 2,所以所求不等式的解集为{x|x≤−3或x≥12 };(2)①当a=0时,不等式为﹣2x<0,解得x>0,则此时解集为(0,+∞),②当a>0时,令ax2﹣2x+a=0,Δ=4﹣4a2,(i)若Δ=4﹣4a2≤0,即a≥1时,此时不等式解集为∅,(ii)若Δ=4﹣4a2>0,即0<a<1时,ax2﹣2x+a<0,解得1−√1−a2a<x<1+√1−a2a,则此时不等式解集为(1−√1−a2a<x<1+√1−a2a),③当a<0时,(i)若Δ=4﹣4a2<0,即a<﹣1时,此时不等式解集为R,(ii)若Δ=4﹣4a2=0,即a=﹣1时,此时不等式为﹣x2﹣2x﹣1<0,解集为(﹣∞,﹣1)∪(﹣1,+∞),(iii)若Δ=4﹣4a2>0,即﹣1<a<0时,则不等式解集为(−∞,1+√1−a2a)∪(1−√1−a2a,+∞).综上所述,当a<﹣1时,不等式解集为R;当﹣1≤a<0时,则不等式解集为(−∞,1+√1−a2a)∪(1−√1−a2a,+∞);当a=0时,则不等式解集为(0,+∞);当0<a<1时,则不等式解集为(1−√1−a2a<x<1+√1−a2a);当a≥1时,此时不等式解集为∅.。

高一数学期末考试测试卷参考答案

高一数学期末考试测试卷参考答案

高一数学期末考试测试卷参考答案1.B【详解】因为,所以,则,所以复数所对应的向量的坐标为.故选:B 2.A【详解】,故选:A.3.D【详解】向量在上的投影为,向量在上的投影向量为.故选:D.4.C 【详解】由题意,可得,即因为,所以,即,故△ABC 是直角三角形故选:C 5.A【详解】由可得: ,故 ,解得 ,故 ,故选:A 6.C【详解】根据题意:概率等于没有黄球的概率减去只有白球或只有红球的概率.即.故选:.7.D【详解】对于A ,空间中两直线的位置关系有三种:平行、相交和异面,故A 错误;对于B ,若空间中两直线没有公共点,则这两直线异面或平行,故B 错误;对于C ,和两条异面直线都相交的两直线是异面直线或相交直线,故C 错误;12i z z +=⋅()2i 11z -⋅=()()112i 12i 12i 2i 12i 112i 555z ----====------z 12,55⎛⎫-- ⎪⎝⎭()441414333333AD AB BD AB BC AB AC AB AB AC a b =+=+=+-=-+=-+ a b ·cos 3a π ab 1·cos ·232b a b b b π=⨯= 1cos 22a b C a ++=⨯cos b C a=2222b a b c a ab+-=222a b c =+90A =︒sin 2sin B C =2b c =22222567cos 248b c a c A bc c +--===2,4c b ==11sin 4222ABC S bc A ==⨯⨯ 3331115162312p ⎛⎫⎛⎫⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C对于D ,如图,在长方体中,当所在直线为所在直线为时,与相交,当所在直线为所在直线为时,与异面,若两直线分别是正方体的相邻两个面的对角线所在的直线,则这两直线可能相交,也可能异面,故D 正确.(8题)故选:D8.A【详解】在△ABC 中,b cos A =c﹣a ,由正弦定理可得sin B cos A =sin C ﹣sin A ,可得sin B cos A =sin (A +B )﹣sin A =sin A cos B +cos A sin B ﹣sin A ,即sin A cos B =sin A ,由于sin A ≠0,所以,由B ∈(0,π),可得B=,设AD =x,则CD =2x ,AC =3x ,在△ADB ,△BDC,△ABC 中分别利用余弦定理,可得cos ∠ADB=,cos ∠CDB =,cos ∠ABC =,由于cos ∠ADB =﹣cos ∠CDB ,可得6x 2=a 2+2c 2﹣12,再根据cos ∠ABC =,可得a 2+c 2﹣9x 2=ac ,所以4c 2+a 2+2ac =36,根据基本不等式可得4c 2+a 2≥4ac ,所以ac ≤6,当且仅当a =c 所以△ABC 的面积S =ac sin ∠ABC ac A .9.AC【详解】对于A ,是纯虚数,故A 正确;对于B ,,对应的点的坐标为,位于第四象限,故B 错误;对于C ,复数的共轭复数为,故C 正确;对于D ,,故D 错误.故选:AC10.BC ABCD A B C D -''''A B ',a BC 'b a b A B ',a B C 'b a b 12121212121cos 2B =3π2244x c x +-22448x a x +-22292a c x ac+-12122z 12(1i)2i 13i z z -=--=-(1,3)-1z 11i z =+12(1i)2i 2i 2z z =-⋅=+11.【详解】对于A ,由,则,故A 错误;对于B ,与相互独立,则与相互独立,故,故B 正确;对于CD ,互斥,则,,故C 正确,D 错误.故选:BC11.BC【详解】对于A 选项,由图形可知,直线、异面,A 错;对于B 选项,连接,因为,则直线与所成角为或其补角,易知为等边三角形,故,因此,直线与所成的角为,B 对;对于C 选项,分别取、的中点、,连接、、,因为四边形为正方形,、分别为、的中点,所以,且,又因为,则四边形为矩形,所以,,且,同理可证,且,因为平面,则平面,因为平面,则,因为,、平面,所以,平面,因为平面,所以,,因此,平面与平面所成二面角的平面角为,因为平面,平面,所以,,又因为,故为等腰直角三角形,故,因此,平面与平面所成二面角的平面角为,C 对;对于D 选项,易知,又因为且,则四边形为等腰梯形,分别过点、在平面内作、,垂足分别为、,()()0.2,0.6P A P B ==()()1P A P B+≠A B A B ()()()()()()10.48P AB P A P B P A P B ==-=,A B ()()()0.8P A B P A P B ⋃=+=()()0P AB P =∅=AM BN 1AD 1//MN CD MN AC 1ACD ∠1ACD △160ACD ∠= MN AC 60 AB CD E F ME MF EF ABCD E F AB CD //AE DF AE DF =AD AE ⊥AEFD EF AB ⊥//EF AD 1//MF DD 12MF DD ==1DD ⊥ABCD MF ⊥ABCD AB ⊂ABCD AB MF ⊥EF MF F ⋂=EF MF ⊂EMF AB ⊥EMF ME ⊂EMF AB ME ⊥AMB ABCD MEF ∠MF ⊥ABCD EF ⊂ABCD MF EF ⊥2MF EF ==MEF 45MEF Ð=o AMB ABCD 45 BN ===1A M =1//MN A B 112MN A B =1A BNM M N 1A BNM 1MP A B ⊥1NQ A B ⊥P Q因为,,,所以,,所以,,因为,,,则四边形为矩形,所以,,所以,所以,,由A 选项可知,平面截正方体所得的截面为梯形,故截面面积为,D 错.故选:BC.12.2【详解】.故答案为:2.13.【详解】在中,由正弦定理可得,,又由题知,所以,整理得,,在中,由余弦定理得,,所以,又,所以.故答案为:.14. 【详解】由题意,恰有一个人面试合格的概率为:,甲签约,乙、丙没有签约的概率为;1A M BN =1MA P NBQ ∠=∠190MPA NQB ∠=∠= 1Rt Rt A MP BNQ △≌△1A P BQ =//MN PQ 1MP A B ⊥1NQ A B ⊥MNQP PQ MN ==112A B PQ A P BQ -====MP ===BMN 1A BNM ()1922A B MN MP +⋅==()2202a kb b a b kb k k -⋅=⋅-⇔-=⇔= π3ABC sin sin sin C c A B a b =++sin sin sin a b C a c A B -=-+a b c a c a b-=-+222b a c ac =+-ABC 2222cos b a c ac B =+-1cos 2B =()0,B π∈3B π=3π49793113113114(1)(1(1(1)(1)(14334334339P =⨯-⨯-+-⨯⨯-+-⨯-⨯=13112(1)4333P =⨯-⨯=甲未签约,乙、丙都签约的概率为甲乙丙三人都签约的概率为,所以至少一人签约的概率为.故答案为:;.15.【详解】(1)由频率分布直方图可得分数不小于60的频率为:,则分数小于60的频率为:,故从总体的500名学生中随机抽取一人,其分数小于60的概率估计为;(2)由频率分布直方图易得分数小于70的频率为,分数小于80的频率为,则测评成绩的第分位数落在区间上,所以测评成绩的第分位数为;(3)依题意,记事件 “抽到的学生分数小于30”,事件 “抽到的学生是男生”,因为分数小于40的学生有5人,其中3名男生;所以“抽到的学生是男生”的概率为,因为分数小于30的学生有2人,其中1名男生,所以“抽到的学生分数小于30” 的概率为,因为事件表示“抽到的学生分数小于30且为男生”,满足条件的只有1名男生,所以,因为,所以这两个事件不相互独立.16.【详解】(1)由,,故,由余弦定理可得,即,即,13111(143336P=-⨯⨯=3311143312P =⨯⨯=2117336129++=4979()0.020.040.02100.8++⨯=10.80.2-=0.20.40.875%[)70,8075%0.35701078.750.4+⨯=A =B =()35P B =()25P A =AB ()15P AB =()()()P A P B P AB ≠sin θ=π,π2θ⎛⎫∈ ⎪⎝⎭cos θ==2222cos 54413BD AB AD AB AD θ=+-⋅=++=BD CD ==sin sin AB BD ADB θ=∠sin sin AB ADB BD θ∠=⋅==则故有,故,;(2),,故,则,其中,则当,即ABCD 的面积最大,此时,即此时小路BD.17.【详解】(1)取棱的中点,连接、、,则就是所求作的线,如图:在正方体中,连,是的中点,为的中点,则,且,于是得四边形是平行四边形,有,而平面,平面,因此平面,πcos cos sin 2ADC ADB ADB ⎛⎫∠=+∠=-∠= ⎪⎝⎭2222cos 4132225AC AD CD AD CD ADC ⎛=+-⋅∠=+-⨯= ⎝5AC =22111117sin 222222ABCD ABD BCD S S S AB AD BD θ=+=⋅+=+⨯= 1sin 2ABD S AB AD θθ=⋅= 2222cos 549BD AB AD AB AD θθθ=+-⋅=+-=-21922BCD S BD θ==- ()995sin 22ABCD ABD BCD S S S θθθϕ=+=+-=-+ sin ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭π2θϕ-=πcos cos sin 2θϕϕ⎛⎫=+=-= ⎪⎝⎭2917BD ⎛=-= ⎝1DD F AF CF AC ,,FC FA CA 1111ABCD A B C D -EF E 1CC F 1DD EF CD BA ∥∥EF CD BA ==ABEF AF BE ∥BE ⊂1BD E AF ⊄1BD E AF 1BD E又,,即四边形为平行四边形,则,又平面,平面,于是有平面,而,平面,从而得平面平面,所以就是所求作的线.(2)在正方体中,连接,如图,且,则四边形为平行四边形,有,三棱锥的体积,所以四棱锥的体积.18.【详解】(1)解:由频率分布直方图,根据平均数的计算公式,估计这次知识能力测评的平均数:分.(2)解:由频率分布直方图,可得的频率为,的频率为,所以用分层随机抽样的方法从,两个区间共抽取出4名学生,可得从抽取人,即为,从中抽取人,即为,从这4名学生中随机抽取2名依次进行交流分享,有 ,共有12个基本事件;其中第二个交流分享的学生成绩在区间的有:,共有3个,所以概率为.(3)解:甲最终获胜的可能性大.理由如下:由题意,甲至少得1分的概率是,1FD CE ∥1FD CE =1CED F 1CF ED ∥1ED ⊂1BD E CF ⊄1BD E CF 1BD E CF AF F ⋂=,CF AF ⊂AFC AFC 1BD E ,,FC FA CA 1111ABCD A B C D -11111,,,,,,AD BC EA EB EC ED AC 11AB C D ∥11AB C D =11ABC D 1112ABC D ABC S S = △1E ABC -111111112()21233263E ABC A BC E BC E V V S AB BC C E AB --==⋅=⋅⋅=⨯⨯⨯= 11E ABC D -111423E ABC D E ABC V V --==(650.01750.015850.045950.03)1084.5x =⨯+⨯+⨯+⨯⨯=[)60,700.1[]90,1000.3[)60,70[]90,100[)60,701a []90,10031,2,3()()()()(),1,,2,,3,1,2,1,3,a a a ()()()()()()()2,3,1,,2,,3,,2,1,3,1,3,2a a a []60,70()()()1,,2,,3,a a a 31124P ==4750可得,其中,解得,则甲的2分或3分的概率为:,所以乙得分为2分或3分的概率为,因为,所以甲最终获胜的可能性更大.19.【详解】(1)由题知,,所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB .因为,所以AO ⊥平面,所以OC 是AC 在平面内的射影,在四边形ABCD是等腰梯形中,,高得,,在和中,, 所以,,所以,因为AO ⊥平面,平面,所以,因为,所以平面,因为平面,所以(2)由(1)知,,所以⊥平面AOC .设,过点E 作于点F ,连接,因为,所以平面,因为平面,所以所以是二面角的平面角.由(1)知得,,高得,.所以,,12471(1)(1)(1)2550p ----=01p ≤≤45p =1241241241243(1(1(12552552552555P =⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯=253255>1OA OO ⊥1OB OO ⊥1OO OB O = 1OBCO 1OBCO 3AB CD =h =tan A =6AB =2CD =1OO =1Rt OO B 1Rt OO C △11tan OB OO B OO ∠==111tan O C O OC OO ∠===160OO B ∠=︒130O OC ∠=︒1OC BO ⊥1OBCO 1BO ⊂1OBCO 1AO BO ⊥AO OC O = 1BO ⊥AOC AC ⊂AOC 1AC BO ⊥1AC BO ⊥1OC BO ⊥1BO 1OC O B E ⋂=EF AC ⊥1O F 1EF O B E = AC ⊥1O EF 1O F ⊂1O EF 1O F AC⊥1O FE ∠1O AC O --3AB CD =h =tan A =6AB =2CD =3OA =1OO =11O C =所以,因为平面平面,平面平面,,所以平面,因为平面,所以 所以又所以二面角1O A =AC =1AOO D ⊥1BOO C 1AOO D 11BOO C OO =11OO CO ⊥1CO ⊥1AOO D 1AO ⊂1AOO D 11CO AO ^111O A O C O F AC ⋅=11sin30O E OO =⋅= 111sin O E O FE O F ∠==1O AC O --。

2023-2024第二学期期末考试高一数学试卷

2023-2024第二学期期末考试高一数学试卷

2023—2024学年第二学期期末试卷高一数学注意事项:1.本试卷包括单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题)四部分。

本试卷满分为150分,考试时间为120分钟。

2.答卷前,考生务必将自己的姓名、学校、班级填在答题卡上指定的位置。

3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,再写上新答案;不准使用铅笔和涂改液。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =3+i(i 为虚数单位),则复数zz -2i的虚部是 A .45B . 45iC . 35D .35i2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是 A .若m ∥α,n α⊂,则m ∥n B .若m ⊥α,n ⊥α,则m ∥nC .若m ∥β,n ∥β,且m α⊂,n α⊂,则α∥βD .若α⊥β,α β=m ,m ⊥n ,则n ⊥β 3.已知数据x 1,x 2,x 3, …x n 的平均数为10,方差为5,数据3x 1-1,3x 2-1,3x 3-1, …3x n-1的平均数为—x ,方差为s 2,则 A .—x =10,s 2=14 B .—x =9,s 2=44 C .—x =29,s 2=45D .—x =29,s 2=444.向量→a 与→b 不共线,→AB =→a + k →b ,→AC = m →a -→b (k ,m ∈R ),若→AB 与→AC 共线,则k ,m 应满足A .k +m =0B .k -m =0C .km +1=0D .km -1=05.同时抛掷两枚质地均匀的骰子,观察向上的点数,设事件A =“第一枚向上点数为奇数”,事件B =“第二枚向上点数为偶数”,事件C =“两枚骰子向上点数之和为8”,事件D =“两枚骰子向上点数之积为奇数”,则 A . A 与C 互斥B . A 与C 相互独立C . B 与D 互斥 D . B 与D 相互独立6. 在△ABC 中,角A ,B ,C 对边分别为a ,b ,c .若2b cos C =2a -c ,A =π4,b =3,则实数a 的值为 A . 6B . 3C . 6D . 37. 如图,四棱锥P -ABCD 中,P A ⊥面ABCD ,四边形ABCD 为正方形,P A =4,PC 与平面ABCD 所成角的大小为θ,且 tan θ=223,则四棱锥P -ABCD 的外接球表面积为 A . 26π B . 28π C . 34πD . 14π8.已知sin2θ=45,θ∈(0,π4) ,若cos(π4-θ)=m cos(π4+θ),则实数m 的值A .-3B .3C .2D .-2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.设复数z =i +3i 2(i 为虚数单位),则下列结论正确的是 A . z 的共轭复数为-3-iB .z ·i=1-3iC . z 在复平面内对应的点位于第二象限D .|z +2|= 210.已知△ABC 内角A ,B ,C 对边分别为a ,b ,c ,则下列说法正确的是 A .若sin A >sin B ,则A >BB .若a cos B =b cos A ,则△ABC 为等腰三角形 C .若a 2+b 2>c 2,则△ABC 为锐角三角形D .若a =1.5,b =2,A =30°的三角形有两解11.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则A .M ,N ,B ,A 1四点共面B .若a =2,则异面直线PD 1与MNC .平面PMN 截正方体所得截面为等腰梯形D .若a =1,则三棱锥P -MD 1B 的体积为124三、填空题:本大题共3小题,每小题5分,共15分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.12.一只不透明的口袋中装有形状、大小都相同的6个小球,其中2个白球,1个红球和3个黄球,从中1次随机摸出2个球,则恰有一球是黄球的概率是▲ .13.已知A(-3,5),B(1,10),C(2,1),则tan∠ACB=▲ .14.在△ABC中,角A、B、C所对的边分别为a、b、c,∠ABC=120°,BD是△ABC的中线,且1BD=,则a+c的最大值为▲.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.(13分)已知sin α=-55,α∈(π,3π2),sin(α+β)=513,β∈(π2,π).(1)求tan2α的值;(2)求sinβ的值.16.(15分)某市高一年级数学期末考试,满分为100分,为做好分析评价工作,现从中随机抽取100名学生成绩,经统计,这批学生的成绩全部介于40和100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成如图所示的频率直方图。

2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则

2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则

2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。

高一数学期末考试试题及答案

高一数学期末考试试题及答案

高一数学期末考试试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x2. 如果一个数列是等差数列,且a_3 = 7,a_5 = 13,那么这个数列的公差d是多少?A. 2B. 3C. 4D. 53. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}4. 函数f(x) = x^2 - 4x + 6的最小值是多少?A. 2B. 3C. 4D. 55. 已知sinθ + cosθ = 1,且0 < θ < π/2,求θ的值。

B. π/3C. π/6D. 5π/66. 下列哪个选项不是一元二次方程的解法?A. 配方法B. 因式分解法C. 公式法D. 比例法7. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 1008. 已知点A(2, 3)和点B(5, 6),线段AB的中点M的坐标是多少?A. (3, 4)B. (4, 5)C. (3.5, 4.5)D. (2.5, 4.5)9. 函数y = |x - 1|的图像关于哪条直线对称?A. x = 1B. x = -1C. y = xD. y = -x10. 已知等比数列的首项a_1 = 2,公比q = 3,求第5项a_5。

B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 函数f(x) = x^3 - 6x^2 + 9x + 2的极大值点是_________。

12. 已知数列1, 4, 7, 10, ..., 到第n项的和为S_n,则S_n = (n^2 + n)/2。

13. 根据题目所给的函数f(x) = 2x - 1,若f(a) = 7,则a =_______。

高一数学期末测试题及答案(K12教育文档)

高一数学期末测试题及答案(K12教育文档)

高一数学期末测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学期末测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学期末测试题及答案(word版可编辑修改)的全部内容。

2010-2011学年度第一学期高一数学期末测试题姓名—-—-—-——--———-—---——--班级———--—-——---—-—-—————-—-得分—-———--——-————-—--—-—--一.填空题(共60分)1.若集合{}13A x x =≤≤,{}2B xx =>,则A B ⋂等于 ( A )A.{}23x x <≤B.{}1x x ≥C.{}23x x ≤< D 。

{}2x x >2. 下列哪组中的两个函数是同一函数( B )A 。

2()y x =与y x = B.33()y x =与y x =C.2y x =与2()y x =D.33y x =与2x y x = 3.函数f (x )=错误!的定义域为( B )A .(1,)+∞B .[1,2)(2,)⋃+∞C .[1,2)D .[1,)+∞4. 函数R x x x y ∈=|,|,满足( C )A 。

既是奇函数又是减函数 B.既是偶函数又是增函数C.既是奇函数又是增函数 D 。

既是偶函数又是减函数5。

当x ∈[-2,2)时,y =3-x -1的值域是( A ) A .(-98,8] B .[-98,8] C .(91,9) D .[91,9] 6。

函数x x g x x f -=+=122)(log 1)(与在同一直角坐标系下的图象大致是( C )A B C D7.幂函数的图像过点(2,4),则它的单调递增区间是 ( B )A 、(1,+∞)B 、(0,+∞)C 、(-∞,0)D 、(-∞,+∞)8。

高一数学期末同步测试题

高一数学期末同步测试题

高一数学期末同步测试题高一数学期末同步测试题 ycy说明:本试卷分第一卷和第ⅡⅠ卷60分,第二卷90分,共150分,答题时间120分钟.第一卷〔选择题,共60分〕一、选择题:〔每题5分,共60分,请将所选答案填在括号内〕 1.函数的一条对称轴方程是〔〕 A. B. C. D.2.角θ满足条件sin2θ 0,〕〔I〕求出函数的近似表达式;〔II〕一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是平安的.某船吃水深度〔船底离水面的距离〕为6.5米,如果该船希望在同一天内平安进出港,请问:它至多能在港内停留多长时间?高一数学测试题—期末试卷参考答案一、选择题:1、A2、B3、B4、D5、C6、C7、D8、A9、C10、B 11、A12、C 二、填空题:13、〔4,2〕 14、 15、 16、三、解答题:17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ = = .②k = k(1,0)-(2,1)=(k-2,-1). 设k =λ( ),即(k-2,-1)= λ(7,3), ∴ . 故k= 时, 它们反向平行. 18.解析:,解得 .19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为且x≠ } (2) ∵f(x)的定义域关于原点对称且f(-x)=f(x) ∴f(x)为偶函数. (3)当x≠时因为所以f(x)的值域为≤≤2}20.解析:〔Ⅰ〕依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ). 由1+2sin(2x+ )=1- ,得sin(2x+ )=- . ∵- ≤x≤,∴- ≤2x+ ≤,∴2x+ =- ,即x=- .〔Ⅱ〕函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.由〔Ⅰ〕得 f(x)=2sin2(x+ )+1. ∵|m|< ,∴m=- ,n=1. 21.解析:在中,,,,由余弦定理得所以.在中,CD=21, = .由正弦定理得〔千米〕.所以此车距城A有15千米.22.解析:〔1〕由数据,易知的周期为T = 12 ∴由,振幅∴〔2〕由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5〔米〕∴∴∴故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.。

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题本试卷共4页,20题,满分为150分钟,考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13,4,5,7,9}=A ,B {3,5,7,8,10}=,那么=AB ( )A 、{13,4,5,7,8,9},B 、{1,4,8,9}C 、{3,5,7}D 、{3,5,7,8} 2.cos()6π-的值是( )A B . C .12 D .12- 3.函数)1ln()(-=x x f 的定义域是( )A . ),1(+∞B .),1[+∞C . ),0(+∞D .),0[+∞ 4.函数cos y x =的一个单调递增区间为 ( ) A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 5.函数tan(2)4y x π=+的最小正周期为( )A .4π B .2πC .πD .2π 6.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A .(1,2) B .(,3)e C .(2,)e D .(,)e +∞7.已知0.30.2a=,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 8.若函数23()(23)m f x m x-=+是幂函数,则m 的值为( )A 、1-B 、0C 、1D 、2 9.若1tan()47πα+=,则tan α=( )A 、34 B 、43C 、34-D 、43-10.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是( ) A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数二、填空题:本大题共4小题,每小题5分,满分20分.11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩,则()0f f =⎡⎤⎣⎦ . 12.已知3tan =α,则ααααsin 3cos 5cos 2sin 4+-= ;13.若cos α=﹣,且α∈(π,),则tan α= .14.设{1,2,3,4,5,6},B {1,2,7,8},A ==定义A 与B 的差集为{|},A B x x A x B A A B -=∈∉--,且则()三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(满分12分)(1)4253sin cos tan()364πππ-(2)22lg 4lg 25ln 2e -+-+16.(满分12分)已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭)(R x ∈ (1)求()f x 的振幅和初相;(2)该函数图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?17.(本题满分14分) 已知函数()sin 2cos 21f x x x =+-(1)把函数化为()sin(),(0,0)f x A x B A ωϕω=++>>的形式,并求()f x 的最小正周期;(2)求函数()f x 的最大值及()f x 取得最大值时x 的集合; 18.(满分14分)()2sin(),(0,0,),()62.1(0)228730(),(),sin 35617f x x A x R f x f ABC A B C f A f B C πωωπωππ=->>∈+=+=-已知函数且的最小正周期是()求和的值;()已知锐角的三个内角分别为,,,若求的值。

新课标高一数学同步测试—期末word精品文档5页

新课标高一数学同步测试—期末word精品文档5页

新课标高一数学同步测试——期末一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.在斜二测画法中,与坐标轴不垂直的线段的长度在直观图中 ( )A .变大B .变小C .可能不变D .一定改变 2.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .不在同一平面内D . A 、B 、C 均有可能3.一个直角梯形的两底长分别为2和5,高为4,绕其较长的底旋转一周,所得的几何体的 表面积为( )A .π52B .π34C .π45D .π374.直线y =kx +2与圆x 2+y 2+2x =0只在第二象限有公共点,则实数k 的取值范围为 ( )A .[43,1] B .[43,1) C .[43,+∞) D .(-∞,1)5.已知球面上的四点P 、A 、B 、C ,PA 、PB 、PC 的长分别为3、4、5,且这三条线段两两垂直,则这个球的表面积为( )A .202πB .252πC .50πD .200π6.一个二面角的两个面与另一个二面角的两个面分别垂直, 则这两个二面角( ) A .互补 B .互余C .互补或互余D .不确定7.如右图所示,在正方体ABCD —A 1B 1C 1D 1的侧面AB 1内 有一动点P ,动点P 到直线A 1B 1与直线BC 的距离相等,则动点P 所在曲线的形状为( ) 8.对于一个长方体,都存在一点:(1)这点到长方体各顶点距离相等(2)这点到长方体各条棱距离相等(3)这点到长方体各面距离相等。

以上三个结论正确的是 ( )A .(1)(2)B .(2)C .(1)D .(1)(3) 9.直线1+=x y 与直线1y ax =+的交点的个数为( )A .0个B .1个C .2个D .随a 值变化而变化10.在酒泉卫星发射场某试验区,用四根垂直于地面的立柱支撑着一个平行四边形的太阳能电池板,可测得其中三 根立柱1AA 、1BB 、1CC 的长度分别为m 10、m 15、m 30, 则立柱1DD 的长度是( ) A .m 30 B .m 25 C .m 20 D . m 15第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.将边长为m 4的正方形钢板适当剪裁,再焊接成一个密闭的正四棱柱水箱,并要求这个水箱的全面积等于该正方形钢板的面积(要求剪裁的块数尽可能少,不计焊接缝的面积),则该水箱的容积为 .12.过点P (3,6)且被圆2225x y +=截得的弦长为8的直线方程为 . 13.光线由点(-1,4)射出,遇直线2x +3y -6=0被反射,已知反射光线过点(3 ,1362),反射光线所在直线方程__________________. 14.已知m 、l 是直线, αβ、是平面, 给出下列命题: ①若l 垂直于α内的两条相交直线, 则l ⊥α; ②若l 平行于α, 则l 平行α内所有直线; ③若m l l m ⊂⊂⊥⊥αβαβ,,,且则; ④若l l ⊂⊥⊥βααβ,且,则;⑤若m l m ⊂⊂αβαβ,,,且∥则∥l .其中正确的命题的序号是 (注: 把你认为正确的命题的序号都填上). 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知两条直线l 1 = x + my + 6 = 0, l 2: (m -2)x + 3y + 2m = 0,问:当m 为何值时, l 1与l 2(i)相交; (ii)平行; (iii)重合. 16.(12分)某房地产公司要在荒地ABCDE 上划出一块长方形地面(不改变方位)建造一幢八层楼的公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到1m 2).17.(12分)已知方程222(3)2(1x y t x +-++-.(1)求t 的取值范围;(2)求其中面积最大的圆的方程.18.(12分)自点P (-3,3)发出的光线l 经过x 轴反射,其反射光线所在直线正好与圆074422=+--+y x y x 相切,求入射光线l 所在直线的方程.19.(14分)四棱锥P -ABCD 中,底面ABCD 是正方形,边长为a ,PD=a ,PA=PC=2a , (1)求证:PD ⊥平面ABCD ; (2)求证,直线PB 与AC 垂直; (3)求二面角A -PB -D 的大小;(4)在这个四棱锥中放入一个球,求球的最大半径; (5)求四棱锥外接球的半径.20.(14分)设M 是圆22680x y x y +--=上动点,O 是原点,N 是射线OM 上点,若|OM|·|ON|=120,求N 点的轨迹方程.高一新数学期末测试题参考答案一、CDABC DCCDB二、11.34m ;12.34150x y -+=和3x =;13.13x -26y +85=0;14.①④; 三、 15.解: 若m = 0时,l 1: x = -6,l 2: 2x -3y = 0, 此时l 1与l 2相交;若313120=-==-≠m m m m m或有,由,由3623±==m mm 有; 故i)当mm m m 31231≠-≠-≠时,且, l 1与l 2相交;ii)当m = -1时,m m m-=≠21326, l 1与l 2平行; (iii)当m = 3时m m m-==21326, l 1与l 2重合. 16.解:如图建立坐标系,在AB 上任取一点P ,分别向 CD 、DE 作垂线划得一长方形土地,则直线AB 的方程为12030=+yx 设)3220,(xx P -,则长方形的面积为3506000)5(32)]3220(80)[100(2++--=---=x x x S ∴当X =5时Smax ≈6017 17.解:解:(1)方程即167)41()3(2222++-=-++--t t t y t x16722++-=t t r >0 ∴71-<t <1 (2) ∵1672++-=t t r∴当t=73时, 774max=r ,此时圆面积最大,所对应圆的方程是 18.解:设入射光线l 所在的直线方程为)3(3+=-x k y ,反射光线所在直线的斜率为1k ,根据入射角等于反射角,得1k k -=,而点P (-3,3)关于x 轴的对称点1P (-3,-3),根据对称性,点1P 在反射光线所在直线上,故反射光线所在直线1l 的方程为:)3(3+-=-x k y 即033=+++k y kx ,又此直线与已知圆相切,所在圆心到直线1l 的距离等于半径r ,因为圆心为(2,2),半径为1,所以1133222=++++k kk 解得:3443-=-=k k或故入射光线l 所在的直线方程为:)3(433+-=-x y 或)3(343+-=-x y 即03340343=++=-+y x y x 或19.解:⑴分析:要证PD ⊥平面ABCD ,只需证PD 垂直于平面ABCD 内的两条相交线,而所给已知量都是数,故可考虑勾股定理的逆定理⑴证明:∵PD=a ,AD=a ,PA=2a ,∴PD 2+DA 2=PA 2,同理∴∠PDA =90°.即PD ⊥DA ,PD ⊥DC ,∵AO ∩DC=D ,∴PD ⊥平面ABCD . ⑵分析:从图形的特殊性,应先考虑PB 与AC 是否垂直,若不垂直然后再转化⑵解:连结BD ,∵ABCD 是正方形∴BD ⊥AC ∵PD ⊥平面ABCD ∴PD ⊥AC ∵PD ∩BD=D∴AC ⊥平面PDB ∵PB ⊂平面PDB ∴AC ⊥PB ∴PB 与AC 所成的角为90°⑶分析:由于AC ⊥平面PBD ,所以用垂线法作出二面角的平面角⑶解:设AC ∩BD =0,过A 作AE ⊥PB 于E ,连接OE ∵AO ⊥平面PBD ∴OE ⊥PB ∴∠AEO 为二面角 A -PB -D 的平面角∵PD ⊥平面ABCD ,AD ⊥AB ∴PA ⊥AB 在Rt △PDB 中,PB PD BD a =+=223,在Rt △PAB 中,∵AE PB AB PA S ⋅⋅=⋅=2121 在Rt △AOE 中,sin ∠==AEO AO AE 32,∴∠AEO =60°∴二面角A -PB -D 的大小为60.⑷分析:当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积法求解⑷解:设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连SA 、SB 、SC 、SD 、SP ,则把此四棱锥分为五个棱锥,设它们的高均为R)3,3(-P )3,3(1-P∴球的最大半径为(122-a )⑸分析:四棱锥的外接球的球心到P 、A 、B 、C 、D 五的距离均为半径,只要找出球心的位置即可,在Rt △PDB 中,斜边PB 的中点为F ,则PF=FB=FD 不要证明FA=FC=FP 即可⑸解:设PB 的中点为F ,∵在Rt △PDB 中:FP=FB=FD在Rt △PAB 中:FA=FP=FB ,在Rt △PBC 中:FP=FB=FC ∴FP=FB=FA=FC=FD ∴F 为四棱锥外接球的球心则FP 为外接球的半径 ∵FP=12PB ∴FP a =32∴四棱锥外接球的半径为32a评述:⑴本题主要考查棱锥的性质以及内切外接的相关知识点⑵“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,例如本例中球内切于四棱锥中时,球与四棱锥的五个面相切,即球心到五个面的距离相等⑶求体积或运用体和解决问题时,经常使用等积变形,即把一个几何体割补成其它几个几何体的和或差 20.解:设M 、N 的坐标分别为11(,)x y 、(,)x y ,由题设||||120OM ON ⋅=,120 (*)当M 不在y 轴上时,10x ≠,0x ≠,于是有11y y x x =设11y y x x ==k ,代入(*),化简得 21||(1)120x x k += 因1x 与x 同号,于是12120(1)x k x =+,12120(1)ky k x=+ 代入22680x y x y +--=并化简,可得34600(0)x y x +-=≠ 当10x =时,18y =,点N (0,15)也在直线34600x y +-=上所以,点N 的轨迹方程为34600x y +-=.。

高一数学期末试题(有答案)

高一数学期末试题(有答案)

高一数学期末试题(有答案)高一数学期末试题(有答案)一、选择题1. 已知函数 f(x) = x^2 + 2x - 3,求 f(-1) 的值。

A) 0 B) -6 C) 1 D) 62. 若一元二次方程 x^2 - 5x + a = 0 的两根为相等数值的实数解,则a 的值为:A) 2 B) -2 C) 10 D) 53. 在等差数列 3,6,9,12,... 中,第 10 项的值为多少?A) 27 B) 28 C) 29 D) 304. 已知集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5},则 A ∪ B 的元素个数为:A) 5 B) 6 C) 7 D) 85. 若正弦函数在区间[0, π] 内有且仅有一个零点,则正弦函数的振幅为:A) 0 B) 1 C) π D) 2二、填空题1. 解方程 2x - 5 = 3x + 7,得到 x = ______。

2. 若函数 f(x) = x^2 + bx + c 的图像与 x 轴有两个公共点,则 f(x) = 0 的解为 ______。

3. 在等比数列 2,4,8,16,... 中,第 6 项的值为 ______。

4. 若集合 A = {a, b, c},集合 B = {c, d, e},则A ∩ B 的元素个数为______。

5. 若正切函数在区间[0, π] 内共有三个零点,则正切函数的周期为______。

三、解题题1. 已知函数 f(x) = 2x^2 + 3,求 f(4) 的值。

解:将 x 替换为 4,得到 f(4) = 2(4)^2 + 3 = 2(16) + 3 = 32 + 3 = 35。

答案:352. 求一元二次方程 3x^2 - 4x - 1 = 0 的解。

解:利用求根公式 x = (-b ± √(b^2 - 4ac)) / (2a),代入 a = 3,b = -4,c = -1,得到:x = (-(-4) ± √((-4)^2 - 4(3)(-1))) / (2(3))= (4 ± √(16 + 12)) / 6= (4 ± √(28)) / 6= (4 ± 2√(7)) / 6= (2 ± √(7)) / 3所以方程的两个解为x = (2 + √(7)) / 3 和 x = (2 - √(7)) / 3。

新课标人教版高一数学上学期期末试卷及答案

新课标人教版高一数学上学期期末试卷及答案

上学期期末考试卷年级:高一科目:英语注意事项: 1.答第I卷前,考生务必将自己的姓名、考生号填写在答题卡上。

2.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在本试卷上,否则无效。

(试卷总分:150分;考试时间:120分钟)第I卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

听力结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.15.C. £9.18.答案是B。

1. What would the man like?A. A cold drink.B. Sleeping pills.C. A cup of coffee.2. Where is the bus station?A. Opposite a stadium.B. Next to a car park.C. On the left of a bridge.3. What does the man dislike about the sweater?A. The price.B. The material.C. The color.4. What does the man think of the course?A. Easy.B. Interesting.C. Difficult.5. What are the speakers mainly talking about?A. A sports game.B. An animal.C. An actor.第二节 (共15小题; 每小题1.5分, 满分22.5分)听下面5段对话或独白。

高一数学期末考试试卷及答案2023

高一数学期末考试试卷及答案2023

高一数学期末考试试卷及答案2023高一上学期数学期末考试试卷及答案考号班级姓名一、选择题(每小题5分,共60分)1.已知a=2,集合A={x|x≤2},则下列表示正确的是( ).A.a∈AB.a/∈ AC.{a}∈AD.a⊆A2.集合S={a,b},含有元素a的S的子集共有( ).A.1个B.2个C.3个D.4个3.已知集合M={x|x3},N={x|log2x1},则M∩N=( ).A. B.{x|04.函数y=4-x的定义域是( ).A.[4,+∞)B.(4,+∞)C.-∞,4]D.(-∞,4)5.国内快递1000g以内的包裹的邮资标准如下表:运送距离x (km) 0邮资y (元) 5.00 6.00 7.00 8.00 …如果某人在南京要快递800g的包裹到距南京1200km的某地,那么他应付的邮资是( ).A.5.00元B.6.00元C.7.00元D.8.00元6.幂函数y=x(是常数)的图象( ).A.一定经过点(0,0)B.一定经过点(1,-1)C.一定经过点(-1,D.一定经过点(1,1)7.0.44,1与40.4的大小关系是( ).A.0.4440.41B.0.44140.4C.10.4440.4D.l40.40.448.在同一坐标系中,函数y=2-x与y=log2x的图象是( ).A. B. C. D.9.方程x3=x+1的根所在的区间是( ).A.(0,1)B.(1,2)C.(2,3)D.(3,4)10.下列函数中,在区间(0,+∞)上是减函数的是( ).A.y=-1xB.y=xC.y=x2D.y=1-x11.若函数f (x)=13-x-1 +a是奇函数,则实数a的值为 ( ).A.12B.-12C.2D.-212.设集合A={0,1},B={2,3},定义集合运算:A⊙B={z︳z= xy(x+y),x∈A,y∈B},则集合A⊙B中的所有元素之和为( ).A.0B.6C.12D.18二、填空题(每小题5分,共30分)13.集合S={1,2,3},集合T={2,3,4,5},则S∩T= .14.已知集合U={x|-3≤x≤3},M={x|-115.如果f (x)=x2+1(x≤0),-2x(x0),那么f (f (1))= .16.若函数f(x)=ax3+bx+7,且f(5)=3,则f(-5)=__________.17.已知2x+2-x=5,则4x+4-x的值是 .18.在下列从A到B的对应: (1)A=R,B=R,对应法则f:x→y=x2 ; (2) A=R,B=R,对应法则f:x→y=1x-3; (3)A=(0,+∞),B={y|y≠0},对应法则f:x→y=±x;(4)A=N__,B={-1,1},对应法则f:x→y=(-1)x 其中是函数的有 .(只填写序号)三、解答题(共70分)19.(本题满分10分)计算:2log32-log3329+log38- .20.(本题满分10分)已知U=R,A={x|-1≤x≤3},B={x|x-a0}.(1)若A B,求实数a的取值范围;(2) 若A∩B≠,求实数a的取值范围.21.(本题满分12分)已知二次函数的图象如图所示.(1)写出该函数的零点;(2)写出该函数的解析式.22.(本题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x).(1)求函数h(x)的定义域;(2)判断函数h(x)的奇偶性,并说明理由.23.(本题满分12分)销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=35t,Q=15t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;(2)总利润y的最大值.24.(本题满分14分)已知函数f (x)=1x2.(1)判断f (x)在区间(0,+∞)的单调性,并用定义证明;(2)写出函数f (x)=1x2的单调区间.试卷答案一、选择题(每小题5分,共60分)1.A2.B3. D4.C5.C6.D7.B8.A9.B 10.D 11.A 12.D[二、填空题(每小题5分,共30分)13.{2,3}14.[-3,-1]∪[1,3] 15.5 16.11 17.23 18.(1)(4)三、解答题(共70分)19.解原式=log34-log3329+log38-3=log3(4×932×8)-3=log39-3=2-3=-1.20.解(1)B={x|x-a0}={x|xa}.由A B,得a-1,即a的取值范围是{a| a-1};(2)由A∩B≠,则a3,即a的取值范围是{a| a3}.21.(1)函数的零点是-1,3;(2)函数的解析式是y=x2-2x-3.22.解(1)由2+x0,2-x0,得-2(2) ∵h(-x)=lg(2-x)+lg(2+x)=h(x),∴h(x)是偶函数.23.解(1)根据题意,得y=35x+15(3-x),x∈[0,3].(2) y=-15(x-32)2+2120.∵32∈[0,3],∴当x=32时,即x=94时,y最大值=2120.答:总利润的最大值是2120万元.24.解(1) f (x)在区间(0,+∞)为单调减函数.证明如下:设0因为00,x2-x10,x2+x10,即(x2-x1)( x2+x1)x12x220.所以f (x1)-f (x2) 0,即所以f (x1) f (x2),f (x)在区间(0,+∞)为单调减函数.(2) f (x)=1x2的单调减区间(0,+∞);f (x)=1x2的单调增区间(—∞,0).高一数学知识点总结大全一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

新课标人教版B版高一数学必修2期中期末试卷(含答案)(2套)

新课标人教版B版高一数学必修2期中期末试卷(含答案)(2套)

普通高中课程标准实验教科书——数学第二册[人教版]高中学生学科素质训练新课标高一数学同步期中测试本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.一个棱锥所有的棱长都相等,则该棱锥一定不是 ( ) A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥 2.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为 ( ) A .πQ B .2πQ C . 3πQ D . 4πQ3.已知高与底面的直径之比为2:1的圆柱内接于球,且圆柱的体积为500π,则球的体积 为 ( )A .π53500B .π5310000C .π5320000 D .π5325004.到空间四点距离相等的平面的个数为 ( )A .4B .7C .4或7D .7或无穷多 5.在阳光下一个大球放在水平面上, 球的影子伸到距球与地面接触点10米处, 同一时刻, 一根长1米一端接触地面且与地面垂直的竹竿的影子长为2米, 则该球的半径等于 ( ) A .10(5-2)米 B .(6-15)米C .(9-45)米D .52米6.已知ABCD 是空间四边形,M 、N 分别是AB 、CD 的中点,且AC =4,BD =6,则 ( )A .1<MN <5B .2<MN <10C .1≤MN ≤5D .2<MN <57.空间一个角的两边分别垂直于另一角的两边,则这两个角 ( )A .相等B .互补C .相等或互补D . 不确定8.已知平面α ⊥平面β ,m 是α 内一条直线,n 是β 内一条直线,且m ⊥n .那么,甲:m ⊥β ;乙:n ⊥α ;丙:m ⊥β 或n ⊥α ;丁:m ⊥β 且n ⊥α .这四个结论中,不正确的三个是( )A .甲、乙、丙B .甲、乙、丁9.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边 形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组10.棱台的两底面积分别为S 上、S 下、平行于底面的戴面把棱台的高自上而下分为两段之比 为m ∶n 则截面面S 0为 ( )A .nm mS nS ++下上B .n m S m S n ++下上C .(nm mS nS ++下上)2D .(nm S m S n ++下上)2第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.半径为a 的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为 .12.α 、β 是两个不同的平面,m 、n 是平面α 及β 之外的两条不同直线,给出四个论断:(1)m ⊥n (2)α ⊥β (3)n ⊥β (4)m ⊥α 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题___________.13.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分 别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= _____.14.还原成正方体后,其中两个完全一样的是.(1) 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,长方体ABCD -A 1B 1C 1D 1中被截去一部分,其中EF ∥A 1D 1.剩下的几何体是什么?截取的几何体是什么?若FH ∥EG ,但FH<EG ,截取的几何体是什么?① ②③ ⑤ ⑥ ④④ ⑥ ①⑤ ③②① ⑤ ⑥ ④③ ②④ ② ⑥ ③ ①⑤16.(12分)有一正三棱锥和一个正四棱锥,它们的所有棱长都相等,把正三棱锥和正四棱锥的一个全等的面重合.①说明组合体是什么样的几何体?②证明你的结论.17.(12分)正四棱台的高,侧棱,对角线长分别为7cm,9cm,11cm,求它的侧面积.18.(12分)三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S-BCED的体积.19.(14分)如图,在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.20.(14分)如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,CE=CA=2 BD,M是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.高一新数学期中测试题参考答案一、DBDDA ADBCD.二、11a3;12.①③④⇒②;13.7∶5;14.②③;三、15.五棱柱,三棱柱,三棱台。

2023学年高一数学期末试卷(含答案)

2023学年高一数学期末试卷(含答案)

2023学年高一数学期末试卷(含答案)第一部分:选择题1. A2. C3. B4. D5. A6. B7. C8. D第二部分:填空题9. 1210. 3611. 36012. 2第三部分:解答题13. 证明勾股定理根据勾股定理,对于直角三角形,直角边的平方等于其他两条边的平方之和。

设直角边分别为$a$和$b$,斜边为$c$,则有$a^2+b^2=c^2$。

下面进行证明:证明方法一:使用几何方法进行证明。

[此处填写证明过程]证明方法二:使用代数方法进行证明。

[此处填写证明过程]14. 求解方程解方程$2x - 5 = 7$,即$2x = 12$,解得$x = 6$。

15. 求解不等式求解不等式$3x - 4 > 10$,首先将不等式转化为等价的形式:$3x > 14$,然后解得$x > \frac{14}{3}$。

16. 计算三角函数值计算$\sin(\frac{\pi}{4})$,首先将$\frac{\pi}{4}$转换为度数形式,即$45^\circ$。

根据正弦函数的定义,$\sin(\frac{\pi}{4}) =\sin(45^\circ) = \frac{1}{\sqrt{2}}$。

17. 求解三角方程求解方程$\sin^2(x) - \cos(x) = 0$。

根据三角恒等式$\sin^2(x) + \cos^2(x) = 1$,将方程改写为$\sin^2(x) = 1 - \cos(x)$。

然后,我们可以进行代换,将$\sin^2(x)$用$1 - \cos(x)$代替,得到$1 - \cos(x) - \cos(x) = 0$,简化后得$2\cos(x) - 1 = 0$,解得$\cos(x) =\frac{1}{2}$,即$x = \frac{\pi}{3} + 2n\pi$,其中$n$为整数。

第四部分:解析几何18. 计算线段长度已知两点$A(3, -2)$和$B(-1, 4)$,计算线段$AB$的长度。

2023年秋高一(上)期末联合检测试卷数学及参考答案

2023年秋高一(上)期末联合检测试卷数学及参考答案

2023年秋高一(上)期末联合检测试卷数 学数学测试卷共4页,满分150分。

考试时间120分钟。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,用0.5毫米的黑色墨水签字笔在答题卡上书写作答。

若在试题卷上作答,答案无效。

3.考试结束,考生必须将试题卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合2{|340}M x x x ,{|ln(1)}N x y x ,则M N A .(1 4), B .[1 4),C .(1 4) ,D .[1 4) ,2. “1cos 2 ”是“23”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知扇形的面积为24 cm ,圆心角为2弧度,则此扇形的弧长为A .4 cmB .6 cmC .8 cmD .10 cm4. 设320.30.233log log 222a b c ,则A .a b cB .a c bC .c a bD .c b a5. 已知函数()sin()(000)f x A x A ,,≤≤的部分图象如图所示,则()f x 的解析式是 A .()2sin()6f x xB .()2sin()3f x xC .()2sin(26f x xD .()2sin(23f x x6.锐角△ABC 中,若21sin cos cos 2A A A ,则AA .12B .8 C .6D .47. 定义在R 上的函数()f x 为奇函数,且(1)f x 为偶函数,当[0 1]x ,时,()21xf x ,则(3)(8)f fA .1B .0C .1D .28. 已知函数4()(0)f x x x x,记该函数在区间[1](1)t t t ,上的最大值与最小值的差值为()g t ,则()g t 的最小值为A2 B .1C .13D4二、选择题:本题共4小题,每小题5分,共20分。

高一数学同步期末测试题

高一数学同步期末测试题

高一数学同步期末测试题一、选择题:〔本大题共10小题,每题5分,共50分〕 1. f ( x ) = x 2+ 1 ,那么 f ( 0 ) = 〔 〕 A .-1 B .0 C .1 D .2 2.等差数列}{n a 中,1,16497==+a a a ,那么12a 的值是 〔 〕 A .15 B .30 C .31 D .64 3.函数)2(log 32++-=x x y 的定义域为 〔 〕 A .]3,(-∞ B .〔-2,3〕 C .]3,2(- D .),3[)2,(+∞⋃--∞ 4.p :,0)3(:,1|32|<-<-x x q x 那么p 是q 的 〔 〕 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又,,B b A a ∈∈那么有〔 〕 A .〔a+b 〕∈ A B .(a+b) ∈B C .(a+b) ∈ C D . (a+b) ∈ A 、B 、C 任一个6.函数K n f =)(〔其中n ∈N*〕,K 是2的小数点后第n 位数,,74142135623.12 = 那么))]}8(([{f f f f 的值等于 〔 〕A .1B .2C .4D .67.如果数列{}n a 的前n 项和)23(21nn n n s -=,那么这个数列 〔 〕A .是等差数列但不是等比数列;B .是等比数列不是等差数列;C .既是等差数列又是等比数列;D .既不是等差数列又不是等比数列. 8.等差数列{}n a 的公差为2,假设431,,a a a 成等比数列, 那么2a = 〔 〕 A .–4 B .–6 C .–8 D . –10 9.}{n a 是各项均为正数的等比数列,}{n b 是等差数列,且a 6=b 7,那么 〔 〕 A .10493b b a a +>+ B .10493b b a a +≥+ C .10493b b a a +<+ D .10493b b a a +≤+10.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,每分钟放水34升,在放水的同时注水,t 分钟注水22t 升,当水箱内水量到达最小值时,放水自动停止.现假定每人洗浴用水65升,那么该热水器一次至多可供 〔 〕 A .3人洗澡 B .4人洗澡 C .5人洗澡 D .6人洗澡 二、填空题:此题共4小题,每题4分,共16分.把答案填在题中的横线上.11.有a 、b 、c 三本新书,至少读过其中一本的有18人,读过a 的有9人,读过b 的有8人,读过c 的有11人,同时读过a,b 的有5人,读过b,c 的有3人,读过c,a 的有4人,那么a,b,c 全部读过的有______________人.12.对于任意的实数x ,不等式032>-++a x x 恒成立,那么实数a 的取值范围为______________.13.假设数列{a n }满足112,0;2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩假设167a =,那么20a 的值为_____ __.14.设数列{}n a 的前n 项和为n S 〔N ∈n *〕. 关于数列{}n a 有以下三个命题:〔1〕假设{}n a 既是等差数列又是等比数列,那么*1(N )n n a a n +=∈;〔2〕假设()R ∈+=b a n b n a S n 、2,那么{}n a 是等差数列; 〔3〕假设()nn S 11--=,那么{}n a 是等比数列. 这些命题中,真命题的序号是 .三、解做题:本大题共5小题,共64分.解容许写出必要的文字说明、证实过程及演算步骤.15.)(x f 是定义在R 上的奇函数,当20,() 1.x f x x x >=--时 (12分) 〔1〕求函数)(x f ;〔2〕解不等式)(x f <1.16.奇函数)(x f ,偶函数)(x g 满足).10()()(≠>=+a a a x g x f x且求证:1)()(22-=-x g x f . (12分)17.设各项均为正数的数列}{n a 的前n 项和为n S ,对于任意的正整数n,都有下面的等式成立.n n n S a S a S a S 412222211=++++++ 〔1〕求1a ;〔2〕求证)(+∈+=N n a a S n n n 21412.(12分)18.在等差数列}{n a 中,公差412,0a a a d 与是≠的等比中项.数列,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k (14分)19.函数f ( x ) 满足()()xfx+x=,b≠0,f ( 2) = -1,fcb且f ( 1-x ) = -f ( x +1)对两边都有意义的任意x都成立.(14分)〔1〕求f ( x )的解析式及定义域;〔2〕写出f ( x )的单调区间,并用定义证实在各单调区间上是增函数还是减函数?〔3〕假设y = f ( x ) 与2y交于A,B两点,O为坐标原点,求三角形OAB的面积.+=x0 ; ; 高一数学同步期末测试题答案一、选择题1.D 2.A 3.C 4.A 5.B 6.B 7.B 8.B 9.B 10. B 二、填空题11.2 12.〔-∞,3〕 13.5714.〔1〕、〔2〕、〔3〕. 三、解做题 15.〔1〕由题意,得⎪⎩⎪⎨⎧<+--=>--=)0(1)0()0(1)(22x x x x x x x x f〔2〕22000,021111x x x x x x x x x ><⎧⎧=<<<-⎨⎨----+<⎩⎩显然成立得得. 综述)2,0[)1,( --∞.16. .)()(,)()(xxa x g x f a x g x f -=-+-∴=+∵)(x f 是奇函数,)(x g 是偶函数,.)()(xa x g x f -=+-∴.2)(,2)(x x x x a a x g a a x f --+=-=∴ 22222222()()()()22(2)(2) 1.2x x x x x x x x a a a a f x g x a a a a -----+∴-=-+--++==-17. (1)当n=1时,21=a .〔2〕当2≥n 时,241+⋅=-=-n nn n n a S S S a ,n n n a a S 21412+=∴. 当n=1时,也符合n n n a a S 21412+=,)(+∈+=∴N n a a S n n n 21412.18.依题设得,)1(1d n a a n -+= 4122a a a =,∴)3()(1121d a a d a +=+,整理得d 2=a 1d,∵0,d ≠ ,1a d =∴得,nd a n = 所以, 由得d,3d,k 1d,k 2d,…,k n d n …是等比数列. 由,0≠d 所以数列 1,3,k 1,k 2,…,k n ,… 也是等比数列,首项为1,公比为.9,3131===k q 由此得 等比数列),3,2,1(39,3,9}{111 ==⨯===+-n q k q k k n n n n 所以公比的首项,即得到数列.3}{1+=n n n k k 的通项19. 〔1〕由()()x cf b x xf +=,0≠b ,∴x ≠ c ,得()cx bx f -=, 由()()11+-=-x f x f ,得cx bc x b -+-=--11,∴1=c . 由()12-=f ,得 121-=-b, 即1-=b . 因此()xx f -=11, 其定义域为()()+∞⋃∞-,11,. 〔2〕()x f 在 (-∞,1) 和〔1,+∞〕上都是增函数.下面证实()x f 在〔1,+∞〕上是增函数. 设x 1 ,x 2∈〔1,+∞〕,且x 1 < x 2 , 那么 ()()()()011111121212121<---=---=-x x x x x x x f x f , ∴()()21x f x f <,∴()x f 在〔1,+∞〕上是增函数.同理可证()x f 在(-∞,1)上也是增函数.〔3〕由⎪⎩⎪⎨⎧-=+=x y x y 112 得点A ,B 的横坐标分别为251--,251+-. 又直线y = x + 2与y 轴的交点为P (0,2 ) ,∴OPB OPA OAB S S S ∆∆∆+=5251221251221=+-⋅⋅++⋅⋅=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高一数学同步测试—期末新课标高一数学同步测试——期末一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.在斜二测画法中,与坐标轴不垂直的线段的长度在直观图中()A.变大B.变小C.可能不变D.一定改变2.垂直于同一条直线的两条直线的位置关系是()A.平行B.相交C.不在同一平面内D.A、B、C均有可能3.一个直角梯形的两底长分别为2和5,高为4,绕其较长的底旋转一周,所得的几何体的表面积为()A.π52B.π34C.π45 D.π374.直线y=kx+2与圆x2+y2+2x=0只在第二象限有公共点,则实数k的取值范围为()A .[43,1]B .[43,1)C .[43,+∞)D .(-∞,1)5.已知球面上的四点P 、A 、B 、C ,PA 、PB 、PC 的长分别为3、4、5,且这三条线段两两垂直,则这个球的表面积为( ) A .202π B .252πC .50πD .200π6.一个二面角的两个面与另一个二面角的两个面分别垂直, 则这两个二面角 ( )A .互补B .互余C .互补或互余D .不确定7.如右图所示,在正方体ABCD —A 1B 1C 1D1的侧面AB 1内有一动点P ,动点P 到直线A 1B 1与直线BC 的距离相等,则动点P 所在曲线的形状为( )8.对于一个长方体,都存在一点:(1)这点到长方体各顶点距离相等(2)这点到长方体各条棱距离相等(3)这点到长方体各面距离相等。

以上三个结论正确的是()A.(1)(2)B.(2)C.(1)D.(1)(3)9.直线1+=xy ax=+的交点的个数为y与直线1()A.0个B.1个C.2个D.随a值变化而变化10.在酒泉卫星发射场某试验区,用四根垂直于地面的立柱支撑着一个平行四边形的太阳能电池板,可测得其中三根立柱AA、1BB、1CC的长度分别为m10、m15、m30,1则立柱DD的长度是()1A.m30B.m25C.m20D.m15第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.将边长为m4的正方形钢板适当剪裁,再焊接成一个密闭的正四棱柱水箱,并要求这个水箱的全面积等于该正方形钢板的面积(要求剪裁的块数尽可能少,不计焊接缝的面积),则该水箱的容积为 . 12.过点P (3,6)且被圆2225xy +=截得的弦长为8的直线方程为 .13.光线由点(-1,4)射出,遇直线2x +3y -6=0被反射,已知反射光线过点(3 ,1362),反射光线所在直线方程__________________.14.已知m 、l 是直线, αβ、是平面, 给出下列命题: ①若l 垂直于α内的两条相交直线, 则l ⊥α; ②若l 平行于α, 则l 平行α内所有直线; ③若m l l m ⊂⊂⊥⊥αβαβ,,,且则; ④若l l ⊂⊥⊥βααβ,且,则;⑤若m l m ⊂⊂αβαβ,,,且∥则∥l . 其中正确的命题的序号是 (注: 把你认为正确的命题的序号都填上).三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知两条直线l 1 = x + my + 6 = 0, l 2: (m-2)x + 3y + 2m = 0,问:当m 为何值时, l 1与l 2(i)相交; (ii)平行; (iii)重合.16.(12分)某房地产公司要在荒地ABCDE上划出一块长方形地面(不改变方位)建造一幢八层楼的公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到1m2).E 100m D60m 80mAB 70m C17.(12分)已知方程2224+-++-++=∈x y t x t y t t R2(3)2(14)1690()的图形是圆.(1)求t的取值范围;(2)求其中面积最大的圆的方程.18.(12分)自点P (-3,3)发出的光线l 经过x 轴反射,其反射光线所在直线正好与圆74422=+--+y x y x 相切,求入射光线l 所在直线的方程.19.(14分)四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=2a,(1)求证:PD⊥平面ABCD;(2)求证,直线PB与AC垂直;(3)求二面角A-PB-D的大小;(4)在这个四棱锥中放入一个球,求球的最大半径;(5)求四棱锥外接球的半径.20.(14分)设M是圆22680+--=上动点,O是原x y x y点,N是射线OM上点,若|OM|·|ON|=120,求N点的轨迹方程.高一新数学期末测试题参考答案一、CDABC DCCDB二、11.34m ;12.34150x y -+=和3x =;13.13x -26y +85=0;14.①④;三、 15.解: 若m = 0时,l 1: x = -6,l 2: 2x -3y = 0, 此时l 1与l 2相交;若313120=-==-≠m m mm m或有,由,由3623±==m mm 有; 故i)当mm m m 31231≠-≠-≠时,且, l 1与l 2相交; ii)当m = -1时, m m m-=≠21326,l 1与l 2平行;(iii)当m = 3时m m m-==21326, l 1与l 2重合.16.解:如图建立坐标系,在AB 上任取一点P ,分别向 CD 、DE 作垂线划得一长方形土地,则直线AB 的方程为12030=+y x设)3220,(xx P -,则长方形的面积为 3506000)5(32)]3220(80)[100(2++--=---=x x x S ∴当X =5时Smax ≈6017 17.解:解:(1)方程即167)41()3(2222++-=-++--t t t y t x16722++-=t t r >0 ∴71-<t <1 (2) ∵1672++-=t t r∴当t=73时, yE D)3,3(-P774max =r ,此时圆面积最大,所对应圆的方程是 222413167497x y -++=()()18.解:设入射光线l 所在的直线方程为)3(3+=-x k y ,反射光线所在直线的斜率为1k ,根据入射角等于反射角,得1k k -=,而点P (-3,3)关于x 轴的对称点1P (-3,-3),根据对称性,点1P 在反射光线所在直线上,故反射光线所在直线1l 的方程为:)3(3+-=-x k y 即033=+++k y kx ,又此直线与已知圆相切,所在圆心到直线1l 的距离等于半径r ,因为圆心为(2,2),半径为1,所以1133222=++++k kk 解得:3443-=-=k k或故入射光线l 所在的直线方程为:)3(433+-=-x y 或)3(343+-=-x y 即03340343=++=-+y x y x 或19.解:⑴分析:要证PD ⊥平面ABCD ,只需证PD垂直于平面ABCD内的两条相交线,而所给已知量都是数,故可考虑勾股定理的逆定理⑴证明:∵PD=a ,AD=a ,PA=2a,∴PD 2+DA 2=PA 2,同理∴∠PDA =90°.即PD ⊥DA ,PD ⊥DC ,∵AO ∩DC=D ,∴PD ⊥平面ABCD .⑵分析:从图形的特殊性,应先考虑PB 与AC 是否垂直,若不垂直然后再转化⑵解:连结BD ,∵ABCD 是正方形∴BD ⊥AC ∵PD ⊥平面ABCD∴PD ⊥AC ∵PD ∩BD=D∴AC ⊥平面PDB ∵PB ⊂平面PDB ∴AC ⊥PB ∴PB 与AC 所成的角为90°⑶分析:由于AC ⊥平面PBD ,所以用垂线法作出二面角的平面角⑶解:设AC ∩BD =0,过A 作AE ⊥PB 于E ,连接OE ∵AO⊥平面PBD ∴OE ⊥PB ∴∠AEO为二面角A -PB -D的平面角∵PD ⊥平面ABCD ,AD ⊥AB ∴PA ⊥AB在Rt △PDB中,PB PD BD a=+=223,在Rt △PAB中,∵AE PB AB PA S ⋅⋅=⋅=2121∴aaa a PBAB PA AE 3232=⋅=⋅=,AO AC a ==1222在Rt △AOE 中,sin ∠==AEO AO AE 32,∴∠AEO =60°∴二面角A -PB -D 的大小为60.⑷分析:当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积法求解⑷解:设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连SA 、SB 、SC 、SD 、SP ,则把此四棱锥分为五个棱锥,设它们的高均为R3313131a aa a PD S V ABCD ABCD P =⋅⋅⋅=⋅⋅=◊- 222222212121a S a a a S S a a a S S ABCD PBC PAB PDC PAD ==⋅⋅===⋅⋅==◊∆∆∆∆∵V V V V V V a R S S S S S P ABCD S PDA S PDC S ABCD S PAB S PBCPAD PDC PAB PBC ABCD ------◊=++++=++++13133()∆∆∆∆131312122222322222a R a a a a a =++++()∴R a a 3221323()+= ∴R a a a=+=-=-22222122()∴球的最大半径为(122-a )⑸分析:四棱锥的外接球的球心到P 、A 、B 、C 、D 五的距离均为半径,只要找出球心的位置即可,在Rt △PDB 中,斜边PB 的中点为F ,则PF=FB=FD不要证明FA=FC=FP 即可⑸解:设PB 的中点为F ,∵在Rt △PDB 中:FP=FB=FD 在Rt △PAB中:FA=FP=FB ,在Rt △PBC中:FP=FB=FC∴FP=FB=FA=FC=FD ∴F 为四棱锥外接球的球心则FP 为外接球的半径 ∵FP=12PB ∴FP a =32∴四棱锥外接球的半径为32a评述:⑴本题主要考查棱锥的性质以及内切外接的相关知识点⑵“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,例如本例中球内切于四棱锥中时,球与四棱锥的五个面相切,即球心到五个面的距离相等⑶求体积或运用体和解决问题时,经常使用等积变形,即把一个几何体割补成其它几个几何体的和或差 20.解:设M 、N 的坐标分别为11(,)x y 、(,)x y ,由题设||||120OM ON ⋅=,222211120x y x y ++= (*)当M 不在y 轴上时,10x ≠,0x ≠,于是有11yy x x = 设11y y x x ==k ,代入(*),化简得21||(1)120x x k +=因1x 与x 同号,于是12120(1)x k x =+,12120(1)ky k x=+ 代入22680x y x y +--=并化简,可得34600(0)x y x +-=≠当10x =时,18y =,点N (0,15)也在直线34600x y +-=上所以,点N 的轨迹方程为34600x y +-=.。

相关文档
最新文档